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A B S T R A C T

It is essential to have accurate and reliable daily-inflow forecasting to improve short-term hydropower
scheduling. This paper proposes a Causal multivariate Empirical mode Decomposition (CED) framework as
a complementary pre-processing step for a day-ahead inflow forecasting problem. The idea behind CED is
combining physics-based causal inference with signal processing-based decomposition to get the most relevant
features among multiple time-series to the inflow values. The CED framework is validated for two areas in
Norway with different meteorological and hydrological conditions. The validation results show that using CED
as a pre-processing step significantly enhances (up to 70%) the forecasting accuracy for various state-of-the-art
forecasting methods.
1. Introduction

Inflow forecasting improves operation and planning of hydropower
stations while reducing the risk of flooding and reservoir rationing
(Apaydin et al., 2020; Liao et al., 2020). Inflow forecasting approaches
are categorized into two major groups: (1) physical models and (2)
data-driven models. Physics-based methods for inflow forecasting partly
address nonlinearity and non-stationary issues of inflow data using
physical laws and catchment characteristics (Liao et al., 2020). How-
ever, the main challenge of such methods is their dependencies on
initial conditions and input data (Bennett et al., 2016).

Data-driven methods for inflow forecasting include statistical and
machine learning techniques such as linear regression (LR) (Kao et al.,
2015), fuzzy inference systems (Lohani et al., 2014), spatial distribution-
based model (Tsai et al., 2014), model tree (Jothiprakash and Kote,
2011), Multilayer perception (MLP) (Golob et al., 1998; Coulibaly
et al., 2001; Cheng et al., 2015; Abdellatif et al., 2015), and support
vector regression (SVR) (Luo et al., 2019; Moazenzadeh et al., 2018;
Tongal and Booij, 2018). In Bordin et al. (2020) a comprehensive
review paper is provided in which all machine learning techniques
used for inflow forecasting are listed. Recently, deep learning methods
such as long short term memory (LSTM) (Apaydin et al., 2020; Kao
et al., 2020; Herbert et al., 2021; Cheng et al., 2021), recurrent neural
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network (RNN) (Ni et al., 2020), sequential to sequential (seq2seq)
network (Han et al., 2021; Kao et al., 2021; Yin et al., 2021) and
deep neural networks (DNNs) have been used for inflow forecasting
problems due to their capability to capture the nonlinearities and long-
term temporal dependencies learning (Yousefi et al., 2020). However,
machine learning-based models are facing some challenges. For in-
stance, their performance is biased by training data and may suffer from
over-fitting, information saturation and under-fitting issues (Bai et al.,
2016). This is more problematic, in the context of multivariate inflow
forecasting problems, where these techniques are unable to improve
the inflow accurately when used as standalone models without any
preprocessing techniques (Apaydin and Sibtain, 2021).

Feature extraction and selection as pre-processing is key for any ma-
chine learning-based forecasting model to address the issues mentioned
above. Some prominent pre-processing methods for time-series analysis
are inspired by the signal processing tool sets such as Fast Fourier trans-
form (FFT), wavelet transform (WT), Empirical Mode Decomposition
(EMD), Multivariate Empirical Mode Decomposition(MEMD), etc. For
example, WT has been used in hydrological studies for flood forecast-
ing (Sehgal et al., 2014a) and river discharge forecasting (Sehgal et al.,
2014b). However, such methods are time consuming and require exten-
sive computation power (Roushangar and Alizadeh, 2018; Apaydin and
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Sibtain, 2021). In contrast to WT, EMD techniques work in time domain
without the needing any preset basis functions or a mother wavelet.
EMD can reduce the complexity of data set by breaking down the time-
series (e.g. inflow historical values) into different sub-elements (Bai
et al., 2016; Qi et al., 2019; Okkan and Serbes, 2013; Apaydin and
Sibtain, 2021; Bai et al., 2015). For example, Apaydin and Sibtain
(2021) proposes a multivariate streamflow forecasting model for inflow
based on EMD. However, the authors suggested an ad-hoc process
rather than an algorithmic approach to combine meteorological and
hydrological data to forecast inflow. In multivariate inflow forecasting,
decomposing original time-series to its intrinsic mode functions (IMFs),
which carry different frequencies of the original series, create a large
set of features. Using large-set of features without doing any feature se-
lection techniques can introduce the risk of over-fitting and information
saturation in the machine learning process. Therefore, feature selection
techniques are usually used after decomposition techniques (Apaydin
and Sibtain, 2021; Bai et al., 2016). In this paper, we propose a
causal inference-based framework as a feature selection technique to
find the most relevant features for inflow forecasting. Causal inference
is an emerging concept within the machine learning community that
characterizes the cause-and-effect relationship between distinct input
and target variables based on directed acyclic graphs (Sriram et al.,
2018).

This paper proposes a novel multivariate time-series decomposition
framework powered by causal inference for short-term inflow fore-
casting application. The proposed framework is referred to as Causal
Empirical Decomposition (CED). CED is a feature extraction and feature
selection framework or a pre-processing step that can be used for any
forecasting problem with multiple input time-series. Utilizing causal
inference for time-series feature extraction enables better exploitation
of the inherent underlying dynamic behavior of a hydrological system.
To the best of the authors’ knowledge, CED is the first attempt at
causal-based feature selection in inflow forecasting for hydropower
applications. The contribution of this paper are summarized as follows:

• In terms of methodology, a pre-processing feature extracting
and selection framework powered by decomposition and causal-
ity analysis is proposed that is applicable to any time-series
forecasting method.

• From an application point of view, the accuracy of short-term
inflow forecasting is considerably improved by using the proposed
CED pre-processing framework based on actual data from two
different use cases in Norway.

