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ABSTRACT The Industrial Internet of Things (IIoT) requires wireless connectivity that meets the strict
industrial requirements onmetrics such as reliability and latency. Promising approaches include Time Slotted
Channel Hopping (TSCH) media access, where nodes operate according to a schedule. Autonomously built
schedules typically rely on shared resources, where reliability and latency may suffer depending on traffic
scenarios and topologies. We have earlier proposed the Layered scheduler, which belongs to a new category
of autonomous schedulers: Flow-based scheduling. Layered allocates resources to traffic flows, and as
opposed to typical autonomous schedulers, dedicated resources are guaranteed to be scheduled at every hop
from source to destination in a convergecast scenario. In addition, Layeredminimizes the number of channels
required through the novel employment of autonomous spatial reuse. We extend earlier theoretical analysis
and simulations by evaluating Layered using the FIT IoT-LAB testbed and compare it to Orchestra and
6TiSCH Minimal scheduler. The experiments demonstrate the feasibility of spatial reuse and that Layered
retains performance independent of network topology and traffic intensity - a desirable feature in industrial
scenarios. The performance comes at the expense of energy consumption, which in the worst case is 75 %
higher compared to Orchestra and Minimal. We also present lessons learned, such as the impact of TSCH
configuration on RPL convergence, the benefits of black-listing on performance, and how co-located TSCH
networks could be divided by channel offsets as opposed to physical channels. Lastly, we discuss flow-based
scheduling in general, its properties, and future research areas.

INDEX TERMS TSCH, autonomous scheduling, IIoT, IEEE 802.15.4, MAC.

I. INTRODUCTION
As the Internet of Things (IoT) has matured, attention has
expanded to new areas of application. Among these, the
industrial paradigm is one of the most promising. However,
the Industrial Internet of Things (IIoT) places strict require-
ments on the network, including high reliability, bounded
latency, energy-efficient operation, etc. [1] These proper-
ties are typically challenging in wireless networks, and they
require significant research and development across the entire
network stack.

A contribution in this direction is the IETF 6TiSCH, which
defines an IPv6-enabled network stack for industrial wireless
low-power networks [2]. It combines common IoT protocols
such as IPv6, UDP, 6LoWPAN, and RPL [3], with a MAC
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based on Time Slotted Channel Hopping (TSCH). TSCH has
several desirable properties from an industrial perspective.
It combines channel hopping which increases reliability, with
time-slotted access, which allows for energy efficiency and
contention-free utilization of wireless links. The industrial
standard WirelessHART [4] utilizes a TSCH approach, and
IEEE has standardized a TSCH MAC in 802.15.4 [5], which
6TiSCH employs.

Nodes in a TSCH network operate according to a schedule
that dictates when each node may transmit or receive. The
schedule is thus of critical importance to the network per-
formance. Schedules are built by a scheduler, which oper-
ates mainly in a centralized, collaborative, or autonomous
fashion [6].

Autonomous schedulers operate without dedicated signal-
ing between nodes and do not introduce additional conver-
gence or overhead in signaling. They are also typically less
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FIGURE 1. Simple 4-node network with corresponding TSCH schedule.

complex in operation and simple to understand a priori. Col-
laborative schedulers depend on nodes to exchange informa-
tion, allowing for more dynamic and optimized schedules.
Lastly, centralized schedulers typically collect information
to gain a network-wide view enabling the creation of opti-
mized schedules, yet with increased overhead and loss of
flexibility. Autonomous schedulers are typically utilized for
applications without stringent requirements, during network
bootstrapping, or as a fallback if a more sophisticated sched-
uler fails. In this work, we contribute towards expanding the
capabilities of autonomous scheduling, making it more viable
for industrial applications.

A. TIME SLOTTED CHANNEL HOPPING (TSCH)
A simple topology and corresponding TSCH schedule are
shown in Figure 1. The schedule divides time into timeslots
horizontally and channel offsets vertically. A cell is identified
by its timeslot and channel offset, and its duration allows
transmitting one packet and receiving an acknowledgment.
A cell can be shared between nodes e.g. for broadcasts, or it
can be dedicated, allowing contention-free communication.
As empty cells allow devices to sleep, TSCH schedules can
yield energy-efficient operation.

A collection of timeslots repeats in periods called slot-
frames. The green-colored cell in Figure 1 indicates a dedi-
cated transmission opportunity for node 4, while the blue cell
allows node 2 to transmit toward the RPL root node. The
physical channel to be used for transmission is calculated
based on the channel offset and the Absolute Slot Number
(ASN). The ASN always increases; thus, the physical chan-
nel may differ each time the cell is executed. The resulting
frequency-hopping is key to mitigating frequency-dependent
effects such as multi-path fading and external interference.

Further details on TSCH and the IEEE 802.15.4 standard
may be found in [7].

B. PROBLEM STATEMENT AND CONTRIBUTION
Monitoring is a common industrial application where sensors
send data toward one destination, typically forwarded through
other sensors. This yields a convergecast traffic pattern where
traffic intensity increases in a funneling effect close to the

destination. To fulfill the industrial requirements on relia-
bility and latency, this effect must be taken into account
by the TSCH scheduler to avoid excessive queuing and
packet loss. Existing autonomous schedulers typically dis-
tribute resources uniformly and rely on contended resources
to absorb traffic heterogeneity, yielding non-deterministic
performance [8].

Furthermore, radio channels in industrial environments
may be scarce: Co-located networks must be expected, where
channels are reserved to avoid fate sharing or to ease planning
and configuration. Additionally, channels may need to be
black-listed due to a challenging RF environment.

In [9], we proposed the autonomous Layered scheduler,
which employs flow-based scheduling to address the fun-
neling effect using dedicated resources, while minimizing
the band occupancy through spatial reuse. Together with
a detailed description, we also conducted theoretical anal-
ysis and simulations. The work confirmed the theoretical
feasibility of the Layered scheduler design. However, these
investigations were done assuming optimal RF conditions
since realistic radio environments are challenging to model
in a simulator. We acknowledged this gap and noted testbed
evaluation as future work.

