
 

 

Abstract—Digitalization has become a key aspect of making the 

maritime industries more innovative, efficient and fit for future 

operations. One of the most attractive aspects is the concept of 

digital twins, which refers to a digital replica of physical assets, 

processes and systems that can be used as advanced tools for 

design, operation, and maintenance. This paper introduces the 

development of the digital twin of the research vessel Gunnerus in 

Norway, which will be a significant scientific and operational 

achievement for the maritime industry, making efficient and safe 

offshore operations possible. It enables data exchange safely and 

easily between different sub-systems, modules, and various 

applications. Thus, the twin ship can provide an integrated view of 

the ship’s various physical and behavioral aspects in different 

stages, and allow simultaneous optimization of functional 

performance requirements. In addition, it enables advanced 

control and optimization, e.g., creating more reliable prediction 

for flexible objectives (time, output, emissions, fuel consumption), 

and executing day-ahead and long-term planning for operations. 

Several related applications are presented in the end to confirm 

the effectiveness of the digital twin ship system. 

Index Terms—Digital twin, system design and realization, co-

simulation. 

I. INTRODUCTION 

ORWEGIAN maritime industrial cluster is a world leader 

in developing complex, customized ships and offshore 

vessels to the global market, particularly for demanding 

operations, where safety and environment are focused areas [1]. 

Today’s maritime engineering systems are operating in highly 

dynamic environments. The challenge is to develop a concept 

leveraging on the different levels of system specific services 

already provided by manufacturers, where safety and efficient 

performance of complex integrated systems can be managed 

from the early stages of a new vessel manufacturing project and 

throughout the vessel’s life cycle. Advanced marine systems 

should be able to decide between different actions, adapt to 

dynamic environments and execute high-level task 

specifications without explicitly being programmed. To meet 

requirements, control system will need access to very realistic 

models of the current state of the process, and in addition, their 

own behavior in interaction with the real-world environment.  

Modern marine vessels operate increasingly autonomously 

through strongly interacting subsystems [2]. Systems and sub-

systems exchange data and make coordinated operational 

decisions, ideally without any user interaction. Designing, 

operating and life cycle service to support such vessels is a 

complex and intricated engineering task requiring an efficient 

development approach to consider the mutual interaction 

between subsystems and the inherent multi-disciplinarity. 

Scalable simulation technologies should take the lead in this 

process. Furthermore, the work flow in maritime industry does 

not stop after vessel delivery. Through system updating or due 

to life cycle maintenance, subsystems can be changed and 

updated. To make sure of that, product design and useability 

need to be coupled already during early stages of design, which 

requires traceability through a performance data management 

system that spans the entire vessel lifecycle. 

The recent years have seen an increasing interest in 

developing and employing digital twins [3], big data [4] and 

cloud computing for maritime industrial system design, ship 

intelligence, and operational service. Increased use of advanced 

tools for designing and evaluating system performance, safety 

and structural integrity are generating a range of digital models 

of a vessel and its equipment.  

This paper presents a digital twin of the research vessel 

Gunnerus. As illustrated in Fig. 1, it is a digital open marine 

industrial infrastructure not only for overall system design, 

allowing configuration of systems and verification of 

operational performance, but also more focusing on providing 

early warning, life cycle service support, and system behavior 

prediction. The maritime digital twin models should be 

constructed prior to or in parallel with the actual building of a 

vessel, enabling virtual manufacturing and commissioning, 

integration testing and analysis in the earlier stage. During the 

operational phase, the digital twin becomes a system for 

integration, processing and analysis of the operational data. 

Ideally, the digital twin will provide decision support and 

predictions for a ship owner, subsystem manufacturers and 

safety training/improvement for crew and operators. It will 

enable the use of model-based/data-based simulation in 

combination with sensor measurements from the real vessel, 

without the need for physical inspections. The digital twin 

tracks information on all parameters to define how each 

individual module and sub modules behaves over its entire 

useful life, including the initial design and further refinement, 

manufacturing related deviations, modifications, uncertainties, 

updates as well as sensor data from on-board systems, 

maintenance history and all available historical and fleet data 

obtained using data mining. All research outcomes will be 

further used for ships that are either autonomous or remote-

controlled for safety and reliability enhancement [5]. 
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Using digital twins for marine engineering could bring the 

following advantages. 