. Use case

All data used in this paper are collected from two main sources: Nor-
ay’s regulatory agency (NVE) and the Norwegian Center for Climate
ervices (Anon, 0000a,b). Two study areas in this paper as presented
n Fig. 1 are located in Vestlandet (Lærdal municipality) and Øst-
andet (Hemsedal Municipality) regions in Norway. The measurement
tations and hydropower stations are presented with red and cyan
ircles, respectively. The first case study contains the Borgund power
tation, weather station (Filefjell–Kyrkjestølane), and inflow measure-
ent stations (Sula with the elevation of 1200 (m)). Likewise, the

econd use case contains Gjuva hydropower station, inflow measure-
ent station (Storeskar with the elevation of 850 (m)), and weather

tations (Hemsedal ski center and Memesedal II). Borgund hydropower
lant was commissioned in 1974 with an installed capacity of 212
MW) and annual production of 985 (GWh). Gjuva hydropower plant
ocated in Hemsedal municipality has been in operation since 1957
ith a maximum performance of 10 (MW). Historical data from Sula
nd Storeskar inflow measurement stations are available from 1958.
ther data sources, including meteorological and hydrological data,
re available from 2010 and 2013 for first and second use cases,
2

espectively.
The data set for both locations includes inflow (m3∕s), average
temperature (◦C), maximum temperature (◦C), minimum temperature
(◦C), precipitation (mm), snow-depth (cm), and relative humidity (%).

he historical inflow measurements for two use cases are presented in
ig. 2. The inflow peak occurs at the end of spring or the beginning of
ummer when the temperature rises and causes snow to melt in these
eographical locations. There is also another peak at the beginning of
all due to increased precipitation. Furthermore, the inflow variation
n the second use case is significantly more notable than Sula as its
aximum inflow is 52 (m3∕s) while the maximum inflow for the Sula

s 16.72 (m3∕s).

3. Methodology

The overall architecture of the proposed CED framework, together
with the forecasting block, is depicted in Fig. 3. The CED framework
is comprised of four major steps: decomposition, information transfer
modeling, causal significant test, and forecasting algorithms.

In the decomposition block, the original time-series is breaking-
down into three new features, i.e., stochastic, periodic and trend terms.
In this paper, we have 7 time-series with a length of N=3379 samples
applied to the decomposition block. The output is 21 new time-series
with the same length as the original time-series. The output of the
decomposition step is sent to the second step, which is a feature
selection algorithm based on information theories. In this step, a greedy
search algorithm is used to find the features’ lag values with the
maximum contribution to the current state of inflow. The objective
function of the greedy search algorithm is to maximize the conditional
mutual information and the transfer entropy. The obtained causal
candidate set is sent to the third step, which is a pruning algorithm.
This step guarantees that the minimal subset of the causal candidate
set is selected (redundant variables are removed, and only synergies
variables are kept). A causal network is obtained for each feature of
inflow (stochastic term, periodic term, and trend term). These causal
networks are used to forecast each feature of inflow. Once all three
terms of inflow features are forecasted, they are bundled to form the
forecasted inflow values. In the following subsections, each step is
briefly explained.

3.1. Step 1: Time-series decomposition

This block utilizes a Multivariate Empirical Mode Decomposition
(MEMD) method to split the original time-series into intrinsic mode
functions (IMFs) while preserving all the original time-series informa-
tion. MEMD is a self-adaptive technique designed for nonlinear and
non-stationary data (Huang et al., 2020; Rehman and Mandic, 2010).

MEMD decomposes a multivariate time-series 𝑋𝑀×𝑁 including in-
flow, precipitation, snow-depth, relative humidity, maximum tempera-
ture, minimum temperature, and average temperature, where 𝑀 is the
number of variables, 𝑁 is the length of series, and 𝑋𝑀×𝑁 is structured
as follows:
𝑋𝑀×𝑁 = [𝑋1, 𝑋2,… , 𝑋𝑀 ]⊤ =

⎡

⎢

⎢

⎢

⎢

⎣

𝑥1,1 𝑥1,2 … 𝑥1,𝑁
𝑥2,1 𝑥2,2 … 𝑥2,𝑁
⋮ ⋮ ⋱ ⋮

𝑥𝑀,1 𝑥𝑀,2 … 𝑥𝑀,𝑁

⎤

⎥

⎥

⎥

⎥

⎦

(1)

For the sake of better understanding, the MEMD decomposition is
expressed for only one variable of 𝑋𝑀×𝑁 as follows:

𝑋1 =
𝑚−1
∑

𝑗=0
(𝐼𝑀𝐹 1

𝑗 + 𝑅1
𝑚) =

𝑚−1
∑

𝑗=0

𝑁
∑

𝑖=0
(𝑖𝑚𝑓 1

𝑗,𝑖 + 𝑟1𝑚,𝑖) (2)

where 𝐼𝑀𝐹 1 ∈ 𝑅𝑚×𝑁 (the residual 𝑅𝑚 is considered as the last IMF) is a
two-dimension sub-matrix of a three-dimension 𝐼𝑀𝐹 matrix, 𝐼𝑀𝐹 =
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Fig. 1. Overview of the study area; measurement and hydropower stations are presented by red and cyan circles in both use cases.

Fig. 2. Historical inflow measurement from 2011 to 2013; (a) inflow data collected from Sula use case 1; (b) inflow data collected from Storeskar.
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Fig. 3. Overview of the proposed CED framework; 𝑆𝑥, 𝑃𝑥, and 𝑇𝑥 stand for stochastic, periodic, and trend terms of the original time-series and 𝑆𝑖𝑛𝑓 , 𝑃𝑖𝑛𝑓 , and 𝑇𝑖𝑛𝑓 .
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[𝐼𝑀𝐹 1, 𝐼𝑀𝐹 2,… , 𝐼𝑀𝐹𝑀 ]⊤, 𝐼𝑀𝐹 ∈ 𝑅𝑀×𝑚×𝑁 . Therefore, each vari-
able (e.g. 𝐼𝑀𝐹 1) decomposed to 𝑚 sub-series 𝐼𝑀𝐹 1

1 , 𝐼𝑀𝐹 1
2 ,… , 𝐼𝑀𝐹 1

𝑚
with the length of 𝑁 (same length with the original inflow).