Complementing with a testbed evaluation is crucial to get a
realistic and fuller understanding of a scheduler. This is espe-
cially important for Layered, as it relies on spatial reuse, i.e.
multiple nodes transmitting simultaneously. The performance
of spatial reuse depends on the radio environment, and an
evaluation can only be done under realistic RF conditions,
such as those found in testbeds. Therefore, this work’s main
contribution is an experimental evaluation of Layered on the
popular FIT IoT-LAB testbed [10]. This work complements
the earlier analysis and simulations in [9], which will be
summarized in Section V.
Running a scheduler on actual node hardware is also neces-

sary to verify the implementation and uncover issues not visi-
ble in a simulator, such as interoperability issues or unrealistic
processing and memory usage. As such, our testbed experi-
ments also brought about additional contributions including,
amongst others, optimization of queuing for traffic flows.
These optimizations and the Layered implementation are
open-sourced to benefit reproducibility and future research.

From our testbed experiments, we contribute the following:

• Confirmed the feasibility of autonomous spatial reuse in
realistic RF conditions. The novel utilization of spatial
reuse is a cornerstone of Layered design and was found
to have a negligible impact on performance.

• Evaluation and comparison of Layered with the 6TiSCH
minimal schedule and state-of-the-art autonomous
scheduler Orchestra. We show how Layered can retain
performance regardless of traffic and topology at the
expense of energy.

• Discussion and lessons learned throughout our testbed
experiments. These include strategies for exploiting
channel resources, insight into the relationship between
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TSCH and RPL, and the importance of channel surveys
and black-listing.

Furthermore, we contribute:
• To our knowledge, the first description and treatment
of flow-based autonomous scheduling, a new category
of TSCH scheduling to which the Layered scheduler
belongs.

• Open-sourced implementation of the Layered
autonomous flow-based scheduler, together with an
adaption of the Contiki-NG TSCH queuing mecha-
nism to support flow-based scheduling. Available at
https://github.com/arurke/layered-scheduler.

The remainder of this work is organized as follows: First,
we present related work before describing the Layered sched-
uler in Section III. We include a discussion of the new flow-
based autonomous scheduling category in Section III-C. The
description of Layered is finalized in Section IV, where we
discuss the Layered implementation, queuing implications,
as well as changes to the Contiki-NG operating system.
Section V summarizes earlier theoretical and simulation
work conducted in [9], and discusses their limitations. Next,
we present our experimental evaluation in the FIT IoT-LAB
testbed, including a comparison with Orchestra and the
6TiSCH minimal scheduler. Finally, the last sections discuss
the results and conclude our work.

II. RELATED WORK
6TiSCH defines a minimal mode intended to be used for
network bootstrapping [11]. It includes a TSCH schedule
with 1 shared cell and typically 6 unscheduled timeslots. This
schedule is often used as a benchmark in research on new
schedulers.

Orchestra [12] is the current state-of-the-art and most
prominent autonomous scheduler [6]. It aims at IoT applica-
tions and is node-based, i.e. it assigns cells to particular nodes
based on their ID. Expanding on Orchestra, ALICE [13] is
link-based, i.e. it assigns cells to specific links based on the
neighbor’s IDs and link direction (upwards or downwards).
However, both schedulers allocate a fixed number of cells to
each node or link in the network. Since the number of cells
needed depends on the topology and traffic intensity, neither
Orchestra nor ALICE can guarantee sufficient resources, and
their performance is thus susceptible to e.g. the funneling
effect.

OSCAR [14] optimizes Orchestra for convergecast traffic
by assigning additional cells to nodes closer to the network
root. The approach is best-effort as the number of cells is fixed
and does not consider traffic.

New developments in adaptive autonomous schedulers are
surveyed in [15] and [16]. These approaches aim to adapt the
schedule to e.g. traffic or topology autonomously. This is typ-
ically achieved by nodes independently trying to estimate the
required changes to a schedule. The performance, therefore,
relies heavily on the accuracy and stability of the estimate.
An approach targeting industrial applications may be found
in [17].

Escalator [18] is an autonomous scheduler aimed at indus-
trial applications and is the closest match to Layered in terms
of functionality and approach. It is designed for convergecast
traffic and optimizes for bounded and low latency. By allo-
cating dedicated cells at each hop, all nodes can, without
retransmissions, have their packet delivered to the root within
one slotframe. However, the low latency is traded off for band
occupancy: Escalator requires one channel per two hops of
network depth1 supported.
Several collaborative schedulers target bounded latency.

They differ fundamentally from autonomous schedulers as
cell allocation is based on neighbors negotiating. This enables
the creation of dynamic schedules that adapts to changes
in the network, traffic pattern, application requirements, etc.
However, this adds signaling overhead, introduces scheduling
convergence, and increases complexity. A notable collabo-
rative scheduler example can be found in [19], which, sim-
ilar to Layered, utilizes the node depth and spatial reuse to
optimize for delivery within one slotframe. Lastly, YSF [20]
schedules for traffic flows and uses autonomous scheduling
to handle topology changes and accommodate negotiations
for additional cells.

A comprehensive survey of TSCH schedulers conducted
by the authors may be found in [6].

Testbed evaluations are typically complex and time-
consuming, yetmay be needed for a proper understanding and
profiling of a scheduler. The FIT IoT-LAB [10] is a widely
used testbed for IoT research. Critically, its open access
allows for increased replicability of experimental results and
comparison of results between different research efforts. FIT
IoT-LAB was used to evaluate Orchestra and ALICE in [8],
and OSCAR in [14], while Escalator was assessed using an
ad-hoc testbed in [18]. A treatment of performance evaluation
for low-power lossy networks, and available testbeds, may be
found in [21].

III. LAYERED SCHEDULER
We propose the autonomous Layered scheduler, which guar-
antees resources end-to-end while minimizing the number of
required channels. The flow-based approach in Layered guar-
antees dedicated cells to each flow at every hop from source
to destination. The latency of a flow, without retransmissions,
is thus bounded by the number of nodes and maximum net-
work depth. This property is retained regardless of topology
or other traffic in the network, which is key for industrial
applications. In particular, Layered does not suffer from the
funneling effect seen in e.g. monitoring applications where
all nodes transmit towards the root node in a convergecast
traffic pattern. Such scenarios are challenging for node- and
link-based autonomous schedulers since the resources are
allocated uniformly across the network. Contrarily, Layered
allocates resources uniformly to flows, i.e. each flow gets
the same amount of cells. Thus for Layered, the most opti-
mal use-cases in terms of energy efficiency and throughput

1Hops from root.
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FIGURE 2. Solutions for funneling effect. Colors denote from which node
traffic originated. Pattern indicates the channel. Depth = hops from root.

include e.g. monitoring, where all nodes generate data with
the same fixed interval.

