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Abstract

Avalanche forecasts use different avalanche problems to distinguish what might cause an avalanche
on a given day. One of the five avalanche problems is called persistent weak layer (PWL), a
horizontal layer within the snowpack weaker than its surrounding snow. The grains of this layer
can be faceted grains, depth hoar, or surface hoar. This layer is usually created by a high temperature
gradient within the snowpack. This thesis aims to predict whether a given day will have a PWL
or not by using computer-gathered meteorological parameters for two maritime regions, Romsdal
and Sunnmøre. Features such as air temperature and snow depth, at different elevation intervals,
are used as an indirect approach to this temperature gradient.
This thesis considers three models. These differ in the number of features, and whether they take
time into consideration or not. All models use statistical and machine learning methods such as
classification trees, bagging, random forests, and boosting. To extend the analysis of the time-
dependent model, we implemented a neural network that uses the same dataset. The results show
that including time dependency was a good idea. Boosted classification trees trained on the last
four seasons and tested on the first season stood out as the best method. It had an accuracy
of 0.8927, specificity of 0.9462, and sensitivity of 0.8333. Despite these promising results, the
methods were remarkably sensitive to what seasons are used as training data, hence the methods
are non-robust. When this is said, one could use the methodology in this thesis when more data
is collected, which will happen as the years pass. This thesis only had five winter seasons worth
of data for both its training and testing. The neural network performed exceptionally well on the
random training set (75% of the data chosen at random), where its test set was the remaining
25%. These high predictive measurements arise from what we have called seasonal dependencies,
and this leads to overfitting. Although there is a connection between the temperature gradient
within the snowpack, the snow depth and the air temperature, the findings of this thesis imply that
this approach oversimplifies the problem at hand. It made reasonable sense to use these features
to predict faceted grains and depth hoar. However, the dataset had its limitations when trying
to predict surface hoar, the last grain form of PWLs. From our results, we conclude that this
approach is too unreliable to replace the existing workflow of the avalanche forecast. Nevertheless,
we have presented methods that could potentially aid the forecast in predicting the avalanche
problem PWL in Sunnmøre and Romsdal.
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Sammendrag

Skredvarslingen bruker ulike skredproblem for å skille mellom hva som kan for̊arsake et snøskred p̊a
en gitt dag. Et av de fem skredproblemene kalles vedvarende svake lag (PWL), et horisontalt lag
inne i snødekket som er svakere enn dets omkringliggende snø. Disse snøkornene kan være kantkorn,
begerkrystaller, eller overflaterim. Dette laget dannes vanligvis av en høy temperaturgradient inne
i snødekket. Denne oppgaven prøver å predikere om en gitt dag vil ha PWL eller ikke ved å bruke
datasamlede meteorologiske parametere for to maritime regioner, Romsdal og Sunnmøre. Variabler
som lufttemperatur og snødybde, p̊a ulike høydeintervall, brukes som en indirekte tilnærming til
denne temperaturgradienten.
Denne oppgaven omfatter tre modeller. Disse skiller seg fra hverandre ved antall variabler, og
om de tar tid med i betraktning eller ikke. Alle modellene bruker maskinlæringsmetoder som
beslutningstrær, bagging, random forests, og boosting. For å utdype analysen av den tidsavhengige
modellen, implementerte vi et nevralt nettverk som bruker det samme datasettet. Resultatene
viser at å inkludere tidsavhengighet var en god idé. Boosted klassifiseringstrær trent p̊a de siste
fire sesongene og testet p̊a den første sesongen markerte seg som den beste metoden. Den hadde en
nøyaktighet p̊a 0.8927, spesifisitet p̊a 0.9462, og sensitivitet p̊a 0.8333. Til tross for disse lovende
resultatene, er metodene veldig sensitive for hvilke sesonger som er brukt som treningsdata, derfor
er metodene ikke-robuste. N̊ar dette er sagt, s̊a kan man bruke metodene fra denne oppgaven
n̊ar mer data blir samlet, noe som vil skje n̊ar årene passerer. Denne oppgaven hadde bare fem
vintersesonger med data til b̊ade trening og testing. Det nevrale nettverket gjorde det eksepsjonelt
bra med det tilfeldige treningssettet (75% av dataen valgt tilfeldig), hvor testsettet var de resterende
25%. Disse høye prediksjonstallene kommer fra det vi har valgt å kalle sesongavhengigheter, og
fører til overtilpasning. Selv om det er en sammenheng mellom temperaturgradienten i snødekket,
snødybden og lufttemperaturen, s̊a viser resultatene i denne oppgaven at denne tilnærmingen
oversimplifiserer problemet. Det ga rimelig mening å bruke disse variablene til å predikere kantkorn
og begerkrystaller. Imidlertid hadde datasettet sine begrensninger i å predikere overflaterim, den
siste kornformen av PWLs. Fra v̊are resultater konkluderer vi med at denne tilnærmingen er for
up̊alitelig til å erstatte den eksisterende arbeidsflyten til skredvarselet. Til tross for dette har
vi presentert metoder som potensielt kan bist̊a varslingen i prediksjon av skredproblemet PWL i
Sunnmøre og Romsdal.
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Chapter 1

Introduction

One-third of all precipitation in Norway is snow (NVE, 2021). All this snow accumulates into a
snowpack, a complex mixture of snow grains that go through constant metamorphism, changing
the shape and properties of the grains. This can lead to properties that increase or decrease the
likelihood of an avalanche. Snow avalanches are a natural hazard in Norway, and can cause the
destruction of infrastructure and be dangerous for recreationists. This means that an avalanche
forecast is essential for mountainous regions. Norwegian Water Resources and Energy Directorate
(NVE) is responsible for the avalanche forecast. The forecast is called Varsom and follows an
international standard of avalanche forecasts. However, if the forecast is going to help lowering the
risk and prevent accidents, the forecast has to be precise, easy to interpret, and consistent (NVE,
n.d.-b).

The goal of the forecast is two-sided. On one side, the forecast is made to be a protection of
infrastructure and road safety, while the other aspect is for recreationists using the winter-outdoors
for skiing, climbing, and other winter activities. The forecast is released daily between the 1st of
December to the 31st of May during the winter season for different regions in Norway (NVE,
2016). The forecast is based on weather data and observations from professional snow observers
in the field. It is also possible for amateurs to report to Varsom what they see in the field from
an application called Varsom Regobs. Forecasters gather this data together with the additional
weather forecast and then conclude to give an avalanche forecast for a specific region for a given day
(NVE, n.d.-b). Unfortunately, it is impossible to find an answer to whether an avalanche will occur
or not. Instead, the forecast is a guideline for the public to use, and it gives information about the
snowpack, terrain, behaviour-advice, weather, and many more. However, in mountainous regions,
these aspects can change dramatically over small geographical areas (NVE, 2016).

When Varsom publishes a daily forecast, it includes an avalanche danger level between 1 and 5,
where 5 is extremely rare, but the most dangerous. In addition to this danger level, the forecast
publishes an avalanche problem, which is supposed to give the reader of the forecast a guideline
of what may cause an avalanche in the given region. These avalanche problems are divided into
five different categories, and each has specific characteristics. Persistent weak layer (PWL) is an
avalanche problem usually created by a high temperature gradient within a snowpack. This layer
can be very fragile, hence dangerous if a slab forms on top of it. If this happens, it can cause
massive and deadly slab avalanches.

Creating an accurate forecast can be challenging when regions lack professional observers to do
observations in the field. This thesis will examine if previously gathered data with statistical
and machine learning methods can be helpful in this problem, by creating a model that predicts
the existence (1) or non-existence (0) of the particular avalanche problem PWL. With difficult,
real-world data, this thesis focuses on predicting this binary outcome in two maritime regions in
Norway, Sunnmøre and Romsdal.
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1.1 Goals and research questions

The goal of this thesis can be summarized as follows:

Goal: Develop a robust statistical model to predict whether a maritime region will have persistent
weak layer(s) or not on a given day.

The avalanche forecast uses weather data and actual snow observations performed by professionals
to publish an avalanche warning. To achieve our goal, we will use this weather data in combination
with supervised learning methods to predict this binary outcome (no-PWL (0)/PWL (1)). This
motivates the first research question:

Research question 1: Can familiar statistical models, trained on features only consisting of
weather data, yield reliable results in forecasting the existence of PWLs?

The statistical models in this thesis will primarily be classification trees, bagging, random forests,
and boosting. These tree-based methods are well-known and established because of their overall
good performance. However, they differ a bit from neural networks in machine learning. This
raises another research question:

Research question 2: Will applying deep machine learning techniques increase the overall
predictive performance?

1.2 Structure of the thesis

Chapters 2, 3 and 4

Chapter 2 focuses on related work that used machine and statistical learning methods in predicting
various parts of avalanche hazards. Often there can be a gap between the field of research and
the statistician doing the work. Therefore much work was put into Chapter 3 (Background on
snow and avalanche theory). This laid the foundation for understanding the problem at hand,
why a particular model can be of interest, and what meteorological parameters are suitable for
features. Chapter 4 includes information about the dataset provided by NVE. In addition, this
chapter includes a preliminary analysis of different regions in Norway and why maritime regions
became the primary interest of this thesis.

Chapters 5 and 6

Chapter 5 on statistical learning lays the framework for the methodology used in the thesis. In
Chapter 6, the results from our four models are presented in different tables, and each model’s
best results and key findings are summarized.

Chapters 7 and 8

The results of Chapter 6 are discussed thoroughly in Chapter 7, where Chapter 3 on the formation
of PWL and Chapter 5 on statistical and machine learning are used to explain the trends in the
results. Chapter 8 focuses on the main findings of this thesis and closing remarks. We will also
present thoughts on future research on this topic.
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Appendix

Appendix A showcase the data gathering and main code used to find the predictive measurements
in Chapter 6. This section is split into three parts. Firstly, we present the retrieval of the data
(A.1), then the R code (A.2), and lastly, the Python code (A.3).
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Chapter 2

Related work

The books Skredfare (translated: Avalanche danger) by Landrø (2002) and Staying alive in
avalanche terrain by Temper (2018) emphasize the complexity of snow avalanches. They discussed
snow transformation (that cause, e.g., PWL), terrain, decision-making, the forecast, avalanche res-
cue, physics, stability tests, weather, and many more. Jamieson (1995) investigated two different
snow stability tests and performed fieldwork in British Columbia and Alberta in 1992-93 and 1994-
95. They focused their fieldwork on PWL(s), the layers that cause the most fatal slab avalanches
in Canada. The mentioned books and thesis introduced some of the broader topics related to this
thesis. We next focus on papers that use machine and statistical learning approaches to automate
different aspects of the avalanche forecast.

Marienthal et al. (2015) used meteorological parameters to forecast deep slab avalanches on PWL,
meaning that the weak layer is buried deep within the snowpack. This means that it can be
challenging to trigger these avalanches, such that the stress surpasses the strength of the snowpack.
When deep slab avalanches occur, they often propagate to large, destructive avalanches. They
defined deep slab avalanches as slab avalanches that slid on a PWL deeper than 0.9 meters and
were triggered after the 1st of February. They used classification trees and random forests to predict
whether or not meteorological data can predict seasons and days with deep slab avalanches. For this
research, they had 44 years of avalanche control and meteorological data from southwest Montana.
Studies in this field had previously used features from the days before the event of a deep slab
avalanche, but Marienthal et al. used features far back before the deep slab avalanche. Their work
showed that seasons with deep slab avalanches on PWL(s) generally had less precipitation from
November to January, meaning the early ski season. They found that both daily meteorological
parameters and seasonal parameters can be used to aid the avalanche forecast when it comes to
deep slab avalanches on PWL, in combination with avalanche experts doing observations in the
field.

Widforss (2021) applied machine learning techniques to three seasons of data from 23 different
forecasting regions in Norway. His goal was to automate the avalanche forecasting process, looking
at danger levels, warning for spontaneous release, avalanche problems, and many more. He split
regions into training, validation, and test set. Widforss tried different machine learning techniques,
such as decision trees and multilayer perceptrons. These models were compared to what he called
naive models, which were simple models using previous forecasts and most occurring values as
data. These were called NaiveYesterday and NaiveMode. When only weather data was used, the
machine learning models would beat the NaiveModels. However, when using more than weather
data, meaning snow observations and previous forecasts, the amount of data was lacking and
presented problems.

Dkengne Sielenou et al. (2021) used random forests with class balancing to predict avalanche
activity in the French Alps. They combined their method with a variety of existing statistical
learning methods: linear discriminant analysis, K-nearest neighbors, classification trees, random
forest, and support vector machines. Their dataset consisted of over 50 years of daily avalanche
observations in 23 areas in the French Alps. They chose to split avalanche activity into three parts:
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• Days with no avalanche activity.

• Days with moderate avalanche activity.

• Days with high avalanche activity.

When they looked into variable importance they found that the chosen features in their random
forest coincided with the variables that were important in the existing avalanche literature. For
the different areas in the French alps, their random forest classifier performed the best out of the
learning methods, in terms of the minimum overall classification error. They concluded that their
methods are a potential aiding tool for the avalanche forecast in the French Alps.

The discussed papers either investigate if an avalanche will occur based on avalanche observations
or meteorological parameters, or trying to automate the forecasting process. The scope of this
thesis will solely focus on predicting the specific avalanche problem persistent weak layer (PWL)
in two maritime regions, i.e., if PWL exists on a given day or not.

5



Chapter 3

Background on snow and
avalanche theory

3.1 Avalanches

When a large mass of snow slides rapidly down a mountainside, it is called an avalanche. Avalanches
are usually split into two types, slab avalanches, and loose-snow avalanches. The latter is when
snow starts moving at one point, and snow gathers and rolls downwards in a fan-shape from the
starting point, see Figure 3.1. Slab avalanches occur when the avalanche breaks into several pieces
of cohesive snow blocks, see Figure 3.2. The snow gets cohesive by wind packing the snow crystals
tightly together, hence forming a slab. When a skier/snowboarder triggers slab avalanches, the
victim is usually in the middle of the avalanche when it occurs. This is an important feature of
human-released slab avalanches (Temper, 2018). Hence this type of avalanche is the most dangerous
for freeskiers, and 99 percent of all avalanches that occur because of skiers are of this type (Landrø,
2002).

Figure 3.1: Illustration of a typical fan-shaped loose-snow avalanche (Landrø, 2002).
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Figure 3.2: Illustration of a typical slab avalanche with the trigger (the snowboarder) already being on
top of the sliding snow (Landrø, 2002).

Both avalanche types mentioned above can be dry or wet avalanches, meaning that the snow that
ends up in the avalanches is either dry or wet (Temper, 2018). Wet loose-snow avalanches occur
when there is a loss of cohesion between snow crystals from rain or melting snow. In contrast,
wet slab avalanches occur because rain or melted snow increase the additional load on the existing
snowpack, or water can make weak layers in the snow even weaker. This can cause a fracture such
that a slab is released (EAWS, 2017).

There are other types of avalanches, called Cornice-Fall avalanches, Icefall avalanches, Slush-flow
avalanches and Roof avalanches (Temper, 2018). These are difficult to forecast, and not in the
main scope of the Norwegian avalanche forecast service, Varsom. While Glide avalanches are
forecasted by Varsom, and is also a type of wet avalanche, see Figure 3.3.

Figure 3.3: Picture of glide avalanche that killed two people on 28th of April, 2001 (UAC, n.d.).