After the decomposition of each variable, FFT analysis is applied
on each of the IMFs to sort them by three major features, periodic,
stochastic, and trend terms based on their frequencies. The obtained
periodic, stochastic, and trend features are fed into the forecasting
engine to improve time-series forecasting performance (Qi et al., 2019;
Bai et al., 2016). Note that the obtained stochastic, periodic, and trend
features are still in the time domain and not in the frequency domain.
Each of these three features captures the underlying physical aspects.
The periodic term contains slow dynamics of an inflow time-series
depending on the seasonality and meteorological condition in a given
geographical area. The stochastic term represents the fast dynamics due
to abrupt changes in meteorological parameters such as temperature
and precipitation. Finally, the trend term shows the average trend
changes of the inflow during the decades, showing the effect of long-
term phenomena such as global warming. Therefore, variable 𝑋1 can
e represented by these three features as below:

1 = 𝑆𝑋1
+ 𝑃𝑋1

+ 𝑇𝑋1
(3)

where 𝑆𝑋1
, 𝑃𝑋1

, and 𝑇𝑋1
represent stochastic, periodic, and trend com-

ponents of time-series 𝑋1 which are obtained from FFT analysis as
follows:

𝑆𝑋1
=

𝑘
∑

𝑗=0
𝐼𝑀𝐹 1

𝑗 , 𝑘 > 1,high-frequencies

𝑃𝑋1
=

𝐾
∑

𝑗=𝑘+1
𝐼𝑀𝐹 1

𝑗 , 𝑘 < 𝐾 < 𝑚 − 1,mid-frequencies

𝑇𝑋1
=

𝑚−1
∑

𝑗=𝐾
𝐼𝑀𝐹 1

𝑗 + 𝑅1
𝑚, nearly-zero frequencies

(4)

here 𝑘 is the number 𝐼𝑀𝐹 1
𝑗 that builds the stochastic term and 𝐾 −𝑘

s group of 𝐼𝑀𝐹 1
𝑗 that creates the periodic feature, these parameters

btain from FFT analysis. As it is presented in the above equation, the
rimary sub-series of 𝐼𝑀𝐹 1 (e.g. 𝐼𝑀𝐹 1

1 , 𝐼𝑀𝐹 1
2 , and 𝐼𝑀𝐹 1

3 ) represents
igh dynamics or high-frequency components, and it is sorted as the
tochastic term. The 𝐼𝑀𝐹 1 with nearly zero frequency are sorted as
he trend term (e.g., 𝐼𝑀𝐹 1

𝑚−1 and residual, 𝑅1
𝑚), and the rest of the

ub-series in 𝐼𝑀𝐹 1 constitute the periodic term.

.2. Step 2: Information transfer modeling

This block employs a greedy search algorithm with a objective to
aximize the transfer entropy between input features obtained from

tep 1 to the current target value (e.g. Inflow).

n this paper, the greedy search algorithm searches among the decom-
osed features (components) with different time lags to find a causal
4

o

andidate set for inflow features by maximizing information theory
etrics such as Transfer Entropy (TE) as its objective function. TE is

ased on Conditional Mutual Information (CMI). CMI and TE expression
re explained as follows:

• Conditional Mutual Information (CMI): 𝐼(𝑋; 𝑌 |𝑍) is similar
to Mutual Information (MI), where all variables in an MI equa-
tion are conditioned to a third variable named 𝑍. The CMI
𝐼(𝑋; 𝑌 |𝑍) is an indicator that shows the uncertainty reduction in
the variable 𝑌 (e.g., inflow) from observing another variable 𝑋
(e.g., precipitation) given the third variable 𝑍 (e.g., snow-depth).
The CMI formulation is presented as (Novelli et al., 2019):

𝐼(𝑌 ;𝑋|𝑍) = 𝐻(𝑌 |𝑍) −𝐻(𝑌 |𝑋,𝑍) (5)

𝐻(𝑌 |𝑍) = −
∑

𝑦∈𝑋,𝑧∈𝑍
𝑃 (𝑦, 𝑧) log2

𝑃 (𝑦, 𝑧)
𝑃 (𝑧)

(6)

where 𝐻(𝑌 |𝑍) and 𝐻(𝑌 |𝑋,𝑍) are the conditional entropy and
𝑃 (𝑧) and 𝑃 (𝑦, 𝑧) are the marginal probability of 𝑧 and joint
probability between 𝑦 and 𝑧 respectively.

• Transfer Entropy (TE): 𝑇𝐸𝑋→𝑌 is the degree of uncertainty
reduction of variable 𝑌𝑡 by past values of 𝑋 and 𝑌 over and
above the uncertainty reduction of 𝑌 by its own past values
alone (Bossomaier et al., 2016). The expression of the 𝑇𝐸𝑋→𝑌 is
as Novelli et al. (2019):

𝑇𝐸𝑋→𝑌 = 𝐼(𝑌𝑡;𝑋𝑡−1∶𝑡−𝑘|𝑌𝑡−1∶𝑡−𝑘) =

𝐻(𝑌𝑡|𝑌𝑡−1∶𝑡−𝑘) −𝐻(𝑌𝑡|𝑌𝑡−1∶𝑡−𝑘, 𝑋𝑡−1∶𝑡−𝑘)
(7)

These metrics are used to identify the nonlinear and linear de-
endencies among different time-series. TE is the transfer informa-
ion among different source variables and a target variable, i.e., in-
low (Lizier, 2012). In other words, we find a minimal set of variables
hat collectively contribute to the target variable’s next state.

The output of the second step is a subset of source variables and
nflow with some time lags 𝑆𝑆<𝑡 in a predefined searching space for
he set of candidates, 𝐶𝑆<𝑡 that contribute to the current state of the
nflow while fulfilling the statistical significance requirements. Finding
he global optimal set among all the possible subsets of inflow time-
eries together with other sources’ lagged time-series is an NP-hard
roblem, which exponentially grows with the size of the searching
pace (Sun et al., 2015). Therefore, we use a sub-optimal greedy search
lgorithm (Sun et al., 2015; Lizier, 2012). For better clarification, the
econd step is illustrated in algorithm 1.