1. Reduce development time and enhance production 

efficiency: provide an integrated view on the vessel’s various 

physical and behavioral aspects in all stages, allow optimization 

of all functional performance requirements throughout the 

entire development cycle. 

2. Improve operational flexibility and reduce cost: create 

more predictable, faster starts for flexible objectives, execute 

day-ahead and long-term planning for improved operations, 

reuse the sub system models, data and operational sources. 

3. Enhance the life cycle value chain and improve the 

system performance and health conditions: allow data 

exchange between different sub-systems, modules, and 

proprietary applications; make remote access systems assure 

system availability via digital twins, and early warnings utilized 

for short time technical support.  

4. Improve quality and efficiency of maritime product and 

operation approval and certification processes: combine 

simulation models and sensor data on an open platform; 

facilitate the design and verification of cyber-physical systems.  

II. RELATED WORK 

The digital agenda is one of the pillars of the Europe's growth 

strategy. It lists ship intelligence as one of the main areas 

through which to achieve growth. In marine system and 

transport, digitalization can significantly improve design, 

operation and management through accurate information on 

operational and infrastructure conditions and on the location of 

vehicles and/or system behavior models. Better access to and 

sharing of digital data (traffic, travel, vehicle, cargo etc.) for 

both public and private stakeholders along the supply chain can 

foster seamless information flows, and open up a wide range of 

new business opportunities.  

The last few years have witnessed a strong, renewed interest 

in digital twin technologies. Their applications include 

manufacturing, agriculture, energy management, automotive 

industry [3]. Digital twins integrate artificial intelligence, 

machine learning and data analytics with data to create living 

digital models that update and change as their physical 

counterparts’ change. A digital twin is a model of a physical 

asset, implemented for example as a mathematical model, an 

information model or a visual model. Machine learning offers a 

way to create and update models of the physical system based 

on sampled data [6]. In various industrial sectors, digital twins 

are being used to optimize the operation and maintenance of 

physical assets, systems and manufacturing processes. It is a 

formative technology for the Industrial Internet of Things 

(IIoT), where physical objects can live and interact with other 

machines and people virtually. A digital twin can be used for 

monitoring, diagnostics and prognostics to optimize asset 

performance and utilization. Therefore, complex prognostics 

and intelligent maintenance system can leverage the use of 

digital twins in finding the root cause of issues and improve 

system productivity.  

The main difference between digital twins and generic 

models is that the former are specific to, and reflect their 

physical counterparts, with dynamic data flow interaction. 

Normally, modelling and simulation is used to build a system 

and sub systems in a single alone software environment for 

design, control and optimization. When the complexity of the 

whole system increasing to a certain level, such as a surface 

vessel with multi-domain components, modelling everything in 

one software is almost impossible. The digital twin follows its 

corresponding real life twin through its life cycle, through 

collecting sensor measurements, simulation model updates and 

software upgrades.  

Models are key issues in a digital twin. The last decades have 

seen an increasing interest in developing computer-based 

design and analysis tools for different applications including 

marine industry. First, some general-purpose simulation 

environments are well-known in research and education, 

including MATLAB/Simulink [7], Modelica [8], etc. In parallel, 

a great number of specialized analysis software for structures, 

hydrodynamics, computational fluid dynamics, power systems 

and control systems are currently used in the design process to 

assess special sub-system performance. Integrating the above 

two approaches in maritime design processes is non-trivial due 

to differences in the emphasis on system modularity and model 

accuracy in the software.  

The next key issue is data sharing and models integration. 

Functional Mockup Interface (FMI) [9] offers model exchange 

and co-simulation mechanism to couple different models. The 

essential difference is that units compliant with FMI for model 

exchange expect to be solved by a given master algorithm, 

while those for co-simulation, on the other hand, contain a 

solver so that the master algorithm is only required for 

coordination of data exchange. A co-simulation mechanism 

provides a solution to how to specify the parameters and 

variables to exchange and how to make it happen.  

In essence for maritime industry, the digital twin should be 

able to take advantage of all digital information available for an 

asset: system and data information model, 3D visualization 

models, mathematical models, dependability models, condition 

and performance indicators and data analytics. An increasing 

number of systems and processes onboard of a modern vessel, 

are dependent on computers and networks for monitoring and 

control. Feedback loops from system measurements are 

included in the computations and affect the controllers.  

More importantly in current maritime industry, a balance 

 

 
 

Fig. 1. Digital twin of Gunnerus ship. 



