
DELICIOUS: Deadline-Aware Approximate
Computing in Cache-Conscious Multicore

Sangeet Saha , Shounak Chakraborty , Senior Member, IEEE, Sukarn Agarwal ,

Rahul Gangopadhyay, Magnus Sj€alander , and Klaus McDonald-Maier

Abstract—Enhancing result-accuracy in approximate computing (AC) based real-time systems, without violating power constraints of

the underlying hardware, is a challenging problem. Execution of such AC real-time applications can be split into two parts: (i) the

mandatory part, execution of which provides a result of acceptable quality, followed by (ii) the optional part, that can be executed

partially or fully to refine the initially obtained result in order to increase the result-accuracy, without violating the time-constraint. This

article introduces DELICIOUS, a novel hybrid offline-online scheduling strategy for AC real-time dependent tasks. By employing an

efficient heuristic algorithm, DELICIOUS first generates a schedule for a task-set with an objective to maximize the results-accuracy,

while respecting system-wide constraints. During execution, DELICIOUS then introduces a prudential cache resizing that reduces

temperature of the adjacent cores, by generating thermal buffers at the turned off cache ways. DELICIOUS further trades off

this thermal benefits by enhancing the processing speed of the cores for a stipulated duration, called V/F Spiking, without

violating the power budget of the core, to shorten the execution length of the tasks. This reduced runtime is exploited either to

enhance result-accuracy by dynamically adjusting the optional part, or to reduce temperature by enabling sleep mode at the

cores. While surpassing the prior art, DELICIOUS offers 80% result-accuracy with its scheduling strategy, which is further

enhanced by 8.3% in online, while reducing runtime peak temperature by 5.8 �C on average, as shown by benchmark based

evaluation on a 4-core based multicore.

Index Terms—Real-time systems, approximate computing, thermal management, dead block, caches resizing, TDP

Ç

1 INTRODUCTION

IN real-time systems, the correctness not only depends on the
result-accuracy, but also on the time at which these results

are produced. For such time-critical scenarios, approximated
results obtained on-time are preferable over accurate results
produced after the deadline. In plenty of application domains,
such as multimedia computing, tracking of mobile targets,
real-time heuristic search, information gathering and control
systems, an approximate result, obtained before the deadline

is usually acceptable [5]. For example, in case of video stream-
ing, frames having lower quality are better than completely
missing frames. In target tracking, an approximated esti-
mation of the target’s location generated within deadline
is better than an accurate location, obtained too late. In
these domains, a task is logically decomposed into a
mandatory subtask and an optional subtask [9], [35], [37].
The entire mandatory subtask must be completed before
the deadline to generate the minimally acceptable QoS,
followed by a partial/complete execution of the optional
part, subject to availability of the resources, to improve
accuracy of the initially obtained result within the dead-
line. The QoS increases with the number of execution
cycles spent on the optional part.

Energy efficient scheduling of the AC real-time task-set that
intends to improve result-accuracy without violating
the underlying system constraints have become an active
research avenue in recent past. Stavrinides and Karatza
were among the first to propose scheduling of an AC real-
time task-set [44]. A recent theoretical analysis [37] shows how
to improve system level result-accuracy through task to pro-
cessor allocation and task adjustment constrained by an
energy budget. However, limiting the energy usage does not
ensure thermal safety of the chip, which can be tackled by
incorporating power constraint, like thermal design power
(TDP), together with a runtime power management while con-
sidering several architectural parameters. In an energy effi-
cient approach, Prepare [10], to improve system level result-
accuracy, the authors considered the runtime architectural
characteristics. However, the detailed runtime cache character-
istics of the applications were not considered.

� Sangeet Saha is with the Department of Computer Science, University of
Huddersfield, HD1 3DH Huddersfield, U.K., and also with Embedded and
Intelligent Systems Laboratory, University of Essex, CO4 3SQ Colchester,
U.K. E-mail: sangeet.saha@essex.ac.uk.

� Shounak Chakraborty and Magnus Sj€alander are with the Department of
Computer Science, Norwegian University of Science and Technology,
7491 Trondheim, Norway. E-mail: {shounak.chakraborty, magnus.
sjalander}@ntnu.no.

� Sukarn Agarwal is with the School of Informatics, University of Edin-
burgh, EH8 9YL Edinburgh, U.K. E-mail: sagarwa2@ed.ac.uk.

� Rahul Gangopadhyay is with the Moscow Institute of Physics andTechnology,
141700Dolgoprudny, Russian Federation. E-mail: rahulincxtint@gmail.com.

� Klaus McDonald-Maier is with the School of Computer Science and Elec-
tronic Engineering, University of Essex, CO4 3SQ Colchester, U.K.
E-mail: kdm@essex.ac.uk.

Manuscript received 25 May 2022; revised 29 October 2022; accepted 4
December 2022. Date of publication 12 December 2022; date of current version
4 January 2023.
This work was supported in part by U.K. Engineering and Physical Sciences
Research Council (EPSRC) under Grants EP/X015955/1 and EP/V000462/1,
and in part by Marie Curie Individual Fellowship (MSCA-IF), EU under
Grant 898296.
(Corresponding author: Shounak Chakraborty.)
Recommended for acceptance by A. Sussman.
Digital Object Identifier no. 10.1109/TPDS.2022.3228751

718 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-6119-4927
https://orcid.org/0000-0001-6119-4927
https://orcid.org/0000-0001-6119-4927
https://orcid.org/0000-0001-6119-4927
https://orcid.org/0000-0001-6119-4927
https://orcid.org/0000-0003-1679-6210
https://orcid.org/0000-0003-1679-6210
https://orcid.org/0000-0003-1679-6210
https://orcid.org/0000-0003-1679-6210
https://orcid.org/0000-0003-1679-6210
https://orcid.org/0000-0003-1292-3235
https://orcid.org/0000-0003-1292-3235
https://orcid.org/0000-0003-1292-3235
https://orcid.org/0000-0003-1292-3235
https://orcid.org/0000-0003-1292-3235
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0003-4232-6976
https://orcid.org/0000-0002-6412-8519
https://orcid.org/0000-0002-6412-8519
https://orcid.org/0000-0002-6412-8519
https://orcid.org/0000-0002-6412-8519
https://orcid.org/0000-0002-6412-8519
mailto:sangeet.saha@essex.ac.uk
mailto:shounak.chakraborty@ntnu.no
mailto:magnus.sjalander@ntnu.no
mailto:magnus.sjalander@ntnu.no
mailto:sagarwa2@ed.ac.uk
mailto:rahulincxtint@gmail.com
mailto:kdm@essex.ac.uk


Researchers also employed integer linear programming
(ILP) based scheduling strategies [10], [37] that might often
become prohibitively expensive for large problem sizes,
which can be overcome by designing a computationally feasi-
ble heuristic strategy. In DELICIOUS, we devise an efficient
scheduling heuristic to schedule approximated real-time
tasks on a chip multiprocessor (CMP) platform, where the
scheduling is constrained by task-dependency and deadlines.
The entire strategy of DELICIOUS is summarized in Fig. 1.
Our AC real-time application contains n number of depen-
dent tasks (T1 to Tn shown in the top of Fig. 1) and the entire
application has a deadline. Each task is equipped with multi-
ple versions with diverse set of result-accuracy based on the
respective execution length of the optional part that is exe-
cuted. In DELICIOUS-Offline (shown in the left of Fig. 1), the
scheduling information, which versions of a task (Version ID)
will be executed onwhich core (Processor ID) in a CMP and its
starting time (Start-Time Instant) for all the tasks will be gener-
ated with an objective to maximize the overall system-level
result-accuracy. All tasks are assigned a base voltage/fre-
quency (V/F) level, which is the highest possible V/F (other
than turbo mode [2]) for the underlying processor core. The
generated schedule is next stored in a dispatch table (shown
just below the DELICIOUS-Offline part in Fig. 1), from which
task-executions are triggered.

With the objective to further enhancing the accuracy by
exploiting runtime architectural characteristics (shown at the
bottom of Fig. 1), DELICIOUS-Online judiciously selects and
evicts dead blocks1 from the shared last level cache (LLC) and
turns off spare LLCways to reduce the temperature of the cores
in its proximity. By considering the live thermal status, DELI-
CIOUS attempts to execute tasks at a higher frequency than
that originally assigned for a stipulated duration (so called
V/F Spiking, based on fine-grained DVFS [17]). V/F Spik-
ing increases throughput and enables more of the
optional part of a task to be executed, and thus improves
the QoS without impacting the pre-determined schedule.
To improve power and thermal efficiency further, DELI-
CIOUS shuts down cores during unused slacks gener-
ated by reducing execution times of the tasks.

The contributions of DELICIOUS are as follows:

1) Our intended problem has been clearly formulated
as an optimization problem, discussed in Section 4,
subject to a set of constraints.

2) We have presented a real-time scheduling policy,
DELICIOUS, for AC real-time precedence con-
strained task graphs (PTGs) on homogeneous CMPs.

3) Design of a heuristic strategy for anAC real-time PTG
on a CMP, where each task can have multiple ver-
sions with distinct degrees of accuracy (see Section 5).
In addition to delivering satisfactory performance,
the strategy exhibits reasonable time complexity
with comparatively low, polynomial time scheduling
overheads.

4) We apply a power/thermal restriction (i.e., TDP)
aware V/F Spiking technique (see Section 6), induced
by online LLC-resizing, to improve achievedQoSwhile
keeping temperature in check, which we have empiri-
cally validated and reported in Figs. 11 and 12.

5) By shortening the execution time for each task, V/F
Spiking incurs dynamic slacks, which are either
exploited (i) to execute a higher task-version subject
to availability, or (ii) to put the core in sleep mode to
reduce core temperature (see Section 6).

We further argue and empirically validate the efficacy of
the task-scheduling heuristic of DELICIOUS in combination
with the runtime mechanisms (see Section 7). For a set of
tasks, the scheduling heuristic of DELICIOUS achieves 80%
QoS, which is close to a recent ILP based optimal policy, Pre-
pare [10] that achieves a QoS of 83%, while running time of
ILP based optimal scheduling of Prepare is significantly higher
than the scheduling heuristic of DELICIOUS (see Fig. 6). Our
benchmark based evaluation with a 4-core based baseline
CMP (equipped with 4 MB 16-way associative shared L2
cache) in our simulation setup (consisted of gem5 [8],
McPAT [30], and Hotspot [48]) shows that the dynamic LLC-
resizing induced and TDP aware V/F Spiking of DELICIOUS
further stimulates the achievedQoS by 8.3% and reduces core
temperature up to 9.2 �C, while meeting the deadlines. Our
empirical analysis shows that, online mechanism of DELI-
CIOUS outperforms Prepare [10] and GDP [33], in terms of
online QoS enhancement, and peak temperature reduction.
To the best of our knowledge,DELICIOUS is the first schedul-
ing mechanism that introduces a dead block eviction based
LLC-resizing induced TDP aware V/F Spiking technique for
enhancing the QoS of dependent AC real-time task-set with-
out violating the deadline and the thermal constraints.