The greedy search algorithm starts with initializing 𝑆𝑆<𝑡 and 𝐶𝑆<𝑡.
he algorithm selects inflow time-series lags in 𝐼𝑛𝑓<𝑡 ⊂ 𝐶𝑆<𝑡 to
erform self-prediction (Wibral et al., 2013). Next, it maximizes the
MI 𝐼(𝐶; 𝐼𝑛𝑓𝑡|𝑆𝑆<𝑡). At the beginning, when 𝑆𝑆<𝑡 =[ ], the value
f 𝐼(𝐶; 𝐼𝑛𝑓 |𝑆𝑆 ) is equivalent to mutual information. By adding
𝑡 <𝑡
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Fig. 4. The transfer modeling process of causal graph network.
one inflow lag to 𝑆𝑆<𝑡, the 𝐼(𝐶; 𝐼𝑛𝑓𝑡|𝑆𝑆<𝑡) will be equivalent to the
CMI. Finally, adding lagged time-series from other sources turn the
𝐼(𝐶; 𝐼𝑛𝑓𝑡|𝑆𝑆<𝑡) into TE. This procedure is explained in algorithm 1.

Algorithm 1 Information transfer modeling
1: initialize 𝑆𝑆<𝑡 as an empty set
2: initialize 𝐶𝑆𝑐

<𝑡 based on the domain knowledge or empirically
3: while 𝐶𝑆<𝑡 is not empty do
4: if 𝑖𝑛𝑓<𝑡 is not empty then
5: select a candidate, 𝐶 from 𝑖𝑛𝑓<𝑡 ⊂ 𝐶𝑆<𝑡
6: else
7: select a candidate,𝐶 from 𝐶𝑆<𝑡
8: end if
9: if the selected candidate maximize 𝐼(𝐶; 𝐼𝑛𝑓𝑡|𝑆𝑆<𝑡) then

10: check statistical significant test against 𝐼(𝐶; 𝐼𝑛𝑓𝑡|𝑆𝑆<𝑡) = 0
11: if the null hypothesis rejected then
12: add the C to 𝑆𝑆<𝑡
13: remove C from 𝐶𝑆<𝑡
14: else
15: remove C from 𝐶𝑆<𝑡
16: end if
17: end if
18: end while

In Fig. 4, the procedure of obtaining 𝑆𝑆<𝑡 set is illustrated using a
toy model. In this example, the greedy algorithm searches within the
search space of 𝐿 lags and it establishes the set of 𝐼𝑛𝑓𝑡−1, 𝐼𝑛𝑓𝑡−2, 𝑋2,𝑡−1,
𝑋1,𝑡−2, and 𝑋2,𝑡−𝐿 as the causal candidate set 𝑆𝑆<𝑡 which contributes
to the inflow current state 𝐼𝑛𝑓𝑡.

3.3. Step 3: Causal significance test

In this step, we check the causal strength of each variable in the
causal candidate set, 𝑆𝑆<𝑡, concerning the target variable (inflow in our
case) by removing the influence of that variable in the set. Such a prun-
ing process converges the inferred network to a causal network (Sun
et al., 2015; Novelli et al., 2019). The causal strength test is explained
in algorithm 2.

This process continues until all selected candidates in 𝑆𝑆<𝑡 are
tested. Moreover, an additional omnibus test have been done to secure
the statistical significance against zero transfer entropy. Fig. 5 depicts
5

Algorithm 2 Causal Significant Test
1: for a selected 𝐶 in 𝑆𝑆<𝑡 do
2: if the conditionally excluded candidate minimize the CMI

𝐼(𝐶; 𝐼𝑛𝑓𝑡|𝑆𝑆<𝑡\{𝐶}) then
3: perform statistical significant test against conditional indepen-

dent (null hypothesis)
4: if the null hypothesis is rejected then
5: keep the C in 𝑆𝑆<𝑡
6: else
7: remove C from 𝑆𝑆<𝑡
8: end if
9: end if

10: end for

Fig. 5. The transfer modeling process of causal graph network.

the outcome of Step 3 on the CED framework. For example 𝑋2,𝑡−𝐿
is removed from obtained 𝑆𝑆<𝑡 in Fig. 5 because it is detected as a
variable with non-significant causal strength.
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Table 1
LSTM hyperparameters.
General hyperparameters for LSTM, RNN and MLP

Activation function Relu Learning rate 0.001
Number of hidden layers 2 Optimizer Adam
Loss function MSE Epoch 100

LSTM

Neurons of first hidden layer 1000 Neurons of second hidden layer 150
Dropout rate for the first hidden
layer

0.2 Dropout rate for the second
hidden layer

0

Return sequence for the first
hidden layer

True Return sequence for the second
hidden layer

False

Batch size 100 Neurons of output layer 1
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3.4. Step 4: Forecasting

In step 4, the obtained causal graph is used for target-related
(inflow-related) feature selection. Then, we feed significant causal fea-
tures into a typical machine learning-based forecasting algorithm. In
this paper, we consider four widely used algorithms in the literature for
inflow forecasting, e.g., LR, MLP, RNN, and LSTM. To save the space
in the paper, the description for each one of them is not provided here
but can be find in Qi et al. (2019), Abdellatif et al. (2015), Tayebiyan
et al. (2016), Apaydin et al. (2020). In addition, these are the models
developed in Keras and Sciket learn libraries (Pedregosa et al., 2011;
Chollet et al., 2015).