 

between the number of defined domain models and the scale of 

the whole system will be met to make the digital twin system 

flexible and fast enough. Maritime systems communicate 

through a number of formats and protocols. The variety in 

protocols and in installed instruments and systems makes it 

difficult integrate with new systems, especially with those 

which require information from many different subsystems. In 

addition, each of these protocols must be set up with explicit 

knowledge of where and how to access each piece of 

information. Open source is a key factor to establish a cloud 

enabled co-simulation platform and model eco-system for 

collaborative & managed model sharing and time-domain 

system simulation. The core components should be open source 

and governance by the research consortium. The sub models, 

apps, tools, service will be offered in the digital twins at various 

IP terms. In this way, the industrial partners could get first-hand 

help and speed up the design, operation.  

As mentioned above, digital twins are promising, but 

challenging in maritime domain. From next section, we will 

introduce how to build our digital twin of the research vessel 

(RV) Gunnerus. 

III. MARITIME DIGITAL TWIN SHIP 

The RV Gunnerus [10] from NTNU is used as a testing 

platform for our research, as shown in Fig. 1. It is equipped with 

the latest technology for a variety of research activities within 

biology, technology, geology, archaeology, oceanography, and 

fisheries research. Main dimensions of the vessel are given in 

Table. I.  

The digital ship can be either deployed on its physical 

counterpart, or placed onshore in a remote control center given 

the sensor data is able to be transmitted via gateway. A 

historical dataset can be generated by taking all-year 

measurements from the onboard sensors placed on the physical 

ship, e.g., the ship hull, the engine and the thruster. Digital 

models of systems and sub-systems in simulation can thus be 

refined using combined model-driven and data-driven 

approaches [11] to ensure the fidelity of the digital twin of a 

ship. Based on the digital ship simulation, a variant of control 

levels, from remote control to fully autonomy can be 

implemented in the digital-twin system. As a result, different 

onboard support tools, such as visualization, task configuration 

and high-level applications like path planning can be included 

in the system. The result of the onboard support tools will either 

be fed into simulation for validating operations or be treated as 

metrics for decision making on the physical ship. 

 
 

Although the implementation of the digital twin has some 

current limitations, such as insufficient possibilities for 

synchronization between the physical and the digital world, the 

lack of high-fidelity models for simulation [5] [12], as well as 

the challenges for gathering and processing large data sets, Fig. 

1 shows a sound conceptual framework, from which a digital 

ship can be refined via historical/ onboard sensor data using 

data-driven methods and be combined with other models used 

in marine operations for onboard support or advanced control. 

As a sequence of evolution from simulation, virtual prototyping 

to digital twin implementation, a twin ship with high fidelity 

can thus be realized and used as digital tools for either decision 

making in remote control center, or control basis for 

autonomous ship.  

Four key issues in Gunnerus digital twin will be introduced 

separately, including:  

• Co-simulation mechanism as digital twins platform; 

• Data collection and transmission; 

• Models and sub-domain models for co-simulation; 

• Enabling tools for onboard support on the ship or onshore. 

A. Co-simulation Mechanism as Digital Twins Platform 

Co-simulation is a promising technology that enables 

different sub-systems to be modeled and simulated in a 

distributed manner [12]. In general, it is difficult to apply 

models implemented in different tools and domains into one 

simulation. However, with the emergence of two noteworthy 

standards, namely the High Level Architecture (HLA) and the 

FMI, different sub-systems can be modeled separately and 

composed into a global simulation where each model is being 

executed independently, sharing information only at discrete 

time points. In this work, only the FMI is considered. However, 

in order to effectively make use of and connect different sub-

systems, some higher form of orchestration layer is required. 

Several such orchestrators exist, both open-source and 

commercial, each with its pros and cons. An overview of 

various open-source solutions is provided in [12]. 

We rely on the open simulation platform (OSP) [13], which 

is specifically designed for maritime industry for performing 

co-simulation and sharing simulation models, e.g., the 

Functional Mockup Units (FMU). The OSP architecture is 

shown in Fig. 2. Thus, a ship can be implemented as an 

aggregation of several independent sub-models including the 

hull, thrusters, and power system, etc. 

