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Abstract: Given the combinatorial explosion related to the operation decisions in the thermal unit
commitment problem, this paper presents a new strategy to reduce the search space and to start
the multi-modal optimization process. To achieve such goals, a relevance matrix is obtained to
indicate how important each generating unit is at each hour of the operational planning. This matrix
is generated through the results of a constructive heuristic based on sensitivity indexes that account
for operational and economic characteristics of the generating units and of the system under planning.
The proposed method is shown to reduce the complexity of the problem, thus decreasing the
combinatorial explosion and, consequently, the computational burden. Its effectiveness is verified by
performing optimizations with and without its utilization. The results achieved with the proposed
space-reduction approach enable solutions that present good quality. Furthermore, these solutions
are retrieved with significantly reduced processing time.

Keywords: thermal unit commitment; combinatorial optimization; search space reduction; heuristic

1. Introduction

The operation of thermoelectric generators (TGs) requires continuous planning so that
costs are minimized. For this reason, experts address the thermal unit commitment (TUC)
problem from several perspectives and apply different solving techniques. Obtaining
solutions that balance generation costs and computational burden is usually the goal
of electrical system researchers in many countries [1–3]. The major challenge regarding
TUC comes from the specific characteristics of power generation planning problems in
general [4], which consist of two stages [5]: (i) the operation decisions (ON/OFF) of the
power plants, known as unit commitment (UC), and (ii) the economic dispatch of the plants
in operation.

TUC optimization aims to reduce operational costs over the planning horizon. The
problem has a combinatorial nature and is thus hard to solve [4]. In addition, the existence
of limitations regarding the generating units, e.g., minimum down- and up-times, adds
complexity to the problem.

Many different approaches can be utilized to tackle the TUC problem, which can
be written as a mixed-integer nonlinear programming (MINLP) formulation or by its
linear approximation [6]. The operation decisions are given by binary variables, whereas
continuous variables represent the power dispatch.

Over the decades that the TUC problem has been studied, several techniques have
been applied to it. From 1982 to recent years, “Branch and Bound” and “Branch and
Cut” algorithms have been enhanced to handle UC [7,8]. However, the need for faster
simulations has led to the development of heuristic-based methods. These approaches
were enhanced by applying information that was inherent to the problem, as in [9,10]. In a
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more recent context, so-called metaheuristics have provided good results whilst keeping a
low computational effort, as shown in [10–12].

It is known that the only way to guarantee global optimality for a combinatorial
problem is to perform an exhaustive search. However, such an approach compromises
viability when the problem has a significant number of variables due to the simulation
time required by the intended application. Heuristic methods aim to greatly reduce the
computational burden, although securing the global solution is not guaranteed.

In [13], a novel hybrid genetic-imperialist competitive algorithm was utilized to refine
solutions obtained from a model that applies priority lists to make operation decisions.
In [14], considerations of minimum up- and down-times were added to the priority list
approach to remove TGs that cause power generation to exceed the required demand. The
authors proposed heterogeneous comprehensive-learning particle-swarm optimization to
perform the economic dispatch. Both these papers require a number of parameters to be
tuned and adjusted.

In general, it is desired that thermoelectric operation planning is solved within the
shortest amount of time possible while granting the best possible solution [15]. To aid in
such a task, heuristic information can be utilized to decrease the number of variables and
therefore reduce the search space of a TUC problem. The techniques presented in [16–19]
propose tools to decrease simulation duration through search space reduction.

Based on the aforementioned affirmations and taking into consideration the impor-
tance of reducing both the generation cost and the computational effort when addressing
TUC, this paper brings the following contributions:

• A method to obtain the so-called “relevance matrix” (RM), which indicates the hourly
relevance of each TG over the planning horizon. This matrix can be used to reduce
the number of operation alternatives while preserving the quality of solutions and
meeting all operational constraints. In addition, it requires no tuning of parameters.

• A guide on how to pair the proposed method with a nonlinear programming solver,
thus enabling comparisons with approaches found in the literature.

The remainder of this paper is organized as follows. Section 2 presents the charac-
teristics and formulation of the TUC problem. Section 3 provides the steps to obtain the
trigger matrix. Section 4 explores case studies. Section 5 concludes the work and discusses
potential future studies.