Layered is designed to minimize the number of channels
occupied through spatial reuse of TSCH cells in a novel
autonomous fashion. Minimizing band occupancy is espe-
cially desirable in an industrial scenario where channel condi-
tions may be challenging due to co-existing networks, metal
surfaces, industrial equipment, etc. [6] Thus, Layered support
techniques such as aggressive black-listing may be easier
employed to e.g. avoid interference from co-located Wi-Fi
networks. Furthermore, limited band occupancy increases
operator flexibility by permittingmulti-network or -scheduler
deployments.

Layered only requires basic routing topology information
and a method for identifying the flows. Topology information
is provided by the RPL routing protocol [3], while the source
node ID identifies flows.

A. BACKGROUND
Performance independent of network traffic intensity and
topology can only be achieved if sufficient resources are
allocated for every node’s traffic from source to destination.
A simple and intuitive solution is illustrated in Figure 2:
A cell is allocated at every hop, and is dedicated to a particular
node’s traffic. Each resulting string of cells constitutes a
path of contention-free resources from source to destination.
Assuming perfect links, the path guarantees delivery within
one slotframe. However, this approach yields long slotframes
which do not scale well since the length equals the number of
supported nodes times the maximum allowed hop counts.

The strategy to reduce the slotframe length is characteristic
of Layered, and it is the key difference compared to the
similar autonomous scheduler Escalator. Before describing
the Layered approach in the next section, we first look at
Escalator: It reduces the slotframe length by placing the
strings of cells on top of each other, as illustrated in Figure 2b.
Interference is avoided by employing a different channel for
every two hops, as indicated by the patterned cells. However,
this approach significantly increases the band occupancy: For
every two hops supported, one additional channel is occupied.

B. DESCRIPTION
The Layered scheduler solves the slotframe length problem
by dividing the string of cells into pieces based on depth. All
cells on a depth are then allocated to a layer. This is done in
an alternating fashion, such that cells from every other depth
overlap, significantly reducing the slotframe length. This is
illustrated in Figure 3. Thus, as a layer is passed, all packets
have advanced one hop.

FIGURE 3. Transmission-cells in Layered schedule. Colors denote from
which node traffic originated. Pattern indicates the channel.

TABLE 1. Autonomous strategies.

All cells belonging to one node’s traffic are in the same
timeslot, i.e. traffic belonging to one node is being forwarded
simultaneously at multiple hops. This spatial reuse intro-
duces possible interference between nodes transmitting in
the same timeslot and channel. It is assumed that as the dis-
tance between nodes in terms of hops increases, a threshold
is reached where they no longer interfere. This threshold
depends on factors such as the routing protocol objective
function and local RF conditions. Layered therefore permits
configurable spatial reuse: Utilizing one more channel adds
two additional hops of distance between nodes using the same
cell. Figures 3a and 3b illustrate this as spatial reuse occurs
at 4 and 6 hops distance, respectively. Thus, Layered offers
trading band occupancy for increased resilience.2

To build the schedule on a node, Layered requires knowl-
edge of the 1) Current depth in the routing tree, and 2) IDs
of nodes in its sub-tree. This information can be provided by
the RPL routing protocol found in the 6TiSCH stack. Lastly,
Layered assumes each node generates one flow, which allows
a flow to be identified by the source node ID. Therefore,
a collision-free hash function is required, which maps node
IDs to timeslots. Collisions are avoided by limiting the max-
imum number of nodes supported in a network, which we
argue is reasonable in an industrial scenario. All of these
requirements are also found in Escalator.

RPL traffic and other broadcasts are handled using com-
mon slots (CS) inserted at configurable intervals throughout
the slotframe. Further details on Layered, including specifics
on TSCH beacons, RPL traffic, a formal description of cell
coordinate calculations, and examples of how the schedule is
built, may be found in [9].

C. FLOW-BASED AUTONOMOUS SCHEDULING
Elst et al. [8] categorize autonomous schedulers according
to how cells are allocated, and identify node- or link-based

2It is possible for Layered to operate using only one channel. However,
this yields a sub-optimal distribution of cells in terms of latency; see [9] for
details.
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strategies. We propose a third strategy in the Layered sched-
uler, namely flow-based scheduling. Flow-based schedulers
allocate resources to particular traffic flows in the network.
Table 1 overviews the properties of the three strategies.

To our knowledge, we present the first treatment of flow-
based autonomous scheduling, and Layered is the second
autonomous scheduler operating according to its principles.
Escalator also operates in a flow-based manner, yet [18] did
not explicitly treat this aspect.

With flow-based being a new area in autonomous schedul-
ing, we highlight some of its key properties and possible
future areas of research:

1) BOUNDED PERFORMANCE
Dedicated resources can be guaranteed end-to-end for a par-
ticular flow by allocating cells to flows instead of links-
or nodes. Layered utilizes this to provide bounded latency
for flows when there are no retransmissions, regardless of
competing traffic or network topology - a desirable property
in an industrial scenario.

2) SCHEDULING FLEXIBILITY AND NEW USE-CASES
Layered and Escalator identifies a flow by the originating
node ID. This caters to a common scenario where each node
originates one flow. However, other identifiers may be envi-
sioned. These include the Flow Label in the IPv6 header, the
destination IP, or the received cell (similar to GMPLS [22]).
This allows for flexibility in the schedule design and opens
up for use-cases such as 1) Creating shared flows, e.g. a set
of monitoring nodes that send alarms via a common flow,
or 2) Allocating an arbitrary number of flows to each node,
e.g. allowing one sensor node to run multiple applications
simultaneously, or transmitting data to several different actu-
ators at the same time. Furthermore, flow-based scheduling
opens up for quality of service (QoS) efforts since resources
can be dedicated to particular flows and designed to meet the
application’s QoS requirements.