 

 

TABLE I 
MAIN DIMENSIONS OF GUNNERUS SHIP   

Parameter Value 
Length overall (Loa) 36.25 m 

Length between pp (Lpp) 33.90m 

Waterline length (Lwl) 29.90m 

Breadth middle (Bm) 9.90m 

Breadth extreme (B) 9.90m 

Depth mld. Main deck (Dm) 4.20m 

Draught. Mld (dm) 2.70m 

Deadweight 165t 
 

 

 
 

Fig. 2. Open simulation platform. 



 

The OSP consists of a co-simulation library written in C++ 

with additional interfaces for C and Java. A simple web GUI 

and command line interface (CLI) is also available. The OSP 

has developed the OSP-IS, an addition to the FMI that provides 

a method for adding semantic meaning to model interface 

variables. Additionally, proxy-fmu [9] will be used to enable 

co-simulation of otherwise incompatible simulation models and 

the System Structure and Parameterization (SSP) standard will 

be used to facilitate the configuration of the overall co-

simulation structure including its parameterization and 

connections. To simplify the process of creating SSP compliant 

systems, the project partners have developed SSPgen, which 

allows such systems to be defined using a domain specific 

language that also enables the OSP-IS to be applied in a SSP 

context. Currently, OSP is valid for the public. The detailed 

information could be found in [13]. 

B. Data Collection and Transmission 

With the growth of emerging demands from marine 

applications, such as seabed survey, pipeline maintenance, and 

wind turbine installations, the main concern for the maritime 

industry and shipowners is how to achieve efficient marine 

operations while ensuring safety. Today’s maritime 

engineering systems are often equipped with various sensors 

and operating in highly dynamic environments. Incorporating 

sensor data not only about the internal status of machinery, 

propulsion, and engine systems but also from a camera, lidar, 

radar, sonar, and GPS/INS sensors improves the situational 

awareness of the ship. Fig.3 depicts the scope of the research, 

illustrating how to use historical/ live data and co-simulation 

technology to achieve a digital-twin system. All these data 

sources, including the status from ship, crane and engine, can 

be transferred via a 4G connection to an onshore control center 

to conduct operational planning. A NUC PC is deployed on 

Gunnerus, from where the Message Queuing Telemetry 

Transport (MQTT) network protocol is used to publish data 

messages from different data sources on demand. Then, a local 

server is used to subscribe to each data source to store it in a 

database. Finally, the data is applied and analyzed on the digital 

twin and transferred back to Gunnerus to enhance operational 

planning and decision-making.  

C. Models and Sub-domain Models for Co-simulation 

Models and sub-models that represent the physical systems 

and behavior are the building blocks of a functional digital twin. 

These digital representations of real systems and behavior can 

be physics-based, data-based, algorithms, or only graphics for 

visualization purpose.  

The co-simulation approach for complex systems like a ship 

has its advantages in terms of modularity, modeling flexibility, 

and simulation efficiency. However, it always depends on the 

application to determine the complexity of the models to ensure 

both adequate simulation accuracy and efficiency. For example, 

as shown in Fig. 1, in the ship design phase, relative low fidelity 

models will be enough for fast prototyping to make a quick 

whole ship concept testing. After that, we need high fidelity 

model for detailed design, control and prediction. For the 

training phase, real-time models will be required. The balance 

between model complexity and efficiency has to be considered.  

 

 
As mentioned above, the co-simulation framework allows for 

individual step sizes for each sub-simulator and orchestrates a 

network of multiple simulators using a fixed or variable step 

size to enhance the computation speed. It also often comes with 

a price of comprised accuracy. Another important aspect to the 

component models is the standardization of their interfaces. In 

many applications there is a need to design, simulate and 

execute a network of components from different users. In this 

regard, the SSP is an extension of the FMI standard to define 

complete systems consisting of one or more FMUs including 

their models with parameterization and solvers that can be 

transferred between simulation tools. The standard and 

specification enable faster construction of co-simulation 

simulators by simplifying the model connection process. 

Table II includes a collection of components that represent 

the Gunnerus digital twin. They are developed by many 

different project partners with various methods and tools. Most 

of these components are open-sourced and support the FMI 

standard, except for that a license is needed for the Sintef© 

models. These components are used as reference models for the 

Gunnerus digital twin in the use cases presented in section IV. 