Before formulating the problem in Section 4, we discuss
the relevant prior work in Section 2, and brief our system
model and assumptions in Section 3. The core offline and
online mechanisms of DELICIOUS are detailed in Sections 5
and 6, respectively. The evaluation of offline and online
mechanisms of DELICIOUS are presented next in Section 7
before concluding the paper in Section 8. The acronyms
used in our paper are abbreviated in Table 1.

2 STATE-OF-THE-ART

Minimizing energy in recent CMP based real-time systems
has become a topic of paramount importance [38], [39]. Sched-
uling time-critical dependent tasks on CMP platform while

Fig. 1. DELICIOUS: Process overview.

1. Dead blocks indicate the data that will never be accessed before
being evicted from the cache (detailed later in Section 6).

SAHA ETAL.: DELICIOUS: DEADLINE-AWARE APPROXIMATE COMPUTING IN CACHE-CONSCIOUS MULTICORE 719



maintaining the energy/power constraint is gradually
becoming challenging with technology scaling [22]. Research-
ers recently attempted to devise energy-aware scheduling for
the real-time task-sets with various system-wide con-
straints [6], [23], [27]. In 2018, the concept of AC to meet the
energy budget of a large scale real-time system was intro-
duced for the tasks without precedent constraints [9]. Other
prior arts also exploredAC task scheduling for the embedded
real-time systems while minimizing energy [9], [32], [49], for
the set of independent tasks. Yu et al. proposed the concept of
an “Imprecise Computation (IC)” [47], for the first time,
where individual tasks are decomposed into mandatory and
optional parts, and their “dynamic-slack-reclamation” tech-
nique improves the system-wide QoS for more energy sav-
ings, but task-dependencies were not considered. To the best
of our knowledge, in the very first attempt to schedule IC/AC
dependent tasks [44], authors measured the performance of
conventional real-time scheduling techniques like Highest
Level First (HLF) and Least Space Time First (LSTF) for a cou-
ple of task-sets, where one set contains the AC tasks, but
energy efficiency was not considered. The energy aware
scheduling of dependent AC tasks were considered in some
prior works [36], [37] that employedDVFS at the cores.

Most of the prior energy/thermal management mecha-
nisms [14], [17], [28] control the dynamic power of the cores in
CMPs either by employing DVFS [41], [42] or by migrating
tasks [13], [19], [20]. Recently, Roeder et al. [42] showed the
effectiveness of DVFS, planned offline, for a heterogeneous
real-time system with multi-version based task-model, but
energy efficiency can be enhanced dynamically based on the
runtime tasks’ as well as system’s characteristics. Donald and
Martonosi [14] have shown the efficacy of different DVFS tech-
niques along with task migration policies to control tempera-
ture, where distributed DVFS applied with task migration are
claimed to be the best. However, underlying migration over-
heads at the caches were not accounted. Hanumaiah et al. [26]
proposed a thermal efficient thread migration, that was inte-
grated with DVFS to reduce temperature of the homogeneous
CMPs [25]. Recently, Esmaili et al. also integrated DPM, DVFS,

and task migration in constrained scheduling, but the power
budget of the system was not included [16]. Another study
shows how combining DVFS and DPM can significantly boost
up system throughput and thermal efficiency of the large sized
CMPs [29]. However, a couple of recent attempts have tried to
combineDVFSwith the cache based policies [11], [12], but their
efficacy in improving QoS of the AC real-time systems have
not been studied. Moreover, these studies did not focus on the
block recency before evicting them from the LLC, which
we have studied inDELICIOUS.

2.1 DELICIOUS Over Prior Arts

In DELICIOUS, we investigated the potential of LLC way-
shutdown in improving thermal efficiency of a multicore sys-
tem, and how this benefits can be traded off to improve core
performance. Basically, DELICIOUS first proposes a novel
heuristic-based offline scheduling algorithm for a set of
dependent AC real-time tasks, with an objective to improve
the QoS (see Section 5). The QoS is further stimulated during
execution by employing LLC resizing based mechanism that
shuts down cache ways to reduce core temperature in prox-
imity, which assists the cores to maintain a higher V/F for a
stipulated time-span (see Section 6). Our results also illustrate,
both offline and online mechanisms of DELICIOUS surpass
the recent techniques. To the best of our knowledge, DELI-
CIOUS is the first technique that employs dynamic LLC-resiz-
ing for a scheduled AC real-time tasks to reduce core
temperature, that further offers room for V/F Spiking to
enhance result-accuracy on-the-fly, while maintaining dead-
line and thermal safety.

3 SYSTEM MODEL AND ASSUMPTIONS

The considered CMP consists of m homogeneous cores,
denoted as P ¼ fP1; P2; . . .; Pmg. Each core supports L dis-
tinct V/Fs denoted as V ¼ fV1; V2; . . .; VLg and F ¼
fF1; F2; . . .; FLg, where Vi < Viþ1 and Fi < Fiþ1. The offline
schedule is generated by considering a single base core V/F
(� VL=FL), at which core can execute tasks until completion
without any potential thermal threats [1]. However, in
online phase, during V/F Spiking, a core can execute tasks at
higher V/F than the base level for a stipulated duration.

Our application is represented as a precedence task graph
(PTG) (see Fig. 2), G ¼ ðT;EÞ, where T is a set of tasks
(T ¼ fTi j 1 � i � ng) and E is a set of directed edges
(E ¼ fhTi; Tji j 1 � i; j � n; i 6¼ jg), representing the task-
dependency or precedence relations between a distinct pair of
tasks. An edge hTi; Tji implies a precedence, i.e., a task Tj can
start its execution only after Ti is executed. Our single source
and single sink tasks have no predecessors and no succes-
sors, respectively. Being a real-time application, G has to be

TABLE 1
Acronyms and Their Abbreviations

Acronyms Abbreviations

AC Approximate Computing
CMP Chip Multiprocessor
DOA Dead on Arrival
DPM Dynamic Power Management
DVFS Dynamic Voltage and Frequency Scaling
HLF Highest Level First
IC Imprecise Computation
ILP Integer Linear Programming
LLC Last Level Cache
LSTF Least Space Time First
NAQ Normalized Achieved QoS
OoO Out of Order
PTG Precedence-constrained Task Graph
QoS Quality of Service
RoI Region of Interest
TDP Thermal Design Power
V/F Voltage/Frequency

Fig. 2. Precedence task graph (PTG) with timing parameters.

720 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023



executed within the given deadline, DPTG, by executing all
the associated tasks (Ti). Each Ti can have ki different ver-
sions (signifying different degrees of accuracy), Ti ¼
fT 1

i ; T
2
i ; . . . ; T

ki
i g, those are distinct by their respective execu-

tion lengths (Oi), denoted as O1
i , O

2
i ,..., O

ki
i , where Op

i offers
higher result-accuracy than Oq

i , if p > q [46]. DELICIOUS
selects a particular version among the ki versions of Ti, the
selection procedure is detailed in the following section. For
each optional part of a task (Oi), there exists a separate exe-
cutable module, that is executed after the execution of the
mandatory portion (Mi) of the respective task, Ti. The length
of the jth version of task Ti (len

j
i) can be defined as: lenj

i ¼
Mi þOj

i . Note that, lenj
i includes the cycles required for

accessing LLC, which we obtain by executing an individual
task for a particular configuration.We define result-accuracy
Accji of T

j
i as the executed optional part of the task, Oj

i (i.e.,
Accji ¼ Oj

i). Thus, the overall system level result-accuracy
(QoS) is now defined as the sum of the executed cycles of Oj

i

for all the tasks [9], which can be represented as: QoS ¼Pn
i¼1 O

j
i j Ti ¼ Tj

i . Note that, in addition with execution of
theMi for each task, we also need to execute at least one ver-
sion ofOi within deadline.

4 PROBLEM FORMULATION

In order to present a formal model of the problem and its
objective, we have formulated it as a constraint optimization
problem. Let us consider a binary decision variable Zikth,
where i ¼ 1; 2; . . .; n; k ¼ 1; 2; . . .; ki; t ¼ 0; 1; . . .; DPTG, and
h ¼ 1; 2; . . .m. Here, the indices i, k, t and h, denote task ID,
corresponding version ID, timestamp, and processor ID,
respectively. The variable Zikth is 1, if the kth version of Ti

(Tk
i ) starts its execution at tth timestamp on processor h.

This will eventually enforce that Zikth for Ti will be zero, for
all other possible combinations, i.e., it cannot start on any
other processors with other versions at any time stamp. We
now present the objective function with constraints on the
binary variables to model the scheduling problem.

Maximize QoS(1a)

QoS ¼
Xn

i¼1

Xm

h¼1

Xki

k¼1

XDPTG

t¼0

Ok
i � Zikth (1b)

Subjectto :

Xki

k¼1

XDPTG

t¼0

Xm

h¼1

Zikth ¼ 1 8i 2 ½1; n� (1c)

Xn

i¼1

Xki

k¼1

Xt

t0¼c

Zikt0h� 1 8t : 0 � t �DPTG & 8h : 1 � h � m(1d)

c ¼ maxð0; t� exeki þ 1Þ
stj � eti hTi; Tji 2 E(1e)

stn þ eln � DPTG (1f)

stj ¼
Xm

h¼1

Xkj

k¼1

XDPTG

t¼0

t � Zjkth (1g)

eli ¼
Xm

h¼1

Xki

k¼1

XDPTG

t¼0

exeki � Zikth (1h)

eti ¼ sti þ eli (1i)

Equation (1b) presents the objective function in the above
formulation, whereas Equation (1c) enforces the constraint
that each task must start its execution on a particular proces-
sor at a unique timestamp with a unique version. In this
scheduling problem, resource bounds for processors must
be satisfied at each timestamp. Any processor can execute at
most one task at a given time without any preemption
(Equation (1d)). Equations (1e) and (1f) enforce execution
dependency and deadline satisfaction constraints, respec-
tively, whereas start time (stj), execution length (eli) and
end time (eti) are defined in Equations (1g), (1h), and (1i),
respectively.

Algorithm 1. DELICIOUS -Offline

Input:
i. Task graph GðT;EÞ
ii. ki: Number of versions of each task Ti

iii. lji : Execution length of jth version of task Ti

iv.DPTG: The deadline of the task graph.
v. Accji : accuracy achieved by executing the jth version of Ti

Output:
i. Task Schedule /* Selected Task versions (zi), Execution
start times (sti), Mapped Processor id: (Pj

i i.e., i
th task on jth

Processor, Obtained Accuracy) */
ii. Achieved system-level QoS.