Glide avalanches are the phenomenon when the entire snowpack, all the way down to the ground,
slides down a mountainside. This type of movement is more similar to when a glacier ”creeps”
downward, which differs from slab and loose-snow avalanches. Glide avalanches are hard to predict,
and are usually not released by the additional load of a human. Glide cracks are not necessarily
an immediate sign of danger of gliding snow, but it is a sign that the snowpack is creeping and can
potentially release naturally. These avalanches can be very destructive, because of the magnitude
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of snow released. In Norway, these avalanches usually happen during springtime, when the sun
and rain cause water to percolate through the snowpack, weakening the strength of the snowpack
and resulting in enormous avalanches. Despite this, glide avalanches are not the main cause of
deaths, most of which are released naturally (Temper, 2018). As mentioned, slab avalanches are the
most dangerous avalanche type for recreationists. Hence it is the main interest of the Norwegian
avalanche forecast and therefore the primary avalanche type of concern in this thesis.

3.1.1 Slab avalanches

The snowpack is a complex mixture of different snow grains with different hardness, bonds, and
forms. This difference in the snow is the key component for slab avalanches. A sliding slab is when
a cohesive layer of snow slides upon another layer, caused by a fracture in an in-between, weaker
layer. In avalanche terminology, we call these for slab, weak layer, and bed surface, see Figure 3.4.

Figure 3.4: Illustration of the cross-section of a slab avalanche (Temper, 2018).

Dry slab avalanches occur in terrain when the angle of the slope is 30 degrees or steeper (Landrø,
2002). They occur when a fracture happens within the snowpack, which means that the stress
surpasses the strength of the snow, see Figure 3.5. The most unstable and unpredictable situation
is when stress ≈ strength, due to a small additional load on top of the snowpack (i.e., increased
stress) will cause a fracture within the snowpack. This fracture can lead to a fracture, propagation,
and a slab avalanche if a cohesive slab is on top of the weak layer (Temper, 2018).

Figure 3.5: Explanatory illustration of stress vs. strength of a slab (Temper, 2018).
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When discussing avalanches, its important to note that avalanches are only dangerous when peo-
ple or infrastructure are in the starting zone, track, or runout zone. Figure 3.6 introduces the
terminology used for avalanche paths.

Figure 3.6: Illustration of slab avalanche path (Temper, 2018).

3.2 Norwegian avalanche forecasting

NVE is responsible for the social security that the avalanche forecast provides and is called Varsom.
They cooperate with the Norwegian Public Roads Administration and The Norwegian Meteorolog-
ical Institute (NVE, n.d.-b). Although the forecast cannot give any precise conclusions on whether
there will be an avalanche or not, it provides its users with information about the snowpack,
weather, avalanche danger, avalanche problems, and behavior advice. It is important to note that
the forecast is less accurate further into the future due to insecurities in the weather forecast and
the development of the snowpack (NVE, n.d.-d).

3.2.1 How the forecast is made

The general workflow Varsom uses to create the avalanche forecast is as follows:

1. Gather data on the snowpack and weather.

2. Evaluate the current situation.

3. Look at the weather forecast.

4. Evaluate probable development of the conditions.

5. End up with an avalanche forecast.

Avalanches are classified by different attributes, their size, what causes them, the avalanche danger,
their distribution in the terrain, and their probability of releasing. The Canadian Avalanche
Association (CAA) defined a chart for avalanche sizes in 2016, where avalanches are characterized
on a scale between 1 and 5 on potential destruction, volume/mass, and the typical length of the
avalanche path. The latter is characterized in slightly different ways when comparing CAA (CAA,
2016) to Varsom (NVE, n.d.-e), although the essence is the same. See Table 3.1 for a description
of the different avalanche sizes.
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Table 3.1: Avalanche size chart translated from Varsom.

The avalanche sizes of Table 3.1 are logarithmic, similar to Richter scale, meaning that a size 3
avalanche is ten times bigger than an avalanche of size 2. Consequently, avalanches of sizes 4 and
5 are enormous. These are not the main avalanche size involved in accidents of humans because
most people do not travel in avalanche terrain when these avalanches happen. Thus the avalanche
forecast most often deals with avalanches of sizes 1− 3.

A major component in a daily avalanche forecast is the avalanche danger, which is a number
between 1 and 5, where 5 is very high avalanche danger, and 1 is low (Figure 3.7). This scale is
not linear, and an increase in avalanche danger is said to double the probability of an avalanche
(NVE, n.d.-c).

Figure 3.7: Standard European avalanche danger scale (EAWS, 2022).
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Varsom uses the ADAM matrix to find this avalanche danger level (NVE, n.d.-a). The inputs
of the matrix are the stability of the snowpack, distribution (of the releasability), and the biggest
expected avalanche size, see Figure 3.8. Here the stability and distribution lead to the letters A, B,
C, D, or E, which summarizes a probability (”Sannsynlighet” in Figure 3.8). This combined with
the biggest expected avalanche size will lead to the final avalanche danger level. From the 2022/23
season Varsom will use an updated version of the ADAM matrix.

Figure 3.8: Illustration of ADAM matrix, which uses snow stability, distribution, and expected avalanche
size to determine the danger level (NVE, n.d.-a).

Observers in the field

Varsom has to gather data on snowpack and the weather. Weather information is gathered from
meteorological systems and is updated automatically through their internal forecast tool, the
Avalanche Problem Solver (APS). This registers snow depth, new snow, wind, and more, but
does not give a detailed view of the snowpack. For this job, Varsom educates professional ob-
servers to perform snow analysis in the field. They inspect the snowpack for grain forms, recent
avalanche activity, weather observations, stability tests, and give their thoughts on the avalanche
danger in their specific area (NVE, 2019). Stability tests are standardized tests, often by clapping
with a snow shovel on top of an isolated column of snow. Extended Column Test (ECT) is an
example of a stability test and was first proposed by an Israeli physicist, Ron Simenhois. The ECT
is performed by isolating a 90 cm wide and 30 cm deep column, to about the depth of 1 meter,
see Figure 3.9. 1 meter is because humans impact the snow approximately 1 meter down into the
snowpack. If the performer suspects a weak layer buried at 120 cm, the isolated column is dug
down below this. Then the executor puts their shovel on top of the column, and taps with their
hand on the shovel blade (with the help of gravity) from their wrist 10 times, elbow 10 times, and
shoulder 10 times. The executor then registers the number of hits needed for a fracture to occur,
the surface of where the weak layer is (e.g., shear quality and bed surface), and the structure of
the snowpack (Temper, 2018).

Figure 3.9: Illustration of Extended Column Test (ECT).

As mentioned, Varsom publishes more than just the avalanche danger. The avalanche danger level,
in itself, is just a number with a color. Varsom also publishes an avalanche problem, which often
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yields more information about the current status of the snowpack. This information is shown to be
more important for mountaineering experts than the avalanche danger level because it tells users
what to be aware of on that given day (Landrø et al., 2020).

3.2.2 Avalanche problems

The avalanche danger level, the numerical value between 1−5 (Figure 3.7), is a short description of
the daily avalanche conditions. The forecast, and its users, need more information than this num-
ber. Its been standardized that the avalanche forecasts describe one or more avalanche problems.
This was done by the European Avalanche Warning Services (EAWS). These avalanche problems
give a more detailed description of what the conditions are actually like. The avalanche problem
includes the following descriptive properties (NVE/EAWS, 2018):

• The type of avalanche that is potentially expected.

• Characterizations of the problem.

• The location of this potential avalanche, and its distribution in the terrain.

• The likelihood of the avalanche being triggered or released.

• The expected size of a potential avalanche.

• Where in the snowpack the weak layer is.

• What could trigger an avalanche.

• How to identify the avalanche problem.

• How long the problem will endure.

Varsom, which uses EAWS’s definitions of Typical avalanche problems, focuses more on how to
avoid and handle the given avalanche problem (NVE/EAWS, 2018). The five typical avalanche
problems given in the Norwegian forecast are:

1. New snow

2. Wind-drifted snow

3. Persistent weak layers (PWL)

4. Wet snow

5. Gliding snow

To summarize, it is essential to note that if humans are outside of avalanche terrain (starting
zone and runout zone) there is no hazard of being buried, and therefore no danger, see Figure 3.6.
Varsom easily states it as follows:

Avalanche terrain + Avalance problem = Dangerous .

So far this chapter has given a short description of different aspects of the avalanche terminology
and the forecast. This thesis focus on forecasting the specific avalanche problem PWL. To get a
theoretical understanding of how these weak layers form, the next section focuses on snow science
and metamorphism of snow grains.
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3.3 Snow science

So far we have discussed general avalanche types, introduced some terminology and the avalanche
forecast. An important factor behind all this, and also the main part of this thesis, is how these
avalanche problems emerge. To understand this, we discuss how snow crystals transform at a
molecular level.

When avalanches happen, i.e., slab avalanches, they occur because of differences between the layers
in the snowpack. A snow layer can be defined as a horizontal layer within the snowpack with equal
grain form, see Figure 3.10.

Figure 3.10: Illustration of grain forms by Georg Sjoer (Müller, 2020).

The thermodynamic relationship between the air and the snowpack determines how quickly differ-
ent snow layers form. Wind, rain, new snow, sun, and temperature are the main reasons to why
snow transforms from precipitation particles into different grains. NVE published a paper called
Snow-transformation, which focuses on three different ways snow can transform:

1. Weak-gradient transformation/isothermal transformation.

2. Kinetic transformation.

3. Wet snow transformation.

The kinetic transformation will be of main interest in this thesis, because it is responsible for the
formation of depth hoar, faceted crystals (facets) and surface hoar (Müller, 2020). These grain
forms lead to the avalanche problem persistent weak layer (PWL).
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3.3.1 Kinetic transformation - Persistent Weak Layers

Snow is formed in the clouds by the deposition of water vapor on small dust particles. These
precipitation particles can come in various shapes, one example is seen in Figure 3.10. Throughout
the winter season, snow will accumulate into a complex, stratified snowpack with different snow
grains. As meteorological parameters change, i.e., temperature, wind, and precipitation, snow
crystals change and transform. Snow is thermodynamically unstable because its often close to its
melting temperature (Müller, 2020). Snow crystals can transform into different kinds of grains by
wet snow metamorphism, weak gradient, or kinetic transformation, see Figure 3.11.

Kinetic transformation, or strong gradient metamorphism, is the reason behind the formation of
PWLs. Facets and depth hoar form within the snowpack and is discussed first.

Figure 3.11: Illustration of snow-metamorphism, and how precipitation particles can transform into other
grain types (Granger, 2019).

The orange and red arrows in Figure 3.11 illustrate kinetic transformation or faceting. Water
molecules can move from areas in the snowpack with high water vapor pressure to be deposited in
regions where it is lower water vapor pressure. Temperature differences within the snowpack are
the biggest reason for these differences in pressure (Müller, 2020). Then snow crystals can become
faceted crystals, and if the process endures over time, it can develop from faceted crystals to depth
hoar, as seen in Figure 3.11 (Granger, 2019). These temperature differences within the snowpack
can be written as

Temperature gradient =
Temperature difference

Distance in the snowpack
. (3.1)

A property that causes high temperature gradients is that the ground’s temperature is always
approximately 0◦C. Hence if the snowpack is thin, e.g., 0, 5 m and the surface temperature is
−10◦C (Figure 3.12), then the temperature gradient becomes

Temperature gradient = 10◦C
0,5 m = 20◦C m−1.

If the temperature gradient is bigger than 10◦C m−1 over time, then kinetic transformation will
be the predominant transformation happening, and facets can form (Müller, 2020). These weak
layers are persistent because they endure over time and will need wet snow metamorphism or weak
gradient metamorphism for the layer to be destroyed, see Figure 3.11.
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Figure 3.12: Example of conditions when the kinetic transformation will be the dominant transformation
within the snowpack.

As mentioned in the previous paragraph, the temperature gradient is an important factor in the
formation of weak layers created by kinetic transformation. It is important to note that this is the
temperature within the snowpack, not the air temperature, although they are related.

In addition to facets forming when the temperature gradient is bigger than 10◦C m−1 over time,
facets can form rapidly close to the surface of the snowpack in three different ways:

1. Dry snow on top of wet snow.

2. Fluctuating temperatures throughout the day.

3. Balanced radiation and radiance.

Dry snow on top of wet snow can cause an extreme temperature gradient, hence speeding up the
process of forming facets. This can happen when there has been a warm period, meaning that the
snowpack is wet from either high temperatures or rain. If the temperature suddenly drops and cold
snow falls on top of this wet snowpack, then the temperature gradient in the transition from wet,
old snow to new, cold snow, suddenly gets very high. Fluctuating temperatures throughout the day
causes the same sped-up formation of facets. This happens because the snowpack gets warm during
the daytime and cools when the night approaches. This is a typical phenomenon in the Alps and
in springtime in Norway. This causes a very large temperature gradient in the top section of the
snowpack, and PWLs can form. Balanced radiation and radiance cause a high temperature gradient
in the top section of the snowpack. This happens because most of the radiation (shortwaved
radiation) is reflected due to the high albedo of the white snow, but some radiation is captured
and warms up a section of the snow underneath the surface. While this happens, longwaved
radiance causes the snow’s surface to cool down. This creates a large temperature gradient in the
upper section of the snowpack and the kinetic transformation will dominate (Müller, 2020).

Faceted crystals and depth hoar have been the center of attention in this section. However, surface
hoar (Figure 3.10) is also created by kinetic transformation, but not by a temperature gradient
within the snowpack. Surface hoar is created when water vapor in the air hits the cold snow
surface. This happens when there is enough available water vapor, a breeze (approximately 1-3
m/s), and clear skies during the night (Müller, 2020). A clear sky during the night is a key factor
because then the radiance is at its largest. If there is no wind at all, the water vapor will not be
transported towards the cold snow surface. If there is too much wind, these fragile crystals will
be destroyed. It is important to note that surface hoar is not dangerous unless it is followed by a
snowfall. Especially if this snowfall happens during a windstorm. Then the wind creates a slab on
top of this very weak layer. If it is steep enough, and e.g., a skier triggers an avalanche, then it
can create large, slab avalanches.
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Avalanche climates

The snow condition within a region is dependent on the local climate, and different climates
cause different trends in snow conditions. In avalanche theory, one uses the terminology avalanche
climates, to split mountainous regions into three categories:

• Maritime

• Intermountain

• Continental

Weak layers occur in all climates, but generally, the persistence of these weak layers differs in the
listed avalanche climates. In continental regions, weak layers form and persist over a long period.
This is due to stable cold temperatures and less precipitation. Hence we get a thin snowpack,
resulting in a large temperature gradient. Maritime regions usually have a thicker snowpack, and
more variable temperatures. This causes midwinter rain to occur every now and then. As a
consequence, wet snow metamorphism will dominate the snowpack, transforming facets into melt
forms, see Figure 3.11. Hence maritime weak layers do not persist as long as in continental regions
with stable, cold temperatures. Intermountain is in-between maritime and continental regions
when it comes to its properties with PWLs. Meaning these layers usually persists longer than in
maritime regions, but shorter than in continental regions (Temper, 2018).
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Chapter 4

The dataset and preliminary
analysis

This chapter will present the dataset and how it was gathered, notated, and processed. Addition-
ally, we will present a preliminary analysis that showcase trends in the dataset concerning PWLs,
and potential feature values to be used in Chapter 6.