2. Thermal Unit Commitment Problem

The TUC problem can be approached and formulated in different fashions [20–22].
Some authors linearize the thermal generation cost function, which is usually quadratic,
thus transforming the problem formulation from MINLP to MILP [23]. This paper utilizes
nonlinear cost mapping, hence considering one additional layer of complexity regarding
the operation planning, as in [24]. Further, based on [24], minimum up/down times and
cold/hot start are modeled linearly. The formulation is presented ahead.

2.1. Objective Function

The goal is to minimize overall costs (C), which are given by the sum of fuel costs and
startup costs, as in Equation (1). Such an economically driven objective function is vastly
adopted by the UC literature. However, it is highlighted that the method and formulation
presented here can be easily adapted to achieve other goals, such as minimizing greenhouse
gas emissions.

minimize C =
T

∑
t=1

NG

∑
i=1

aiuit + biPgit + ciPg2
it + scold

it · s
cold
icost

+ shot
it · s

hot
icost

(1)

where T is the number of periods in the planning horizon; NG is the number of TGs; ai,
bi and ci are the coefficients of the fuel cost function; uit are the binary ON/OFF decision
variables; Pgit represents power generation; scold

it and shot
it are the binary indications for cold
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and hot startup, respectively; and scold
icost

and shot
icost

are the cold and hot startup cost values,
respectively.

According to how long a TG has been out of operation, a different startup cost is
applicable due to cold or hot conditions [25]. Equation (1) models this characteristic.

2.2. Constraints

The following constraints are inherent to the TUC problem.

1. Active power balance:

NG

∑
i=1

Pgit = Lt, ∀t ∈ T (2)

where Lt is the load/power demand (MW) at time t.
2. Generation limits of the TGs:

uit Pg
i
≤ Pgit ≤ uit Pgi, ∀t ∈ T, ∀i ∈ NG (3)

where Pgi and Pg
i

are, respectively, the maximum and minimum generation of unit i.
3. The spinning reserve attendance, which is a percentage of the total power demand

that has the purpose of assuring power supply if forecast errors occur or if part of the
supply fails [26]:

NG

∑
i=1

uit Pgi ≥ Lt + srt, ∀t ∈ T (4)

where srt is the predetermined spinning reserve (MW).
4. Minimum up- and down-times:

t

∑
w=t−MUTi+1

xiw ≤ uit , ∀t ∈ T, ∀i ∈ NG (5)

t

∑
w=t−MDTi+1

yiw ≤ 1− uit , ∀t ∈ T, ∀i ∈ NG (6)

where MUTi and MDTi represent the minimum up- and down-times, respectively. In
other words, they relate to the least amount of time the unit must remain online/offline
until it can go inactive/active again; xit and yit are binary variables that indicate a
startup and a shutdown occurrence, respectively; w is an auxiliary index responsible
for representing the relevant periods.

5. Startup and shutdown interactions:

uit − uit−1 = xit − yit , ∀t ∈ T, ∀i ∈ NG (7)

xit + yit ≤ 1, ∀t ∈ T, ∀i ∈ NG (8)

Equation (7) is responsible for determining the relation between decision variables
and startup/shutdown variables. Equation (8) imposes that a TG cannot start and
stop simultaneously.

6. Cold/hot startup behavior:

scold
it + shot

it = xit , ∀t ∈ T, ∀i ∈ NG (9)

uit −
t−1

∑
w=t−tcsui−MDTi−1

uiw = scold
it , ∀t ∈ T, ∀i ∈ NG (10)
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where tcsui is the number of hours (after MDT) during which unit i is subjected to a
hot start if turned ON again.
Equation (9) indicates that a startup must be either cold or hot, whereas Equation (10)
decides whether a startup should be valuated as cold or hot.

3. Proposed Method

In general, the number of possible operation combinations in the TUC problem is
equal to 2NG·T [25], which reflects the ON/OFF decisions of each TG for each period of
the planning horizon. As more TGs are considered and more discretizations are in place
regarding the planning horizon, the combinatorial complexity increases. In other words,
the search space becomes larger. This paper utilizes heuristic information written as hybrid
priority lists (HPLs), which are described ahead.