1 8Ti 2 T , Set zi= ki (highest version) /* Set the selected ver-
sion to the highest version*/

2 while Algorithm 3 does not yield TRUE do
3 Store ALAP time in a priority list of non-decreasing order

returned by Algorithm 3
4 8Ti 2 ðT j ki > 1Þ, Compute the Penalty Factor

PF ðTi; ziÞ, using Equation (2)
5 Create a min-heap of tasks in T with the PF ðTi; kiÞ

values as the key;
6 ifMultiple Ti have same PF then
7 Select Ti from the priority list (with highest

ALAP value);
8 Extract the task Tj at the root of the min-heap;
9 zj = zj � 1; /* Decrease the current version of Tj by one; */
10 Compute the PF ðTj; kjÞ and reheapify;

11 Calculate QoSðAÞ as: QoSðAÞ ¼ PjT j
i¼1 Acc

zi
i ;

12 Return QoSðAÞ ;

Our scheduling problem stated above amicably lends
itself towards its computation using a standard optimiza-
tion tool, CPLEX. However, the presence of numerous
decision variables and constraints makes this problem
computationally highly complex. Therefore, solution
techniques using standard optimizers, like CPLEX, are
often computationally expensive in terms of time and
space even for moderate problem sizes with respect to
number of tasks, number of processors, nature of inter-
task dependencies, etc. We reiterate here that the main
motivation towards encoding of our problem as above is
the clarity it lends in detailed understanding and appre-
ciating the structure of the scheduling problem at hand.
Such realization is immensely useful towards designing
and analyzing an efficient lower overhead heuristic strat-
egy for the problem. We next present DELICIOUS-Off-
line, an efficient heuristic algorithm for the problem
discussed above.

SAHA ETAL.: DELICIOUS: DEADLINE-AWARE APPROXIMATE COMPUTING IN CACHE-CONSCIOUS MULTICORE 721



5 DELICIOUS-OFFLINE PHASE

Typically, list scheduling-based heuristic techniques are
employed to compute feasible schedules for PTGs executing
on multi-cores. They attempt to construct a static-schedule
for the given PTG, to minimize the overall schedule length,
while satisfying resource and precedence constraints. On
the contrary, our heuristic strategy tackles the problem of
scheduling a PTG consisting of task nodes with multiple
versions, to maximize overall system accuracy, while satis-
fying the deadline constraint. For this purpose, we devise
our heuristic algorithm, DELICIOUS-Offline, to generate a
schedule by setting all task nodes to their highest version.
Since DELICIOUS-Offline attempts to maximize the overall
system level accuracy, the resulting schedule length may
however violate the given deadline. This situation can then
be refrained by degrading the versions of tasks, while
reducing impact on overall system accuracy.

5.1 DELICIOUS-Offline Algorithm

Our heuristic algorithm for DELICIOUS-Offline is repre-
sented in Algorithm 1, that first attempts to generate a feasi-
ble schedule with considering the highest version of all the
tasks by calling Algorithm 3, Sched-Gen (line 1 to 2). Sched-
Gen yields TRUE, if a feasible schedule is possible by satisfy-
ing the resource and deadline constraints for each task, and
returns FALSE and ALAP2 times (generated by Algorithm
2), otherwise. By considering all tasks with their respective
highest versions may not be feasible due to their high tem-
poral requirements. If Sched-Gen yields FALSE, then DELI-
CIOUS-Offline enters into a while loop until a feasible
schedule for a chosen set of task versions is generated or all
tasks have been reduced to their lowest versions (line 4 to
10). This while loop maintains the tasks in a priority queue
organized as a min-heap with a parameter called
Penalty FactorðPF Þ as key (Equation (2)). For a given task,
Ti, with its current version zi, PF ðTi; zi) is defined by the
reduction in achieved accuracy as Ti’s version is lowered
from zi to zi � 1, and is calculated as

PF ðTi; ziÞ ¼ O
zi
i �O

zi�1
i : (2)

If two tasks exhibit the same PF values, then the task with
lower ALAP value will be selected from the ordered list
(line 6 to 7). This is mainly due to the fact that in such a pri-
ority list based on task’s ALAP times, the actual value of the
ALAP time of a task provides an estimate of the remaining
computational demand before completion of the sink task.
For any given deadline bound, a relatively lower ALAP
time for a task indicates a higher remaining processing
requirement. Hence, DELICIOUS-Offline attempts to lower
the version of a task having higher ALAP value, i.e., having
lower processing requirement and less dependency.

In each iteration of the loop, DELICIOUS-Offline extracts
the task (Tj) at the root of the min-heap (task with the mini-
mum PF value), reduces its version by one, and check if the
Sched-Gen returns TRUE or not (line 9 to 10). If Sched-Gen
yields TRUE, then it indicates that a feasible schedule is

obtained. DELICIOUS-Offline will then calculate and return
the obtained system level QoS as output (line 11 to 12).

Algorithm 2. ALAP Time Calculation

Input:
i.The task graph GðT;EÞ
ii. zi: selected version of each task Ti

iii. lenz
i : Execution length for the zth version of Ti

iv.DPTG: The deadline of the task graph.
Output:
i. elai : latest start time of each task Ti

1 for Ti 2 T do
2 if Ti is a sink task in PTG then
3 elai ¼ DPTG �min ðlenz

i Þ
4 else
5 Calculate the minimum of the latest start times

min ðelaj Þ 8 Tj 2 SuccðTiÞ;
// Let task Tsc has the minimum value of the

latest start times among all succes-

sors of Ti

6 elai ¼ elasc �min ðlenz
i Þ;

5.2 Schedule Generation (Sched-Gen)

DELICIOUS -Offline calls Sched-Gen (Algorithm 3) to deter-
mine a valid schedule for a stipulated set of task versions
chosen by Sched-Gen.

Initialization and Task Prioritization (line 1 to 8). Algorithm
3 begins its execution by creating an array denoted as FP ,
which implies the number of free processors available.
Sched-Gen uses a relative priority order amongst all tasks
based on the tasks’ ALAP start time, considering each task
Ti at its currently selected versions zi. This priority list based
on task’s ALAP times ensures that inter-task precedence
relationships are always satisfied (ALAP time of a predeces-
sor task is always less than the ALAP times of all its
successors).

Task Mapping and Execution (line 9 to 29). Sched-Gen
assigns the task with no predecessors to a separate proces-
sor. Then it continues to consider tasks only when all its pre-
decessor task(s) finish(es) their executions. Such task to
processor assignments eventually enable that the beginning
of the task will be the latest finishing time of its predeces-
sors. In case, if a task has a single predecessor, then DELI-
CIOUS can start to consider the task right after the finishing
time of its predecessor. When a task has multiple predeces-
sors, DELICIOUS considers the predecessor which has the
latest finishing time. The successor task may be assigned to
the same processor assigned to its predecessor with the lat-
est finishing time. All tasks executing at a given time, run in
parallel in the available processors. A task (say, Tj) mapped
to a processor (say, pi) will continue its execution until the
execution requirement of the task is finished. The variable
PBPi denotes the “Processor Busy Period,” which in turn
provides the remaining execution requirement of Tj in pi
and thus, PBPi becomes zero when Tj finishes its execution
(line 20 to 21). After a task finishes its execution, it will be
added to the set FT and will be removed from T (line 22 to
23). The set FT is finally stored in the dispatch table. The
above processes of task mapping and execution continue
iteratively either until all tasks in T complete their2. It implies As Late As Possible.

722 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023



executions, or the deadline DPTG is encountered. In line 24
to 29, DELICIOUS will check whether the number of fin-
ished tasks (FT ) is equal to the number of tasks given in the
input set T . Any mismatch will infer an incomplete sched-
ule, otherwise, it will denote a successful one and DELI-
CIOUS-Offlinewill return TRUE.

Algorithm 3. Schedule Generation (Sched-Gen)

Input:
i. l

zi
i : Execution length of the selected zthi version of Ti

ii.DPTG: Deadline of the task graph
Output: TRUE/FALSE: Feasible or infeasible schedule

1 /*........................... INITIALIZATION...............................*//*
Let FP denote the set of processors currently available for
execution; */

2 Initialize FP ¼ P ;
3 8 Pi 2 FP , Set PLi= FALSE; /* Initialization, PLi : A flag

which is set to FALSE if the Processor is available for exe-
cution; TRUE, otherwise; initially all processors are free */

4 /* Let FT denote the task-set currently finished their
execution; */

5 FT ¼ NULL;
6 /*.....................TASK PRIORITIZATION......................*/
7 Calculate ALAP start time (elai ) for each task Ti

using Algorithm 2 at its currently selected version zi
8 t̂ = T /* Copy tasks into t̂ */
9 /*...........TASK MAPPING & EXECUTION..............*/
10 for t ¼ 0; t � DPTG AND T 6¼ NULL; tþþ do
11 for each processor in parallel do;
12 if There exists tasks (Tj 2 T ) j All predecessors of Tj have

finished their execution AND FP 6¼ NULL then
13 Select processor Pi with PLi == FALSE;
14 Set PLi = TRUE /* Set Pi to busy; */
15 Map Tj in processor Pi;
16 stj = t /* Set current time t as the execution start time

of Tj*/
17 PBPi= l

zj
j ; /* start execution of Tj; PBPi: an integer

variable denoting Procsseor Busy Period which
holds the remaining time required to finish the
current task in pi */

18 FP = FP n Pi; /* Remove Pi from set FP */
19 else
20 PBPi = PBPi � 1; /* Decrement remaining time */
21 if (PBPi ¼¼ 0) then FP = FP [ {Pi}; /* Add Pi to the

set of free (available) processors */
22 PLi = FALSE; * Set Pi back to free; */
23 FT = FT [ Tj /* Add Tj to set FT of finished tasks */
24 T = T n Tj; /* Delete Tj from set T */
25 if jFT j 6¼ jt̂j then
26 # Store the ALAP order;
27 Return FALSE;
28 else
29 Return TRUE;

Our heuristic algorithm is associated with a few carefully
selected, restricted design choices, that assist in controlling
the complexity. It can be observed, that distinct schedules
can be generated with each task (Ti), assigned to any of the
available processors (P ), with Ti being actually scheduled
in any of the designated processors. Hence, the number of
schedules depends on the number of tasks and processors.
The schedule with enhanced accuracy could be any one of

the subsets of the schedules that satisfy precedence,
resource and timing constraints. However, to limit the com-
plexity of this compute-intensive problem, our heuristic
uses a phase-based approach. At first, it generates an accu-
racy maximized schedule, by restricting all tasks to their
respective highest versions. Given the order and task-to-
processor assignments as provided by the first phase, the
task-versions are adjusted in the second phase, whilst meet-
ing the deadline.

Example DELICIOUS-Offline. Let us consider a represen-
tative example with the task-set given in Table 2, which is
pictorially represented in Fig. 2. These tasks have to be
scheduled on two processors (m ¼ 2), with a deadline
DPTG ¼ 70 time units. In Fig. 3 A, we have shown that, if
the tasks are scheduled only with their respective highest
versions, this will lead to deadline failure. Hence, by choos-
ing different versions of the tasks, our algorithm generates
the feasible schedule, which is depicted in Fig. 3 B. Here, T2

and T6 are executed with lower versions to satisfy the dead-
line. Our total obtained QoS value is 48.

Theorem 1. The amortized complexity of DELICIOUS-Offline
(Algorithms 1, 2, and 3) is Oð n

DPTG
Þ per time-slot.

Proof. Algorithm 1 is the heart ofDELICIOUS-Offline. A step-
wise analysis of computational overhead of Algorithm 1
due to the called functions/algorithms is as follows:

1) ALAP Time Calculation: Complexity of Algorithm
2 for calculating ALAP resembles the complexity
of topological sorting of a DAG. Hence, complex-
ity of Algorithm 2 can be written as Oðnþ jEjÞ,
where n ¼ jT j.