4.1 Data

The avalanche forecast on a given day is published on https://varsom.no/snoskred. This daily
forecast is available to the open public before 16:00 the preceding day and, if necessary, updated
before 10:00 on the given day. This is done if the forecasters think it is necessary based on, e.g.,
overnight weather or observations in the field.

The data used in this thesis is for the open public, but for the purpose of this work, NVE helped
provide weather data, avalanche danger, and avalanche problems for different regions. The data
was fetched from the Python-library regobslib, gathering data from the winter season 2017/18 to
the end of the season 2021/22, see Appendix A.1. This is because preceding 2017, the forecast
was different from after 2017. The avalanche problem PWL was fetched from Varsom, and the
weather data was gathered from a frequently updated, automatic weather forecast called Avalanche
Problem Solver (APS). The Python code (Appendix A.1) shows how this data was retrieved using
CSV files containing avalanche danger, avalanche problem, and weather data.

4.1.1 Notation of data

In the data, the avalanche danger was notated with dregion, where the regions were TROMSO,
JOTUNHEIMEN, ROMSDAL and SUNNMORE. The weather data was structured with five rows
of data for each day, at different elevations, per feature. For Romsdal and Sunnmøre, the regions
were split into different elevation intervals

• 0− 400 m

• 400− 800 m

• 800− 1200 m

• 1200− 1600 m

• 1600− 2000 m
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For Tromsø, the intervals were 200m and 500m for Jotunheimen. This is due to the different
elevations above sea level.

At each elevation interval, the variables were:

• precip (mm): Mean precipitation in the region.

• precipmax (mm): Maximum precipitation within an area with the most precipitation within
the region.

• temp (◦C): Mean temperature in the region.

• snowdepth (mm): Measured snow depth in the region.

• new − snow (mm): Mean new snow in the region.

• new − snowmax (mm): Maximum new snow within an area with the most new snow within
the region.

• wind (m/s): Mean wind in the region.

• winddir: Wind direction in the region.

All these variables (except winddir) were given in percentiles; 0, 5, 25, 50, 75, 95, and 100. 0 is
the minimum, 100 is the maximum, and 50 is the mean. 25 and 75 are the first and third quartiles.
The mean and maximum were the most used percentiles. This was done to limit the number of
features used.

The variable winddir was split into 0, 1, 2, . . . , 7. Where N = 0, NE = 1, E = 2, . . . , NW = 7.
Each number between 0 and 7 had a number between 0 and 1, indicating the dominant wind-
direction on a given day at a given elevation.

The data on avalanche problems for the different days throughout the season between the 1st of
December and 31st of May yield information about what avalanche problem(s) was forecasted on
a given day, expected size, exposition, and elevation the problem exists, to mention a few. This
is data determined by experts in Varsom and will be used as ’reference’ or our response, i.e., 1
if PWL is forecasted and 0 otherwise. The weather data and snow observations from avalanche
professionals in the field are the data used to determine these avalanche problems.

From Chapter 3.3.1, we know that the temperature gradient within the snowpack is one of the
critical factors in the formation of PWLs. Our weather data are not observations within the
snowpack, but meteorological parameters and snow depths. Regardless, these parameters have an
indirect influence on the temperature gradient. Both the temperature and snow depth are essential
features in calculating the temperature gradient, see Equation 3.1. Therefore are snowdepth (mm)
and temp (◦C) reasonable features to be used in a model.
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4.1.2 Processing of data

Python was used to fetch the data for this thesis, but most of the work was performed in RStudio.
The data needed processing before it could be implemented in the methods discussed in Chapter
5, and applied in Chapter 6.

Much work was put into processing the available data for this thesis. Many available features (with
percentiles) could have been used, but this thesis focuses on PWL(s). Hence air temperatures and
snow depths were considered the most important features, see Chapter 3.3.1. The dataset was
lacking snow depth registrations for the first 30 days in the 2017/18 seasons. Other than that,
the dataset was consistent. The three CSV files, gathered from Python code in Appendix A.1,
needed to be translated to a single data frame in R consisting of rows with a response Yi (no
PWL (0)/PWL (1)) and its features (Xi = Xi1, Xi2, . . . , Xip). The avalanche problem PWL was
translated into a column with 0 or 1 for each day between the 1st of December and to 31st of May,
from the 2017/18 season to 2021/22. The weather data was structured similarly, but each day
included five rows with different elevation intervals. This problem was solved by iterating through
the data such that each elevation interval got its own column.

In this thesis we will use three different datasets:

• One dataset consisting of air temperatures at the different elevation intervals (5 features).

• One dataset consisting of air temperatures and snow depths at the different elevation intervals
(10 features).

• One dataset consisting of air temperatures and snow depths at the different elevation intervals
including the five preceding days (60 features).

There are many potential combinations of features, but we chose these three based on the avalanche
literature, see Chapter 3.
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4.2 Preliminary analysis of data

After the data was processed, it needed a preliminary analysis to determine what regions to in-
vestigate. The regions Jotunheimen, Sunnmøre, Romsdal, and Tromsø were chosen in the starting
phase of this thesis work to investigate what avalanche climate could be of interest.

a) b)

c) d)

Figure 4.1: Plot of the different danger levels throughout the last five seasons for Jotunheimen (a),

Romsdal (b), Sunnmøre (c), and Tromsø (d). Dotted, colored lines split the seasons.

Figure 4.1 shows different plots illustrating the danger level throughout the last five seasons in
four different regions in Norway. The avalanche danger level is (for the majority) 2 or 3. Hence a
statistical model to predict the avalanche danger is not of great interest, but what type of avalanche
problem(s) that exists in a region could be more interesting. Predicting the avalanche problem,
e.g., wind-drifted snow (slab) would be relatively simple. For example, if its been snowing and
windy from, e.g., SW we would expect the avalanche problem of wind-drifted snow in the opposite
cardinal direction (i.e., NE). However, predicting PWL is a more difficult task because how it
comes about, see Chapter 3.3.1. Figure 4.2 shows if PWL is forecasted on a given day (1) or not
(0) for the four regions, Sunnmøre, Jotunheimen, Romsdal, and Tromsø.
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a) b)

c) d)

Figure 4.2: Plot illustrating the occurence of the avalanche problem PWL in Jotunheimen (a), Romsdal

(b), Sunnmøre (c), and Tromsø (d). 1 represents that PWL was forecasted on that given day, 0 otherwise.

Dotted, colored lines split the seasons.

Figure 4.3: Map section showing the geographical location of the four regions mentioned in this chapter.

Figure 4.3 shows where the four regions are located in Norway. Tromsø is far up in the arctic region,
which is an intermountain area, meaning that the region is intermediately influenced by being close
to the ocean (Temper, 2018). Further, Jotunheimen is a continental region characterized by PWL
being a general avalanche problem for the majority of the winter season, see Figure 4.2a.
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Romsdal and Sunnmøre are maritime regions and are often characterized by PWL not being the
predominant avalanche problem. This is because coastal temperatures and midwinter rain can
destroy the persistent weak layer (facets, depth hoar, or surface hoar). Figures 4.2b and 4.2c
confirm that PWLs do occur in these maritime regions, but the plots show that the weak layers do
not persist as long as in the continental region Jotunheimen, see Figure 4.2a. To confine the task
of this thesis to a reasonable and achievable task, we chose to focus on the forementioned maritime
regions.

Before performing a statistical analysis of the data, we looked further into the response and features
of the datasets. First, we investigated the number of days the avalanche problem PWL was
forecasted (i.e., the 0s and 1s). This is visualized in the following pie plots, see Figure 4.4.

Figure 4.4: Number of days with and without PWL in Sunnmøre (A) and Romsdal (B).

When investigating the maritime regions, Sunnmøre and Romsdal, we observe that we do not have
a balanced dataset, see Figure 4.4. Days without PWL occur more often than days with PWL, this
is due to mild weather midwinter in these maritime regions. From this, we see that the number of
days with PWL is very similar for the two regions, and this is confirmed by the plots, see Figure
4.2b and 4.2c.

As discussed in Chapter 3.3.1, the temperature gradient within the snowpack is the key to un-
derstanding when these PWLs come about. This temperature gradient depends on temperature
and snow depth, and for this preliminary analysis, we looked into how these developed over time.
Figure 4.5 shows how the temperature develops at the lowest and highest elevations throughout the
2017/18 - 2021/22 season. Here we can see that these features are dependent, which is expected
since they are temperature measurements from the same regions.

Figure 4.5: Temperature (temp (◦C)) throughout the seasons in Sunnmøre (A) and Romsdal (B). The
black vertical line splits the seasons. The other temperatures lie in between these intervals, but were kept
out for better visualization.
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Figure 4.6: Snow levels (snowdepth (mm)) at different elevation intervals in Sunnmøre. The black line
splits the seasons.

Figure 4.7: Snow levels (snowdepth (mm)) at different elevation intervals in Romsdal. The black line
splits the seasons.

The same goes for snow depths, see Figures 4.6 and 4.7. But how are these related to when PWL
is forecasted? Figure 4.8 shows the first season of Sunnmøre and how the temperature fluctuates
throughout the season, together with the occurrences of the avalanche problem PWL. The red
dashed lines outline the time period 8th of March until the 13th of April. By inspection of this
plot we observe that there was a cold period right before this PWL got forecasted. This makes
sense because a temperature gradient has to be consistently high over several days, which happens
during a cold period.

Figure 4.8: Plot of the different temperature intervals (temp (◦C)) and PWL for the first 2017/18 season
in Sunnmøre. The black line is 0 (no PWL) or 1 (PWL). The red dashed lines show the time period
17.01.2018 - 11.02.2018 and 08.03.2018 - 13.04.2018.

In the second season of Sunnmøre, we see a similar trend to the first season, see Figure 4.9. Here we
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have outlined a period between 22nd of January and 13th of February, where PWL was forecasted.
Preceding to the 22nd of January it was a cold period. When this cold period endured, so did the
forecast of PWL, until it suddenly became milder the 14th of February. This led to snow melting
and probably caused water in liquid form to percolate the snowpack. Hence destroying the PWL
within the snowpack by wet snow metamorphism.

Figure 4.9: Plot of the different temperature intervals (temp (◦C)) and PWL for the second 2018/19
season in Sunnmøre. The black line is 0 (no PWL) or 1 (PWL). Red dashed lines show the time period
22.01.2019 - 13.02.2019 and 13.03.2019 - 20.03.2019.

A fairly similar trend is shown in Figures 4.10 and 4.11 for the 2017/18 and 2018/19 seasons in
Romsdal. A period of forecasted PWL had a preceding cold period. The time of the event of the
PWL forecasts was quite similar for Sunnmøre and Romsdal. This is probably due to the regions
being close in geographical manners.

Figure 4.10: Plot of the different temperature intervals (temp (◦C)) and PWL for the first 2017/18 season
in Romsdal. The black line is 0 (no PWL) or 1 (PWL). Red dashed lines show time period 24.01.2019 -
19.02.2019 and 23.02.2019 - 13.04.2019.

We have investigated different regions, and confined the task to maritime regions. Additionally,
we looked into the occurrences of PWL in these two regions, Sunnmøre and Romsdal (Figure 4.4).
This thesis focuses on creating different statistical and machine learning models using features
mentioned in this preliminary analysis and measuring their predictive performance when trained
on different training sets. The reason of why temp and snowdepth were the two features of attention
is due to their indirect influence on the temperature gradient, the trends observed in Figures 4.8
to 4.11, and adding more features did not enhance the predictive performance. This is discussed
more thoroughly in Chapter 6 and 7.
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Figure 4.11: Plot of the different temperature intervals (temp (◦C)) and PWL for the second 2018/19
season in Romsdal. The black line is 0 (no PWL) or 1 (PWL). Red dashed lines show time period 29.01.2019
- 13.02.2019 and 09.03.2019 - 20.03.2019.
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Chapter 5

Statistical learning

The goal of statistical learning is to understand something about available data. Statistical learning
can be split into supervised methods or unsupervised methods. For this thesis, we used supervised
methods, which means that the features and response have labels, and the goal is to link these
features to a response. The response is binary, either existence of PWL (1) or the absence of PWL
(0). This chapter will discuss some general concepts of supervised methods, and then go into more
detail on specific methods. Table 5.1 shows a summary of the mathematical notation used in this
chapter and throughout the thesis.

Table 5.1: Notation used in Chapter 5.

Xi Vector with p features for day i
p Number of predictors
n Number of responses
ϵi Random error term that is i.i.d with mean 0 and constant variance σ2

i

Yi Random variable for the response

Ŷi Predicted variable of Yi

E[X] Expected value of X
V ar(X) Variance of X
Cov(Xb, Xz) Covariance between Xb and Xz

Rj Partition j of the feature space
m∗ Number of partitions of feature space
RSS Residual sum of squares
yi Observed response for day i
ŷi Predicted response for day i
ŷRj Predicted response for region Rj

CC(Tree) Cost-complexity function
I(yi = k) Indicator function for class k
η Number of terminal nodes
di Dummy variable

CV(k)
average k-fold cross validation estimate

Dj Purity measures

f̂b(x) The bth classification tree
B Number of trees in bagging/random forest/boosting
m Number of predictors considered in each split (bagging/random forest)
TB
bagg/RF B classification trees aggregated together (bagging/random forest)

d Interaction depth for boosting
λ Shrinkage parameter
zi The gradient in boosting
g(·) Activation function
wkj Weights of neural network
Aq Activation of the hidden units
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5.1 Supervised learning

In supervised learning, we want to use some inputs to get an output. If we have the input variables
Xi, called predictors or features, we then want to get an output variable called response or dependent
variable, often notated with Yi.

We denote p features by Xi = (Xi1, Xi2, . . . , Xip). Then the relationship between the response Yi

and predictors Xi can be written as

Yi = f(Xi) + ϵi, i = 1, . . . , n , (5.1)

where f is an unknown function linking the predictor Xi to the response Yi, and the random
error term ϵi is independent and identically distributed with mean zero and constant variance σ2

i .

We often wish to estimate this unknown function with f̂ , which can be done with two purposes
in supervised learning: prediction or inference. Prediction is used when we want to summarise
something about available data to an output Y . The error-term ϵi will average to zero, due to
E(ϵi) = 0 for all i. Hence we can predict Yi by

Ŷi = f̂(Xi) i = 1, . . . , n , (5.2)

where the shape or function of f̂ is not of main interest. We want as good predictions Ŷi of Yi as
possible. How good of an estimate Ŷi is of Yi can be explained by looking at the expected value of
the squared difference between the predicted response Ŷi and Yi. This expected value depends on
the reducible and irreducible error and can be derived in the following manner

E
(
Yi − Ŷi

)2
= E[f(Xi) + ϵi − f̂(Xi)]

2

= [f(Xi)− f̂(Xi)]
2︸ ︷︷ ︸

reducible

+ V ar(ϵi)︸ ︷︷ ︸
irreducible

.
(5.3)

Equation 5.3 shows that we can reduce the reducible term [f(Xi) − f̂(Xi)]
2 with a good approx-

imation f̂ . In contrast, V ar(ϵi) is not possible to reduce, hence irreducible. When performing

predictions, the art lies in finding a good f̂ such that we reduce this squared difference as much as
possible. Inference, in contrast to prediction, is used when the goal is to understand which pre-
dictors are important for the response. In inference, the shape or form of f is essential to inform
users of the relation between the features Xi and the response Yi (James et al., 2013).