3.1. Hybrid Priority Lists

An HPL is established from a set of predefined priority lists, which are constructed
with sensitivity indexes related to the TGs. These indexes can be based on technical and/or
economic characteristics. In this paper, the priority lists that were used to originate the
HPLs were created according to the indexes that follow.

3.1.1. Full-Load Average Production Cost (FLAC)

Although the FLAC [27] does not consider the hourly power demand, it is vastly
utilized to generate initial solutions for complex problems. Its calculation is given by
Equation (11). The lower the FLAC of a TG, the higher the priority it has to operate.
Therefore, from fuel cost coefficients and maximum power values, a single priority list is
established regardless of the load.

FLACi =
ai + biPgi + ciPgi

2

Pgi
(11)

3.1.2. Production Marginal Cost (PMC)

The PMC index is obtained by taking the derivative of the operational cost [28]. In
this case, the index is given by a linear function, as shown by Equation (12). Analogously
to the previous index, the lower the PMC of a unit, the higher its priority to be activated;
hence, a single priority list is determined.

PMCi = bi + 2ciPgmed
i (12)

3.1.3. Lagrange Sensitivity (LS)

In [29], the authors defined an operational decision function (ODF), which assumes
continuous values in [0, 1]. These values represent the ON/OFF status of the TGs. To
impose this behavior, a sigmoid function was utilized, as in Equation (13).

ODFi(xt
i ) =

eσxt
i − 1

eσxt
i + 1

(13)

Given a known power demand in a specific period of the planning horizon, all TGs
are initially offline. Then, a high-cost dummy TG is inserted so that the power requirement
is met. As a next step, each TG, one by one, is activated, and its impact on the cost is
evaluated. This impact represents a Lagrange multiplier since it determines how much the
objective function is affected by the TG activation.

The procedure described above is executed for each period of the planning horizon,
thus originating a sensitivity matrix (SM). This matrix indicates how intensively each TG is
capable of reducing the objective function at each moment of the simulation, hence defining
a distinct priority list for each period of the planning horizon. The SM indexes take into
consideration the operational cost of each TG and the power demand, which is not true for
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the previously presented indexes, meaning that the list can change at each discretization of
the horizon. Consequently, T priority lists are set in place.

3.2. Permutation of Priority Lists

Each of the aforementioned indexes defines a different priority of TGs to meet the
demand schedule. To create new lists, this work performs permutations of the lists granted
by the three indexes presented. In other words, for each period of the planning horizon, a
priority for the TGs is randomly chosen (equiprobable procedure) among the three index
possibilities described. Therefore, according to this randomization process regarding the
priority of TGs, a new priority list for the TGs is obtained, which is an HPL.

3.3. Obtaining RM

The following step-by-step procedure explains how to obtain the relevance matrix.

1. Define m: this parameter represents the number of decision matrices that will form
the RM.

2. Retrieve the HPLs: for each decision matrix to be created, an HPL is needed. Hence,
the random permutation procedure (previous subsection) is carried out m times, thus
providing m HPLs.

3. Create decision matrices: m binary matrices of dimensions TxNG are created. Initially,
they are filled with zeros, which represents a TG being OFF. For each matrix at each
period of the planning horizon and following the HPLs from the previous step, the
TGs are assigned as ON (filled with one) up to the point where the power and reserve
requirements are met.

4. Verify and fix feasibility: every generated decision matrix is checked. Matrices that
do not meet the MDT and/or MUT requirements are adjusted and made feasible. To
perform this task, two different actions are applicable according to the violation case:

• If a TG is set as OFF in a way that MUT is violated, the offline operational status
that compromises feasibility is switched. In other words, at these periods, the
TG is changed from OFF to ON, thus guaranteeing that MUT, load and reserve
are satisfied.

• If a TG is set as ON in a way that MDT is violated, once again the offline
decisions causing non-feasibility are modified. One might consider switching
the ON decisions to OFF, which would indeed fix the MDT violation. However,
this could make it impossible to meet the load and reserve requirements, hence
leading to a computationally heavy cycle of turning TGs OFF and ON until all
constraints are respected. Therefore, the former approach is more suitable since
it efficiently enables MDT, load and reserve attendance.