2) Schedule Generation: We determine the complexity
of Algorithm 3 by deducing the overheads of the
individual steps: (1) line 2, 3, and 5 can be per-
formed in constant time, and complexity of ALAP
time is considered as Oðnþ jEjÞ. Similarly, 8 can
also be done in constant time. (2) The for loop (line 9
to 24) executes for each time step up toDPTG. Inside
this for loop, all individual operations consume an
overhead of Oð1Þ. Thus, Algorithm 3 has a com-
plexity of Oðnþ jEjÞ þ OðDPTGÞ, which can be
written asOðnþDPTGÞ for any standard graph.

3) DELICIOUS-Offline: Operations at line 1 of Algo-
rithm 1 can be done in constant time. Each itera-
tion of the while loop (line 2 to 10) calls Algorithm
3 to check the feasibility of the schedule that could
be generated. Let us assume, K is the maximum

TABLE 2
Parameters and Their Values, for Example Task-Set

Tasks Mi Oi Tasks Mi Oi

(#cycles) (#cycles) (#cycles) (#cycles)

T 1
1 4 2 T 1

4 20 7
T 1
2 10 5 T 2

4 20 12
T 2
2 10 8 T 1

5 19 2
T 3
2 10 10 T 2

5 19 6
T 1
3 10 5 T 3

5 19 14
T 2
3 10 7 T 1

6 10 2
T 3
3 10 10 T 2

6 10 4

SAHA ETAL.: DELICIOUS: DEADLINE-AWARE APPROXIMATE COMPUTING IN CACHE-CONSCIOUS MULTICORE 723



number of possible versions for given tasks.
Hence, it may be concluded that the while loop
iterates at most K times. All other steps within
the while loop take constant time. Thus, the com-
plexity of this algorithm is dominated by the over-
head of Algorithm 3. Finally, the overall
complexity of DELICIOUS-Offline becomes OðK �
ðnþDPTGÞÞ.

4) The amortized complexity of DELICIOUS-Offline
is Oð n

DPTG
Þ, where K typically consumes a small

value. tu

6 DELICIOUS-ONLINE PHASE

To improve the accuracy or energy/thermal efficiency of the
generated schedule, the selected V/F setting can be changed
dynamically, but that might cause deadline failures, if not
managed carefully. DELICIOUS-Online attempts to reduce
core temperatures by employing a dynamic LLC resizing
that generates on-chip thermal buffers by shutting down
cache ways with close vicinity to the cores (see Fig. 3 C).
Such gained thermal benefits are traded off by a TDP cogni-
zant V/F scaling of the cores, named here as V/F Spiking,
that reduces the execution length of the tasks. DELICIOUS-
Online uses this performance increase either to improve
task accuracy while the core temperature is kept in check,
or to enhance energy and thermal efficiency by power gat-
ing the core (sleep mode) during generated slack. The possi-
ble task level changes by DELICIOUS-Online is illustrated
in Fig. 5, however, we magnified the V/F Spiking induced
version upgrade for a task (T2) in Fig. 3 D. Our LLC resizing
selectively evicts dead blocks by periodic runtime analysis
and trims LLC to improve the energy/thermal efficiencies
without any noticeable performance impact.

6.1 Detecting Dead Blocks and Thermal
Management at LLC

It is a well known fact that much of the data stored in the
LLC is dead, i.e., the data will never be accessed before

being evicted. In fact, a substantial amount (more than 80%)
of all cache blocks at any particular time are dead as well as
dead on arrival (DOA) [18], [31]. Hence, proactive eviction
of dead blocks can offer a significant amount of spare cache
space to the current application, which can be either used
for more live blocks to enhance performance, or turned off
to save energy. However, as the LLC is the final defense
before approaching off-chip accesses, dead block detection
and eviction should be done prudentially to maintain
performance.

Detecting dead blocks at the block level granularity
requires individual counters for each LLC block, where the
size of individual counters can incur implementation over-
heads. To simplify our implementation and by considering
time-criticality, we decided to detect only DOA blocks and
to eventually evict them. We employ a single bit, called the
Dead_bit, to track if a block is DOA. When a block is brought
into the cache, the bit is set and is cleared if it is further
accessed. We periodically check the Dead_bit and evict the
block if the bit is still set. The check is performed one block
at a time, iterating through all blocks within the predeter-
mined period. Note that, for checking of the dead-bits and
eviction of the dead blocks, a small time-slice is reserved at
the end of each period, called back up period (BackPer). For
our baseline 16-way set-associative and 4 MB LLC, the stor-
age overhead for implementing the Dead_bit is negligible at
around 0.2%.

After detecting the dead blocks, DELICIOUS proactively
evicts them from the LLC and turns off LLC ways to gener-
ate on-chip thermal buffers and to reduce core temperature
in its vicinity [11], [12]. Basically, the temperature of any on-
chip component is guided by the basic superposition and reci-
procity principle of heat transfer, which is driven by three
factors: (1) the component’s own power consumption, (2)
heat abduction by ambient, and (3) conductive heat transfer
with its peers [45]. Hence, prudential selection of these
LLC-ways for shutting down on-the-fly can potentially
reduce the chip temperature [12], by (a) curtailing its own
power consumption and (b) incorporating heat transfer
with the peers at the generated on-chip thermal buffers,
while maintaining performance. As a significant number of
LLC entries are DOA, which, if evicted, generates a large
LLC portion as spare. But, such proactively generated
empty locations might be scattered throughout the LLC,
which has to be compacted to enable power gating of a com-
plete cache way. This will generate continuous large ther-
mal buffers, which will help in reducing temperature of the
adjacent cores. Hence, we incorporate a simple but effective
block swapping mechanism, discussed later, that prioritizes
invalidation over write-back, and eventually empties an
LLC way at the edge of the LLC bank before turning it off.
By periodically monitoring the DOA blocks, and availability
of the spare cache space after eviction, DELICIOUS-Online
dynamically decides the number of LLC ways that can be
power gated.

6.2 V/F Spiking: Effects and Amelioration

Increasing the V/F for a short duration, so called V/F Spik-
ing, can enhance results accuracy if the core temperature
can be kept in check by addressing the following issues:

Fig. 3. Generated Schedule and online LLC induced V/F spiking (not to
scale).

724 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023



� When should V/F Spiking be triggered?
� How long can the core maintain the increased V/F?
To answer these questions, one should consider the

dynamic and leakage power consumption of the cores at
different V/F settings and temperatures, along with the
TDP of the cores. During task execution,DELICIOUS evenly
divides the entire execution span into multiple periods,
where at the end of each period, a decision on V/F Spiking
will be taken. At the end of a period, if the core temperature
is detected to be sufficiently below the critical temperature,
then the power consumption of the core is evaluated to
determine if an increased V/F that can be maintained with-
out violating the power constraint. The dynamic power con-
sumption (Dynpow) at the target increased V/F is derived by
employing the following equation: Dynpow ¼ a � C � Vdd

2 � f ,
where a and C are circuit related constants, and Vdd and f
represent the supply voltage and core-frequency, respec-
tively. By considering the current temperature (T ) and the
target increased voltage, the leakage consumption (Leakpow)
of the core can be derived at the end of the period through
the following equation: Leakpow ¼ A1 � T 2 � eA2�VddþA3 þA4 �
eA5�VddþA6 , where, A1 to A6 are technology dependent con-
stants. DELICIOUS inspects the available V/F levels and
selects the maximum possible V/F setting for the upcoming
period so that TDP is not violated during the next period.
The span of a period can be determined empirically or from
processor characteristics, during which the core tempera-
ture can be assumed to remain unchanged.

Maintaining a higher V/F setting for a period of time
increases the core temperature, resulting in an increase in
leakage power, which in turn generates heat in a self-rein-
forced cycle and can potentially affect the functional correct-
ness of the chip. Employing an analytical formulation that
estimated the generated heat from the power values can be
a solution to determine the duration of the increased V/F
residency [48]. But, the dynamic LLC resizing of DELI-
CIOUS-Online, which significantly impacts the core thermal
status, needs to be accounted for to correctly estimate the
temperature, where the LLC resizing depends on the
application’s cache access behavior. In fact, our TDP based
mechanism safeguards the core from thermal overshoot,
but analytically determining the duration of the increased
V/F residency might be unable to exploit the thermal bene-
fits offered by LLC resizing. Hence, DELICIOUS-Online
monitors the core temperature periodically using thermal
sensors. Once the core temperature reaches the maximum
threshold (TempMax), the V/F is reduced to the level at
which the task is scheduled, and thus the duration of V/F
Spiking is determined dynamically.

6.3 Proposed Online Technique

DELICIOUS -Online consists of two modules, the LLC Resiz-
ing module, which is implemented at the LLC controller for
each LLC bank (discussed in Section 6.3.1), and the V/F Spik-
ing module, which is implemented at the controller of the
cores (discussed in Section 6.3.2). We illustrate the technique
of DELICIOUS-Online in Algorithm 4. A complete schedule
of the task-set is generated offline, called a Frame, details of
which are kept in the dispatch table, where timing parame-
ters of the tasks are converted into cycles prior to insertion.

As long as all tasks are not selected from the Dispatch Table,
each task (Ti) within a Frame is fetched as per the schedule
and the execution is initiated (line 1-4). For each LLC bank,
Algorithm 5 is executed simultaneously with respect to each
other at the LLC controller, to create on-chip thermal buffers
by prudentially managing dead blocks (line 5-6). This gained
thermal benefits are traded off to improve accuracy by
employing V/F Spiking at each core during task execution
(line 8-10). Note that, Algorithm 6 is executed at the respec-
tive core controllers, and is transparent to Algorithm 5.

Algorithm 4. DELICIOUS -OnlineMechanism

1 for each Frame do
2 for all Ti in Dispatch Table do
3 Get schedule details of Ti from the Dispatch Table;
4 Fetch Ti and start execution;
5 for each LLC bank do
6 Call Algorithm 5;
7 # Execute simultaneously at each bank;
8 for each Core do
9 Call Algorithm 6;
10 # Execute simultaneously at each core;

6.3.1 LLC Resizing Technique

DELICIOUS -Online is primarily built on the LLC Resizing
mechanism that stimulates thermal efficiency of the cores adja-
cent to the power gated LLC portions. Fig. 4 depicts the effects
of power gated ways by illustrating the heat transfer from its
adjacent cores. Before gating theways,DELICIOUS-Online pro-
actively evicts the dead blocks from the LLC by prudentially
selecting them.After eviction of these dead blocks, a number of
cache ways will be made empty by employing a swapping
based compaction technique within each individual set. Once
the selectedway(s) is(are) empty, it is power gated.

The entire LLC Resizing mechanism is illustrated
in Algorithm 5. The whole task execution span is evenly
divided into multiple time-intervals (Curr Interval), and a
small time-span, BackPer (back up period), is taken from
the end of each Curr Interval during which all the resizing
related operations are performed. On completion of each
Curr Interval�BackPer, the current performance of the
bank (B) is determined by its miss ratio (ratio½B� line 4).
If the miss ratio is less than a preset threshold
(POWER DOWN) and the number of turned off LLC ways
(#Off ways½B�) is within a preset limit (Limit), then a way
(W ) adjacent to a core is selected as the victim (line 5 to 6).
The location details of the LLC ways and their adjacency to
the cores are determined from the Floorplan of the CMP,
which is an input to our algorithm [11], [12]. For each set (S)
the presence of dead blocks (blk) is determined by

Fig. 4. Power Gated LLC ways offer scopes for V/F Spiking.