Binary classification - the focus of this thesis

The paragraphs above are for regression problems, but the ideas are similar for classification
problems. This thesis will focus on binary classification, where the output is either 0 or 1, e.g.,
no PWL forecasted on a given day or PWL forecasted on a given day. Hence in the case of
our application, each vector Xi = (Xi1, Xi2, . . . , Xip) with the weather data has a corresponding
response Yi

Yi = f(Xi) =

{
0 if no PWL on day i ,

1 if PWL on day i ,
i = 1, . . . , n . (5.4)

The predictions Ŷi can then be described as

Ŷi = f̂(Xi) =

{
0 if no PWL predicted on day i ,

1 if PWL predicted on day i ,
i = 1, . . . , n . (5.5)
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5.2 Splitting of dataset

In statistical and machine learning we need data to make an algorithm or predictive model. The
algorithm then has to be trained on some data, meaning we fit a given model using a specific
subset of the data. This introduces the concept of splitting our collected dataset into a training
set, a validation set, and a test set (James et al., 2013).

As the name indicates, the training set is the data used to train our desired algorithm, and hopefully
find patterns in the data linking the data to its response. The validation set, sometimes called the
hold-out set, is used to validate our algorithm created on the training set. This means we fit our
model to our validation set to predict the response (James et al., 2013). Then we can improve our
algorithm based on the results of the validation set, and finally test it on our test set. Although
there exists no unique way to split the dataset correctly, the training set needs to be the biggest
because this task is the most demanding. However, if the predictive model is fitted too well to
our training data, it can make the model overfit the data. Overfitting implies that the algorithm
performs very well on the data it has been trained on, but performs poorly on new test data. This
proves the necessity of verifying how well the algorithm performs when it receives unseen test data
(Ying, 2019).

Figure 5.1: Illustration of how a dataset can be split into training, validation, and test set.

When performing splitting of the dataset, as in Figure 5.1, we might unintentionally perform the
splitting in a manner that gives an unreasonable good or bad test error. Cross-validation (CV) is
often used in supervised learning to answer how well a learning method will do on new, independent
data. It can be implemented in several different ways, and k-fold cross-validation is one example.
The entire dataset (Xi, Yi), i ∈ [1, n] are then split into k non-overlapping subsets. Firstly, one of
the k subsets is treated as the test set, and the rest are used for training. Then we can compute
the test error for that particular test set. This is repeated k times such that each non-overlapping
subset is used as a test set. Then we can compute the average test error over all k subsets to
indicate how we might expect our learning algorithm to perform on new data (James et al., 2021).
This average test error can be written as

CV(k)
average =

1

k

k∑
i∗=1

Test errori∗ . (5.6)

5.3 Decision trees

In Chapter 2, we discussed some previous related work on automating the avalanche forecast,
predicting deep slab avalanches, and avalanche activity. All used classification trees as one of their
methods in their papers, which motivated us to try this learning method on the dataset at hand.

Decision trees are a supervised learning method known for its intuitive display, and being user-
friendly for a variety of problems. It is a powerful way to perform predictions and is evolved in both
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statistical and machine learning problems (Ville, 2013). Trees need few assumptions compared to
other statistical methods and can often produce good results. Especially when combined with
other concepts, such as bootstrapping (James et al., 2013).

Decision trees rely on splitting the feature space into non-overlapping regions. If we look at
a one-dimensional vector of predictors X1, X2, . . . , Xp, then we divide the feature space into
R1, R2, . . . , Rm∗ distinct regions, see Figure 5.2. For every observation Xi that falls in a spe-
cific region Rj we make the same prediction for that Xi.

Figure 5.2: Example of splitting of the feature space in three partitions. For this binary example, blue
represents 1s and red represents 0s.

There are too many possible partitions of the feature space to consider all of them. It would simply
be too computer-intensive. A solution to this is recursive binary splitting. This means that the
first split is a point s. This creates a root node, where the response is either larger or equal to the
value of this splitting point, or lower. Then the feature space is divided into R1 = {X|Xj < s} and
R2 = {X|Xj ≥ s}, where s is chosen to fit a splitting criterion which is dependent on whether we
want regression or classification trees. This is done recursively by splitting the partitions Rj into
finer and finer regions, where each Rj represents a terminal node. For example, in Figure 5.2, if X1

represents Wind (s1 = 5 m/s) and X2 represents Snowing (s2 = 5 mm), then three regions can be
denoted as R1 = {X|X1 < s1}, R2 = {X|X1 ≥ s1 and X2 < s2} and R3 = {X|X1 ≥ s1 and X2 ≥
s2}. These are represented in the sense of a classification tree in Figure 5.3. Note that these splits
are only done within existing partitions and cannot intersect each other (James et al., 2021). The
different splitting criteria are discussed later in this chapter.

Figure 5.3: Illustration of a simple classification tree to check whether wind-drifted snow (slab) is fore-
casted as an avalanche problem (1) or not (0).

Tree methods can also perform well if we have missing data problems. This can be solved in
different ways depending on the reason the data is missing (Faraway, 2006, pp. 253 - 255). In our
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case, there are only a few missing feature values for a response, hence we can omit the entire row
Xi since the problem at hand only makes sense with all feature values present for each response
Yi.
There are several advantages to using decision trees as a predictive tool. Trees can be applied for
both classification and regression problems. It is simplistic to explain to the outside world, and
when the response is a factor we do not need any dummy variables. That is a binary variable di
that specifies whether something is present or absent,

di =

{
0 if the ith effect is absent

1 if the ith effect is present
, (5.7)

and is often used in regression problems (Fahrmeir et al., 2013). Although there are a lot of
positives to using trees, they are not necessarily a very robust method. This can be shown if there
is a slight change in the training data, especially if the dataset is small, then the predictive model
it yields can change dramatically (James et al., 2013).

5.3.1 Regression trees

Regression trees are used in both statistics and computer science. These trees are implemented
when the response is continuous, typically on the real line. First we have to split the feature space
into the non-overlapping R1, R2, . . . , Rm∗ regions. Then for each of the observations Xi that falls
into a partition Rj , we take the mean of the response in that region and this mean value is the
prediction for Xi. This is done for all Xi observations. Then we calculate the residual sum of
squares (RSS) of Rj , and we wish to find the partitions Rj , j = 1, . . . ,m∗ such that we minimize

RSS =

m∗∑
j=1

∑
i∈Rj

(
yi − ŷRj

)2
, (5.8)

where yi is the true response, and ŷRj
is the estimated response for a region Rj (James et al.,

2021).

These trees are grown by starting with a root node, and then splitting the tree into finer and
finer branches. However, they can quickly become very large and hence fitting the data hard. This
means that we fit a tree too well to its training data, and a smaller tree with fewer branches
might perform better on unseen test data. One might think cross-validation (CV) is a good way
to consider different subsets of our tree to find an optimal size for our tree. But performing CV
on every possible combination of splits will quickly become very computationally expensive. A
solution to this is the cost-complexity function

CC(Tree) =
∑

terminal nodes: i

RSSi + η ·m∗ , (5.9)

where η is a tuning parameter that punishes a tree for having a large number of terminal nodes
m∗.

Performing this cost-complexity pruning makes it possible to determine the best tree for a given
size, and then we can perform CV on these trees (Faraway, 2006). Then the number of trees that
needs to be considered in this CV is dramatically reduced by first applying the cost-complexity
function, see Equation 5.9. Figure 5.4 illustrates a CV plot to find the optimal tree size for a
classification tree, which is the tree type used in this thesis, and is explained next.
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Figure 5.4: Example of K = 5 fold cross-validation to find the optimal tree size by inspecting which tree
size minimizes the fitting criterion, which in this case is deviance.

5.3.2 Classification trees

Classification trees work in a similar manner to regression trees. In classification problems the
response is no longer a numerical value, but a factor (i.e., categorical or binary). In regression we
make splits that minimize the RSS (Equation 5.8), but for classification we make the splits based
on gathering the observations in a cluster such that the observations within a given split is of the
same type, see Figure 5.2.

The general idea is using recursive binary splitting by starting with a root node and then splitting
the feature space into finer and finer regions, hence creating the branches of the tree (Rokach
and Maimon, 2010). Then the final decision nodes will split the observations into one class (i.e.,
1/Yes/True), or to another class (i.e., 0/No/False) for binary problems. These are called terminal
nodes or leaf nodes. We want our tree to perform this splitting in a good manner, and this can be
checked by measuring the purity of a node (Faraway, 2006).

As mentioned we have Rj , j ∈
[
1,m∗] different partitions of the feature space, where each Rj

represents a terminal node with Nj observations. For this given m∗ one can measure the quantity
of a given class observed at the jth node. Then we can define

p̂jk =
1

Nj

∑
xi∈Rj

I(yi = k) , (5.10)

where the sum is over the different observations in the partition Rj , k is the class and I(yi = k) is
the indicator function. This purity can be quantified using different measures; the misclassification
error, cross-entropy/deviance, or Gini index (Hastie et al., 2009).

1. Misclassification error : Dj = 1− p̂jk

2. Cross-entropy/Deviance : Dj = −
∑

k p̂jk log (p̂jk)

3. Gini index : Dj = −
∑

k p̂jk(1− p̂jk)

Dj is the measure of purity at a given node j, hence for the whole tree it is
∑

j Dj . Although the
measures above work differently, they all obtain the minimum value when a node only contains
observations of a single class. Then the node classifies the observations correctly, hence it can be
looked upon as pure (James et al., 2021). The cross-entropy/deviance is the purity measure used
throughout this thesis.
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5.4 Bagging/bootstrap aggregation

It is known that decision trees have a disadvantage in that they often produce high variance. An
example is if we create two different training sets of the same data, the two resulting trees can
be very different. Bagging or bootstrap aggregation is a solution to this problem, and is a way of
reducing this variance.

Bootstrapping is a method generally used on data to calculate the standard deviation of a quantity,
e.g., the empirical mean. However, this approach can be implemented in tree-making. Then we
randomly draw values from our training set with replacement to simulate the data-gathering process
without actually gathering more data. If done repeatedly on our training data we get several
bootstrapped training sets. Then we can grow several classification trees and aggregate them to
make a more accurate prediction, see Figure 5.5. Despite this advantage, this comes at the cost of
the interpretability of ordinary classification trees (Breiman, 1996).

Figure 5.5: Illustration of created B trees on separate bootstrapped trees, and then taking aggregating
them together to make a prediction.

To get an intuition on how bagging reduces variance, let us look at the case when B observations
are independent and identically distributed (i.i.d) from a random variable X, and all these B’s
have equal variance σ2. Then

X̄ =
1

B

B∑
b=1

Xb , (5.11)

and the variance of X̄ is

V ar(X̄) = V ar

(
1

B

B∑
b=1

Xb

)
=

(
1

B

)2

·
B∑

b=1

V ar (Xb) =
σ2

B
. (5.12)

This is when we have i.i.d observations, then the variance is reduced by a factor of 1
B . Then for

regression problems, we get

f̂bagging(x) =
1

B

B∑
b=1

f̂b(x) , (5.13)

but for classification problems we use the majority vote instead of the average, see Algorithm 1.
The majority vote is when the classifier is handed its test data, and the final prediction is the most
common occurring class among all the trees f̂b(x), b = 1, . . . , B (James, 1998).
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Algorithm 1 Bagging algorithm for classification trees

1: Split dataset X into training Xtrain and test set Xtest.
2: Bootstrap Xtrain B times =⇒ Xtrain

1 , . . . ,XB
train.

3: Grow classification trees for Xtrain
1 , . . . ,XB

train =⇒ f̂1(x), . . . f̂B(x). ▷ m = p (Table 5.1)
4: Aggregate the trees to TB

bagg.
5: Output the majority vote as the new prediction.

When the trees are made, all features m = p are considered in each split, see Algorithm 1 (James,
1998). Hence the trees can look quite similar. This can cause the algorithm to get trapped in a
local maximum, and is a weakness in this algorithm. This results in not exploring the model space
optimally (James et al., 2021).

Bagging uses the concept of bootstrapping, and it creates different trees for different bootstrapped
training sets from the available data. Each tree f̂b(x), b = 1, . . . , B uses approximately 2

3 of the
available data. This is due to the nature of the bootstrap (James et al., 2013). The result of this
is that the remaining 1

3 of the data is not used. This subset of the original observations is called
the out-of-bag observations. Hence bagging yields its own test set, and the corresponding response
to the out-of-bag observations can be used to calculate, e.g., test error of the bagged tree. This is
discussed more in Chapter 5.5. It is worth noting that bagging a good or decent classifier, like a
classification tree, will make it better. However, bagging a very bad classifier can actually worsen
the predictive performance (Hastie et al., 2009).

5.5 Random Forest

Random forest is another method to increase the accuracy of tree-based classifiers (Ho, 1995).
Following the notation from Chapter 5.4, if we have Xb, b = 1, . . . , B i.i.d random variables with

variance σ2. Then the average of these Xb variables will have a variance equal to σ2

B (Hastie et al.,
2009). However, often the variables are not independent, and then it gets more complicated. Then
the variables are identically distributed (i.d. and not i.i.d.) with a pairwise positive correlation ρ,
hence the variance of X̄ is

V ar
(
X̄
)
= V ar

(
1

B

B∑
b=1

Xb

)

=
1

B2

 B∑
b=1

V ar (Xb) +

B∑
b̸=z

Cov (Xb, Xz)


=

σ2

B
+

B − 1

B
σ2ρ

= ρ · σ2 +
1− ρ

B
· σ2 .

(5.14)

Equation (5.14) and Equation (5.12) show the core difference between bagging and random forests.
Here, bagging can perform well when the training data produces high variance and low bias.
Although looking at Equation 5.14, we see that the second term

lim
B→∞

1− ρ

B
· σ2 = 0 , (5.15)

but bagging does not do anything with the first term ρ · σ2, and the trees in bagging are therefore
often highly correlated. Hence the goal of random forests is to produce several trees that are
less correlated, and thereby decreasing the first term without significantly increasing the variance.
Random forests have shown to have better predictive performance than bagging, especially in
positive correlation-problems (Hastie et al., 2009, Chapter 15).
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Bagging uses all features (m = p) before making a split in the bootstrapped tree, which leads to
many fairly similar trees, but random forest picks m ≤ p features before each split, see Algorithm
2. These m features are chosen at random, and we make the best split among these m features,
according to the splitting criterion (e.g., deviance for classification problems). This decreases the
positive correlation ρ, hence decreasing the expression in Equation 5.14 (Hastie et al., 2009). The
consequence of this is that random forests often explore the model space more thoroughly than
bagging (James et al., 2021).

Algorithm 2 Random forest algorithm for classification trees

1: Split dataset X into training Xtrain and test set Xtest.
2: Bootstrap Xtrain B times =⇒ Xtrain

1 , . . . ,XB
train.

3: Grow classification trees for Xtrain
1 , . . . ,XB

train =⇒ f̂1(x), . . . f̂B(x). ▷ m =
√
p (Table 5.1)

4: Aggregate the trees to TB
bagg.

5: Output the majority vote as the new prediction.

For classification problems the most used value for m is m =
√
p, and m = p/3 for regression

problems. In general, these benchmark values perform well in random forest algorithms. But m
can be thought of as a tuning parameter, implying different values of m can produce better results.
This can be the case when trees are grown using a lot of features, then using benchmark values
might be too low. Especially if the number of relevant features in making a good prediction is
low. An example is if a tree is grown using 100 features, where only 8 features are shown to be
of importance. Then choosing m =

√
100 = 10, will mean that there is a high probability that

the random forest algorithm will choose features that are not necessarily very important, which
leads to poorer predictions (Hastie et al., 2009). Therefore, if a random forest is fitted with many
features one should use m as a tuning parameter to obtain the best predictive model possible.