3) OPTIMIZED THROUGHPUT AND ENERGY EFFICIENCY
With flow-based scheduling, cells are allocated in the slot-
frame to cater to the given flows. Thus, the slotframe length
depends on the number of flows, not the number of nodes,
as in link- and node-based schedulers. This is beneficial when
a network has nodes that do not originate flows, e.g. nodes
that are utilized to extend the range of a network, or nodes
intended only to receive data, such as actuators and data sinks.
Such nodes would not increase slotframe length, as opposed
to a typical link- or node-based schedule. This allows flow-
based schedulers to keep the slotframe short, yielding a higher
throughput.

Secondly, nodes reserve cells onlywhen they are in the path
of a flow. Nodes outside the preferred path may therefore end
upwith aminimal schedule, only catering control traffic. This
prolongs their lifetime and may thus contribute to increased
network lifetime.

4) AUTONOMOUS SUPPORT FOR FLOW CONCEPTS
The concept of traffic flows is found in several standard-
ization efforts. One example is Deterministic Networking
(DetNet) [23] which provides upper layers with deterministic
flows across diverse networks. Among these, we find 6TiSCH
networks, which are envisioned to support DetNet flows by
employing a centralized scheduler [24]. Autonomous flow-
based schedulers have minimal overhead and may thus play
a role in this regard, e.g. for fallback in case of failure, provid-
ing secondary paths when packet duplication is applied, serv-
ing as an option when bandwidth- or computation-resources
are severely constrained, or catering to simple networks and
scenarios.

IV. IMPLEMENTATION
We implemented the Layered scheduler on the Contiki-NG
v4.6 [25] operating system. In addition to the scheduler,
we made changes to the Contiki-NG TSCH queue mod-
ule to support the flow-based approach employed in the
Layered scheduler. Both implementations are available at
https://github.com/arurke/layered-scheduler.

A. LAYERED SCHEDULER
Layered is designed for constrained devices, and the
resources required in terms of code size, memory, and pro-
cessing is considered lightweight: Its operation requires only
simple arithmetic, and the line of codes is around 1000, which
is comparable to Orchestra.

The scheduler is implemented as a service in Contiki-
NG. It interfaces with the routing layer, which notifies Lay-
ered about current node depth, and routes added, removed,
or altered. This information is sufficient for Layered to gener-
ate and maintain a schedule by utilizing functions offered by
the TSCH module. A hash function maps node addresses to
timeslots. As with Orchestra, a simple hash is provided where
the last byte of the node address equals the timeslot.

To increase the stability of the RPL network, we utilize
the RPL MR-HOF objective function [26] and keep the ETX
metric (default in Contiki-NG). Since Layered needs to know
the node depth in the RPL network, we add the hop count as
an RPL metric container.3 A similar approach is used in the
collaborative scheduler by Hosni [27]. Note that this is not
required if using hop count as a metric.

B. QUEUING FOR FLOW-BASED SCHEDULING
We found the existing queuing mechanisms in Contiki-NG
not applicable to a flow-based scheduling approach. The
Contiki-NG TSCHmodule uses a per-neighbor packet queue
model, where queues packets according to their next-hop
address. This model fits schedulers assigning cells to partic-
ular neighbors: When TSCH executes a TX cell, it picks the
first packet in the corresponding queue.

3A standardized way to add additional metrics to DIO and DAOmessages,
see [3].
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However, with flow-based schedulers such as Layered,
cells are assigned to flows instead of neighbors. This is
incompatible with the per-neighbor queue model: Multiple
flows may pass through the same neighbor (in a convergecast
scenario, all flows pass through the parent). Consequently,
packets from different flows arrive at the same neighbor
queue. When executing a Layered TX cell, we request
a packet belonging to the corresponding flow. However,
inspecting the head of all neighbor queues may yield no
results, as packets for other flows may be in front. The
resulting head-of-line blocking causes the cell to go unused
and increases the flow latency.

One option is to keep the principle of a per-neighbor
model while allowing packets to be fetched out of order: We
modified the Contiki-NG TSCH module to iterate the entire
neighbor queue when searching for a packet belonging to the
flow. If found, the packet was extracted, and the queue was
re-arranged to accommodate the removal.4

However, as expected, testing with increasing traffic
showed that this approach does not scale with a flow-based
scheduler: The time spent searching and manipulating the
queues depends on the queue lengths. As queues grew,
we experienced transmission failures as the time constraints
in TSCH were increasingly violated.5

Aproper solution for flow-based scheduling calls for a per-
flow queue model where queues are maintained for each flow.
We implemented such a model in Contiki-NG and combined
it with the per-neighbor model: Packets belonging to a flow
are added to their respective flow queue. All other packets,
such as RPL and TSCH beacons, are handled in per-neighbor
queues. Thus, when TSCH executes a TX flow cell, it sim-
ply picks from the front of the corresponding flow queue,
while regular TX cells are served from neighbor queues.
Consequently, eliminating any blocking or time-consuming
manipulations.

V. THEORETICAL PROPERTIES AND SIMULATIONS
Table 2 summarizes the theoretical properties of Layered,
Orchestra, and Escalator as presented in our earlier work [9].
This provided theoretical bounds on key properties such
as latency. Using the Contiki-NG COOJA simulator [25],
we verified the feasibility of Layered and confirmed these
properties in optimal conditions for a range of network sizes,
topologies, and traffic intensities. Lastly, autonomous spatial
reuse was showcased by optimally configured transmission-
and interference-ranges in the simulator. This proved the
theoretical feasibility of the technique. Further details on this
work can be found in [9].

A realistic RF environment is challenging to model in a
simulator, and we therefore opted to simulate optimal con-
ditions. This served its purpose, yet made it impossible to

4Removing a packet from themiddle of a Contiki-NGTSCH queue is non-
trivial as they are implemented as a ring buffer, which natively only supports
adding or removing at its ends.

5TSCH requires operations such as TX, RX, ACK, etc. to follow strict
timings.

investigate Layered’s autonomous spatial reuse or real-world
performance.We conduct an experimental campaign using an
open real-world testbed to fill this gap.

Testbeds are also crucial to understand implementation
aspects since the simulator may not accurately capture the
characteristics of the node hardware. Our simulations did
for example not reveal the excessive computing involved in
handling traffic per-flows using the regular Contiki-NG per-
neighbor queuing approach. The efforts spurred from these
findings are discussed in Section IV-B.

In the following sections we describe our testbed
experiments.