SAHA ETAL.: DELICIOUS: DEADLINE-AWARE APPROXIMATE COMPUTING IN CACHE-CONSCIOUS MULTICORE 725



inspecting if their respective Dead bit½blk� is set (line 8). If a
dead block is clean, it is invalidated, else it is written back to
the main memory (line 9 to 12).

On completion of the dead block eviction process, a set
might not have an empty location at the victim way W (line
13). Hence, set S will then be checked if there is any empty
location, and once an empty location is found, the block will
be moved to there from W (line 15). However, if S does not
have any empty location at the moment, then search for a
clean NMRU (CN) block in S is performed, and will be inva-
lidated on its presence. Otherwise, an NMRU block is
selected from W , if available, or from any other random
location of S and will be written back subsequently. Next,
the block from W will be moved to this empty location (line
17 to 24). Once W is empty for all sets, it will be gated with
updating #Off ways½B� (line 25). If at the end of a
Curr Interval, ratio½B� is higher than a preset threshold
(POWER UP ), and B has at least one way turned off, a way
will then be turned on (line 27 to 28). No LLC reconfigura-
tion is permitted within Curr Interval�BackPer and on
completion of resizing process (line 29 and line 31).

Algorithm 5. LLC Resizing

Input: POWER DOWN , POWER UP , Limit, BackPer,
Floorplan

1 while A task (Ti) is being executed do
2 if Curr Interval�BackPer is over then
3 for each LLC bank B do
4 ratio½B� ¼ #missesðBÞ

#accessesðBÞ ;
5 if ratio½B� < POWER DOWN) and (#Off ways½B�

< Limit) then
6 #Select a way W as victim, which will be turned off

and is in proximity to a core;
7 for each set S do
8 for each block blk having#Dead bit½blk� ¼¼ 1 do
9 if blk is clean then
10 #Invalidate the block;
11 else
12 #Write it back off-chip;
13 ifW at S is not empty then
14 if S has at least an empty location then
15 #Select an empty location, and move block

fromW ;
16 else
17 if S contains a CN block then
18 #Invalidate the block;
19 else
20 ifW has NMRU block then
21 #Write it back;
22 else
23 #Select an NMRU block in S, and write it

back;
24 #Move block fromW ;
25 #Power-gateW , and#Off ways½B� þ þ;
26 else
27 if (ratio½B� > POWER UP ) and

(#Off ways½B� � 1) then
28 #Turn on an LLC way, and Off ways½B� � �;
29 #Execute the task normally upto end of Curr Interval;
30 else
31 #Execute the task normally;

The block swapping needs to be performed by accessing
the peripheral circuitry of the bank, performance of which
is hence limited by the number of ports available per bank.
However, the power and performance overheads incurred
by this swapping mechanism are negligible [12]. Addition-
ally, our LLC resizing technique can serve the outstanding
cache requests during BackPer, unlike prior art [11]. The
only difference is that, on an eviction caused by a cache
miss, the selected way to be evicted cannot be the victim
way. However, the performance impact of LLC resizing is
also included in our simulation.

6.3.2 Proposed V/F Spiking

LLC resizing technique can potentially reduce temperature
(hence the leakage power) of the cores adjacent to the gated
LLCways. Reduced core temperature therefore offers enough
room for maintaining the increased V/F through V/F Spiking
for a certain amount of time while keeping the core tempera-
ture below the critical value. Our proposed Algorithm 6
shows how DELICIOUS-Online exploits the thermal benefits
of Algorithm 5 to enhance core V/F without violating the
thermal constraint.

Algorithm 6 takes TempMax, TDP , and TLim as inputs,
where TempMax is the maximum allowable temperature for
a core. We set TempMax to 2 �C lower than the critical tem-
perature of the core, to ensure that the core temperature
will never reach at the critical value. During task execution,
at the end of each Interval, each core temperature
(Temperature½C�) will be observed (line 2 to 5). If the
Temperature½C� is lower by TLim than the TempMax, leakage
power of the core (Leakpow½C�) will be computed by consid-
ering Temperature½C� and supply voltage (line 6). Next, the
highest possible viable V/F level (VH=FH) is determined, so
that total (calculated) power consumption (DynH

pow½C� +
Leakpow½C�) is not violating the TDP (line 7). Our algorithm
also considers the power of on-chip voltage regulator
(VRPow). On availability of such VH=FH , the core’s V/F is set
at VH=FH , and the task execution will be resumed (line 8 to
9). Executing tasks at higher V/F leads to early completion,
that results into change in the generated schedule. Basically,
higher V/F can potentially execute more number of cycles
for a certain time-span than the execution at the
Vsched=Fsched. Hence, we employ a counter (Cyc Ctr) to keep
track of the cycles executed at the higher V/F (line 10). Note
that, the input TLim safeguards the core from any potential
chattering effects in V/F by allowing V/F Spiking only when
the core temperature is sufficiently below the TempMax.

During task execution, the core temperature will be mon-
itored continuously, and once the Temperature½C� reaches
at TempMax, the V/F will be lowered to Vsched=Fsched½C� (line
15). To keep track of the extra cycles completed at the higher
frequency, Cyc Ctr is exploited at the end of each V/F
spike. By computing the elapsed time along with consider-
ing Vsched=Fsched½C�, the amount of extra cycles is derived
(line 14 to 17). This cycle surplus during executing Mi is
stored at Dcyc, which will be used next for Oi execution. We
illustrate V/F Spiking process in Fig. 5 at the task level granu-
larity, that depicts when Cyc Ctr is updated and how V/F
Spiking helps in finishing the task early.

726 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023



Algorithm 6. V/F Spiking

Input: TempMax, TDP , TLim, Break Even Time
1 DCyc ¼ 0 ;
2 whileMi is being executed do
3 if Curr Interval is over then
4 for each core C in parallel do
5 if Temperature½C� < TempMax � TLim then
6 #Compute Leakpow½C�;
7 #Get highest V/F, VH=FH , so thatDynH

pow½C�þ
Leakpow½C� þ VRPow < TDP ½C�;

8 if Such VH/FH exists then
9 V =F ½C� = VH/FH ;
10 #Start execution and start increasing Cyc Ctr;
11 else
12 #Execute the task normally;
13 if Temperature½C� ¼¼ TempMax and V =F ½C� >

Vsched=Fsched½C� then
14 Time elaps ¼ Cyc Ctr

F ½C� ;
15 #Set V =F ½C� ¼ Vsched=Fsched½C�;
16 DCycþ ¼ Cyc Ctr - ðTime elaps	 Fsched½C�Þ;
17 Cyc Ctr ¼ 0 and stop incrementing Cyc Ctr ;
18 Cyc remOi

¼ DCyc þ ðCyc Ext End Ti � Cyc End MiÞ ;
19 if Highest Oi is not scheduled then
20 # Call the function that returns optional part with highest

possible accuracy which can run within Cyc rem ;
21 Oi = get OiðTi; Cyc remÞ ;
22 if O i then
23 #Fetch the Oi ;
24 if Cyc remOi

> Cyc Oi then
25 Slack = Cyc rem Oi � Cyc Oi;
26 #Start Execution of Oi at Vsched=Fsched½C� ;
27 if Oi is finished and Slack > Break Even Time then
28 #Power gate the core ;
29 while Slack > 0 do
30 Slack–;
31 #Turn on the core ;

As per our example in Fig. 5, Mi completes at t0 with V/F
Spiking, where its scheduled completion time was at t
(t0 < t). Hence, to execute Oi, the time left is the summation
of Dcyc (which can be executed during interval (t;0 t) at
Vsched=Fsched½C�) and the cycles left before execution of the
next task, which we termed as extended end time of Ti

(Cyc Ext End Ti) (line 18). Note that, for the sink task,
Cyc Ext End Ti will be set at the end of the current Frame.
However, if the highest version of Ti is not scheduled

earlier, a checking is performed if Oi can be upgraded (line
19 to 23). After selecting the best possible Oi, the execution
will be started with Vsched=Fsched½C� (line 26). Upgrading Oi

may generate slack before completion of Cyc Ext End Ti

(line 24 to 25), which can be utilized to power gate the core
for improving energy/thermal efficiency. All the possible
cases regarding upgrading Oi are depicted in Fig. 5. By
employing a counter and considering the processor’s
Break Even Time (given as an input), the span of power-
gate is traced, and the core will be turned on (line 31) before
the starting time of the next task/frame.

6.4 Hardware Mechanism

Both Algorithms 5 and 6 can be implemented separately at
the respective controllers. The way-shutdown logic at the
LLC controller adopts power gating [40] at the way-level
granularity of the LLC. Power gating is a conventional cir-
cuit based technique integrated with caches as well as cores
in modern CMPs [4], [34]. By exploiting conventional con-
trol bits (e.g., valid bit, dirty bits, etc.) and the existing per-
formance monitoring counters at the LLC [21], the ratio and
Dead bit can be periodically monitored for LLC resizing.
Moreover, implementing Dead bit will not incur any notice-
able overheads, as discussed earlier. To efficiently scale V/F
at the cores, on-chip voltage regulators [17] can be attached,
which are also common in contemporary CMPs. Note that,
on-chip thermal sensors will be used to observe the core
temperature on-the-fly.

7 EVALUATION

In this section, first we show the efficacy of DELICIOUS-Off-
line approach (Section 5) followed by the benchmark based
evaluation of the DELICIOUS-Online (Section 6).

7.1 DELICIOUS-Offline

First, we defineNormalized AchievedQoS (NAQ), which is
the ratio between the actually achieved QoS for the PTG,
and the maximum achievable QoS by executing the highest
versions of all tasks. We formulate NAQ as: NAQ ¼Pn

i¼1
Acc

j
iPn

i¼1
Acc

ki
i

, where ki represents the highest version of task Ti.

Next, we model a multicore along with the task-set:

� Processor System: A homogeneous multicore platform
equipped with 4 Intel x86 cores (i.e.,m ¼ 4) has been
considered. The TDP of the each core is scaled and
set as 10.5 W, by considering the Intel Xeon’s data-
sheet [1] and the runtime core power is obtained
through McPAT [30].

� Task-set:The task characteristics have been taken
from a prior technique, Prepare [10], that framed
tasks by using PARSEC benchmark applications.
The total execution requirement of a PTG (CPTG) is
the sum of the execution times of its subtasks,
CPTG ¼ Pn

i¼1 ETi. Thus, utilization Ui of a PTG can
be presented as CPTG

DPTG
. The average utilization of a

PTG is taken from a normal distribution, by consid-
ering a normalized frequency of 0.6. Given the PTG’s
utilization, we further obtain the total utilization of
the system (Sysuti) by summing up the utilization of

Fig. 5. V/F Spiking and version upgrade.