It is worth to address that strong-coupled systems are not 

naturally easy to be handled separately in a co-simulation. As 

an example, the dynamical inertial impacts between the ship 

hull and the deck crane with a heavy payload cannot be 

neglected during operation [14]. In this very specific example, 

the payload and the crane can be connected via a flexible cable 

and treated as one component. The connection between the ship 

hull and the crane base can also be represented by a spring-

damper system with extreme high stiffness and low damping 

coefficient. However, it requires extreme high computing 

resource for real-time simulation which is critical for crane 

operations in this application. Alternatively, the forces from the 

crane, including the payload, can also be approximated as 

external forces applied to variant attacking points on the ship 

hull during operation. 
 

Table II Reference models for the Gunnerus twinship (all details could be also 
download from OSP webpage [13]) 
 

Subsystem Component Tool/code Providers 

Vessel 

Hull Vesim® Sintef© 

Thrusters, include 
PMAzimuth 

thrusters and bow 

thruster 

Vesim® 
Sintef© 

Kongsberg© 

Power plant 20-sim® Sintef© 

 
Fig. 3. Data collection, transmission and storage. 



 

Thruster drive 20-sim® Sintef© 

Deck 

machinery 

A-frame 
(+controller) 

20-sim® 

Simulink 
NTNU© 

Palfinger© Crane 

(+controller) 
20-sim® NTNU© 

Winch (+controller) 
20-sim® 

SimulationX 
NTNU© 

Environment 

Wind Simulink® Kongsberg© 

Current Simulink® Kongsberg© 

GNSS sensor  C++ Kongsberg© 

VRU sensor C++ Kongsberg© 

Gyro sensor C++ Kongsberg© 

Controllers 

DP controller Java 
NTNU© 

Kongsberg© 

Waypoint provider 
2D/3D (reference 

target points) 

Java NTNU© 

Observer (position 

feedback) 
Java NTNU© 

Trajectory 

controller 
Java NTNU© 

D. Enabling Tools for Onboard Support  

Fig. 4 illustrates a scheme of enabling tools for onboard 

support in our digital twin system. First, the digital twin can 

store millions of data points from the physical vessel for 

different types of operations. A meaningful usage is model 

based sensitivity analysis - to model the relevant data and 

compute how much the model inputs contribute to its output. 

Developing such a supporting tool makes sense, for example, 

for energy consumption, one can analyze what the main factor 

is during the operation and take alternative solutions to save the 

consumption. Note that the data sensitivity analysis module is 

the basis of the scheme. It takes the ship status, the operational 

commands and the environmental data as input and the 

designated metric, e.g., ship position, as output, to quantify how 

much the input contributes to the output. The result can benefit 

both the optimizing and the prediction phase. 

 

 
Second, the digital twin plays the role in modelling and 

simulation in the virtual world before executing any onsite 

operations, for a comprehensive understanding of certain 

specific operations such as mooring, dynamic positioning and 

crane lifting. Dynamic optimization refers to the state of the 

ship and the mission being executed. It considers constraints 

and generates optimized references for control; meanwhile it 

formulates the references as prior knowledge for prediction of 

future operation, as far as the control couples with the 

optimization module. Similar couplings exist between the 

prediction module and the control module, as they are in 

essence a complete closed-loop system. In this part, focuses are 

placed on the creation of valid models by either applying 

mathematical models or using data-driven approaches in marine 

operations. An example is the parameter identification of ship 

model. Another modeling example is to create a ship motion 

predictor. The solution could be a hybrid modelling method that 

combines a mathematical model with a data-driven model to 

estimation ship position and heading in time series.  

The “performance optimization” module plays a role in 

optimizing the instantaneous and transient control of the ship 

for efficiency or performance, making informed decisions 

regarding performance versus time, cost, physical constraints 

and maritime regulations. Path planning is one of the cases that 

the module will focus on [7]. The limited working space, the 

positioning, and the heading requirements for operations and 

the marine traffic nearby constitute a complex spatial 

environment. How to achieve efficient maneuvering in such an 

environment by taking certain optimal metrics like minimal 

time or energy is worth studying. Furthermore, the maneuver 

should also comply with maneuvering regulations such 

COLREGs, so as to make it more applicable in real situations.  

Taking the results from above modules, the “human-in-the-

loop/automatic control” part will focus on either assisting 

operators or taking the operation in an automatic manner. For 

example, in order to assist the training of operators in simulator, 

a focus attention model can be established through expert 

knowledge and training data in simulator. Besides, auto-

docking is an example for automatic control. The controller 

makes use of current sensor data to produce control commands 

to thrusters, thus realizing docking operation. The module is 

close to high-level application and therefore needs to take the 

specific requirements from the application into account. 