VI. TESTBED EVALUATION
We employ the Grenoble and Strasbourg sites of the FIT
IoT-LAB [10] to run our experiments. The ARM-m3 wireless
nodes are running Contiki-NG v4.6, with the modifications
detailed in Section IV when executing the Layered scheduler.
The Contiki-NG configuration is left at default, except for
the parameters listed in Table 3. The table also contains
experiment configuration details such as channels utilized
and convergence time.

A. METHODOLOGY
We believe reproducibility is important in the evaluation of
scheduler performance. This is reflected in the performance
indicators collected, the description of the testbed, and the
availability of our code as open source. However, using a
public testbed means that each test will have different radio
environments with different background traffic. The perfor-
mance indicators collected must be robust enough in varying
environments for the experiment to be replicable. Therefore,
we based our experiments’ design and the statistical analysis
on the TriScale approach described by Jacob et al. in [28].
TriScale aims to improve the replicability of experiments and
enable researchers to draw sound conclusions with quanti-
fied uncertainties. It describes a statistical approach and how
experiments can be designed to cater to it.

TriScale uses the run and series concepts, where an exper-
iment is repeated across several runs, which together consti-
tute a series. From each run, we calculate metrics, e.g. the
Packet Delivery Ratio (PDR). The metric value from each
run is utilized to calculate Key Performance Indicators (KPIs)
for the series as a whole. A KPI is an estimate of the metric
performance if we were to execute an infinite number of
runs. In other words, it is the statistics for the underlying
distribution from which our runs are sampling. The KPIs
are expressed as a one-sided confidence interval for a given
percentile of the runs. In our experiments, we execute 30 runs
in each series, which allows us to calculate tail performance
such as the 80-percentile, with the two worst runs providing
robustness. Secondly, we always use a 95 % confidence.
Consequently, with 95 % confidence, the results we present
are at minimum as stated, for at least 80 % of runs. Please
refer to [28] for further details on TriScale.
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TABLE 2. Comparison of autonomous schedulers (N = number of nodes, CS = Number of common slots).

TABLE 3. Experiment parameters.

The execution of a run is as follows if not otherwise stated:
1) 0 min.: All nodes boot
2) 6 min.: Nodes start transmissions towards root
3) X min.: Start measuring metrics.
4) X + 8 min.: End experiment
The time to wait for convergence, X, depends on the exper-

iment and is specified in Table 3. These timings and set-
tings were found experimentally, with aid from the TriScale
toolchain. The last minute of measurements was ignored
when analyzing to remove any effects from packets in flight.

When an experiment has multiple scenarios, such as com-
paring two settings or schedulers, the different scenarios are
tested in an alternating fashion:

• 1st run for scenario A
• 1st run for scenario B
• 2nd run for scenario A
• . . .
This scheme ensures that any time-dependent effects, such

as office hours at the testbed locations, impact the scenarios
as evenly as possible.

We utilize the following metrics:
• Packet Delivery Ratio (PDR): The ratio of received
packets at destination nodes, to the total number of
generated packets at source nodes.

FIGURE 4. Survey of channel performance in Grenoble.

• Latency: Time from a packet is generated at the source
node application layer until it is received at the destina-
tion node application layer.

• Packet Reception Ratio (PRR): The ratio of success-
ful transmissions, to the total number of transmissions.
A transmission in this case is an attempt at the physical
layer of transmitting to a neighboring node.

• Energy: The ratio of time the radio has been powered,
referred to as the duty cycle.

B. TESTBED ENVIRONMENT
Most FIT IoT-LAB nodes are located in an academic cam-
pus environment. Although not directly comparable to an
industrial environment, it includes co-existing technologies
such as Wi-Fi, and IEEE 802.15.4 deployments in the form
of other experiments being executed simultaneously on the
same premise. We thus observed significant variability in
RF properties when running experiments. Examples include
particular channels with catastrophic performance. This is
discussed in more detail in Section VIII-A. Variability in the
RF impacts the routing layer, as RPL topology may change.
This, in turn, affects the autonomous scheduler since the
schedule must accommodate the new topology.

We observed that, in particular during poor RF conditions,
RPL struggled to converge. This causes severe performance
degradation. Such events could probably be mitigated by
optimizing RPL parameters. However, this was outside our
scope. We instead opted to conduct an informal RF survey by
measuring the packet reception ratio (PRR) on every channel.
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Results for the Grenoble site are seen in Figure 4. To attain
the highest RPL stability, we chose to utilize only the best-
performing channels, 18-21.6

Channel black-listing substantially improved the RPL con-
vergence, but topology changes still occurred. Runs with such
topology changes were not excluded from the results unless
otherwise noted.

C. COMPARISON WITH OTHER SCHEDULERS
We compare Layered to the 6TiSCH minimal mode [11],
which often is used to benchmark scheduler performance,
and Orchestra [12], the state-of-the-art and most common
autonomous scheduler [6]. Only open-source implementa-
tions of Orchestra and 6TiSCH minimal mode scheduler
were used to avoid any bias due to coding errors. The ones
implemented in Contiki-NG are well tested and used in other
experiments. Unfortunately, a direct comparison with the
Escalator [18] scheduler is not possible since there is no
open-source implementation of the scheduler. We did not
deem it realistic to re-implement Escalator due to the risk
of discrepancies with the original publication, which would
yield our results invalid. In general, open-source implemen-
tations of TSCH schedulers are unfortunately scarce. Orches-
tra and 6TiSCH minimal are however the most commonly
used for comparison when evaluating autonomous sched-
ulers. They are e.g. employed by ALICE [13], Escalator [18],
OSCAR [14], and Phung et al. [29].

VII. TESTBED EVALUATION - RESULTS
Our evaluation is organized as follows. We first evaluate
a fundamental assumption behind Layered: The feasibility
of spatial reuse in an RPL network. Next, we look at the
performance of Layered across different scenarios: As Lay-
ered reserves resources for every flow at each hop, its key
promise is for performance to be maintained independently
of network traffic intensity and topology. To evaluate this,
we first utilize a line-topology network with differing traffic
intensities. Next, we investigate different network scenarios
by increasing the scale and differing the node density and
topology. The final key aspect of Layered is its minimal band
occupancy which we discuss in Section VIII.