5. Calculate dispatch (optional): at this point, with part of the operation decisions estab-
lished according to the relevance levels, the economic dispatch can be calculated by
optimizing the problem with respect to the remaining variables. By experimentation,
the cost values retrieved from this calculation have been shown to be competitive
compared to those in the literature. Although this is merely an optional part of the
whole process, it demonstrates the effectiveness of the HPL. It is highlighted that the
most important part of the method relates to the binary decision matrices obtained
from Step 4, and that calculating the dispatch at the current stage is not mandatory.

6. Obtain RM: the RM is given by the sum of all m binary matrices. This final matrix
provides the relevance of each TG at each period of the planning horizon.

To make the feasibility-fixing process (Step 4) more intelligible, simple examples (for
one generic TG) with MUT and MDT equal to 3 h over 8 h of operation are demonstrated
in Figure 1. For the MUT case, it is observed that the TG being OFF at hour 6 violates the
minimum time of 3 h for it to remain online. Therefore, it is changed to ON at the mentioned
hour. Regarding the MDT case, the TG being ON at hour 3 means that it remained offline
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for only 2 h, which is a violation of the 3 h MDT. For this reason, it is switched to ON at
hours 1 and 2. It is noted that such modifications make the operation feasible.

Hour 1 2 3 4 5 6 7 8

TG status 0 0 0 1 1 0 0 0

Hour 1 2 3 4 5 6 7 8

TG status 0 0 0 1 1 1 0 0

Hour 1 2 3 4 5 6 7 8

TG status 0 0 1 1 1 1 0 0

Hour 1 2 3 4 5 6 7 8

TG status 1 1 1 1 1 1 0 0

Fixing 

MUT 

violation

Fixing 

MDT 

violation

Figure 1. Illustrative example of the feasibility-fixing process.

To summarize the process proposed in this paper, Figure 2 depicts an iterative
flowchart. In other words, all the explanations previously described are presented vi-
sually so that the method can be more easily understood.

3.4. Relevance levels

To exemplify the proposed method and its effectiveness, an example using a four-TG
system operating for 8 h is provided in the following. For readers who wish to replicate the
presented results, the necessary system data can be retrieved from [30].

The procedure presented in Figure 2 was carried out. The FLAC, PMC and LS indexes
were used to define the initial priority lists, which are shown in Table 1. As discussed
in Sections 3.1.1–3.1.3, the priority lists from FLAC and PMC are independent of the
power demand and are thus static over the planning horizon. On the other hand, the list
granted by LS is affected by the load and is thus dynamic and liable to variation over the
planned periods.

Table 1. Initial priority lists based on the chosen indexes.

Hour
Priority

U1 U2 U3 U4

FLAC - 1 2 3 4

PMC - 1 2 3 4

LS

1 1 3 2 4
2 1 2 3 4
3 1 2 3 4
4 1 2 3 4
5 1 3 4 2
6 1 3 4 2
7 1 3 4 2
8 1 2 3 4
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Verify and fix the 

feasibility of the 𝑘th 

decision matrix 
Optional: calculate 

the economic dispatch 

for each matrix

Sum all 𝑚 matrices, 

thus obtaining RM

Choose the economic 

and/or operational indexes 

to provide priority lists

Create the original priority lists

Define 𝑚

𝑘 > 𝑚?

𝑘 = 1

Perform the random 

permutation of priority 

lists and obtain an HPL

no

𝑘 = 𝑘 + 1

Create the 𝑘th 

𝑇x𝑁𝐺 matrix 

filled with zeros

𝑡 > 𝑇?

Load and 

reserve 

met?

Turn one TG 

ON, following 

the HPL

𝑡 = 1

no

no

𝑡
=
𝑡
+
1

yes

yes

yes

START

END

Figure 2. Flowchart describing the proposed method.

The parameter m was set equal to 100. Following Figure 2, random permutations
of the lists were performed so that the HPLs could be obtained. Then, the 100 decision
matrices were summed to create the RM, which is revealed in Table 2. As an observation,
the utilization of colors in this table will soon be clarified. This final matrix allows us to
verify how often a TG is set as ON at each period of the planning horizon. For instance,
Table 2 shows that for the 100 decision matrices generated, TG 2 at hour 6 was activated on
38 occasions.

Table 2. Example of RM.