As a result, the information from all different modules will 

be gathered together to establish an onboard supporting center, 

forming various tools ranging from risk assessment, 

maneuvering evaluation, sensor diagnosis to real-time planning. 

Note that, the onboard supporting tools can feed back to each 

module, to force it update. If a predictive path shows a potential 

failure of path following by the auto-control due to 

environmental condition change, a feedback to the optimization 

module will enforce it to re-plan. 

To sum up, by effectively combining these modules 

mentioned above, it is possible to develop efficient onboard 

support tools for either assisting the operator during marine 

operation, or achieving automatic control of the operation. 

IV. GUNNERUS TWINSHIP VALIDATION 

In order to show how Gunnerus digital twin works, several 

related applications are presented as validation cases. All demos 

could be found on the following webpage  

(https://org.ntnu.no/intelligentsystemslab/gunnerus/digitaltwin.html ). 

A. Harbor Docking  

Here, we take harbor docking operation as the first example 

to illustrate the possible solutions using the digital twin system, 

as shown in Fig. 5. In recent years, maritime industry including 

Kongsberg, Wärtsilä and DNV has put effort on implementing 

 
 

Fig. 4. Digital twins for maritime prediction and maintenance. 

https://org.ntnu.no/intelligentsystemslab/gunnerus/digitaltwin.html


 

auto-docking systems [15]. The challenges for this application 

lie in the uncertainties from ship model and environmental 

effects, and the nonlinear control. 
 

 

 
Given the historical operation data and ship motion data, the 

OSP framework introduced in Fig. 2 can be applied to simulate 

ship dynamics. As far as the fidelity of the model is acceptable, 

we can build up docking scenarios in simulator and invite 

shipmasters to perform the operation under different levels of 

sea conditions. The simulated data could then be fed into the 

tools to train the controller for ship docking, and the predictor 

for online estimating ship motion. This process will be run in a 

short period of time if there is enough simulated data for 

training. Further validation can be achieved and compared 

between the docking operation in field and in digital twin 

simulation. If validated, the twin ship in simulator can work in 

two modes. The first mode is to provide onboard support for 

predicting ship motion. By feeding the field operation data and 

ship motion data, the predictive ship motion can be feedback to 

the shipmaster during operation. The other mode is automatic 

control, which only takes filed ship motion data as input and 

produce operation commands for ship docking. In Fig. 6, each 

block in “digital space” represents an FMU with the signal 

communication specified. The involved components are 

provided by different stakeholders, as listed in Table II. 

 

 

 
A full-scale ship docking experiment is conducted in 

Aalesund harbour, Norway. When the ship Gunnerus is 

operated to dock to a berth, the implementation of twin ship 

docking in simulator is going on simultaneously. By feeding it 

the in-field ship operation and environment sensor data, the 

twin ship produces highly resemble trajectories and speeds as 

shown in Fig. 7 and Fig. 8. While the twin ship is not a complete 

duplicate of the physical ship, we are seeking to make them as 

indistinguishable as possible. Slight mismatches are observed, 

especially in speeds, as shown in Fig. 8. They might be caused 

by simulator fidelity which is somewhat deteriorated by the 

unmodeled uncertainties. Otherwise, the discrepancies may be 

resulted by the instrument errors, for instance, the wave and 

current measurements are usually difficult to accurately obtain. 

These unpredictable factors are unavoidable so far.  Solutions 

to improve simulation fidelity will be further explored,  e.g., to 

limit these factors to an acceptable range by trying best to 

improve simulation fidelity and preprocessing real world 

measurements. Overall, the validation supports the twin ship 

fidelity and approves predictive and control applications.   

B. PHM System  

Data-driven Prognostics and Health Management (PHM) [16] 

is an emerging engineering discipline that facilitates predictive 

 

 
 

Fig. 5. Docking testing at Aalesund harbor in Norway. The grey ship and 
green trajectory present the real physical ship behavior; the blue ship and blue 

trajectory present the digital twin behavior; the video window shows the real 

operation as same as grey ship presented.  

  

 
 
Fig. 6. Digital twin ship assists auto-docking based on co-simulation. 

 
Fig. 7. Validation of twin ship docking in simulator VS real ship in field in 

terms of positions. 

 
Fig. 8. Validation of twin ship docking in simulator VS real ship in field in 

terms of speeds. 