Random forests and bagging differ in the number of parametersm considered at each split when the
trees are constructed, but they work in a similar manner. They both produce a out-of-bag sample,
and this can be used to obtain an OOB error estimate (James et al., 2013). Each tree created in
the bagging/RF algorithm gets tested on the data not contained in the bootstrapped training set,
and then the OOB error estimate is the average error for each prediction calculated. This can be
looked upon as a validation set, since the out-of-bag sample was not used in the creation of the
tree and is therefore unseen test data. Then bagging or random forest actually tests itself through
its training.

Both methods are claimed to have the advantage that the number of bootstrapped training sets B
will not cause overfitting. B has to be chosen in a manner in which the test error is stable, suffi-
ciently low and a reasonable number in terms of computation time (James et al., 2021). Breiman
(1996), the author of Bagging predictors, wrote the following on the manner: “In our experiments,
50 bootstrap replicates was used for classification and 25 for regression. This does not mean that
50 or 25 were necessary or sufficient, but simply that they seemed reasonable. My sense of it is
that fewer are required when yi is numerical and more are required with an increasing number of
classes.”(p. 135)

When the number of trees B goes toward infinity, we get

TB
RF = lim

B→∞
f̂B(x) , (5.16)

and this limit can, but it does not necessarily, overfit to the training data. The average (regression)
or the majority vote (classification) of too many fully grown trees can result in a model that is too
well fitted on its training data and causes additional variance (Hastie et al., 2009). Bearing this in
mind, most often it is sufficient to choose B such that the test error has stabilized.
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5.6 Boosting

Boosting is a statistical learning algorithm that can be applied to various methods. When applied
to trees, it uses many decision trees (classification or regression) and combines them into a more
robust and better predictive tool, a committee of trees. In this sense, boosting has a similar purpose
to our previously discussed methods (bagging and random forests). Despite this similarity, boosting
differs substantially from bagging and random forests (Hastie et al., 2009). The latter two grow
their trees independently of each other on separate bootstrapped training data (Figure 5.5), but
boosting follows a different manner where the trees are grown sequentially, see Equation 5.17. By
this, we mean that each tree created uses information from the previously created tree (James

et al., 2021). This is shown in Figure 5.6, where f̂0(x) is an initial tree, d-index, and b-index are
explained in the following paragraphs.

Figure 5.6: Illustration of boosted decision trees, where f̂(x) is updated sequentially.

In Chapter 5.3, we discussed the algorithm of decision trees, which can be said to be fitting the
data hard, in the sense that we might overfit when including too many splits (James et al., 2021).
Boosting is trying to avoid overfitting by learning slowly, this is done by a shrinkage parameter λ.
Then the updating scheme can be written as

f̂(x)← f̂(x) + λ · f̂ b
d(x), b = 1, . . . , B . (5.17)

Here f̂(x) has to be initialized by a f̂0(x), and this is chosen according to the loss function used.

For classification problems bernoulli is recommended, and then the initial value will be f̂0(x) =

log
( ∑

wiyi∑
wi(1−yi)

)
, where wi are calculated weights (Ridgeway, 2020). The other tuning parameters

are B, λ, and d:

• B, Number of trees.

• λ, Shrinkage parameter.

• d, Interaction depth.

The main elements of the boosting approach for classification problems are summarized in
Algorithm 3.
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Algorithm 3 Boosting algorithm for (binary) classification trees

1: Split dataset X into training Xtrain and test set Xtest.
2: Initialize f̂(x) = f̂0(x) according to which distribution is used. ▷ bernoulli or adaboost.
3: for b = 1, . . . , B do :
4: Compute f̂ b

d(x) using a subset of Xtrain.

5: Update sequentially: f̂(x)← f̂(x) + λ · f̂ b
d(x). ▷ For notation, see Table 5.1.

6: end for

7: Final boosted model is f̂(x) =
B∑

b=1

λf̂ b
d(x).

8: Make predictions using a selected threshold. ▷ Turning probabilities into 0 or 1.

Algorithm 3 can be implemented in R using the package gbm as follows:
model <- gbm(response ∼ features, data = ..., distribution = ’bernoulli’,

n.trees = B, interaction.depth = d, shrinkage = λ, bag.fraction = ...). In more de-
tail, this gbm function computes the negative gradient, which for distribution = ’bernoulli’

is

zi = yi −
1

1 + exp (−f(xi))
. (5.18)

This zi is used as the working response to fit the tree f̂ b
d(xi) by computing an expectation

E
(
zi

(
yi, f̂(xi)

)
|xi

)
, where xi is the randomly chosen subset of Xtrain determined by the sub-

sampling rate (bag.fraction). This was inspired by Stochastic gradient boosting, first proposed
by Friedman (2002), which indicates how much of the initial training data is sampled randomly
(without replacement) at each iteration step. This is implemented to increase the overall robust-

ness of the method. Then the gbm-function computes the optimal terminal nodes and the tree f̂(x)
gets sequentially updated for b = 1, . . . , B as in Algorithm 3 (Ridgeway, 2020). Additionally, it is
worth noting that when distribution = ’bernoulli’, the deviance is twice negative (weighted)
log-likelihood

−2 1∑
wi

∑
wi (yif(xi)− log (1 + exp (f(xi)))) . (5.19)

Tuning of boosting

The number of trees is an important tuning parameter of boosting methods because too large a
B value can cause overfitting, and a too small value will lead to poor predictions. This is due to
the slow learning analogy of boosting. λ is a scalar that controls how much information is added
from the bth tree to the predictive tree f̂ . In this sense, it tunes the rate at which the boosting
algorithm learns. For tuning, λ = 0.01 or λ = 0.1 are frequently used values. The parameter d
controls the number of splits made in each tree created. This means it gives a maximum of how
many variable interactions the model considers. These tuning parameters have to be chosen wisely
(tuned) by the user to acquire a good performance on the test set, while additionally avoiding
overfitting (Hastie et al., 2009).
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5.7 Deep learning and Neural networks

Neural networks have received a lot of attention in the field of deep learning. In fact, neural
networks can be thought of as non-linear statistical models, which usually do a good job in classifi-
cation problems due to their ability to learn patterns in the data (Faris et al., 2016). A Multilayer
Perceptron (MLP) is a feedforward neural network that consists of three parts.

• An input layer.

• One or several hidden layer(s).

• An output layer.

Figure 5.7: Illustration of Multilayered Perceptron (MLP) with 3 hidden layers.

These three parts are illustrated in Figure 5.7. The input layer consists of features Xi, i = 1, . . . , n
to be used in the MLP. But for the sake of explanation, we look at the one-dimensional vector
of features X1, X2, . . . , Xp, which can be called neurons in the setting of neural networks. The
features are fed into the hidden layer(s). This first hidden layer consists of Q hidden units, and

each of these units computes the activation for the q unit. Let us call these A
(1)
q (James et al.,

2021). This activation for the first hidden layer is calculated as

A(1)
q = hq(X) = g

(
wq0 +

p∑
r=1

wqrXr

)
, (5.20)

where g(·) is an activation function, see Algorithm 4. This is a non-linear function chosen by the
user and has the purpose of capturing non-linear connections within the neural network. These
are also called nonlinearities. The following equations are examples of activation functions

Sigmoid: ϕ(z) =
1

1 + exp{−z}
, (5.21)

ReLU: ϕ(z) = max (0, z) , (5.22)

TanH: ϕ(z) =
exp{z} − exp{−z}
exp{z}+ exp{−z}

. (5.23)

The wqp values are called weights and are parameters specified for each input Xp to the hidden
units within the hidden layer, and these are estimated from the training set. Then the activation

of the hidden unit A
(1)
q is computed by applying an activation function to this weighted sum as in

Equation 5.20 (James et al., 2021). Hence, the weights transform the inputs (X1, . . . , Xp−1, Xp)
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Figure 5.8: Example of how training data and weight matrix can be denoted. Where the inputs (training
data) and the weights in W are used to find a linear combination to be used in a neural network.

by linear combinations of the two matrices in Figure 5.8. The A
(1)
q are then fed forward to the

output layer, when leaving the hidden layer(s). Then the output can be written as

f(X) = β0 +

Q∑
q=1

βqA
(1)
q , (5.24)

when there is one hidden layer, where the βs are parameters which are calculated through training
of the network. For MLP we can add several hidden layers, with different amounts of hidden units.
The number of layers depends on the problem at hand, and is for the user to tune.

For the convenience of this thesis, lets look at a MLP that consists of three layers. Lets call the

first hidden layer A
(1)
q , see Equation 5.20. Then a second hidden layer A

(2)
k would be

A
(2)
k = h

(2)
k (X) = g

(
wk0 +

Q∑
q=1

w
(2)
kq A

(1)
q

)
, (5.25)

where this second hidden layer A
(2)
k uses the first hidden layer activations A

(1)
q , q = 1, . . . , Q to

calculate K new activations. This is repeated in the third hidden layer, and is of length M

A(3)
m = h(3)

m (X) = g

(
wm0 +

K∑
k=1

w
(3)
mkA

(2)
k

)
. (5.26)

Typical activation functions for the different hidden layers are Sigmoid (Equation 5.21), ReLU
(Equation 5.22) and TanH (Equation 5.23). For binary classification, as in Algorithm 4, the
Sigmoid-function is often used as the activation function in the output layer. This is because this
function squishes the outcome (e.g., Equation 5.24) to a number between 0 and 1. Then we can
implement a threshold, e.g., 0.5 to get the binary outcome. If the predicted number is above 0.5
we predict the outcome as 1, and vice versa for 0. The main workflow is summarized in Algorithm
4.

Algorithm 4 Multilayer Perceptron for binary classification (main steps)

1: Compute a weight-matrix W from the training set.
2: Calculate the weighted sum: wq0 +

∑
wqpXp for the input layer. ▷ wq0 is the bias term.

3: Apply an activation function g(·) to this weighted sum.
4: Repeat 1 to 3 for desired number of hidden layers. ▷ Figure 5.7 has 3 layers.
5: Apply Sigmoid as activation function in the output layer.
6: Implement a threshold to transform the R outputs into 0s and 1s.

As with the previously discussed methods, the MLP follows the same procedure regarding training
and test data. Most of the data is used for training the neural network, and the remaining is held
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out to be used for testing. Then the neural network is tested on unseen data, where the user has to
tune different parts of the network, to get the best set of weights that minimizes the classification
error (Faris et al., 2016).

5.8 Measurement of predictive performance

So far in this chapter, we have focused on trees, bagging, random forests, boosting, and neural
networks. When these are trained on a training set, they need to be tested on an unseen test
set. How well they perform in predicting unseen test data can be measured in different ways. In
binary classification problems, as the focus of this thesis, the confusion matrix is a good tool. The
confusion matrix is a 2× 2 matrix with the predictions on the vertical part, and the correct/true
classification on the horizontal part. We have chosen to call the latter ’reference’, see Figure 5.9.

Figure 5.9: Illustration of a confusion matrix for binary classification problems.

In this thesis negative is the 0 value, and is obtained when there is no PWL on a given day. While
1 is positive, and corresponds to PWL being forecasted on a given day, see Equation 5.5. True
negative (TN) is when our algorithm or method predicts 0 and the correct response is 0, and
vice versa for true positive (TP). False positive (FP) is when our statistical algorithm predicts
something as true when it is actually negative, and vice versa for false negative (FN).

Accuracy, specificity, and sensitivity are measurements based on this matrix and are defined as
follows:

Accuracy =
TN + TP

TN + TP + FP + FN
,

Specificity =
TN

TN + FP
,

Sensitivity =
TP

TP + FN
.

(5.27)

A good predictive model will have high accuracy, specificity and sensitivity at once. If the dataset
is imbalanced, in the sense that there are significantly more 0s than 1s, or vice versa, the balanced
accuracy can be used. Balanced accuracy is the mean of the sensitivity and specificity,

Balanced accuracy =
Specificity + Sensitivity

2
. (5.28)

.
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Overfitting - in the eyes of the methods described

Overfitting is said to happen when a given model is too well fitted to a particular dataset, hence
performing extremely well on a given test set. The trade-off is that it performs poorly on another
test set, hence it does not generalize well. Modern machine learning techniques have the advantage
of finding difficult, complex relationships between features and a response. So far we have discussed
several different machine and statistical learning methods. It is important to note when using bag-
ging and random forest, which use interpretable classification trees and aggregate them together.
This comes at the cost of interpretability because once we ensemble several trees together, they are
really no longer trees. This goes for boosting (Chapter 5.6) as well. For these ensemble methods,
we make our predictions using a ”black box”. By this, we mean that we are solely interested in
the final prediction (e.g., 0/1), hence the internal parameters within the algorithm are more or less
uninterpretable. This can, often unintentionally, cause overfitting to the training data since these
methods could potentially capture noise in the data (Hosseini et al., 2020).
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Chapter 6

Results

As discussed in Chapter 3.3.1, the temperature gradient within the snowpack is the main factor in
determining whether faceted grains and depth hoar come about or not. The weather data used in
this thesis is the air mean temperature (temp (◦C)) and the mean snow depth (snowdepth (mm))
at different elevation intervals in the given region of interest, i.e., Sunnmøre or Romsdal. Other
models with additional features such as precip (mm), precipmax (mm), new − snow (mm), and
wind (m/s) did not increase predictive performance, and some features led to worse results. Hence
the primary interest of this thesis is whether air temperature and snow depth are good features to
predict PWL(s) due to their indirect influence on the temperature gradient within the snowpack.

Structure of this chapter

This chapter will include four subsections, where we introduce three different models. The last
subsection includes an extension of the time-dependent model. These are listed and explained
below.

1. Mstationary is a stationary temperature model. It uses air temperature (at different eleva-
tions) for the given day of interest as its features.

2. Mstationary∗ is also a stationary model, but it uses air temperature and snow depth (at
different elevations) for the given day of interest as its features.

3. Mtime−dependent considers the time aspect. Hence it uses air temperature and snow depth (at
different elevations) for the given day of interest, and the five preceding days, as its features.

4. MMLP uses the same features as Mtime−dependent, and is an extension of the time-dependent
model.

All machine learning methods were region-specific, meaning they were trained and tested on data
from the same region, i.e., Sunnmøre or Romsdal. The dataset consisted of five winter seasons
from 2017/18 to 2021/22. To test the predictive performance and robustness of each approach,
four different training sets were tried:

• Training set where 75% of the data was chosen randomly, and the test set was its complement.
This was denoted as R.

• The first four seasons were used as training set, and the test set was the last season 2021/22.
This was denoted as 4F .

• The last four seasons were used as training set, and the test set was the first season 2017/18.
This was denoted as 4L.
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• The three first seasons and the last season made up the training set, and the test set was
2019/20. This was denoted as 3/1.

The three first subsections (Mstationary, Mstationary∗ and Mtime−dependent) focus on classification
trees, pruning, bagging, random forests, and boosting, see Chapter 5. In the last subsection, we
use a multilayer perceptron (MMLP ) to classify the binary response Ŷi on the time-dependent
model. How these methods were implemented in R and Python are exemplified in Appendix A.2
and A.3. In each subsection, we will give a brief explanation of the different tables with respect
to their different training sets and best results to clarify the findings of this thesis. For each
machine learning approach the predictive measurements were accuracy, sensitivity and specificity,
see Equation 5.27.