Hour U1 U2 U3 U4
1 100 100 84 6
2 100 100 24 5
3 100 98 100 32
4 100 100 100 100
5 100 100 100 45
6 100 38 9 0
7 100 27 36 0
8 100 43 4 0

An interesting observation from Table 2 is that TG 1 was always ON, given that
it has the highest priority in all three initial lists (Table 1). For all other TGs, different
activation combinations occur. Furthermore, regarding TG 4, the null values for hours
6, 7 and 8 demonstrate that this unit was never required for the load and reserve demands.

This paper considers three different levels of relevance for operation planning: ( α)
( ) units that were triggered in all of the m planning alternatives; ( β) ( ) units that were
triggered in fewer than 10% of the m matrices, thus being classified as low relevance TGs;
( γ) ( ) units that were never triggered and, for this reason, are not relevant.
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Regarding the 10% criterion to classify a TG as a low relevance unit, this value was
determined empirically. More specifically, experimentation revealed that values lower than
10% tend to increase the computational burden since more variables are in place, although
improvements in the quality of results were not observed. In opposition, values greater
than 10% tend to excessively tighten the search space, thus sacrificing quality of solutions
and occasionally leading to non-feasibility.

3.5. Search Space Reduction

From the previous subsection, part of the decision variables responsible for the
ON/OFF status of the TGs are fixed according to the described relevance levels. More
specifically, the process occurs as stated by Equation (14).

uit =

{
1, ∀ α units

0, ∀ β and γ units
(14)

In the example provided in Table 2, one can notice that 9 out of the 32 decision
variables remain unfixed, hence reducing the possible combinations from 232 to 29. In other
words, the procedure decreases the number of variables by 71.88%, whereas the number
of combinations is decreased by 99.99%. It is clear that the proposed procedure greatly
reduces the search region, thus enabling faster convergence of the optimization process.

4. Results and Discussions

To validate the proposed method and verify its applicability to the TUC problem,
RM matrices were generated for the systems provided in [25]. The system originally had
10 TGs, although variations with 20 and 40 TGs are also considered here. In all studies, the
planning horizon corresponds to 24 h discretized over hourly periods. Data regarding the
operational characteristics of the TGs are presented in Table 3. Power demand information
can be consulted in [25]. The spinning reserve is considered to be 10% of the load, as in [31].
The systems with 20 or 40 TGs replicate the data of the TGs and multiply the load by two
and four, respectively.

Table 3. Data of TGs.

UTE 1 2 3 4 5 6 7 8 9 10

a 1000 970 700 680 450 370 480 660 665 670
b 16.19 17.26 16.6 16.5 19.7 22.26 27.74 25.92 27.27 27.79
c 0.00048 0.00031 0.002 0.00211 0.00398 0.00712 0.00079 0.00413 0.00222 0.00173

Pgmax
i 455 455 130 130 162 80 85 55 55 55

Pgmin
i 150 150 20 20 25 20 25 10 10 10

MUTi 8 8 5 5 6 3 3 1 1 1
MDTi 8 8 5 5 6 3 3 1 1 1

shot
i 4500 5000 550 560 900 170 260 30 30 30

scold
i 9000 10,000 1100 1120 1800 340 520 60 60 60

tcsui 5 5 4 4 4 2 2 0 0 0
IC 8 8 −5 −5 −6 −3 −3 −1 −1 −1

Table 4 reveals the number of operation combinations for each system under study.
This table alone demonstrates the complexity of UC problems. One can notice that the
combinatorial explosion significantly enlarges the region of candidate solutions, hence
making the problem more challenging.

Once the RM is obtained by the procedure disclosed in Section 3.3 and the search
region is reduced according to the criteria presented in Section 3.5, the next step is given by
the MINLP problem-solving process.
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Table 4. Number of solution combinations for each analyzed system.

System UC Variables Total Number of Combinations

10 TGs 240 1.7669× 1072

20 TGs 480 3.1217× 10144

40 TGs 960 9.7453× 10288

Given the many techniques applicable to solve UC problems, seeking better ap-
proaches is still relevant. The utilization of commercial software to solve MINLP complex
problems makes the process faster and more effective [6]. Thus, an academic license of the
commercial solver Mosek [32], version 10, was utilized in this paper. The simulations were
carried out on a 2.4 Ghz Intel(R) Core(TM) i5-9300H processor. Table 5 describes the search
space reduction alternatives applied in this paper. In all of them, m was set to 1000.