A. FEASIBILITY OF SPATIAL REUSE
A crucial part of Layered is the employment of spatial reuse.
It is assumed that nodes will not interfere when the hop dis-
tance between them is sufficient. In this section, we evaluate
the feasibility of this assumption. The aim is to measure the
degree of interference introduced by spatial reuse in a testbed
network. The results cannot be generalized to all deployments
but will indicate whether the approach is feasible.

To measure the impact of spatial reuse, we require a
network of at least 5 hops depth, as this is the minimum

6Counter-intuitively, most of the best performing channels overlap with
802.11Wi-FI channels. A common approach, and the default in Contiki-NG,
is to use channels 15, 20, 25, and 26 to avoid typical Wi-Fi channels. This
showcases the importance of assessing and adapting to local conditions.

FIGURE 5. Example RPL topology from FIT IoT-LAB. Nodes of same color
may be sharing cells, i.e. spatial reuse.

FIGURE 6. 50-percentile of PRR, PDR, and latency for spatial vs.
non-spatial reuse scenarios.

depth at which Layered employs spatial reuse: As described
in Section III-B, when two channel offsets7 are employed,
spatial reuse may occur at depths 1 and 5, 2 and 6, and so on.

We employ 16 nodes at the FIT IoT-LAB Grenoble site,
which is especially suitable for generating deep networks,
since nodes are physically placed along a hallway. By adjust-
ing radio parameters,8 we cannot design exact routing topolo-
gies, but we can ensure the necessary network depth, which
is our only requirement. Figure 5 shows an example routing
topology from one of the 30 runs in our 16-node network.
The 4 deepest nodes9 transmit one packet every other second
slotframe towards the root.

In the first scenario, we configure Layered with four chan-
nel offsets, so there is no spatial reuse in our network. In the
second scenario, we apply the minimal configuration of two
channel offsets. This yields spatial reuse on depths 1 and 5,
2 and 6, and so on, which is the closest possible distance in
hops for which Layered employs spatial reuse. An example
can be seen in Figure 5: Nodes with the same color at different
depths are prone to spatial reuse, e.g. the nodes 3 and 10, and
the nodes 4 and 12.

If spatial reuse introduces interference, we expect
decreased PRR and increased latency asmore retransmissions
are needed. Since we are interested in the impact of interfer-
ence, we removed any run in which RPL was not converged
(2 out of 30 runs in each scenario). This ensures the PRR
is not impacted by e.g. scheduler mismatch between nodes
during re-convergence.

7Note the difference between physical channels and channel offsets.
We utilize the same physical channels in all these experiments.

8TX power -17 dBm, RX sensitivity -78 dBm.
9In the physical topology.
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How these two scenarios compare in terms of PRR, PDR,
and latency can be seen in Figure 6. We found that the PRR
is ∼1.7 % lower when spatial reuse is present. The reduced
PRR is insufficient to impact the PDR or the latency. Thus,
this deployment has a small and arguably negligible penalty
when employing spatial reuse across four hops.

We finalize by increasing the hop distance between nodes
with spatial reuse: From the previous 4 hops, we now utilize
an additional channel and thus increase the distance to 6 hops.
To ensure sufficient depth in the network, we also increase
the number of nodes to 25. With the increased distance,
we found the PRR decreases by∼1%, significantly less than
the ∼1.7 % reduction seen at 4 hops distance.

These results indicate autonomous spatial reuse is feasible,
even when Layered is configured to employ spatial reuse
at its minimal distance of 4 hops. However, we must stress
that RF properties are highly environment-dependent, and
the network topology is influenced by the routing protocol
and its objective function. Other deployments may therefore
see significantly different results. This evaluation aims to
establish the feasibility of spatial reuse in an RPL-based net-
work without requiring departure from standardized settings.
In deployments experiencing interference, Layered offers a
trade-off with band occupancy: For each additional channel
employed, the distance between nodes using spatial reuse
increases by two hops.

B. PERFORMANCE FOR VARYING TOTAL TRAFFIC
A key property of Layered is that the performance of a flow is
independent of other traffic, and it remains bounded regard-
less of network topology. This section focuses on traffic,
while the next section investigates topologies. We compare
the performance of Layered to 1) The minimal mode sched-
ule described in 6TiSCH with the default configuration of
1 shared and 6 sleep slots, and 2) Orchestra, the state-of-the-
art autonomous scheduler, which we optimally configure in
sender-based mode with a collision-free hash.

The experiment uses the same Grenoble setup with
16 nodes as in the previous section. Application packets
destined for the root are generated at a fixed interval of
2 seconds. However, in each scenario, the number of nodes
generating traffic is different: In the first scenario, the 3 deep-
est nodes transmit, while next increasing to 7 nodes, 11 nodes,
and lastly, 15 nodes. As the number of transmitting nodes
increases, this creates an ever more substantial funneling
effect toward the root. This is especially pronounced in the
Grenoble line topology since the network is deep and sparse.

Orchestra and Layered are configured to support
17 nodes/flows in all scenarios. In Layered, common slots
for RPL and broadcast traffic are added every 9 timeslots
to ensure RPL convergence. The resulting slotframe length
yields significant over-provisioning to allow for retransmis-
sions.

The PDR and latency for the different traffic scenarios
and schedulers can be seen in Figures 7 and 8, respec-
tively. Notably, Layered retains a high PDR and low latency

FIGURE 7. Packet delivery ratio.

FIGURE 8. 99-percentile of latency.

regardless of the traffic load. A reduction of 1.5 % PDR is
seen when all 15 nodes are transmitting. This is correlated
with a slight increase in RPL parent switches and might be
explained by the additional traffic creating more volatile ETX
estimations for the parents.

Orchestra can retain a high PDR and short latency as long
as 7 or fewer nodes are transmitting. With even more nodes,
the funneling effect exceeds the throughput: In Orchestra, all
nodes have a unicast slotframe which is 17 timeslots long,
with one dedicated TX cell. This allows for one transmission
approximately every 0.17 seconds - compared to the 2-second
transmission interval. However, this cell is shared by all
traffic flows and is thus insufficient at nodes close to the
destination. Note, however, that the short slotframe allows
for short latencies: Orchestra has almost half the latency of
Layered, with 1.1 s and 1.6 s compared to Layered 1.9 s
and 2.4 s. This is expected since the flow-based approach
in Layered requires more than twice the slotframe length
compared to Orchestra, as was highlighted in Table 2.