 

maintenance scheduling. PHM system is expected to go far 

beyond today’s best practice of preventive maintenance in the 

maritime industry, which uses predetermined maintenance 

intervals based on experience. The development of the twinship 

provides a unified solution to save different types of data of 

critical machinery in a database. These data can be then 

explored and utilized to establish a data-driven PHM system 

using data mining and machine learning (ML) algorithm [17]. 

Fig. 9 presents a schematic illustration on developing a data-

driven PHM system for the diesel engine onboard Gunnerus. 

Engine data includes time-series data from installed sensors, 

event data registered by ship operators, and essential 

documentation provided by manufacturers. These data can be 

used by an auto-labeling pipeline to generate labeled data for 

ML model training. For instance, the time series sensor data can 

be aligned with the event data to identify normal operating data, 

fault data, and run-to-failure data. The normal operating data is 

used to train an anomaly detection algorithm, which can be used 

to tell whether the engine has deviated from normal operating 

conditions. A fault classifier is trained using the fault data, 

which classifies what kind of fault occurs on the engine. The 

run-to-failure data is used to train an ML regression model that 

predicts the remaining useful life of an engine before it fails 

completely. These three different types of trained ML models 

can therefore provide essential information on the operating 

conditions, fault types, and remaining useful life of the engine 

through real-time sensor data. Such information will be used to 

inform the ship operators to develop an optimal maintenance 

schedule to the engine that eliminates failures, which is 

expected to be more effective and less costly than preventive 

maintenance currently used onboard. 

Currently only anomaly detection and remaining useful life 

prediction models are developed for the diesel engine onboard 

Gunnerus. For anomaly detection, a long short-term memory 

(LSTM)-based variational autoencoder (VAE) is trained with 

normal operating data [18]. The computational cost of ML 

models is different in the training and deployment phase. In this 

case, the model is expected to be updated monthly so training 

costs would not be a problem. Training such a model takes 

about half an hour with one GTX 2080 GPU. The model 

consists of an encoder 𝑝𝜃(𝑧|𝑥)  and a decoder 𝑝𝜑(𝑥|𝑧) which 

is parametrized by an LSTM network of parameters, 𝜃 and 𝜑, 

respectively. The LTSM-based VAE is trained to minimize the 

following loss function: 
 

𝑙 = ∑ −𝐸𝑧~𝑞𝜃(𝑧𝑡|𝑥𝑡)[log𝑝𝜑(𝑥𝑡|𝑧𝑡)] + 𝐷𝐾𝐿(𝑞𝜃(𝑧𝑡|𝑥𝑡)||𝑝(𝑧))
𝑇
𝑡=1                (1) 

 

where the first term in the loss function is the expected negative 

log-likelihood, which can be replaced by the mean square error 

between the inputs 𝑥 and reconstructed inputs 𝑥̂. The second 

term is the Kullback-Leibler divergence between the encoder’s 

distribution 𝑞𝜃(𝑧𝑡|𝑥𝑡) and 𝑝(𝑧). The prior distribution 𝑝(𝑧) is 

specified as a multivariate standard normal distribution. The 

loss of a sequence of time length 𝑇  is minimized. After the 

model is trained, the reconstruction probability 𝑝(𝑥|𝜇, 𝜎)  is 

used as anomaly score, where 𝜇  and 𝜎  are the mean and 

variance of reconstructed 𝑥̂. A deviation is detected as shown 

in Fig. 10. It was later confirmed by the mechanical engineer 

that it was an air filter clogging fault.  
 

 

 
For remaining useful life prediction, a LSTM network [19] is 

used. For each element in the input sequence, the LSTM 

computes the following function: 
 

         𝑖𝑡 = 𝜎(𝑊𝑖𝑥𝑡 +𝑈𝑖ℎ𝑡−1 + 𝑏𝑖)                            (2) 

𝑓𝑡 = 𝜎(𝑊𝑓𝑥𝑡 + 𝑈𝑓ℎ𝑡−1 + 𝑏𝑓) 

𝑜𝑡 = 𝜎(𝑊𝑜𝑥𝑡 + 𝑈𝑜ℎ𝑡−1 + 𝑏𝑜) 

                                𝑔𝑡 = tanh(𝑊𝑔𝑥𝑡 + 𝑈𝑔ℎ𝑡−1 + 𝑏𝑔) 