R and Python packages used

Classification trees: For creating classification trees we implemented the R package trees (https:
//www.rdocumentation.org/packages/tree/versions/1.0-42/topics/tree). This was used to grow the
trees using binary recursive splitting with deviance as the splitting criterion as described in Chapter
5.3.

Bagging/Random forest: When applying bagging and random forest to classification trees
the R library randomForest was used (https://www.rdocumentation.org/packages/randomForest/
versions/4.7-1.1/topics/randomForest). Each tree was fully grown and we set B = 500 (number
of trees), because of computation time, and the test error stabilized at approximately 500. The
parameter mtry was equal to p (number of predictors) for bagging, but for random forest the
default mtry =

√
p was used.

Boosting: In this thesis, the boosting package gbm (Gradient Boosting Machine) in R was imple-
mented (https://www.rdocumentation.org/packages/gbm/versions/2.1.8.1). For classification prob-
lems, bernoulli or adaboost were recommended loss functions by Ridgeway (2020) (author of the
R package), with particular recommendations for using bernoulli. The parameter bag.fraction
had default-value of 0.5. This means 50% of the training data is chosen (at random) to create the
next tree in the sequential updating of the classifier. When the data size is small, a higher number
could be considered (Hastie et al., 2009, p. 412). bag.fraction was therefore set to 0.8. This
showed, by trial and error, to outperform the default value. The other tuning parameters, and the
choice of their values, are discussed more thoroughly later in this chapter.

Multilayer perceptron: To create and train the feedforward neural network we used Python
instead of R. For this task, we chose PyTorch due to its GPU acceleration for tensor computations
and its applicability for deep learning problems (https://pytorch.org/). Additionally, libraries such
as pandas and scikit-learn were used.

Additional information about tuning and the methods

There were a lot of different choices made when applying trees, bagging, random forests, boosting
and neural networks. The following list gives additional information about the tuning parameters
so that a fair comparison between the methods can be made.

• For reproducible results the set.seed(563) was used.

• The pruned tree is chosen by the tree size n that minimizes the 5-fold cross-validation error,
see Equation 5.6.

• When Bagging and random forests (RF) are denoted with ”Bagging*” or ”RF*”, the ”*”
indicate that it is an OOB estimate.

• Bagging includes a B which indicates how many trees have been created in the algorithm.
B was chosen such that the test error stabilized.
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• Boosting was tuned by trying all combinations of five different interaction depths (d =
{1, 2, 3, 4, 5}), five different shrinkage parameters (λ = {0.1, 0.05, 0.01, 0.005, 0.001})
and five different number of trees (B = {1000, 2000, 3000, 4000, 5000}). The parameters
were selected in a manner such that the balanced accuracy was maximized.

• The first 30 days of 2017/18 season had missing snow depth data. Hence the models using
snow depth omitted these 30 rows.

• For the MLP, three activation functions were tried in the hidden layers (ReLU, Sigmoid and
TanH), while Sigmoid was used for the output layer.

• The loss function used in MMLP was cross-entropy, and batch size was set to 32 after trial
and error. Epoch and learning-rate were tuned using methods from PyTorch.

• After trial and error, the threshold for determining if the MMLP predicted 1 (PWL) was set
to 0.5.
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6.1 Stationary temperature model

Formation of PWL requires that the temperature gradient is larger than 10◦C m−1 over time,
see Chapter 3.3.1. The stationary temperature model, call it Mstationary, is stationary in time.
This means that the algorithms only use features for the given day i of interest. The features in
Mstationary is temperatures at the five different elevation intervals (of length 400m).

The accuracy, sensitivity, and specificity of Mstationary are summarized in Tables 6.1 and 6.2.
Table 6.1 shows predictive measurements for R and 4F training sets. For R training set, boosted
classification trees with d = 2, B = 1000, and λ = 0.05 gave the best results when leaving out the
OOB estimates of bagging and random forests. Boosted classification trees for Sunnmøre gave an
accuracy of 0.6754, specificity of 0.8313, and sensitivity of 0.3008, this is enhanced in bold in Table
6.1. For 4F , when the methods were trained on the first four seasons, the random forest results
are enhanced in bold in Table 6.1. This shows the difference in the predictive performance based
on the OOB samples (”RF*”), or estimates from when the model is tested on the last 2021/22
season.

Table 6.2 shows measurements for 4L and 3/1 training set, where neither of them produced any
extraordinary results. For 4L, the OOB estimates for bagging are enhanced in bold to show the
high predictive performance versus the estimates calculated when tested upon the first season. For
3/1, the RF (m = 2) measurements enhanced a model that yields very high specificity, but at a
cost of low sensitivity (true positive rate).

6.2 Stationary temperature model + snow depth as an
additional feature

Mstationary is a huge simplification of the problem at hand, and adding snowdepth as an additional
feature seems reasonable. This was done due to the concept of the temperature gradient (Equation
3.1), the key factor in kinetic transformation. We call this model Mstationary∗ , and it consists of

2 (feature types) · 5 (elevation intervals) = 10 (total features).

In general, all methods in Mstationary∗ performed better than the trees from Mstationary. For
each training set, the methods with the highest balanced accuracy (Equation 5.28) is enhanced in
bold. Here we chose to not enhance the OOB estimates because all training sets show that the
OOB estimates are overall better than the test error estimates, as for Mstationary. In Table 6.3,
the random training set resulted in an accuracy of 0.9224, specificity of 0.9740, and sensitivity of
0.8000. While the 4F training set gave accuracy of 0.7582, specificity of 0.6857, and sensitivity
of 0.8571. However, as for Mstationary, the 4L training set produced better results than 4F , see
Table 6.4.

The predictive measurements for the four different training sets are summarized in Tables 6.3 and
6.4.
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6.3 Time-dependent model using temperature and snow depth

To increase predictive performance (when compared with Mstationary and Mstationary∗) an idea is
to include features over time. In a more complex model, call it Mtime−dependent, we use features
that consider the aspect of time. This is due to the fact that PWLs form when the temperature
gradient, within the snowpack, endures over time (often days). Then kinetic transformation is the
dominating transformation in the snowpack, and could potentially capture existence/non-existence
of PWLs in a better way than the preceding, simpler models.

In Mtime−dependent the features, temp (◦C) and snowdepth (mm), are given for five different eleva-
tion intervals and for day i, i− 1, . . . , i− 5. This means that Mtime−dependent consists of

2 (feature types) · 5 (elevation intervals) · 6 (different days) = 60 (total features).

The random R training set resulted in the best predictive measurements, as with the two preceding
models. Another similarity of Mtime−dependent with Mstationary and Mstationary∗ , is that the
training set 4L performed better than 4F and 3/1. For Mtime−dependent (Sunnmøre) using 4L
as training set resulted in an accuracy of 0.7853, specificity of 0.7596 and sensitivity of 0.8219
when using boosted trees with d = 4, B = 2000, and λ = 0.05, see Table 6.6. And for Romsdal,
the measurements were even higher. This is discussed more thoroughly in Chapter 7.

The accuracy, sensitivity, and specificity for all the different training sets are summarized in the
following tables, see Tables 6.5 and 6.6.

6.4 Multilayer perceptron

The three previous models use more classic, well-known statistical approaches than this last ap-
proach. It is reasonable to suspect that a more complex approach might perform better with
the same dataset as Mtime−dependent with 60 features. MMLP is a classifier that extends the
time-dependent model by implementing a multilayer perceptron (MLP) with three hidden layers.

The random R training set resulted in extremely good measurements, as Mtime−dependent and
Mstationary∗ . With accuracy, sensitivity, and specificity all being approximately 0.90. When com-
pared to Mtime−dependent, MMLP performed much better with the 3/1 training set, but a lot worse
with the 4L training set. In general, the activation function in the hidden layers of MMLP did not
cause major differences in performance.

The predictive measurements for all four training sets are summarized in Tables 6.7 and 6.8.
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6.5 Summary of key machine learning results

The preceding tables (Tables 6.1 to 6.8) show all predictive measurements for the statistical and
machine learning methods used. Since all methods were applied to different training sets, and we
used three different versions of the dataset (5, 10, and 60 features), it resulted in a lot of numbers.
Some predictive measurements were presented in bold to either showcase the best results for a
specific training set, or to enhance the findings to be used in the discussion (Chapter 7).

The following list tries to summarize the key findings in the results, and will be discussed thoroughly
in the following chapter.

• Mstationary is the simplest model with only five features, namely the temperature at different
elevation intervals. This leads to overall poor predictive measurements, where the boosted
classification trees generally produced the best results.

• In general, Mtime−dependent (60 features) did better than Mstationary∗ (10 features), and
Mstationary∗ did better than Mstationary (5 features). Therefore it seems like a good decision
using a model that takes time into consideration.

• The extension of the time-dependent model, MMLP , performed (in general) worse than
bagging, RF and boosting from Mtime−dependent. But the neural network performed a lot
better for the training set 3/1 compared to the other approaches, see Tables 6.5 to 6.8.

• The three models all included bagging and random forests. Tables 6.1 to 6.6 show that
the OOB estimates (Bagging* or RF*) were consistently higher than the test set estimate
(Bagging or RF).

• For all statistical and machine learning methods, the random training set (R) performed the
best.

• When excluding the random training set, the 4L training set resulted in the best predictive
measurements for both Mstationary∗ and Mtime−dependent.

• In general, there is a dispersion in the predictive measurements between different training
sets. This indicates that the methods presented here suffer from non-robustness.
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Chapter 7

Discussion

In the results (Chapter 6), we used four different training sets (R, 4F, 4L, and 3/1), and these will
be discussed with respect to overfitting and what we chose to call seasonal dependencies. Then we
discuss the four models concerning their predictive performance. At last, we will discuss what these
statistical and machine learning methods might bring to aid the avalanche forecast in maritime
regions by combining the statistical results with the snow science theory discussed in Chapter 3.

7.1 Different training sets and overfitting

Figure 7.1 and 7.2 show how the training sets R (75% of the dataset chosen at random) and 4F
(first four seasons) were sampled for Sunnmøre. This is analogous for Romsdal and the other
training sets, 4L and 3/1.

Figure 7.1: Illustration of how the R (random) training set was sampled for Sunnmøre, using temperature
(temp (◦C)) and snow depth (snowdepth (mm)) as features. The training and test set included observations
from all five seasons.

Every test set created is unseen in the sense that these exact data points were not used in training.
Nevertheless, the test set used for the random training set (R) is chosen among all five seasons.
Hence it captures what we have chosen to call seasonal dependencies. Meaning that each season has
its own ”characteristics”. As we can see in Figures 7.1 and 7.2, the snow depth is different for each
season, and temperatures fluctuate throughout the season and vary between seasons. But as seen
in Figure 4.2 in Chapter 4.2, PWL usually persists over several days. Hence sampling training data
as in Figure 7.1 (at random), one might choose a given day with PWL as training data, and the
next day as test data. This causes the features to have very similar values (i.e., temperature and
snow depth at different elevations). Hence using random training set (R) might lead to overfitting
by capturing these seasonal dependencies, as seen in Table 6.5. Boosting produced extremely high
predictive measurements when it used the random training set, but its predictive performance was
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Figure 7.2: Illustration of how 4F (four first seasons) training set was sampled for Sunnmøre, using
temp (◦C) and snowdepth (mm) as features. The training set included all observations from the first four
seasons, and the test set was the observations from the last season (2021/22).

significantly lower for the other three training sets, see Tables 6.5 and 6.6. The training sets 4F ,
4L, and 3/1 can be considered totally unseen, since the training data is four entire seasons and the
test set is the last unseen season.

So using 4F , 4L and 3/1 produces more realistic predictions, and for an upcoming season, one
would use all preceding seasons to predict the existence of PWL in the following season. However,
using 4F as a training set did not produce as good predictions as 4L for Mtime−dependent. But the
test set for 4F is the last 2021/22 season, the rightmost part of Figure 7.1, was quite different in
terms of snow depth, and was an outlier in terms of the other seasons. Hence the models trained
on 4F were ”surprised” by the feature values of this test set, and performed poorly. However,
using training set 4L includes this outlier season in its training, then the training data captures a
broader specter of feature values and performs better on its test set.

Another way we sense that seasonal dependencies lead to overfitting is when we use the training
sets 4F , 4L, and 3/1. Here, the out-of-bag estimates for bagging and random forest are extremely
high. This makes sense because the bootstrapping part of these algorithms causes not all training
observations to be used, as discussed in Chapter 5.4. And those not used, the out-of-bag observa-
tions, are then used as the test set. Hence this out-of-bag test set is data within the same seasons
as the training data, therefore capturing these seasonal dependencies.

7.2 Comments on the three models

Here we will discuss each of the three models (Mstationary, Mstationary∗ , and Mtime−dependent),
including the extension MMLP , from Chapter 6. Tables 6.1 to 6.8 show the results that will be
discussed next. The bold numbers in these tables are used throughout the following discussion to
amplify some of the key findings.

7.2.1 Stationary temperature model

Table 6.1 shows that the unpruned tree and pruned tree, for both regions, do a good job of
predicting if PWL does not exist, which leads to high specificity. However, it does a poor job
in predicting if PWL exists on a given day, which results in low sensitivity. We are interested
in a good predictive model, meaning we want high specificity and especially sensitivity. If the
sensitivity is low, it means there are a lot of false negatives. In the eyes of the avalanche forecast,
predicting no PWL on a day with PWL is a major problem. This is because a false negative can
give the impression of safer conditions than reality and should be avoided. Hence the sensitivity
of Mstationary of approximately 0.10-0.30 is neither impressive nor valuable.

Tables 6.1 and 6.2 show that the OOB estimates for random forest and bagging have the highest
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sensitivity for Mstationary. This is probably because the OOB estimates are tested on days within
the training data. In that sense, not being totally unseen test data, hence capturing the seasonal
dependencies as discussed in Chapter 7.1. For training set 3/1, the RF (m = 2) measurements
show that for this imbalanced dataset it is easier for a model to get high specificity than high
sensitivity. This is due to the few numbers of actual positives (1s) in the dataset, because a model
that always predicts 0 (no PWL) will be correct approximately 70% of the time, see Figure 4.4.

In general, Mstationary does not perform very well, due to its simplistic nature with only 5 features.
For the majority, boosting gave the best results for the different training and test sets, probably
because boosting learns slowly and is an ensemble method that takes a lot of weak learners to
produce a committee that performs fairly well. When this is said, none of the methods led to any
reliable results, see Tables 6.1 and 6.2. Mstationary could be looked upon as an initial model, or a
very simplistic model, which was a starting point for this thesis work. Increasing the number of
features will likely capture more information, and thus do a better job of predicting this binary
outcome.

7.2.2 Stationary temperature model + snow depth as an additional
feature

When implementing snow depth as an additional feature we obtain the Mstationary∗ model. This
model is stationary because it only uses features for the given day i the response is forecasted.
Tables 6.3 and 6.4 show a trend that the specificity (true negative rate) is very high. Meaning
that the models do a good job of classifying 0 (no-PWL). This is the same trend as Mstationary

and is reasoned with the imbalanced dataset (Figure 4.4). To aid the forecast, the goal should be
to create a model that also predicts many true positives (sensitivity).