Like Orchestra, the 6TiSCH Minimal schedule also has a
short slotframe (7 timeslots). It thus provides short latency,
1.5 s compared to Layered 1.9 s, as long as the capacity is
not exceeded. When 7 or more nodes are transmitting, the
capacity is exceeded, and the results become less relevant for
our analysis.

Figure 9 shows the mean duty cycle for the different traffic
intensities. Layered has a 61 - 74 % higher duty cycle than
Orchestra. Similarly, it is 70 % higher compared to Minimal,
which has 1 active timeslot per 6 inactive timeslots.

A key contributor to the increased energy consumption
stems from the frequent shared broadcast cells in the Layered
schedules. These cells carry all RPL traffic, both broadcast
and unicast. This is as opposed to Orchestra, which has far
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FIGURE 9. Mean duty cycle.

FIGURE 10. Mean duty cycle per kilobyte received application data.

fewer shared cells because RPL unicast packets are trans-
mitted in the dedicated cells used by application traffic. Any
shared cells must also be over-provisioned to accommodate
sudden increases in RPL traffic or handle retransmissions.
Thus to ensure RPL convergence with Layered, frequent
shared cells are needed, especially for denser networks.

A second contribution is a consequence of the flow-based
approach: Layered allocates all resources per flow, including
any over-provisioned cells needed to handle retransmissions.
This allows the flows to stay independent - retransmissions
in one flow do not impact others. However, the approach
decreases energy efficiency as over-provisioned cells are ded-
icated to each and every flow. Conversely, Orchestra allocates
resources and any over-provisioning per node. This is energy-
efficient as all flows can draw on the same smaller pool of
resources. However, it introduces fate-sharing as retransmis-
sions needed by one traffic flow might impact other flows.

We have seen Layered have a higher duty cycle. However,
the Layered schedule also has significantly higher capac-
ity than Orchestra and Minimal. To capture this, Figure 10
shows the duty cycle per kilobyte of received application
data. Since Layered has a higher duty cycle independent of
traffic, it is also the least effective in the first scenarios where
traffic intensity is low. However, when the schedulers are
approaching their maximum capacity, as seen by the PDR, the
energy efficiency is similar: Layered has a duty cycle of 0.11
% per kilobyte when all nodes are transmitting. Similarly,
Orchestra has 0.13 % per kilobyte in the 7-node scenario -
the last scenario where its capacity is not exceeded. Minimal
is less effective at 0.27 %.

We conclude from the duty cycle measurements that Lay-
ered requires more energy to maintain a network, yet the

FIGURE 11. Packet delivery ratio.

resulting schedules allow for significantly higher capacity.
Therefore, the energy efficiency per throughput improves as
the traffic intensity increases. Layered may thus be more
beneficial for applications with higher traffic intensity.

C. PERFORMANCE FOR VARYING TOPOLOGIES
We utilize the Strasbourg site to evaluate the performance
across differing network topologies. In Strasbourg, nodes are
placed in a grid, allowing for more versatile topologies than
the elongated hallways at the Grenoble site. We increase the
number of nodes employed to 26 and let one node in a corner
act as the root. The remaining nodes transmit in the direction
of the root every 4 seconds.

The transmission interval was selected to be close to the
maximum capacity for Orchestra in order to analyze any
impact from the topology. Layered has a higher capacity,
thus, the intention is to show the properties of each scheduler
individually and not to compare directly. The results for the
minimal schedule are omitted, as the traffic in all scenarios is
far beyond its capacity.

Experience showed that ‘‘designing’’ particular topologies
is challenging due to the unpredictable and dynamic proper-
ties of the RF environment. Therefore, to produce different
topologies, we adjust the receiver sensitivity10 of the nodes:
Increasing sensitivity increases the range of a node, leading
to more neighbors and a denser and shallower network. Con-
versely, decreasing sensitivity produces sparser and deeper
topologies. We employ three settings: −78 dBm, −75 dBm,
and−72 dBm, where−78 dBm is the most sensitive, i.e. pro-
ducing the densest and shallowest network, typically at 4 hops
depth and an average of 17 neighbors per node. −72 dBm
is the least sensitive, yielding networks around 6 hops deep,
with an average of 10 neighbors per node.

Orchestra and Layered are configured to support
29 nodes/flows, while Layered common slots are added every
7 timeslots to ensure RPL convergence.

The measured PDR can be seen in Figure 11. Layered is
found to retain PDR at 99.9 - 100 %, independent of the
differing topologies. Orchestra is impacted by the topology,
as the PDR varies between 84.9 % and 94.3 %. Latency
indicates the same behavior and is omitted for brevity.

10Receiver sensitivity allows for more granular control of the FIT IoT-
LAB m3 nodes, as opposed to transmission power which has limited resolu-
tion, especially in the lower ranges.

VOLUME 11, 2023 3979



A. R. Urke et al.: Experimental Evaluation of the Layered Flow-Based Autonomous TSCH Scheduler

FIGURE 12. Mean duty cycle.

Figure 12 shows the mean duty cycle. As in the traf-
fic intensity experiment, Layered has a significantly higher
duty cycle than Orchestra. Notably, the Layered duty cycle
depends on the topology: As the network becomes deeper,
packets must be transmitted across more hops, which require
additional cells and transmissions, increasing the duty cycle.
The dependence on topology is less pronounced in Orchestra
since each node always has the same amount of cells.

VIII. DISCUSSION
A. LAYERED MINIMAL BAND OCCUPANCY
Layered aims for minimal channel occupancy through spatial
reuse, as opposed to the similar Escalator scheduler, which
requires one channel per two hops supported. This makes
Layered beneficial in scenarios where frequencies are scarce,
significant black-listing is needed, or in multi-network or -
scheduler deployments. Exploiting these benefits depends on
the deployment, yet these lessons can be outlined from our
experiments:

1) BLACK-LISTING
As described in Section VI-B, we identified several physical
channels with significantly poorer performance than others.
With the limited channels required by Layered, we were able
to aggressively black-list channels without risking scheduling
collisions. Such black-listingmay not be possible in Escalator
as it requires one channel per supported depth (in hops) in the
network.

To illustrate the benefit of black-listing, we re-run the
varying traffic experiment11 in Section VII-B. We focus on
the scenario with Layered and all 15 nodes transmitting. First,
we enable black-listing, which leaves 4 channels utilized, and
second, we employ all 16 channels.