4. Results & discussions

The analysis is performed on a laptop with Core i7 Intel GPU,
32 GB RAM, and NVIDIA GeForce RTX 2080. The computation time
of different scenarios ranges from less than one second for CED-LR to
250 s for LSTM with stand-alone decomposition preprocessing tech-
niques for training each model. In addition, the grid search algo-
rithm is used for finding the hyperparameters of each models like
LSTM, MLP and RNN. For example, the grid-search set to the follow-
ing ranges to find the optimal hyperparameters for the LSTM model:
Learning rate= [0.1, 0.01, 0.001], activation functions= [Relu, Tanh,
Sigmoid], first layer neurons=[500, 1000, 1500, 2000], second layer
neurons=[100, 150, 200], batch-sizes= [30, 50, 100, 200, 500 ] and
optimizer=[Adam, Adammax]. To save the space in the paper, only
one table of hyperparameters related to the Sula area is presented (see
Table 1).

In the following sub-sections, the results are provided for each block
presented in Fig. 3. The effectiveness of the proposed CED framework
is validated for two different use cases. Hence, the comparison is per-
formed through two well-known performance indicator; the normalized
root means square error (NRMSE) and the coefficient of determination
as follows:

𝑁𝑅𝑀𝐸𝑆 =

√

∑𝑁
𝑡=1(𝐼𝑛𝑓𝑡 − 𝐼𝑛𝑓 𝑡)2

Inf
(8)

𝑅2 = 1 −
∑𝑁

𝑡=1(𝐼𝑛𝑓𝑡 − 𝐼𝑛𝑓 𝑡)2
∑𝑁

𝑡=1(𝐼𝑛𝑓𝑡 − Inf)2
(9)

where 𝐼𝑛𝑓𝑡 and 𝐼𝑛𝑓 𝑡 are actual inflow and forecasted inflow values
at time 𝑡, respectively. Inf is the expected value or mean of 𝐼𝑛𝑓 .

RMSE is a normalized form of the root mean square error (RMSE).
he logic behind selecting RMSE or mean square error (MSE) is to
enalize large error values, which often occur during the peak of
nflow, exponentially more than many smaller errors. For example,

errors of [1, 1, 6] are significantly worse than [2, 2, 2], that lost
alue is 2 when a mean absolute error (MAE) is used. This property of
ssigning a higher loss value to larger errors is beneficial when more
tability is wanted (Osberg, 2020). In this paper, for model training and
alidation, MSE is used to minimize large errors rather than minimizing
6

small errors. In inflow forecasting problems, minimizing large errors
have higher importance because of the cost of reservoir spillage and
the environmental and social cost of the flood. Moreover, NRMSE and
the coefficient of determination are used as the performance criteria
for the validation of the models. The best possible scores for 𝑅2 and
NRMSE are 1 and 0, respectively. The closer 𝑅2 is to 1 or NRMSE is to
0, the better trained the model is toward the unseen samples.

4.1. Multivariate decomposition

The MEMD method is employed to decompose input variables’
time-series into their IMF sub-series. The projection number 𝑁𝑢𝑚𝑑
is a parameters of MEMD to extract proper number of 𝐼𝑀𝐹 for a
given time-series (Rehman and Mandic, 2010). We select 𝑁𝑢𝑚𝑑 =
256 based on our heuristic analysis and the literature (Rehman and
Mandic, 2010). There are other parameters such as the stopping criteria
condition for controlling the sifting process, which is selected as a
vector [0.05, 0.05, 0.05] as recommended in Rilling et al. (2003). The
results of the multivariate decomposition block are presented for the
inflow variable in Fig. 6. Applying MEMD on inflow and other variables
results in 21 sub-series and a residual signal for the last IMF. As it
can be seen in Fig. 6(c), (e) and (g), the inflow stochastic feature is a
summation of the seven first IMF 𝑆𝑖𝑛𝑓 = 𝐼𝑀𝐹 𝑖𝑛𝑓

1 +𝐼𝑀𝐹 𝑖𝑛𝑓
2 ⋯+𝐼𝑀𝐹 𝑖𝑛𝑓

7 ,
he Inflow’s periodic feature is 𝑃𝑖𝑛𝑓 = 𝐼𝑀𝐹 𝑖𝑛𝑓

8 + 𝐼𝑀𝐹 𝑖𝑛𝑓
9 ⋯ + 𝐼𝑀𝐹 𝑖𝑛𝑓

16 ,
nd the inflow’s trend feature is 𝑇𝑖𝑛𝑓 = 𝐼𝑀𝐹 𝑖𝑛𝑓

17 + 𝐼𝑀𝐹 𝑖𝑛𝑓
18 ⋯ + 𝑅𝑖𝑛𝑓 .

sually, the first 𝐼𝑀𝐹 𝑖𝑛𝑓 includes the highest dynamics of a time-series
hile the last IMF (𝑅𝑖𝑛𝑓 ) contains the lowest dynamics.

The 𝑆𝐼𝑛𝑓 , 𝑃𝐼𝑛𝑓 and 𝑇𝐼𝑛𝑓 in Fig. 6 are obtained from the FFT anal-
sis by sorting the IMFs based on their similar frequencies to form
tochastic, periodic, and trend features of the inflow. The FFT analysis
as applied to all variables’ time-series, but for visualization, only

nflow’s FFT conversion featured is presented in Fig. 6(b), (d), (f),
nd (h). It shows that high frequencies are sorted in the stochastic
eature representing daily dynamics with dominant frequencies from
.1 to 0.5 (1∕𝑑𝑎𝑦) (such dynamics range from one to two days). The
eriodic features carry the main frequencies from 0.0027 to 0.03
1∕𝑑𝑎𝑦), representing time-series with yearly, half-yearly, seasonal, and
onthly periods. The last feature is the trend which contains nearly

ero frequencies.
Generally, forecasting trend 𝑇𝑋 and periodic 𝑃𝑋 features are not

hallenging for ML forecasting algorithms because they are less noisy.
n the contrary, the most challenging part is forecasting stochastic

eatures because they are nonlinear and noisy. Therefore, adding sup-
lementary variables from meteorological and hydrological data such
s temperature, snow-depth, or precipitation may reduce the stochastic
nflow feature forecasting uncertainties. Hence, causality-based analy-
is is essential to find the best set of variables that can improve the
nflow forecasting performance. A sensitivity analysis is provided in
ection 4.3 in which the forecasting accuracy of inflow features are
ompared with CED and without CED in Table 3 and Fig. 9.
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Fig. 6. Decomposition results of inflow variable from 2010 to 2019 for Sula area.
Table 2
Data variables with full name.