SAHA ETAL.: DELICIOUS: DEADLINE-AWARE APPROXIMATE COMPUTING IN CACHE-CONSCIOUS MULTICORE 727



all PTGs. Given the Sysuti, the total system workload
(SysWL) / system pressure can be derived by:
SysWL ¼ Sysuti

m . For a given Sysuti, all of our PTGs
have been generated by following the method pro-
posed in Prepare [10]. Given a SysWL, a set of DAGs
have been created. The number of DAGs (r) within a
set can be calculated as: r ¼ m	SysWL

Ui
. In our gener-

ated PTGs, the minimum number of tasks is equal to
5 and the maximum number of tasks is set to 20. For
each PTG in the set, the number of tasks have been
generated randomly within a preset limit. Note that,
as the individual Ui of a DAG is lower than the given
SysWL, the number of DAGs (r) within the set will
always be higher thanm.

� Task Temporal Parameters: For each Ti, based on
which portion of the leni is considered as the manda-
tory portion (Mi), we consider the following
cases [15]: (i) man low : Mi 
 Uð0:2; 0:4Þ 	 leni (low
portion of a task Ti’s length (leni) is for the manda-
tory portion). (ii) man med : Mi 
 Uð0:4; 0:6Þ 	 leni

(medium portion of a task Ti’s length (leni) is for
the mandatory portion). (iii) man high : Mi 

Uð0:6; 0:8Þ 	 leni (high portion of a task Ti’s length
(leni) is for the mandatory portion).

Scalability Analysis of DELICIOUS-Offline. Fig. 6 depicts
the mean solving time per number of tasks in each PTG
while applying the scheduling heuristic of DELICIOUS, and
the ILP based scheduling of Prepare [10]. This result shows
that, our proposed heuristic has better scalability with the
number of tasks than the ILP based algorithm. With signifi-
cantly lower running time, this heuristic generates nearly
optimal schedule like ILP. In fact, with 20 tasks, the ILP
based scheduling has almost 4	 higher execution time than
our scheduling heuristic.

Effects of System Workload. Fig. 7 depicts the NAQ
achieved by DELICIOUS-Offline for different values of
SysWL. The NAQ is derived by running each of the DAGs
that belongs to the set. Then, we have taken the average
over the obtained individual NAQ values. We observed
that, DELICIOUS is able to achieve 80% QoS, when the sys-
tem workload is low. However, the QoS is reduced by 20%
on average, when the workload is scaled up by 40%. Other
two insightful observations can also be derived from this
figure. First, as the system workload is increased in order to
maintain the number of DAGs (r) in the system, the individ-
ual Ui also increases and this eventually contributes to low
NAQ values. This happens as increasing Ui results in higher
execution length of each task and thus the possibility of
obtaining sufficient free slots in the scheduling period
reduces within the deadline. Insufficient free slots in turn
reduces the probability of obtaining feasible schedules by
selecting higher tasks’ versions.

Second, in case of manhigh, the reduction in achieved
NAQ is reduced comparatively lower than the manmed and
manlow, while increasing the value of SysWL. This can be
attributed to the fact that, when mandatory portions of the
individual tasks are high, the length of the optional portions
will be low. This results into the variance among the differ-
ent versions of a task become less. Due to fewer variations
among the optional parts of a task, there will be less impact
on the achieved accuracy. On the other hand, in case of
manlow, we observe that, the reduction in NAQ is higher
than the other two, and manmed offers a performance
between manhigh and manlow. However, the NAQ sharply
decreases while SysWL goes up. We also compared our strat-
egy with prior arts, Task Deploy [37] and Prepare [10] and
the results are shown in Fig. 8. Towards a fair comparison
with Task Deploy, we computed the overall energy con-
straint based on the considered TDP of the experimental
framework of DELICIOUS. This power limit is also used in
case of Prepare. Next, we consider our comparison by uni-
formly choosing Mi of the tasks between 20% to 80% of leni.
As execution demand of individual tasks goes up (due to
increase in SysWL), DELICIOUS maintains improved QoS
by achieving higher NAQ than Task Deploy. DELICIOUS is
able to maintain 70% QoS at 70% workload where
Task Deploy achieves 60% QoS. This is because the consid-
ered overall energy limit in Task Deploy would scale up
with the higher SysWL. Moreover, Task Deploy also allows
unlimited tasks migration, that incurs additional overhead.
However, for all workloads, Prepare shows better NAQ
among all policies due to employment of ILP based optimal
scheduling, but, heuristic-based strategy of DELICIOUS-
Offline also offers a performance close to this optimal values,
with a remarkably low computational time.

7.2 DELICIOUS-Online

7.2.1 Simulation Setup

In this work, a homogeneous tiled CMP having 4 tiles is sim-
ulated in the gem5 full system simulator [8]. Each tile has an
Intel x86 Xeon OoO core along with its private L1 data and
instruction caches. The L2 cache is logically shared, yet phys-
ically distributed among the tiles, where each tile contains an
L2-bank of the same size. After collecting the periodic perfor-
mance traces from gem5, it is sent to McPAT [30] to generate

Fig. 6. Running time: Prepare (ILP) versus DELICIOUS-Offline. Fig. 7. Change in QoS (NAQ) for different system loads.

Fig. 8. Change in QoS (NAQ): Comparison with Prior Arts.

728 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023



the power traces. Basically, we derive dynamic power con-
sumption for individual on-chip components by executing
McPAT. As McPAT assumes uniform on-chip temperature
for estimating leakage power, which is impractical, we com-
pute the component-wise leakage power by considering the
temperatures of individual on-chip components at the end of
the last period [24], [25], [26]. Eventually, we derive the total
power consumption from dynamic and leakage power esti-
mations, the power values are sent to HotSpot 6.0 [48]
towards generating temperature traces. Based on prior anal-
yses [11], [12], the span of this periodic interval is set to
0.33ms (i.e., 1.0M cycles at 3.0 GHz frequency), duringwhich
we assume the temperature across the CMP is stable. We set
BackPer as last 5% time-span of the interval. The HotFloor-
Plan module of HotSpot 6.0 generates floorplan of the CMP
once at the beginning by considering the component wise
area estimation from McPAT. Our detailed system parame-
ters used in the simulations by considering 22 nm technology
nodes are listed in Table 5.

Table 3 lists the V/F values for Intel x86 Xeon cores, for
which power values are obtained from McPAT. The
changes in leakage power for different temperatures are
also obtained from McPAT and are shown in Table 4, where
the leakage increases at higher rate at the higher tempera-
tures. To simplify our online computation in Algorithm 4,
we adopt piecewise linear approximation for each range of
10 �C to compute leakage consumption at any tempera-
ture [11], [12]. In our simulation framework, each core runs
at the Base V/F level with the effective frequency (feff ) of
3.0 GHz. For our experiments, we also consider another V/
F magnitude (Med) between Turbo and Base. Note that, a
core can execute tasks in all of these V/F, however, core can
maintain Base V/F without any potential thermal threats,
but the remaining two values are suggested to be main-
tained for particular time-spans, provided by the vendor.
We set TLim (of Algorithm 6) as 4 �C.

To set Curr Interval, we evaluated nine PARSEC appli-
cations for DOA blocks on our baseline system with 0.5 M �
2.0 M in 0.5 M increments, by executing each application for
100 M cycles within RoI, and the results are shown in Fig. 9.
The results show that, the cache access patterns for DOA
blocks converge at 1.0 M for most of the applications, which
is hence considered here as Curr Interval, which is also in
line with prior research [12]. For a 1.0 M period-length, our

evaluation shows that 89� 93% of the LLC blocks are DOA,
on average. Such salient presence of DOA blocks further
justifies the sufficiency of using Dead_bit to detect the dead
entries in Algorithm 5.

7.2.2 Task-Set

Our tasks are generated by using PARSEC benchmark
suite [7], which can be fitted in an AC based paradigm
through the loop perforation technique [3], [43]. Based on
these prior studies, we framed our task-set by defining each
task with a couple of PARSEC applications, where the for-
mer one is executed as Mi and the latter one is representing
Oi. For creating multiple versions of Oi, the latter applica-
tion will have different executable files, with various execu-
tion lengths. We have constructed each Mi and Oi by using
two copies of two different PARSEC applications, for exam-
ple, for a task, T1, M1 is framed by two copies of Black,
whereas the O1 is constructed by two copies of Body. The
task-set is detailed in Table 6, where the execution lengths
(Exec_Length) are given in million cycles in the region of
interest (RoI) for the respective Mi’s and Oi’s. For example,
while running T2 with its first version of Oi (having a length
of 100 M cycles), 2 copies of Stream will be executed for
200 M cycles concurrently in our considered CMP to com-
plete Mi, and after that, to complete Oi, 2 copies of Can will
be executed concurrently on the same set of cores. Note
that, the execution length of each task in Table 6 is set by
scaling the task lengths given in Table 2. The versions of Oi

selected by DELICIOUS-Offline (Sel. Oi [EL]) are also given
in Table 6. We have used a 4 core based CMP, where each
task’s Mi and Oi run on 2 cores. Two cores of this CMP
implies a single processor-core, Pi in Fig. 3.

7.2.3 LLC Resizing, Peak Temperature, and

Performance Improvements

DELICIOUS -Offline schedules the task-set where T2 and T6

are scheduled with lower Oi. Both of these tasks’ Mi’s

TABLE 5
System Parameters [CC: Clock Cycle]

Parameter Value Parameter Value

ISA Intel x86 L1-I 64 KB, 4Way, 3CC
#Cores (type) 4 (Xeon) L1-D 64 KB, 4Way, 3CC
Base V/F (Base) 1.0 V, 3.0 GHz L2 1 MB, 16Way, 12CC
Med. V/F (Med) 1.2 V, 3.4 GHz Cache LRU, 64B blocks
Turbo V/F (Turbo) 1.5 V, 3.9 GHz #Cache-Levels 2
VR-Speed 20 mV/ns Cache model SNUCA
Power_gate_overhead 60 ns DRAM latency 70 ns
ROB Size 200 Technology 22 nm
Dispatch/Issue width 8 Ambient Temp. 47 �C

TABLE 3
V/F Settings and Dynamic Power Values for Intel x86 OoO Core

(at 22 nm Node)

V/F setting (V/GHz) 0.6/2.4 1.0/3.0 1.2/3.4 1.5/3.9

Dynamic Power (W) 3.759 4.498 5.214 5.942

TABLE 4
Temperature versus Leakage Power for Intel x86 OoO Core

(at 22 nm Node)

Temperature (�C) 67 77 87 97 107 117

Leakage Power (W) 0.364 0.516 1.021 1.956 3.106 5.235

Fig. 9. Amount of DOA Blocks for different Curr Interval.

SAHA ETAL.: DELICIOUS: DEADLINE-AWARE APPROXIMATE COMPUTING IN CACHE-CONSCIOUS MULTICORE 729



consist of memory intensive PARSEC applications (stream
and x264). Presence of dead blocks at the LLC for stream
and x264 enables Algorithm 5 to turn off a number of cache
ways, that assists Algorithm 6 to maintain Turbo V/F for a
longer time. We also experimented with a Med V/F level,
higher than Base V/F but lower than Turbo, by running
the core at this level during V/F Spiking. The cores can exe-
cute tasks at Med for longer time, as the rate of temperature
change at this level is slower than Turbo. Our simulation
results in Fig. 10 show the reduction in execution lengths of
each task forMed and Turbo, where the offered thermal ben-
efits at Med is however compensated by the performance
benefits of the Turbo. Both Med and Turbo offer almost simi-
lar performance benefits by reducing execution length 8.5%
and 8.2%, respectively, without violating the temperature
threshold. However, the execution length for Turbo is
slightly higher for T4, a memory intensive task, that is able
to maintain Turbo residency for a longer time at some initial
execution phases, which results into higher temperature,
and thus it lacks some chances of V/F Spiking later. In DELI-
CIOUS, we have chosen Turbo for executing tasks during V/
F Spiking, however, one can also choose Med as a promising
alternative.