Table 5. Reduction alternatives based on Equation (12).

Alternative Action

1 No search space reduction
2 α units fixed
3 β units fixed
4 γ units fixed
5 α, β and γ units fixed

4.1. System with 10 TGs

The application of Step 6 (Section 3.3) to the 10-unit system granted a cost of $564,834.5,
which is relatively close to the global solution. The related RM (obtained from step 6) is
presented in Table 6, in which the α, β and γ relevance levels are highlighted according to
the scheme shown in Section 3.4.

Table 6. RM for 10 TGs.

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
1 1000 1000 1 1 0 0 0 0 0 0
2 1000 1000 1 1 0 0 0 0 0 0
3 1000 1000 1 392 437 171 0 0 0 0
4 1000 1000 409 641 776 344 0 0 0 0
5 1000 1000 652 904 911 513 0 0 0 0
6 1000 1000 940 995 999 565 72 0 0 0
7 1000 1000 989 1000 1000 655 143 0 0 41
8 1000 1000 999 1000 1000 729 259 0 41 41
9 1000 1000 1000 1000 1000 1000 999 92 91 51
10 1000 1000 1000 1000 1000 1000 999 1000 93 93
11 1000 1000 1000 1000 1000 1000 1000 1000 1000 73
12 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000
13 1000 1000 1000 1000 1000 1000 1000 1000 85 85
14 1000 1000 1000 1000 1000 1000 999 83 82 46
15 1000 1000 998 1000 1000 593 198 0 40 40
16 1000 1000 998 1000 1000 476 78 0 0 0
17 1000 1000 998 1000 1000 356 13 0 0 0
18 1000 1000 998 1000 1000 472 79 0 0 0
19 1000 1000 998 1000 1000 589 188 0 37 37
20 1000 1000 1000 1000 1000 1000 999 1000 79 79
21 1000 1000 994 1000 1000 1000 999 91 90 44
22 1000 1000 816 966 976 595 819 0 0 0
23 1000 1000 3 438 396 166 0 0 0 0
24 1000 1000 3 1 0 0 0 0 0 0
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Once again, the reduction to the search region is noticeable. As seen in Table 6, most of
the decision variables are fixed according to α, β and γ. One can observe that TGs U1 and
U2 are online during the whole planning horizon. In addition, all TGs are required during
period 12. By combining all reduction criteria, 18 out of the 24 periods are addressed, since
6 periods (1, 2, 11, 12, 13 and 24) were completely decided by the RM. Even in period 22,
which had the lowest number of variables fixed, 50% of the variables were decided by
the RM.

The space reduction based on relevance levels decreased the number of variables
as shown in Table 7. Comparisons are made according to the total number of ON/OFF
decision variables, which is 240 for this system. As noted, the total number of combinations
regarding the ON/OFF decisions decreased from 2240 to 247.

Table 7. Number of fixed variables.

Relevance Number of Fixed Variables Reduction (%)

None 0 0.00
α 104 43.33
β 35 14.58
γ 54 22.50

α, β and γ 193 80.42

From the RM presented in Table 6 and considering the reduction alternatives provided
in Table 5, the optimization was executed for different optimality gap values regarding the
branch and bound process. The results are compiled in Table 8.

Table 8. Optimization results for 10 TGs.

Gap Alternative Cost ($) Number of Branches Time (s)

0%

1 563,937.7 5843 72.45
2 563,937.7 1277 11.8
3 563,937.7 944 6.49
4 563,937.7 36 0.58
5 563,937.7 23 0.58

0.05%

1 563,937.7 5693 67.5
2 563,937.7 1020 9.8
3 563,937.7 942 6.73
4 563,978.8 24 0.42
5 563,978.8 8 0.45

0.50%

1 564,241.3 98 1.94
2 565,486.4 6 0.72
3 564,444.3 98 1.38
4 564,916.2 0 0.25
5 564,218.9 0 0.09

Table 8 reveals significant reduction in simulation duration when the proposed method
is applied. When an optimality gap of 0% is in place, the global solution is achieved with
a computational gain of more than 99% for alternative 5. It is also observed that the
search region reduction method decreased the number of branches explored during the
optimization process.