The predictive measurements had the same trend as for Mstationary, in the sense that the random
training set R captures the seasonal dependencies, and thus yields very high measurements. When
looking at the 4F training set, Mstationary∗ outperformsMstationary by a lot, see Tables 6.1 and 6.3.
Here, bagging, RF, and boosting performed the best. Comparing boosting in these two models
shows a considerable improvement in predicting true positives (sensitivity) when adding snow
depth as an additional feature (Mstationary∗). This comes at the cost of slightly lower specificity.
In general, the results for Mstationary∗ yield decent results for particular methods and particular
training sets. The problem is that the results are inconsistent, the methods are extremely sensitive
to what their training data is, and are therefore non-robust methods. When this is said, including
snowdepth (mm) as an additional feature led to (in general) better predictions than the simpler
model Mstationary. This was expected, due to the formation of PWL and its dependence on the
temperature gradient.

7.2.3 Time-dependent model using temperature and snow depth

The snowpack is a complex mixture of different snow grains, and the water molecules have numerous
different shapes and different abilities within the snowpack. The snow will always go through
some sort of metamorphism, either weak-gradient, wet snow or kinetic. Kinetic metamorphism is
dominating when the temperature gradient is larger than 10◦C m−1. If this happens over several
days, PWL will form within the snowpack, as discussed earlier. From this we would expect the
model that considers the aspect of time to perform better than a model which does not. This was
generally the case when looking at the different methods for different training sets, and including
time was a good decision in adding complexity to the models.

The results in Tables 6.5 and 6.6 show that the seasonal dependencies (R training set) cause very
high predictive measurements, as for the preceding models. When inspecting boosted classification
trees on the 4L training set, we see that they yield good and more realistic results. Here, the
very snowy season of 2021/22 is included in the training, and tested on the 2017/18 season. If
an upcoming season had feature values similar to 2017/18, we would expect a boosted model to
produce good results. Nevertheless, one cannot neglect the big differences in predictive performance
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based on which training set was used.

Random forest and choice of m

For random forests we used the benchmark value of m =
√
p, and this produced variable results.

Figure 7.3 shows that for Mtime−dependent (with training set 4L) in Sunnmøre, m =
√
p (purple

dashed line) is not necessarily the best in terms of predictive performance. When m =
√
60 ≈ 8,

the predictive measurements would not be as good as they could. This is because essential features
might be left out in the tree-making, as discussed in Chapter 5.5. Hence m should be treated as a
tuning parameter when the number of features is high, which is the case for the dataset used here
(60 features).

Figure 7.3: Predictive measurements, using different m values, for random forest on Sunnmøre with
Mtime−dependent using training set 4L.

However, this discussion depends on what is considered a ”good” prediction. In this thesis, the
goal is to aid the avalanche forecast in predicting the existence of PWL. Hence one might prefer a
more conservative model, which has more false positives than false negatives. If a model predicts
no PWL when the layer actually exists (low sensitivity), it can be dangerous because of the harm
PWL can cause. Hence informing the users of the forecast that PWLs do not exist, when it
actually exists, should be avoided. Predicting PWL when they do not exist (low specificity) is not
good either, because the model will ”cry wolf” and will not be trustworthy for its user. Our main
intention is therefore to reach high specificity and especially sensitivity.

Continuing the discussion of using random forest for Sunnmøre (4L), Figure 7.3 shows that when m
approaches 30 the sensitivity gets very high, approximately 0.94. Figure 7.4a shows the confusion
matrix for m = 8, while Figure 7.4b shows the confusion matrix for m = 30.

(a) (b)

Figure 7.4: Confusion matrix for random forest on Sunnmøre with Mtime−dependent on training set 4L.

(a) m = 8, (b) m = 30.

Figure 7.4 shows that changing the tuning parameter m for the random forest dramatically changes
the sensitivity. Decreasing the number of false negatives by 35, and at the same time (only)
increasing the false positives by 10. Further, 8 features chosen at random at each split will not
capture enough information to make a solid prediction in determining if PWLs exist, as shown in
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Figure 7.4. Table 7.1 compares the predictive measurements between m = 8 and m = 30. Here we
see that all predictive measurements increases, except specificity. Increasing m to 30 will lead to
significantly more true positives, with the cost of a few more false positives. For Sunnmøre and 4L
training set, the results of the random forest classifier with m = 30 is fairly similar to the boosted
model with d = 4, B = 2000, and λ = 0.05 (Table 6.2).

Table 7.1: Mtime−dependent random forest results for m = 8 and m = 30 in Sunnmøre.

Training: 4L m = 8 m = 30
Accuracy 0.6054 0.7755
Specificity 0.7467 0.6133
Sensitivity 0.4583 0.9444
Balanced accuracy 0.6025 0.7789

Random forests and bagging lose the interpretation advantage that classification trees offer, since
it is really no longer a tree when we aggregate all B = 500 trees together. But by using the R
function reprtree:::plot.getTree(ranf.sunnmøre, k=2) we can plot the second tree created
in the random forest algorithm where each split considers m = 30 random features out of the total
p = 60 features. Here we see that this particular tree makes its root node, and first internal nodes,
by splitting on temperature and snow depth at day i− 4 and i− 5, see Figure 7.5. This could have
its reason due to PWLs usually requiring several days of a consistently high temperature gradient.

Figure 7.5: Second classification tree created in the random forest algorithm when m = 30 for Sunnmøre
with training set 4L.

A similar trend is observed for Romsdal, where the benchmark value m =
√
p does not yield the

best predictive performance, see Figure 7.6.

Figure 7.6: Different m values for the random forest on Romsdal with Mtime−dependent (training set 4L).
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7.2.4 Multilayer perceptron

Tables 6.7 and 6.8 show the results of our feedforward neural network (MMLP ) with three hidden
layers, using different activation functions in the hidden layers. As expected, the network performed
well for the random R training set, due to seasonal dependencies as discussed in Chapter 7.1. As
with the previous methods, the results vary on the training data used, and is a general trend in the
results presented in this thesis. To our surprise, the network performed a lot worse for the other
training sets when compared with the methods from Mtime−dependent. Although one should not
necessarily be surprised. Because simpler methods often outperform more complex approaches.
This was the case for 4F and 4L training sets, but when the training set 3/1 was used, MMLP

performed better than the methods from Mstationary, Mstationary∗ , and Mtime−dependent.

The choice of activation functions in the hidden layers (ReLU, Sigmoid, or TanH) showed not to be of
importance. Since each function produced fairly similar results, see Tables 6.7 and 6.8. Throughout
the training of the neural network, the cross entropy (loss function) steadily decreased, but it is
possible to suspect that the network found noise patterns in the data and therefore performing
poorly when trained on the training sets that do not capture seasonal dependencies, and thus
generalize poorly.

These different models perform quite differently based on the training and test set used, and it
seems like some models with a particular training and test set are capturing more generic features
than others.

7.3 Avalanche theory discussion and how this can aid the
forecast

We have used different statistical and machine learning techniques to predict a complex binary
outcome. However, there are some problems with the models used here concerning the avalanche
theory and theory about kinetic transformation, as discussed in Chapter 3.3.1.

The boosted model from Mtime−dependent performed the best on totally unseen test data (training
sets 4F, 4L, 3/1), especially using the training set 4L. Where the features used here were snowdepth

and temp (air temperature) at different elevations for day i, i − 1, . . . , i − 5. This makes sense in
trying to predict facets and depth hoar, but is problematic if we want to predict surface hoar,
see Figure 3.10 for grain forms. Surface hoar forms when its water vapor in the air, a clear sky
(at night), and a slight breeze of wind (typically 1 to 3 m/s). But implementing this criterion
as features showed to be problematic. The dataset at hand made it challenging to find suitable
features for this problem. Hence the models presented in this thesis could potentially only capture
true positives in the sense of facets and depth hoar, not surface hoar.

Facets (and depth hoar) usually form when there is a high temperature gradient over time. Meaning
that kinetic transformation can dominate the snowpack such that facets form. But facets can form
rapidly close to the surface, as discussed in Chapter 3.3.1. This could happen by dry snow on
top of wet snow, fluctuating temperatures throughout the day, and balanced radiation and radiance.
Features used in the models in this thesis are daily measurements, not several measurements
throughout the day. Hence it is difficult to capture these quick and sudden formations of PWLs.
All of this thesis work is based on using indirect features of the temperature gradient, which is
the key component of kinetic transformation in the snowpack. Ideally, one would like to have
continuous temperature measurements from within the snowpack to forecast this problem. But
this is not feasible as for now.

It is also worth repeating that the response in this thesis is whether or not PWL is forecasted
or not. This is determined by an expert, usually a meteorologist or hydrologist at NVE. Since
PWLs come with danger, it is possible to suspect that the forecasters sometimes choose to be
conservative. By this we mean that if there has been a persistent weak layer over a given period,
but if the forecasters are unsure if the layer has been destroyed by weak-gradient or wet snow
metamorphism (Figure 3.11), then the forecasters might forecast the avalanche problem PWL to
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avoid a false negative. In this thesis, the forecast is the true prediction, but one cannot eliminate
human error. This was not added in the analysis, but commented here as a potential source of
error.

So far in this discussion, we have sort of discared the results from the random (R) training set due to
overfitting. Nevertheless, this methodology could be implemented in these maritime regions as an
aiding tool, especially when there is a lack of personnel. Then we would know the status quo on the
snowpack for, i.e., day i. Further, if the personnel is lacking on the following days (i+1, i+2, . . .),
then a model that captures that specific seasonal dependency (and all preceding seaons) could be
used in favor of the forecast. This does not need to be a difficult task, by sequentially updating
the training data as the days go by. If the methods discussed here were to be implemented in
regions where there are no avalanche observers in the field, only automatically gathered weather
data, more data would certainly help. Nevertheless, we then get the problem of verifying if the
predicted outcome is correct or false.

An important note is that the available data were five seasons from 2017/18 - 2021/22. This
resulted in a total of approximately 900 days with data points. The methods used seem to suffer
to generalize well, which could have its source in the lack of big data. This is a problem encountered
in many machine learning problems and could be solved by gathering more data as the winters
pass. Alternatively, one could train, e.g., Mtime−dependent on seasons from all maritime regions in
Norway to see if this captures a broader specter of feature values that will generalize better for
unseen test data.
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Chapter 8

Closing remarks and future
research

This chapter will summarize this thesis, its findings, and closing remarks. Additionally, we will
provide some suggestions for future research on this subject. These closing remarks will try to
answer the goal and research questions asked in Chapter 1.1.

8.1 Closing remarks

In this thesis, we have tried to create different statistical and machine learning models to predict
the existence or non-existence of PWL(s) on a given day. In doing so, many different learning
techniques were used, like classification trees, pruning of trees, bagging, random forests, boosting,
and neural networks. With the dataset at hand, consisting of five full winter seasons for Sunnmøre
and Romsdal, we tested the models using different training sets (R, 4F, 4L, and 3/1). This led to
variable results, see tables in Chapter 6, indicating that the methods suffer from non-robustness.
The boosted model (Mtime−dependent) with training set 4L produced the best predictions, which
included the outlier snowy season (2021/22) in the training set, see Figures 4.6 and 4.7.

In Chapter 1.1, we presented the overall goal as follows:

Goal: Develop a robust statistical model to predict whether a maritime region will have a
persistent weak layer(s) or not on a given day.

In Chapter 6 we found that boosting methods from Mtime−dependent performed the best when ex-
cluding the random training set (R) that captures the seasonal dependencies. Boosting performed
best when using the training set 4L (the four last seasons). However, it did not perform as well
when trained on the two other training sets, 4F and 3/1. The reasoning behind this is that the
methods are non-robust, and hence very sensitive to what data it has been trained and tested
on. Another explanation for this is that the model oversimplifies the problem at hand. Meaning
that using this indirect approach to the temperature gradient by looking at snow depth and air
temperature is not good enough. The transformations going on within the snowpack are simply
too complex to mimic using only air temperature and snow depths over several days.

Kinetic transformation is the reason behind formation of facets and depth hoar, but the dataset
made it difficult to predict days when the weak layer was surface hoar. These layers are also formed
by kinetic transformation, but not from a temperature gradient within the snowpack. Surface hoar
usually form on cold, clear nights, but we had no data on the cloud cover. This is an obvious
shortcoming in this thesis. Also, the formation of faceted crystals close to the surface can occur
very rapidly (Chapter 3.3.1), and these daily observations make them difficult to predict.

The main goal of this thesis was to see whether a statistical model could predict the existence
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of PWL or not, and in doing so, some of the models performed decently. Although we would
not recommend replacing the workflow of using professional observers in the field with the models
proposed in the thesis. Nevertheless, the models could be used as aiding tools. An example is
if a maritime region has similar temperatures and snow depths as, e.g., 2017/18 season (the first
season of the dataset), then using the boosted Mtime−dependent with training 4L could definitely
aid the forecasters in determining if they should include the avalanche problem PWL or not.

Most studies done on similar subjects (Chapter 2) conclude that their model can be used to aid
the already existing avalanche forecast, not replace it. The same goes for the findings in this thesis.
This is probably due to the complexity of the continuous transformations happening within the
snowpack at any given time. A lot of work has been put into discussing seasonal dependencies, and
using the random training set makes the results not really representative, and therefore one has to
use methods where training and test sets are from separate seasons. In real life, a method in the
intersection between separate seasons and random training sets might be optimal, because when a
forecasting season has started (1st of December to 31st of May), one should use weather data for
the preceding seasons, but also the preceding days from that particular season. In practice, the
forecaster might know whether or not a PWL existed in the preceding days, and this is information
that could be put to use through, e.g., weighted features. This could be implemented in a model
that is daily updated with both weather data and whether or not PWL existed the preceding days,
and would be helpful if a region is lacking observers. However, if PWL exists on a given day and
the weather is stable and cold, the weak later will persist until wet snow metamorphism destroys
the layer.

To answer the goal and research questions, we conclude that the methods presented in this thesis
cannot replace the existing workflow of the forecast due to inconsistency in the results. Neverthe-
less, we have presented a reproducible workflow, and when trained upon more data, the robustness
will likely increase and can then aid the forecasting in maritime regions.

8.2 Future research

The results indicate that the models are non-robust, since the results were so variable based on
which training set used. This non-robustness might originate from a lack of big data. This thesis
had five winter seasons at hand, for both training and testing. The results would potentially be
quite different if we had 10, 15 or 20 seasons at hand. Then the natural fluctuations in feature
values would be captured, and hence not be as sensitive to outlier-seasons as the dataset used in
this thesis. This would likely improve the overall robustness of the methods, and therefore be more
reliable. Due to the complexity of the formation of PWLs, it would be preferable to have as much
relevant data as possible. Since this thesis has focused the most on facets and depth hoar, and not
so much on surface hoar, it would be interesting to have data on air humidity and cloud cover. In
that case, one might be able to predict surface hoar by its own model, and facets and depth hoar
with methods proposed in this thesis.

Throughout this thesis, the models have been region-specific. Meaning that the data used for
training and testing both came from the same region. An idea could be to train a model on,
e.g., five different maritime regions, where each has five seasons of data. This would result in
5 · 5 = 25 seasons worth of training data and would remove the necessity of waiting several years
to gather more data. Another advantage would be that we could create larger validation and
test sets to perform cross-validation. Then the workflow presented in this thesis could easily be
implemented on this larger dataset. A potential problem with this approach could be that a model
trained on several different regions might capture more noise, and therefore generalize worse than
a region-specific model.

In this thesis we focused on maritime regions, where the dataset were imbalanced with more 0s than
1s. It would be interesting to use the workflow from this thesis for intermountain or continental
regions, where the occurrences of PWLs would differ from these maritime regions. This would be
fairly easy to reproduce, with the code from Appendix A.2 and A.3. The data from other regions
of interest could easily be retrieved by small adjustments in the code from Appendix A.1.