Fig. 11 shows the average and minimum LLC sizes main-
tained for each task, and the respective reductions in core tem-
perature are also depicted. Algorithm 5 is able to reduce peak
temperature by 5.8 �C on an average by leveraging the gener-
ated thermal buffers through gated LLC ways, that elongates

the vendor defined span (of 10 ms) remarkably by 7% on an
average (Fig. 10), at Turbo. Overall, DELICIOUS-Online
improves QoS by executing all tasks at their highest version,
and the reduction in execution span also generates slacks at the
end of each task. The generated amount of online slacks are sig-
nificant, which are in the range of 6:2� 10:1% of their actual
execution span (generated offline) across the tasks. The
updated versions and the amount of generated slacks are listed
in Table 7. However, by employing LLC resizing induced V/F
Spiking,DELICIOUS-Online noticeably improves achieved QoS
(byDELICIOUS-Offline) of the task-set by 8.3%.

7.2.4 Comparison With Prior Works

We compared DELICIOUS with two recent prior works, Pre-
pare [10], that refines the schedule (generated offline) by
employing an LLC miss induced DVFS technique, and,
GDP [33], that employs a threshold temperature based tech-
nique to apply DVFS. Fig. 12 depicts howDELICIOUS outper-
forms the prior policies in terms of the maximum reduction in
peak temperature of the cores during the slacks. The longer
slack intervals in DELICIOUS offer a maximum reduction of
up to 9.2 �C, which is up to 7.8 and 6.7 �C for Prepare andGDP,
respectively. Table 8 shows, DELICIOUS surpasses the prior
techniques in terms of online QoS improvement, as eviction of
dead blocks also plays a significant role in boosting up the per-
formance along with the V/F Spiking. Prepare offers an online
QoS improvement by 5.3%, which is 8.3% in case of DELI-
CIOUS-Online (not applicable for GDP). In fact, our LLC resiz-
ing is also able to reduce core peak temperature by 5.8 �C,
which is 5.1 �C and 4.9 �C for Prepare and GDP, respectively.
The threshold temperature based DVFS in GDP scales down
the core’s V/F that does not allow thermal overshoot, whereas
our V/F Spiking mechanism considers both TDP and critical
temperature to prevent temperature overshoot with elongated
time-span for Turbo frequency. Prepare, on the other hand, con-
trols peak temperature by introducing energy-adaptive DVFS
at the cores.

TABLE 6
Tasks Formation With PARSEC

Tasks Benchmarks (Mi, Oi) EL (½Mi�, ½Oi�) Sel. Oi [EL]

T1 Black (2), Body (2) [80], [40] #1 ½40�
T2 Stream (2), Can (2) [200], ½100; 160; 200� #2 ½160�
T3 Ded (2), Fluid (2) [200], ½100; 140; 200� #3 ½200�
T4 Fluid (2), Freq (2) [400], ½140; 240� #2 ½240�
T5 Body (2), X264 (2) [380], ½40; 120; 280� #2 ½280�
T6 X264 (2), Ded (2) [200], ½40; 80� #1 ½40�
(Acronyms: Blackscholes (Black), Bodytrack (Body), Canneal (Can), Dedup
(Ded), Fluidanimate (Fluid), Freqmine (Freq), Streamcluster (Stream), and
X264 (X264)). The execution lengths (ELs) are in million cycles. Black (2)
implies 2 copies of Black, which is the same for others.

Fig. 10. Comparing execution length:Med and Turbo during V/F spiking.

Fig. 11. Reduction in LLC size and peak temperature.

TABLE 7
Outputs of DELICIOUS-Offline and Online

Tasks Mapped Scheduled Updated Amount of

Core Version (Offline) Version (Online) Slack

T1 P1 1 1 8.7%
T2 P1 2 3 9.3%
T3 P2 3 3 10.1%
T4 P2 2 2 7.05%
T5 P1 2 2 6.2%
T6 P2 1 2 9.7%

Improvement in Achieved QoS 8.3%

Fig. 12. Maximum reduction in peak temperature at slacks.

730 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023



8 CONCLUSION

Improving result-accuracy in AC based real-time paradigms
without violating power constraints of the underlying hard-
ware has recently become an active research avenue. Execution
of the AC real-time applications is split into two parts: (i) the
mandatory part, execution of which provides a result of accept-
able quality, followed by (ii) the optional part, which can be exe-
cuted partially or fully to refine the initially obtained result
towards improving the result-accuracywithout deadline viola-
tion. In this paper, we introduce DELICIOUS, a novel hybrid
offline-online scheduling strategy for AC real-time dependent
tasks. By employing an efficient heuristic algorithm, DELI-
CIOUS first generates a schedule for a dependent AC task-set
at a base processing frequency with an objective to maximize
the results-accuracy, while respecting the system-wide con-
straints. At runtime, DELICIOUS next employs a prudential
way on-off based LLC resizing induced thermal management
to enhance the processing speed at the cores for a stipulated
time-span without violating power budget, called as V/F Spik-
ing, to reduce the tasks’ execution lengths. The generated slack
by the reduced execution length can be exploited either to
enhance QoS further by dynamically adjusting the optional
part or to reduce temperature by enabling sleep at the cores. In
addition with surpassing the prior art, DELICIOUS offers 80%
result-accuracy with our scheduling strategy, which is
enhanced by 8.3% in online, while reducing runtime peak tem-
perature by 5.8 �C on average within deadline, as shown by a
benchmark based evaluation on a 4-core basedCMP.

ACKNOWLEDGMENTS

For the purpose of open access, the author has applied a
Creative Commons Attribution (CC BY) license to any
Author Accepted Manuscript version arising. Sangeet Saha
and Shounak Chakraborty are equal contribution to this
work.

REFERENCES

[1] 12th generation intel� coreTM processor family, 2021.Accessed:Mar.
28, 2022. [Online]. Available: https://www.intel.com/content/
www/us/en/products/docs/processors/core/core-technical-reso
urces.html

[2] Overview information for Intel turbo boost technology, 2022.
Accessed: Aug. 31, 2022. [Online]. Available: https://www.intel.
com/content/www/us/en/support/articles/000007359/process
ors/intel-core-processors.html

[3] S. Achour and M. C. Rinard, “Approximate computation with out-
lier detection in topaz,” SIGPLANNot., vol. 50, pp. 711–730, 2015.

[4] M. Arora, S. Manne, I. Paul, N. Jayasena, and D. M. Tullsen,
“Understanding idle behavior and power gating mechanisms in
the context of modern benchmarks on CPU-GPU integrated sys-
tems,” in Proc. IEEE 21st Int. Symp. High Perform. Comput. Archit.,
2015, pp. 366–377.

[5] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez, “Optimal
reward-based scheduling for periodic real-time tasks,” IEEE
Trans. Comput., vol. 50, no. 2, pp. 111–130, Feb. 2001.

[6] A. Bhuiyan et al., “Energy-efficient real-time scheduling of DAG
tasks,” ACM Trans. Embedded Comput. Syst., vol. 17, 2018,
Art. no. 84.

[7] C. Bienia et al., “The PARSEC benchmark suite: Characterization
and architectural implications,” in Proc. 17th Int. Conf. Parallel
Architectures Compilation Techn., 2008, pp. 72–81.

[8] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Comput.
Architecture News, vol. 39, pp. 1–7, 2011.

[9] K. Cao, G. Xu, J. Zhou, T. Wei, M. Chen, and S. Hu, “QoS-adaptive
approximate real-time computation for mobility-aware IoT life-
time optimization,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 38, no. 10, pp. 1799–1810, Oct. 2019.

[10] S. Chakraborty et al., “Prepare: Power-aware approximate real-
time task scheduling for energy-adaptive QoS maximization,”
ACM Trans. Embedded Comput. Syst., vol. 20, 2021, Art. no. 62.

[11] S. Chakraborty and H. K. Kapoor, “Exploring the role of large cen-
tralised caches in thermal efficient chip design,” ACM Trans. Des.
Autom. Electron. Syst., vol. 24, 2019, Art. no. 52.

[12] S. Chakraborty and M. Sj€alander, “WaFFLe: Gated cache-ways
with per-core fine-grained DVFS for reduced on-chip temperature
and leakage consumption,” ACM Trans. Architecture Code Optim.,
vol. 18, 2021, Art. no. 55.

[13] T. Chantem, R. P. Dick, and X. S. Hu, “Temperature-aware sched-
uling and assignment for hard real-time applications on
MPSoCs,” in Proc. Des. Autom. Test Europe, 2008, pp. 288–293.

[14] J. Donald and M. Martonosi, “Techniques for multicore thermal
management: Classification and new exploration,” in Proc. 33rd
Int. Symp. Comput. Archit., 2006, pp. 78–88.

[15] A. Esmaili et al., “Energy-aware scheduling of task graphs with
imprecise computations and end-to-end deadlines,” ACM Trans.
Des. Autom. Electron. Syst., vol. 25, 2019, Art. no. 11.

[16] A. Esmaili et al., “Modeling processor idle times in MPSoC plat-
forms to enable integrated DPM, DVFS, and task scheduling sub-
ject to a hard deadline,” in Proc. 24th Asia South Pacific Des. Autom.
Conf., 2019, pp. 532–537.

[17] S. Eyerman and L. Eeckhout, “Fine-grained DVFS using on-chip
regulators,” ACM Trans. Archit. Code Optim., vol. 8, no. 1, 2011,
Art. no. 1.

[18] P. Faldu and B. Grot, “Leeway: Addressing variability in dead-
block prediction for last-level caches,” in Proc. 26th Int. Conf. Paral-
lel Archit. Compilation Techn., 2017, pp. 180–193.

[19] Y. Ge, P. Malani, and Q. Qiu, “Distributed task migration for ther-
mal management in many-core systems,” in Proc. Des. Autom.
Conf., 2010, pp. 579–584.

[20] Y. Ge, Q. Wu, and Q. Qiu, “A multi-agent framework for thermal
aware task migration in many-core systems,” IEEE Trans. Very Large
Scale Integr. Syst., vol. 20, no. 10, pp. 1758–1771, Oct. 2012.

[21] B. Goel et al., “Chapter two - Techniques to measure, model, and
manage power,” Adv. Comput., vol. 87, pp. 7–54, 2012.

[22] Z. Guo et al., “Energy-efficient multi-core scheduling for real-time
DAG tasks,” in Proc. Euromicro Conf. Real-Time Syst., 2017,
pp. 22:1–22:21.

[23] Z. Guo, A. Bhuiyan, D. Liu, A. Khan, A. Saifullah, and N. Guan,
“Energy-efficient real-time scheduling of dags on clustered multi-
core platforms,” in Proc. IEEE Real-Time Embedded Technol. Appl.
Symp., 2019, pp. 156–168.