Based on the literature, Table 9 shows the global solution for the 10-TG system. The
relevance levels from Table 6 were repeated to demonstrate that the RM together with
the reduction criteria of Equation (12) were able to fix variables adequately. More specifi-
cally, all decision variables that would be fixed as online are in fact active in the optimal
solution. Furthermore, the ones that would be fixed as offline are indeed inactive in the
optimized schedule.
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Table 9. Global optimal power schedule, in MW, of the system with 10 TGs, including relevance levels.

Hour U1 U2 U3 U4 U5 U6 U7 U8 U9 U10
1 455 245 0 0 0 0 0 0 0 0
2 455 295 0 0 0 0 0 0 0 0
3 455 370 0 0 25 0 0 0 0 0
4 455 455 0 0 40 0 0 0 0 0
5 455 390 0 130 25 0 0 0 0 0
6 455 360 130 130 25 0 0 0 0 0
7 455 410 130 130 25 0 0 0 0 0
8 455 455 130 130 30 0 0 0 0 0
9 455 455 130 130 85 20 25 0 0 0
10 455 455 130 130 162 33 25 10 0 0
11 455 455 130 130 162 73 25 10 10 0
12 455 455 130 130 162 80 25 43 10 10
13 455 455 130 130 162 33 25 10 0 0
14 455 455 130 130 85 20 25 0 0 0
15 455 455 130 130 30 0 0 0 0 0
16 455 310 130 130 25 0 0 0 0 0
17 455 260 130 130 25 0 0 0 0 0
18 455 360 130 130 25 0 0 0 0 0
19 455 455 130 130 30 0 0 0 0 0
20 455 455 130 130 162 33 25 10 0 0
21 455 455 130 130 85 20 25 0 0 0
22 455 455 0 0 145 20 25 0 0 0
23 455 425 0 0 0 20 0 0 0 0
24 455 345 0 0 0 0 0 0 0 0

4.2. Systems with 20 and 40 TGs

Analogously to the previous subsection, RM matrices were generated for systems with
20 and 40 TGs. The reduction results are presented in Table 10, which demonstrates that
the proposed method is also effective for larger systems.

Table 10. Number of fixed variables.

System Total Number of
Variables Relevance Number of Fixed

Variables Reduction (%)

20 TGs 480

None 0 0.00
α 195 40.63
β 135 28.13
γ 55 11.46

α, β and γ 385 80.21

40 TGs 960

None 0 0.00
α 372 38.75
β 180 18.75
γ 202 21.04

α, β and γ 754 78.54

Following the same criteria applied to the 10-TG system, the 20- and 40-TG systems
were optimized to verify the impact of utilizing the relevance matrices. Table 11 exhibits
information about the simulations, in which NC indicates “no convergence” (simulations
that reached 1 h without converging were interrupted).
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Table 11. Optimization results for 20 and 40 TGs.

System Gap Alternative Cost ($) Number of Branches Time (s)

20 TGs

0%

1 NC NC NC
2 1,123,297 165,418 3367.51
3 NC NC NC
4 1,124,274 11,621 79.19
5 1,124,274 2649 14.55

0.05%

1 NC NC NC
2 1,123,300 21,979 426.78
3 NC NC NC
4 1,124,274 10,651 64.56
5 1,124,274 2224 12.92

0.50%

1 1,125,770 466 16.16
2 1,123,783 97 3.94
3 1,125,265 192 7.11
4 1,127,305 0 0.44
5 1,127,290 0 0.27

40 TGs

0%

1 NC NC NC
2 NC NC NC
3 NC NC NC
4 NC NC NC
5 NC NC NC

0.05%

1 NC NC NC
2 NC NC NC
3 NC NC NC
4 NC NC NC
5 2,246,107 266,720 3299.05

0.50%

1 2,247,391 879 34.86
2 2,244,488 539 16.92
3 2,246,949 788 23.81
4 2,252,604 0 0.47
5 2,251,593 0 0.2

Although the optimizer could not solve some of the simulations due to excessive usage
of processing memory, the proposed method enabled faster achievement of solutions for
medium-sized systems. For larger systems, the method significantly reduced the simulation
duration and the number of explored branches, assuming a gap of 0.5%.