63



An additional proposal, is that one could consider creating decision trees manually in cooperation
with snow scientists, forecasters, and snow observers from the given region of interest. This could
be very difficult due to the complexity of the problem, but perhaps create insight to where the
classification trees using binary recursive splitting ”goes wrong”.

The majority of this thesis focuses on classification trees, boosting, bagging, pruning, and random
forests. Additionally, one MLP was tried for the different training sets. From our results, boosting
and random forests (when m is tuned properly) outperforms the other methods. However, it
would be interesting to compare these methods to other modern machine learning techniques,
when handed the same dataset. The features used in this thesis are highly correlated, as seen in
Figures 4.5 to 4.11, and an in-depth usage of feature engineering could be a good idea. A specific
idea is to use graph attentional layers (GAT) to get ”enhanced features”, and perhaps increase
predictive performance (Veličković et al., 2017).
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NVE. (n.d.-a). Matrise for å sette faregrad. Retrieved August 24, 2022, from https://varsom.no/
snoskred/snoskredskolen/del-informasjon/matrise-for-a-sette-faregrad/

NVE. (n.d.-b). Om snøskredvarslingen. Retrieved August 22, 2022, from https://www.varsom.no/
snoskred/snoskredvarsling/om-snoskredvarslingen/

NVE. (n.d.-c). Skredkort - gjør turen tryggere. Retrieved December 1, 2022, from https://www.
varsom.no/media/jzwlxaoo/plakat-skredkort-norsk.pdf

NVE. (n.d.-d). Slik lager vi snøskredvarsel. Retrieved August 23, 2022, from https://www.varsom.
no/snoskred/snoskredvarsling/slik-lager-vi-snoskredvarsel/

NVE. (n.d.-e). Snøskredstørrelser. Retrieved August 23, 2022, from https://varsom.no/snoskred/
snoskredskolen/snoskredvarselet-forklaring/snoskredstorrelser/

NVE/EAWS. (2018). Typiske skredproblem. Retrieved August 25, 2022, from https://varsom.no/
media/fgan3dhv/typiske skredproblemer-eaws.pdf

Ridgeway, G. (2020). Generalized boosted models: A guide to the gbm package. Retrieved October 4,
2022, from http://127.0.0.1:65473/help/library/gbm/doc/gbm.pdf

Rokach, L., & Maimon, O. (2010). Classification trees. In O. Maimon & L. Rokach (Eds.), Data
mining and knowledge discovery handbook (pp. 149–174). Springer US. https://doi.org/10.
1007/978-0-387-09823-4 9

Temper, B. (2018). Staying alive in avalanche terrain (3rd edition). Mountaineers Books.
UAC. (n.d.). Blog: Glide avalanche primer. Retrieved August 22, 2022, from https://utahavalanchecenter.

org/blog/15571
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Appendix A

Code examples

Here we present how the data was retrieved from Varsom, and some examples of code that were
used in the thesis. The examples showcase how we implemented the different machine learning
methods for Romsdal on the random R training set. All examples are analogous for Sunnmore,
and the other training sets. The code for finding optimal values of tuning parameters are excluded
from this section, but described in Chapter 6.

A.1 Retrieving data from Varsom

This Python code (provided by NVE) was used to fetch the dataset for this thesis. It gath-
ered weather information from Varsoms internal tool Avalanche Problem Solver (APS), and the
avalanche problem and avalanche danger from Varsom.

1 from regobslib import *

2 import datetime as dt

3 import numpy as np

4 import pandas as pd

5

6 REGIONS = [SnowRegion.JOTUNHEIMEN,

7 SnowRegion.TROMSO,

8 SnowRegion.SUNNMORE,

9 SnowRegion.ROMSDAL]

10

11 START_DATE = dt.date(2017, 11, 1)

12 STOP_DATE = dt.date(2022, 7, 1)

13

14 connection = Connection(prod=True)

15

16 varsom_query = connection.get_varsom(START_DATE, STOP_DATE, REGIONS)

17 weather_query = connection.get_aps(START_DATE, STOP_DATE, REGIONS)

18

19 for region in REGIONS:

20 danger_level_data = varsom_query[region].to_danger_level_series()

21 avalanche_problem_data = varsom_query[region].to_problem_frame()

22 weather_data = weather_query[region].to_frame(with_wind_dir=True)

23

24 id = f"{region.name}_{START_DATE}_{STOP_DATE}"

25 danger_level_data.to_csv(f"danger-levels_{id}.csv", sep=";")

26 avalanche_problem_data.to_csv(f"avalanche-problem_{id}.csv", sep=";")

27 weather_data.to_csv(f"weather_{id}.csv", sep=";", float_format = str)
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A.2 R code

The following code shows how the classification trees were fitted, pruned, and how this was imple-
mented to create a confusion matrix on its test data. Additionally, we showcase the code used to
fit bagging, random forests, and boosting to the time-dependent model (Mtime−dependent).

Classification trees

1 library(tree) #Package for the trees

2 library(caret) #Package for confusion matrix.

3 library(randomForest) #Package for bagging and random forests.

4 library(gbm) #Package for gradient boosting machines.

5

6 set.seed (563) #For reproducible results.

7 romsdal.trainID = sample (1:906 , 679, replace = FALSE) #Sampling random training set

(R).

8

9 #timedependent_dataframe_romsdal is dataset with 60 features.

10 romsdal.train = timedependent_dataframe_romsdal[romsdal.trainID , ] #75% of data.

11 romsdal.test = timedependent_dataframe_romsdal[-romsdal.trainID , ] #The remaining

25% of data.

12

13 ### Classification tree for Romsdal ###

14

15 #Creating the tree with deviance as splitting criterion.

16 tree.romsdal = tree(as.factor(pwl_romsdal) ~ ., data = romsdal.train ,

17 split = 'deviance ')
18

19 #Create predictions on test set.

20 pred = predict(tree.romsdal , romsdal.test , type = "class")

21

22 #Create confusion matrix that calculates the predictive measurements. "1" (

existence of PWL) is positive.

23 romsdal_pred_confMat <- confusionMatrix(reference = as.factor(romsdal.test$pwl_
romsdal), data = pred , positive = "1")

24

25 #Print to showcase the confusion matrix.

26 romsdal_pred_confMat

Pruning of classification trees

1 ### Pruning ###

2 tree.romsdal <- tree(as.factor(pwl_romsdal) ~., data = romsdal.train , control =

tree.control(nrow(data_romsdalen),

3 mincut = 2, minsize = 4, mindev = 0.001) , split = 'deviance ')
4 cv.romsdal <- cv.tree(tree.romsdal , K = 5) #K=5 Cross validation.

5 plot(cv.romsdal$dev ~ cv.romsdal$size , type = "b", lwd = 2, col = "red",

6 xlab = "Tree Size", ylab = "Deviance") #Find minimum of cross validation.

7

8 prune.romsdal <- prune.tree(tree.romsdal , best = 9) #Prune tree with size equal to

the parameter "best", in this example "best = 9".

9

10 tree.pred = predict(prune.romsdal , romsdal.test , type = "class") #Predict on test

set.

11

12 romsdal_confMat <- confusionMatrix(reference = as.factor(romsdal.test$pwl_romsdal),
data = tree.pred , positive = "1") #Create confusion matrix that calculates the

predictive measurements. "1" (existence of PWL) is positive.

13

14 romsdal_pred_confMat #Print to showcase the confusion matrix.

68



Bagging

1 set.seed (563)

2 #Parameter mtry = number of predictors.

3 bag.romsdal <- randomForest(as.factor(pwl_romsdal) ~., data = romsdal.train , mtry =

60, ntree = 500 , importance = TRUE , split = 'deviance ', na.action=na.omit)

4 bag.romsdal

5

6 # Predict on test set.

7 yhat.bag <- predict(bag.romsdal , newdata = romsdal.test)

8 confusionMatrix(yhat.bag , reference = as.factor(romsdal.test$pwl_romsdal), positive

= "1")

Random forests

1 set.seed (563)

2 #mtry is set to the benchmark value (square root of number of predictors).

3 ranf.romsdal <- randomForest(as.factor(pwl_romsdal) ~., data = romsdal.train , mtry

= 8, ntree = 500 ,importance = TRUE , split = 'deviance ', na.action = na.omit)

4

5 # Predict on test set.

6 yhat.ranf <- predict(ranf.romsdal , newdata = romsdal.test)

7 confusionMatrix(yhat.ranf , reference = as.factor(romsdal.test$pwl_romsdal),
positive = "1")

Boosting

1 set.seed (563)

2 # Parameters n.trees , interaction.depth , shrinkage , and bag.fraction were chosen

according to the description in Chapter 6.

3 boost.romsdal <- gbm(pwl_romsdal ~., data = romsdal.train , distribution = '
bernoulli ', n.trees = 4000, interaction.depth = 3, shrinkage = 0.05, bag.

fraction = 0.8)

4

5 # Predict on test set.

6 yhat.boost.romsdal <- round(predict.gbm(object = boost.romsdal , newdata = romsdal.

test , n.trees = 4000, type = 'response '))
7 pred_boost_romsdal <- confusionMatrix(as.factor(yhat.boost.romsdal), reference = as

.factor(romsdal.test$pwl_romsdal), positive = "1")

A.3 Python code

Here we present a simplified code of MMLP , the neural network extension of the time-dependent
model. This example showcase the random training set for Romsdal, but the code is similar for
Sunnmore and the other training sets.

1 # Importing pandas, os, torch and torch.nn to create the neural network.

2 import os

3 import pandas as pd

4 import torch

5 import torch.nn as nn

6

7 ### FOR TRAINING ###

8 ! pip install pytorch-lightning

9

10 from pytorch_lightning import LightningModule, Trainer

11 from torch.utils.data import Dataset, DataLoader

12 import torch.nn.functional as F

13

14 from sklearn.model_selection import train_test_split # Creating test/training sets.
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15 from sklearn.preprocessing import StandardScaler # Standardize the data.

16 from sklearn.metrics import confusion_matrix # To get confusion matrix.

17

18 # Import processed dataset that we exported from R.

19 df = pd.read_csv("timedependent_dataframe_romsdal.csv")

20 df = df.dropna() #Exclude rows with NA's. Meaning the first 30 days of

2017/18-season.↪→

21

22 ### PREPARE TRAINING ###

23 class CustomDataset(Dataset):

24 def __init__(self, X, Y):

25 super().__init__()

26 self.X = X

27 self.Y = Y

28

29 def __getitem__(self, index):

30 x = self.X[index].float()

31 y = self.Y[index].float()

32 return x, y

33

34 def __len__(self,):

35 return self.X.shape[0]

36

37 class CustomModel(LightningModule):

38 def __init__(self):

39 super().__init__()

40 # Nonlinear multi perceptron with TanH hidden layer, this was tuned as

described in Chapter 6.↪→

41 self.model1 = nn.Sequential(nn.Linear(60, 60),

42 nn.Tanh(),

43 nn.Linear(60, 60),

44 nn.Tanh(),

45 )

46

47 self.model2 = nn.Sequential(nn.Linear(60, 60),

48 nn.Tanh(),

49 nn.Linear(60, 60),

50 nn.Tanh(),

51 )

52

53 self.model3 = nn.Sequential(nn.Linear(60, 60),

54 nn.Tanh(),

55 nn.Linear(60, 60),

56 nn.Tanh(),

57 )

58 # Sigmoid in outer layer.

59 self.clf = nn.Sequential(nn.Linear(60, 1), nn.Sigmoid())

60

61 self.threshold= 0.5 # Threshold turning predictions into 0's or 1's.

62

63 # Feedforward neural network.

64 def forward(self, x):

65 out1 = self.model1(x)

66 out2 = self.model2(x)

67 out3 = self.model3(x)

68 out = (out1 + out2 + out3) / 3

69

70 yhat = self.clf(out)

71 #yhat = yhat > self.threshold

72 return yhat

73

74 def training_step(self, batch, batch_nb):
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75 x, y = batch

76 yhat = self.forward(x)

77 loss = F.binary_cross_entropy(yhat, y) #Cross-entropy used in this binary

classification problem.↪→

78 return loss

79

80 def configure_optimizers(self):

81 return torch.optim.Adam(self.parameters(), lr=0.001) #Optional learning rate,

has to be tuned.↪→

82

83 # Split features and predictors to separate dataframes.

84 X = df.iloc[:,:-1]

85 Y = df.iloc[:,[-1]]

86

87 scaler = StandardScaler()

88 # Standardizing the data.

89 X = scaler.fit_transform(X)

90

91 # Create training/test set. shuffle = True (random training set). random_state = 42

for reproducible results.↪→

92 X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.25,

random_state = 42, shuffle = True)↪→

93

94 X_train_torch = torch.FloatTensor(X_train)

95

96 # To get on correct form to fit in nn.linear.

97 X_test_torch = torch.FloatTensor(X_test)

98 Y_train_torch = torch.FloatTensor(Y_train.values)

99

100 # Building some model. Build a linear model with 60 features as input and 60 as

output.↪→

101 linear = nn.Linear(60, 60)

102 linear

103

104 out = linear(X_train_torch)

105

106 # Nonlinear multilayer perceptron

107 # Now we're applying a nonlinear multiperceptron layers to capture non-linear

relationships.↪→

108

109 # Trying different models. Tuned as described in Chapter 6.

110 model1 = nn.Sequential(nn.Linear(60, 60),

111 nn.ReLU(),

112 nn.Linear(60, 60),

113 nn.ReLU(),

114 )

115

116 model2 = nn.Sequential(nn.Linear(60, 60),

117 nn.ReLU(),

118 nn.Linear(60, 60),

119 nn.ReLU(),

120 )

121

122 model3 = nn.Sequential(nn.Linear(60, 60),

123 nn.ReLU(),

124 nn.Linear(60, 60),

125 nn.ReLU(),

126 )

127

128 out1 = model1(X_train_torch)

129 out2 = model2(X_train_torch)

130 out3 = model3(X_train_torch)
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131

132 # Take the mean of the three models.

133 out = (out1 + out2 + out3) / 3

134

135 # Using a classifier to end up with (60 by 1), to get a response. nn.Sigmoid used in

output layer.↪→

136 classifier = nn.Sequential(nn.Linear(60, 1),

137 nn.Sigmoid())

138

139 # Find predictions.

140 yhat = classifier(out)

141

142 # Threshold.

143 yhat_bool = yhat.detach().numpy() > 0.5

144 # Confusion matrix on our training set.

145 confusion_matrix(Y_train.values, yhat_bool)

146

147 # Initiate our model.

148 custom_model = CustomModel()

149

150 # Use DataLoader on our time-dependent dataset.

151 train_loader = DataLoader(CustomDataset(X_train_torch, Y_train_torch), batch_size=32)

#Batch_size should be tuned.↪→

152

153 # Initialize a trainer.

154 trainer = Trainer(

155 accelerator = "gpu",

156 devices = 1,

157 max_epochs = 1000, #Epoch has to be tuned to optimize training, but avoid

overfitting.↪→

158 )

159

160 # Train the model.

161 trainer.fit(custom_model, train_loader)

162

163 # Prediction.

164 yhat = custom_model.forward(X_test_torch)

165

166 # Implement threshold.

167 yhat_bool = yhat > 0.5

168

169 #Create confusion matrix to calculate predictive measurements on our test set.

170 confusion_matrix(Y_test.values, yhat_bool)
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