Name Variable Name Variable

Inflow 𝐼𝑛𝑓 Periodic of 𝑇 𝑒𝑚𝑚𝑎𝑥 𝑃𝑚𝑎𝑥
Stochastic of 𝐼𝑛𝑓 𝑆𝑖𝑛𝑓 Trend of 𝑇 𝑒𝑚𝑚𝑎𝑥 𝑇𝑚𝑎𝑥
Periodic of 𝐼𝑛𝑓 𝑃𝑖𝑛𝑓 Relative humidity 𝑅ℎ
Trend of 𝐼𝑛𝑓 𝑇𝑖𝑛𝑓 Stochastic of 𝑅ℎ 𝑆𝑟ℎ
average-temperature 𝑇 𝑒𝑚𝑎𝑣𝑒 Periodic of 𝑅ℎ 𝑃𝑟ℎ
Stochastic of 𝑇 𝑒𝑚𝑎𝑣𝑒 𝑆𝑎𝑣𝑒 Trend of 𝑅ℎ 𝑇𝑟ℎ
Periodic of 𝑇 𝑒𝑚𝑎𝑣𝑒 𝑃𝑎𝑣𝑒 Snow-depth 𝑆𝑛𝑜
Trend of 𝑇 𝑒𝑚𝑎𝑣𝑒 𝑇𝑎𝑣𝑒 Stochastic of 𝑆𝑛𝑜 𝑆𝑠𝑛𝑜
Minimum-temperature 𝑇 𝑒𝑚𝑚𝑖𝑛 Periodic of 𝑆𝑛𝑜 𝑃𝑠𝑛𝑜
Stochastic of 𝑇 𝑒𝑚𝑚𝑖𝑛 𝑆𝑚𝑖𝑛 Trend of 𝑆𝑛𝑜 𝑇𝑠𝑛𝑜
Periodic of 𝑇 𝑒𝑚𝑚𝑖𝑛 𝑃𝑚𝑖𝑛 Precipitation 𝑃𝑟
Trend of 𝑇 𝑒𝑚𝑚𝑖𝑛 𝑇𝑚𝑖𝑛 Stochastic of 𝑃𝑟 𝑆𝑝𝑟
Max-temperature 𝑇 𝑒𝑚𝑚𝑎𝑥 Periodic of 𝑃𝑟 𝑃𝑝𝑟
Stochastic of 𝑇 𝑒𝑚𝑚𝑎𝑥 𝑆𝑚𝑎𝑥 Trend of 𝑃𝑟 𝑇𝑝𝑟
7

4.2. Causal graph from inflow features

The feature decomposition block as explained in Section 3.1 creates
a data set with 21 variables (see Table 2). Moreover, some of these
variables with a certain delay can significantly impact the inflow
forecasting problem. Therefore, these variables with their different lags
need to be taken into account. Thereby, let us assume all variables
are Markovian with 𝐿 = 30 lags, a searching space with the size of
630 (30 × 21) can be created. However, feeding all these variables to
the ML forecasting algorithms may cause over-fitting problem. Thus,
finding the correct variables with the right lags which can maximize
the improvement impact on inflow forecasting performance is a key
that can be done by steps 2 and 3 in the CED framework. We assume 30
days for the maximum lag, 𝐿, which is based on our heuristic analysis
and input from hydropower experts. As explained in steps 2 and 3 of

the CED algorithm in the methodology, step 3 is a small set of variables
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Fig. 7. Causal model for inflow values and its predictors: (a) original time-series values For Sula and Storeskar; (b) decomposed time-series values for Sula area; (c) decomposed
ime-series values for Storeskar area.
ut of the 630 variables based on their significant causal relationship
ith the inflow.

e illustrate the resultant causal models for the Sula and Storeskar
se-cases in Fig. 7. The dependencies between the original inflow time-
eries with its lag values and the lags of other time-series variables are
resented in Fig. 7(a). It shows the average temperature, precipitation,
8

and humidity time-series with their first lag (one day ago) values have
the most contribution in forecasting the current state of the inflow.
Moreover, the first four lags of the historical inflow can significantly
contribute to the current state of the inflow.

Fig. 7(b) and (c) show the causal relationship between decomposed
inflow features at the current time 𝑆𝑖𝑛𝑓 ,𝑡, 𝑇𝑖𝑛𝑓 ,𝑡 and 𝑃𝑖𝑛𝑓 ,𝑡 with their
lags and lags of other resource variables for Sula and Storeskar areas
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Fig. 8. CED-LR Forecasting results of inflow and its features for Sula area: (a) scatter plot of inflow stochastic term; (b) scatter plot of inflow periodic term; (c) scatter plot of
inflow trend term; and (d) scatter plot of inflow.
respectively. Fig. 7(b) shows that the stochastic features of precipitation
and humidity from the last day highly affect the stochastic inflow
values at the current state. Moreover, the inflow’s stochastic feature
has significant dependencies on its own recorded values until 15 days
ago. In addition, the periodic feature of inflow at the current time
depends on the 𝑃𝑠𝑛𝑜,𝑡−1, 𝑃𝑝𝑟,𝑡−1 and 𝑆𝑟ℎ,𝑡−2 values. This is because the
periodic pattern of inflow shows the seasonality behavior including
snowy, snow-melting, rainy, and dry periods. Since the dynamic in
the inflow’s periodic feature is lower than the stochastic feature, its
dependency on its past values is lower (depends on its six lags) than
the stochastic feature. In addition, the trend feature of the inflow has
almost no dynamic. So, it does not exhibit directed information with
any exogenous variables in our data set. Instead, it only depends on its
first two past values.