Table 12 provides results from the literature and from the proposed approach. The
solutions from the proposed method were chosen from Table 11 considering the cost versus
simulation time trade-off. One can realize that the proposed search space reduction granted
competitive cost values compared to the specialized literature. In addition, the simulation
duration was low given the quality of the achieved solutions.

Table 12 shows that distinct approaches have been proposed over the last decades to
solve the TUC problem. Classical, decomposition, heuristic and hybrid techniques have
been utilized, each one with its own advantages and disadvantages.

Studies that address search space reduction usually require many parameters to be
tuned when implementing the related methods. The approach presented here has simple
implementation, does not require tuning of parameters, and can provide competitive results
in terms of the trade-off between cost and simulation time.

Table 12. Literature comparisons.

Reference Year
10 TGs 20 TGs 40 TGs

Cost ($) Time (s) Cost ($) Time (s) Cost ($) Time (s)

[25] 1996 565,825 221 1,126,243 733 2,251,911 2697
[33] 2000 564,800 518 1,122,622 1147 2,242,178 2165
[34] 2004 563,977 4 1,123,297 16 2,244,237 52
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Table 12. Cont.

Reference Year
10 TGs 20 TGs 40 TGs

Cost ($) Time (s) Cost ($) Time (s) Cost ($) Time (s)

[34] 2004 564,049 108 1,128,098 299 2,256,195 1200
[34] 2004 565,508 3.2 1,126,720 12 2,249,790 34
[35] 2006 565,988 3.35 1,127,955 16.8 2,252,125 88.28
[36] 2007 566,675 - 1,128,311 - 2,255,898 -
[37] 2008 5,639,77 46 1,123,698 98 2,243,796 265
[38] 2009 564,155 27 1,125,448 55 2,248,875 110
[39] 2010 564,040 - 1,124,803 - - -
[40] 2011 570,006 18.34 1,139,005 65.87 2,277,396 317.29
[41] 2012 564,040 40.75 - - - -
[42] 2014 564,031 8.15 1,124,738 14.78 2,247,400 27.7
[43] 2017 564,835 0.154 1,126,231 0.169 2,250,405 0.194
[44] 2019 565,807 231.31 - - - -
[16] 2020 564,810 20.4563 - - - -
[45] 2021 563,977 0.177 1,124,926 0.23 2,248,413 0.32
[46] 2021 563,977 - 1,123,311 - - -
[47] 2021 563,978 17.78 1,123,825 26.22 2,247,165 43.27
[48] 2022 563937 40.44 1,124,389 - 2,246,837 -

Proposed 2022 563,937 0.58 1,124,274 12.92 2,244,488 16.92

5. Conclusions

This paper presented a new approach to reduce the search region for the thermal
unit commitment problem. Performing such a reduction has shown to be important as it
allows reduction of: (i) the complexity of the problem (significant decrease in the number
of integer variables); (ii) the combinatorial explosion (fewer possible combinations of
operation decisions); and (iii) processing time, i.e., the computational burden. Although a
commercial solver was utilized here, it is highlighted that metaheuristics can also be used
after the search space reduction occurs.

By simulating systems broadly studied in the literature, the proposed method was
shown to effectively reduce the search region, thus decreasing the number of branches
explored during the branch and bound phase of the optimization while preserving good
solution quality.

For systems with 10 and 20 units, the relevance levels α, β and γ fixed more than
80% of the decision variables. For the system with 40 units, approximately 78% of the
decision variables were fixed. It is noteworthy that the resulting operation cost values were
competitive regarding the literature despite the considerable reduction in the number of
variables.

The implementation simplicity and the utilization of the constructive heuristic through
the sensitivity indexes demonstrate the potential for hybridization with other optimization
techniques. In general, the proposed method can be an important contribution to help
solve complex problems since it provides good-quality results in much shorter time.

For future studies, it is intended to analyze the impact of adding network constraints
to the formulation, i.e., to verify to what extent the computational effort is affected. In
addition, the authors intend to explore if other values for the relevance levels can improve
the method by enabling even higher-quality results whilst keeping or even decreasing
the computational burden. Finally, researching alternative priority indexes to create the
relevance matrix is within the planned scope.
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