[24] V. Hanumaiah and S. Vrudhula, “Energy-efficient operation of
multicore processors by DVFS, task migration, and active cool-
ing,” IEEE Trans. Comput., vol. 63, no. 2, pp. 349–360, Feb. 2014.

[25] V. Hanumaiah, S. Vrudhula, and K. S. Chatha, “Maximizing per-
formance of thermally constrained multi-core processors by
dynamic voltage and frequency control,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Des. - Dig. Tech. Papers, 2009, pp. 310–313.

[26] V. Hanumaiah, S. Vrudhula, and K. S. Chatha, “Performance opti-
mal online DVFS and task migration techniques for thermally con-
strained multi-core processors,” IEEE Trans. Comput.-Aided Des.
Integr. Circuits Syst., vol. 30, no. 11, pp. 1677–1690, Nov. 2011.

TABLE 8
Comparison With Prior Works

Techniques DELICIOUSPrepare [10] GDP [33]

Online QoS Scaled up 8.3% 5.3% Not
Applicable

Average Runtime
Peak

5.8 �C 5.1 �C 4.9 �C

Temperature
Reduction

SAHA ETAL.: DELICIOUS: DEADLINE-AWARE APPROXIMATE COMPUTING IN CACHE-CONSCIOUS MULTICORE 731

https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.intel.com/content/www/us/en/products/docs/processors/core/core-technical-resources.html
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html
https://www.intel.com/content/www/us/en/support/articles/000007359/processors/intel-core-processors.html


[27] K. Kanoun, N. Mastronarde, D. Atienza, and M. van der Schaar,
“Online energy-efficient task-graph scheduling for multicore
platforms,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 33, no. 8, pp. 1194–1207, Aug. 2014.

[28] J. Kong et al., “Recent thermal management techniques for micro-
processors,” ACM Comput. Surv., vol. 44, 2012, Art. no. 13.

[29] J. Lee and N. S. Kim, “Analyzing potential throughput improve-
ment of power- and thermal-constrained multicore processors by
exploiting DVFS and PCPG,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol. 20, no. 2, pp. 225–235, Feb. 2012.

[30] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.
Jouppi, “McPAT: An integrated power, area, and timing modeling
framework for multicore and manycore architectures,” in Proc.
IEEE/ACM 42nd Annu. Int. Symp. Microarchit., 2009, pp. 469–480.

[31] C. Mazumdar, P. Mitra, and A. Basu, “Dead page and dead block
predictors: Cleaning TLBs and caches together,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit., 2021, pp. 507–519.

[32] I. M�endez-D�ıaz et al., “Energy-aware scheduling mandatory/
optional tasks in multicore real-time systems,” Int. Trans. Oper.
Res., vol. 24, pp. 173–198, 2017.

[33] A. Mirtar, S. Dey, and A. Raghunathan, “Joint work and voltage/
frequency scaling for quality-optimized dynamic thermal man-
agement,” IEEE Trans. Very Large Scale Integr. Syst., vol. 23, no. 6,
pp. 1017–1030, Jun. 2015.

[34] S. Mittal, “A survey of architectural techniques for improving
cache power efficiency,” Sustain. Comput. Informat. Syst., vol. 4,
pp. 33–43, 2014.

[35] S. Mittal, “A survey of techniques for approximate computing,”
ACM Comput. Surv., vol. 48, no. 4, 2016, Art. no. 62.

[36] L. Mo, A. Kritikakou, and O. Sentieys, “Energy-quality-time opti-
mized task mapping on DVFS-enabled multicores,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 37, no. 11, pp. 2428–2439,
Nov. 2018.

[37] L. Mo, A. Kritikakou, and O. Sentieys, “Approximation-aware
task deployment on asymmetric multicore processors,” in Proc.
Des. Autom. Test Europe Conf. Exhib., 2019, pp. 1513–1518.

[38] S. Narayana, P. Huang, G. Giannopoulou, L. Thiele, and R. V. Pra-
sad, “Exploring energy saving for mixed-criticality systems on
multi-cores,” in Proc. IEEE Real-Time Embedded Technol. Appl.
Symp., 2016, pp. 1–12.

[39] S. Pagani, J. -J. Chen, and J. Henkel, “Energy and peak power effi-
ciency analysis for the single voltage approximation (SVA)
scheme,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 34, no. 9, pp. 1415–1428, Sep. 2015.

[40] M. Powell et al., “Gated-Vdd: A circuit technique to reduce leak-
age in deep-submicron cache memories,” in Proc. Int. Symp. Low
Power Electron. Des., 2000, pp. 90–95.

[41] R. Rao, S. Vrudhula, C. Chakrabarti, andN. Chang, “An optimal ana-
lytical solution for processor speed control with thermal constraints,”
inProc. Int. Symp. LowPower Electron. Des., 2006, pp. 292–297.

[42] J. Roeder et al., “Energy-aware scheduling of multi-version tasks
on heterogeneous real-time systems,” in Proc. 36th Annu. ACM
Symp. Appl. Comput., 2021, pp. 501–510.

[43] S. Sidiroglou-Douskos et al., “Managing performance vs. accuracy
trade-offs with loop perforation,” in Proc. 19th ACM SIGSOFT
Symp. 13th Eur. Conf. Found. Softw. Eng., 2011, pp. 124–134.

[44] G. L. Stavrinides andH.D.Karatza, “Schedulingmultiple task graphs
with end-to-end deadlines in distributed real-time systems utilizing
imprecise computations,” J. Syst. Softw., vol. 83, pp. 1004–1014, 2010.

[45] K. Stavrou and P. Trancoso, “TSIC: Thermal scheduling simulator
for chip multiprocessors,” in Proc. 10th Panhellenic Conf. Adv. Infor-
mat., 2005, pp. 589–599.

[46] C. Tan, T. S. Muthukaruppan, T.Mitra, and L. Ju, “Approximation-
aware scheduling on heterogeneous multi-core architectures,” in
Proc. 20th Asia South Pacific Des. Autom. Conf., 2015, pp. 618–623.

[47] H. Yu, B. Veeravalli, and Y. Ha, “Dynamic scheduling of impre-
cise-computation tasks in maximizing QoS under energy con-
straints for embedded systems,” in Proc. Asia South Pacific Des.
Autom. Conf., 2008, pp. 452–455.

[48] R. Zhang et al., “HotSpot 6.0: Validation, acceleration and exten-
sion,” Tech. Rep. CS-2015-04, Univ. Virginia, Charlottesville, VA,
2015.

[49] J. Zhou, J. Yan, T. Wei, M. Chen, and X. S. Hu et al., “Energy-adap-
tive scheduling of imprecise computation tasks for QoS optimiza-
tion in real-time MPSoC systems,” in Proc. Des. Autom. Test Europe
Conf. Exhib., 2017, pp. 1402–1407.

Sangeet Saha received the PhD degree in informa-
tion technology from the University of Calcutta,
India, in 2018 as a TCS (TATA) research scholar. He
is currently associated with the Department of Com-
puter Science, University of Huddersfield, U.K. as a
lecturer and with the Embedded and Intelligent Sys-
tems (EIS) Research Group, University of Essex,
U.K. as a visiting fellow. After submitting his PhD the-
sis in 2017, he worked as a visiting scientist with
Indian Statistical Institute (ISI) Kolkata, India. From
May 1, 2018, to October 31, 2021, he was a senior

research officer in EPSRC National Centre for Nuclear Robotics, based in
the EIS Lab, University of Essex. He is a recipient of YERUN Research
Mobility Award 2021. His current research interests include real-time sched-
uling, scheduling for reconfigurable computers, real-time and fault-tolerant
embedded systems, and cloud computing. He published several of his
research contributions in conferences like CODES+ISSS, ISCAS, Euromi-
cro DSD, and in journals like ACM Transactions on Embedded Computing
Systems, IEEE Transactions on Computer-Aided Design of Integrated Cir-
cuits and Systems, IEEE Transactions on Systems, Man, and Cybernetics:
Systems.

Shounak Chakraborty (Senior Member, IEEE)
received the PhD degree in computer science and
engineering from IIT Guwahati, India, in February
2018. He is currently associated with the Depart-
ment of Computer Science, NTNU, Trondheim, Nor-
way as a post-doc researcher (through Marie Curie
Individual Fellowship from European Union [Grant
No. 898296]). Primarily, his broad area of research
is computer architecture, more specifically, his
research interests include high performance com-
puter architectures, emerging memory technolo-

gies, thermal aware architectures, and compilers. He has published several
of his research contributions in conferences like DATE, ASAP, CODES
+ISSS, ACM SAC, IPDPS, VLSI-SoC, GLSVLSI, CF, and in journals like
ACM Transactions on Architecture and Code Optimization, ACM Transac-
tions on Embedded Computing Systems, IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on
Sustainable Computing, The Journal of Supercomputing (Springer). He also
serves as reviewer of Journal of Supercomputing (Springer), ACMTransac-
tions on EmbeddedComputing Systems.

Sukarn Agarwal received the PhD degree in
computer science and engineering from IIT
Guwahati, India, in March 2020. He is a research
associate with the School of Informatics, Univer-
sity of Edinburgh (U.K.). His research interests
include emerging memory technologies, memory
system design, network-on-chip design and ther-
mal aware chip management. He published
many of his research contributions in conferences
like ASAP, VLSI-SoC, GLS-VLSI, ISVLSI, etc.
and also published several of his research out-

comes in journals like IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, ACM Transactions on Embedded Computing
Systems, IEEE Transactions on Computers, and ACM Transactions on
Design Automation of Electronic Systems.

Rahul Gangopadhyay is associated as a post-
doctoral researcher with the Moscow Institute of
Physics and Technology, Russia. Previously, he
was a postdoc in St. Petersburg State university,
Russia. His broad research domain is in Graph
Theory, and specifically his research interests
include hypergraph, rectilinear crossing, etc. He
has published many of his research outcomes in
journals like Computational Geometry, Graphs
and Combinatorics, etc.

732 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 34, NO. 2, FEBRUARY 2023



Magnus Sj€alander received the PhD degree
from the Chalmers University of Technology, in
2008. He is working as a professor with the Nor-
wegian University of Science and Technology
(NTNU). Before joining NTNU, in 2016 he has
been a researcher with the Chalmers University
of Technology, Florida State University, and
Uppsala University. His research interests include
hardware/software co-design (compiler, architec-
ture, and hardware implementation) for high-effi-
ciency computing.

Klaus McDonald-Maier is currently the head of
the Embedded and Intelligent Systems Labora-
tory and director research, University of Essex,
Colchester, U.K. He is also the founder of Ultra-
SoC Technologies Ltd., the CEO of Metrarc Ltd.,
and a visiting professor with the University of
Kent. His current research interests include
embedded systems and system-on-chip design,
security, development support and technology,
parallel and energy-efficient architectures, com-
puter vision, data analytics, and the application of

soft computing and image processing techniques for real-world prob-
lems. He is a member of VDE and a fellow of the BCS and IET.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

SAHA ETAL.: DELICIOUS: DEADLINE-AWARE APPROXIMATE COMPUTING IN CACHE-CONSCIOUS MULTICORE 733



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