Another interesting observation from Fig. 7(b), is that decomposition
of inflow and other weather-related enables us to explore more causal
relationships between various components of input data and the current
state of inflow. For example, Snow-depth was not found in causal graph
without decomposition in Fig. 7(a), while the snow-depth periodic fea-
ture has an impact on the inflow periodic feature. The decomposition
process denoises and detrends the original signals, strengthening steps
2 and 3 to discover more information-rich variables for the inflow fore-
casting problem. Moreover, the resultant causal model for decomposed
values from the second use case, Storeskar area, is more distinguishable
from our first use case, Sula area, see Fig. 7(c). However, the causal
graph without decomposition step looks very similar for both use cases
in Fig. 7(a).

In the next step, the obtained causal graphs for each feature of
inflow are employed for training different ML tools to forecast the
inflow features.

4.3. Inflow forecasting

In this step, forecasting techniques such as LR, MLP, RNN and
LSTM are used to forecast 𝑆 , 𝑃 , and 𝑇 components. For training
9

𝑖𝑛𝑓 𝑖𝑛𝑓 𝑖𝑛𝑓
and testing of the forecasting algorithms, actual data from the case
study areas (presented in Fig. 1) are divided into three parts; training,
validation, and testing. The period from 01/06/2019 to 31/12/2019
is selected as the testing data and the remaining time is selected as
training and validation data sets with 90% and 10% ratio respectively.

The inputs for LR, MLP, RNN and LSTM without CED is 30 past
values of all the input variables presented in Section 2, while the
inputs with CED is obtained in Section 4.2 and presented in Fig. 7 for
each feature and use cases. After training the model, it is validated
with the test data set. As an example, the results of inflow features
forecasting are illustrated for the Sula area using the LR model in
Fig. 8(a), (b), and (c). Fig. 8 shows that the obtained models accurately
forecast the inflow features. The scatter plot also shows a good match
between the realized values and the forecasted values, especially for
the periodic and trend terms where 𝑅2 = 0.99. The forecasted inflow is
the summation of forecasted values of its stochastic, periodic, and trend
terms, see Fig. 8(d). As it is observed, the forecast performance of CED-
LR for Sula area is better than Storeskar area (look at their 𝑅2 scores)
because the inflow changes and nonlinearities in Storeskar is much
higher than Sula area as explained and presented in Section 2 and Fig. 2
respectively. For the sake of better understanding the role of CED in
improving forecasting accuracy of inflow features, a sensitivity analysis
have been done for two scenarios with CED-MLP and MLP without-CED
(stand alone MLP) to show which feature of inflow is more challenging.
The results are provided in Table 3 and Fig. 9. According to Table 3,
the accuracy of both trend and periodic features significantly improves
by 66% and 97.5% for the RMSE when CED is used as a pre-processing
step for MLP. As presented in Fig. 9, both trend and periodic futures
are less nonlinear and noisy (represent nearly zero and slow inflow
frequencies). The challenging feature is the stochastic feature which
has the fastest dynamics of inflow. However, using CED can improve
the accuracy of the stochastic feature by almost 37.5%.

The next step is to validate the performance of the proposed CED
framework by comparing it with other forecasting algorithms.
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Fig. 9. Sensitivity analysis of inflow features forecasting with CED or without CED by MLP model from June 2019 to first of January 2020 at Sula area: (a) stochastic forecasting;
(b) periodic forecasting; (c) trend forecasting.
Table 3
Sensitivity analysis of inflow features forecasting accuracy for two
scenarios; with CED and without CED for MLP model in Sula area.
Inflow features MLP CED-MLP

RMSE (m3∕s) 𝑅2 RMSE (m3/s) 𝑅2

𝑆𝑖𝑛𝑓 0.48 0.12 0.30 0.36
𝑃𝑖𝑛𝑓 0.28 0.94 0.07 0.99
𝑇𝑖𝑛𝑓 0.11 0.026 0.0028 0.91

4.4. CED validation

To validate the performance of our proposed CED framework for
time-series feature selection, we use it as a pre-processing step with a
number of widely used forecasting algorithms such as LR, MLP, RNN,
and LSTM. Then the results are compared with the baseline (no pre-
processing) case. The results in Table 4 show that CED pre-processing
improves forecasting accuracy across different forecasting methods.
However, in the case of using only decomposition pre-processing (re-
moving steps 2 and 3 in Fig. 3) or only causal pre-processing (removing
10
step 1 in Fig. 3), the inflow forecasting accuracy is less than us-
ing CED pre-processing. For example, the CED pre-processing with
LSTM forecasting method results in 70%, 64%, 27% relative improve-
ment in reducing forecasting error (NRMSE) in comparison to no
pre-processing, decomposition pre-processing, and causal based pre-
processing, respectively. The improvement trend is also similar for the
𝑅2 score as the CED-MLP improves the forecasting accuracy by 30%
compared with no-preprocessing MLP.

It may be surprising why the LR outperforms the other models in
the first column of Table 4. Using deep learning methods in a multi-
variate inflow forecasting problem when input is the raw data without
pre-processing (feature extraction or selection) increases the risk of
over-fitting and information saturation which might result in poorly
trained models. According to Table 4, when only Causality is used
as the pre-processing step, the LSTM performance outperforms all the
other models. However when only the decomposition technique is used
LR outperforms all the others. Because the decomposition technique
reduces the complexity and non-linearities of the forecasting problem
by breaking down the original time-series into three terms stochastic,
periodic and trend, while causality reduces the risk of over-fitting and
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Fig. 10. Multivariate inflow forecasting comparison results from June 2019 to first of January 2020: (a) Sula area; (b) Storeskar area.
Table 4
Comparison analysis on different pre-processing techniques for inflow forecasting in Sula area.
Model No pre-process Causal pre-process Decompose pre-process CED