The results can be seen in Figures 13. Utilizing all channels
reduces the PRR by ∼4 %, which is not significant enough to
impact the PDR. However, the increased amount of retrans-
missions raises the latency and duty cycle by 37 % and 13 %,
respectively, compared to when aggressive black-listing is
applied.

2) CO-LOCATED NETWORKS
The limited usage of channels in Layered also simplifies
the co-location of networks. With fewer channels needed,

11The only difference being 4-second transmission interval instead of
2 seconds.

FIGURE 13. 50-percentile of PRR, PDR, latency, and duty cycle for 4- vs.
16-channel scenarios.

FIGURE 14. PRR per node for all physical channels utilized during one
run.

reserving physical channels to co-located networks and tech-
nologies may be done with greater ease and flexibility. When
TSCH networks are co-located, it may be an option to
synchronize them in time such that the frequency hopping
follows the same pattern. In these cases, it might be advan-
tageous to rather separate networks by channel offsets in the
schedules as opposed to physical channels:

Our measurements in the FIT IoT-LAB testbed show that
a physical channel’s performance may be highly volatile
between nodes. In particular, we observed some channels
practically unusable between some nodes. An illustration of
this can be seen in Figure 14. It shows the PRR per physical
channel for a subset of nodes in an experiment run. Note
how the performance of channels 16 and 17 for node 351 is
severely degraded compared to all other channels and nodes.
We found that the channels and nodes affected were time-
dependent without any identifiable pattern. To mitigate this
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effect, we typically opted to use a hopping scheme with more
channels (3-4) than strictly needed (2). Consequently, in this
particular deployment, it is not advisable to reserve physical
channels per network - one would be better off reserving
channel offsets in a TSCH schedule. This allows the co-
located networks to hop between more physical channels,
thus minimizing the impact of any particular channel per-
forming poorly.

B. RELATIONSHIP BETWEEN ROUTING AND TSCH MAC
Our experimental campaign found a critical relationship
between the routing protocol, TSCH, and the schedule.
If these parts are not properly managed and tuned, perfor-
mance may be significantly degraded. Such problems were
often experienced regardless of the scheduler employed and
must thus be addressed for any deployment. Issues were
typically manifested as a lack of RPL convergence due to
missing or delayed routing information.We found the follow-
ing factors to be vital in avoiding and mitigating these effects:

The TSCH schedule must provide sufficient capacity to
forward control traffic. With Layered, this is emphasized,
as all RPL traffic is transmitted in shared cells, whereas
Orchestra uses dedicated cells for unicast traffic. In all cases,
the topology density must also be taken into account to ensure
that collisions in shared cells are kept at an acceptable level.

The timeliness of information must also be considered
when configuring queue sizes in TSCH: If queues are too
long, the information in an RPL message may become out-
dated before transmission. This may significantly impact
RPL convergence. Chasing the same objective, the TSCH
backoff mechanism should be tuned to balance between
avoiding collisions and prompt transmission of information.

Furthermore, experiments must include sufficient time for
initial convergence - a parameter that depends heavily on the
network size. And lastly, as mentioned in Section VIII-A1,
performance may greatly benefit by surveying the chan-
nel characteristics and employing a black-list based on the
results.

For most of the mentioned considerations, the performance
is traded off for energy consumption, which must also be
taken into account. Further treatment of the relationship
between TSCH and RPL may be found in [30] and [31].

C. HANDLING TRANSMISSION FAILURES
As observed, wireless transmissions are unpredictable and
inclined to fail. One approach to handle failed transmissions
is to retransmit. This is suitable for applications that value
end-to-end reliability and tolerate the added latency. Retrans-
mitting requires over-provisioning in the schedule and is the
approach applied in our experiments, in which the transmis-
sion intervals were longer than the slotframe length. How-
ever, over-provisioning reduces available capacity and energy
efficiency as unused cells induce idle listening. Such effects
are especially pronounced in Layered due to the flow-based
approach where each flow has dedicated over-provisioned

resources. This is opposed to e.g. node-based schedules
where the over-provisioning is shared by all traffic going
through a node. Lastly, retransmissions inevitably increase
latency. This effect is particularly visible in schedulers such
as Escalator and Layered, where retransmission increases the
latency by one slotframe length (see Table 2).

Therefore, it may be advantageous to combine a Layered
schedule with approaches that handle transmission failures
without retransmissions. One source for such alternatives is
the ongoingwork at the IETFReliable andAvailableWireless
(RAW)working group.12 Ultimately, the appropriate solution
would depend on the application and its requirements.

IX. CONCLUSION
The Layered scheduler operates in a flow-based manner
which is a novel category of autonomous TSCH schedulers.
It allocates resources to traffic flows and guarantees dedicated
cells on every hop from source to destination. Additionally,
it minimizes the channels required by employing autonomous
spatial reuse. We found that flow-based scheduling has favor-
able properties such as bounded performance, scheduling
flexibility, and optimized throughput.

Layered was implemented on the Contiki-NG operating
system, and we found the queuing mechanism needed to be
adopted to support the flow-based approach. Both imple-
mentations are open-sourced at https://github.com/arurke/
layered-scheduler. Experiments in the FIT IoT-LAB [10]
showed how this allowed performance of each flow to be
retained independent of traffic and topology. This is different
from Orchestra and 6TiSCH minimal schedulers, which rely
on shared resources and showed varying performance for the
differing scenarios. The resilience in Layered comes at the
expense of up to a 74 % increase in energy consumption.
However, the Layered schedules allow for increased capacity.
When fully utilizing its capacity, the energy spent per kilobyte
of application data received is comparable to Orchestra. Lay-
ered may thus be more beneficial for applications with higher
traffic intensity.

Layered relies on novel autonomous spatial reuse to
reduce the number of channels occupied. The feasibility of
this approach was demonstrated in the testbed, where PRR
decreased by only 1.7 % at the minimum distance of 4 hops.
Lessons learned from the experimental evaluation include the
crucial relationship between TSCH and RPL convergence.
It is governed by parameters such as queue size and schedule
capacity, the importance of channel surveys and black-listing,
and how co-located TSCH networks may be divided accord-
ing to channel offsets as opposed to physical channels.
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