NRMSE 𝑅2 NRMSE 𝑅2 NRMSE 𝑅2 NRMSE 𝑅2

LR 0.40 0.81 0.32 0.819 0.16 0.90 0.1424 0.91
MLP 0.56 0.80 0.4 0.874 0.25 0.88 0.14 0.95
RNN 0.68 0.65 0.45 0.84 0.48 0.7 0.21 0.904
LSTM 0.5 0.7 0.198 0.883 0.4 0.77 0.143 0.906
Table 5
Comparison analysis on different pre-processing techniques for inflow forecasting in Storeskar area.
Model No pre-process Causal pre-process Decompose pre-process CED

NRMSE 𝑅2 NRMSE 𝑅2 NRMSE 𝑅2 NRMSE 𝑅2

LR 0.58 0.61 0.52 0.65 0.24 0.85 0.20 0.90
MLP 0.63 0.52 0.57 0.63 0.55 0.61 0.25 0.86
RNN 0.67 0.47 0.57 0.61 0.48 0.47 0.24 0.87
LSTM 0.64 0.60 0.35 0.65 0.33 0.68 0.19 0.90
information saturation of the forecasting problem by finding the best
informative lag values of each source. Moreover, stand-alone causality
techniques may fail to distinguish crucial exogenous parameters in
input data for the forecasting purpose (See Section 4.2). Our proposed
hybrid CED framework takes advantage of both techniques’ strengths
and improves the inflow forecasting model’s performance. Last, but
not least, the CED is implemented for the second use case to validate
the CED scalability for the inflow forecasting problem. The results of
the second use case are presented in Table 5. We observe a similar
enhancement in inflow forecasting for the second area using a CED
feature selection framework.

It is worth mentioning some of the interesting observations in the
presented results in Tables 4 and 5 as follows:

• Feeding multiple time-series from different domains (e.g. meteo-
rological, hydrological, etc.) into an inflow forecasting algorithm
without pre-processing does not necessarily improve the forecast-
ing results. Our proposed CED framework highly improves inflow
forecasting results with down-selecting the most informative part
of input data.
11
• We picked four different forecasting methods ranging from clas-
sical algorithms such as LR and MLP to more complex techniques
like RNN and LSTM for CED validation. All the selected state-
of-the-art forecasting methods exhibit relatively performance en-
hancement after using the CED pre-processing step. CED can
serve as a complementary pre-processing step for any forecasting
method.

Inflow forecasting results using CED-MLP and CED-lSTM framework
in comparison with MLP and LSTM (no pre-processing) are shown in
Fig. 10(a) and (b) for Sula and Storeskar use cases respectively. As
it is presented, both CED-MLP and CED-LSTM have a much better
performance in forecasting the real values of inflow for different use
cases. Another interesting observation in Fig. 10 is that CED-MLP and
CED-LSTM accurately forecast inflow’s peak values, which is a critical
and challenging task for state-of-the-art inflow forecasting methods and
has significant consequences for short-term hydropower scheduling.

Another interesting aspect is to present the sensitivity of the CED al-
gorithm to the size of training horizons and how often the model should
be updated and retrained accordingly. The sensitivity result of the CED-
MLP is presented in Fig. 11, with different lengths of historical data
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Fig. 11. Sensitivity analysis of the CED-MLP to the train size for the Sula area.
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(2 months, 6 months, 1 year, 5 years, 10 years) for day-ahead inflow
forecasting. It shows after 5 years, the forecast error improvement is
marginal. Therefore, 5 to 10 years of historical data is good enough to
make a causal model in our use case. It is worth mentioning that climate
change may alter the historical temperature and precipitation patterns
in different parts of the world. Therefore, from a practical point of view,
it is worthwhile to update the causal models and retrain the model
annually using a five to ten years historical horizon.

5. Practical consideration

From a practical point of view, accurate inflow forecasting models
can significantly improve the hydropower scheduling performance,
flooding control measures, water drinking and agriculture efficiency.
In this paper, we focused on daily inflow forecasting mainly for short-
term hydro-power scheduling problems with large-storage reservoirs in
Norway.

Usually, most of the precipitation in Norway especially close to the
glaciers, is in the form of snow. Looking at the historical values of
inflow for two different use cases in Fig. 2, shows that the peak of
inflow always happens at the end of spring or early summer when the
temperature rise and snow starts to melt. Snow melting may occur in
two weeks time period. Therefore, it is crucial to estimate these periods
precisely to avoid the risk of spillage by providing enough space for the
maximum harnessing of inflow to the reservoirs. Our proposed CED
pre-processing framework enables the forecasting models to discover
the dependencies of inflow to the lag values of other variables such as
snow-dept, temperature, and precipitation. This feature improves the
estimation of this period which is a critical factor in inflow forecasting
in Norway. Fig. 10(a) and (b) show that using CED pre-processing with
forecaster models LSTM and MLP improves the forecasting accuracy at
peak values.

In addition to meteorological data that we used in this paper, other
variables, such as topography, soil characteristics, etc., can impact
the inflow forecasting. The proposed CED pre-processing framework is
expandable to a higher number of input source time series (more input
variables). As a direction for future works, we will consider expanding
source values beyond what we used in this paper.

6. Conclusion

This paper proposes a Causal Multivariate Empirical mode decom-
position (CED) framework for multiple time-series feature selection. In
other words, CED is a pre-processing step that is complementary to any
machine learning-based forecasting method. We specifically developed
CED for the inflow forecasting problem by taking advantage of both
decomposition and causal inference approaches for time-series. At the
same time, we overcome the inherent weaknesses in both approaches.
In other words, CED combines physics-based causal inference with
signal processing-based decomposition to get the more relevant features
12
among multiple time-series to the target variable (the inflow). Our
proposed CED framework is validated for two different use cases related
to hydropower reservoirs in Norway. The validation results show that
using CED as a pre-processing step significantly enhances the forecast-
ing accuracy for various forecasting methods. For example, adding CED
as a pre-processing step to LSTM and LR improved forecasting results
by almost 70%. We are trying to use more hydrological parameters as
input and expand the CED framework’s inflow forecasting horizon for
future work.
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