                                𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝑔𝑡 
                                ℎ𝑡 = 𝑜𝑡 ∘ tanh 𝑐𝑡 
 

where ℎ𝑡 and 𝑐𝑡 are the hidden state and cell state at time 𝑡, 𝑥𝑡 
is the input at time 𝑡, ℎ𝑡−1 and 𝑐𝑡−1 is the hidden state and cell 

state at time 𝑡 − 1, respectively. 𝑖𝑡 , 𝑓𝑡 , 𝑔𝑡 , 𝑜𝑡  are the input, 

forget, cell and output gates, respectively. 𝜎  is the sigmoid 

function, where 𝜎(𝑥) = 1 (1 + 𝑒−𝑥)⁄ . ∘  is the Hadamard 

product. 𝑊,  𝑈 are the weights and 𝑏 is the bias in the LSTM 

cell. Run-to-failure targets are constructed by the piece-wise 

linear degradation model. The model is trained with mean 

square loss. The model provides how much time an engine has 

left before it fails completely, and from validation in the lab, it 

predicts remaining useful life with high accuracy. The 

information in Fig. 10 can be provided to the vessel operator to 

schedule maintenance before completely failures. 

C. Demanding Pre-operation 

Offshore vessels often perform in harsh environments with 

wind, waves, current, and low temperatures. These operations 

 

 
 

 

Fig. 9. Data-driven PHM system for diesel engine onboard Gunnerus. 

 
 

Fig. 10. Anomaly detection and fault prognostics based on ML. There are three 

engines on the ship. Two in operation, one as a backup. 



 

need to be carefully planned and trained before execution. For 

this purpose, digital twin of the whole ship could be used as a 

valuable tool for pre-operation [20]. Digital twin not only 

allows iterative design of operational procedures by identifying 

inconsistencies and blunders, exploring “what if” scenarios 

during onshore planning sessions based on historical Metocean 

records and raising awareness on critical phases, but also it can 

be used in “toolbox-talks” just before the execution of the 

operation to rehearse the procedure based on the current ship 

loading conditions and nowcast of Metocean conditions.  
 

 
Fig. 11 illustrates the possibilities by presenting a snapshot 

of a remote monitored crane operation in a fjord. The operation 

lasted about half an hour. The data from the ship and shipboard 

crane was received in real-time via a 4G connection as detailed 

in Fig. 3. Fig. 12 depicts the corresponding four channels of 

crane data for the whole operation, based on which the crane 

status can be evaluated and used in the twin system. The three 

digital twins in Fig. 11 are all real-time representation of the 

same system consisting of the ship and crane subsystems. The 

blue system on the left is mirroring the real crane, but the 

movement of its hull is determined by harsher weather 

controlled in the simulation. The ship and crane in the middle 

are the exact presentation of the real system in real time 

operation. The hull of the green ship follows the movement of 

the real ship, but its crane is controlled by an operator in the 

remote centre to test alternative path trajectory in lifting 

operation. In this way, it allows the direct testing of “what-if” 

scenarios based on real-time current state of remote systems. 

All functions have been integrated into NTNU forskingslab in 

Aalesund based on the cooperation and support with Offshore 

Simulation Centre. A real-time online digital twin will enhance 

the operation safety and security in the following aspects: 

• Explore the limits of procedural safety by simulating the 

operation in more extreme weather conditions, with identical 

current crane loads, deck arrangement, and ship ballasting; 

• Find a proper way or alternative safer ways of performing 

the operation under certain harsh weather conditions. 

 

V. DISCUSSION 

In order to build a digital twin ship, we propose an 

architecture and concept using an open model and simulator 

platform. The Gunnerus digital twin as a prototype combines 

expertise from complementary disciplines including sensor 

technology, artificial intelligence, computer science, and 

maritime industry.  

Many challenges arise when trying to fully represent the 

physical counterpart by the twin system in stochastic 

environment. One of the challenges is the high-fidelity models. 

As learned from the Gunnerus twin ship, the amount and quality 

of data is fundamental to establish the models for the twin 

system, e.g., either for identification of system parameters, or 

for development of ML models. Therefore, it is necessary to 

establish mechanisms to update models especially for these ML 

models regularly. Thus, the computational cost of ML models, 

such as the training time for the model in Section IV.B, can be 

relatively low, and the model is able to adapt to 

operation/environmental changes. Another challenge lies in co-

simulation for digital twin implementation. For example, 

scalability shall be considered when it comes to industrial use 

of digital twin; insufficient synchronization and tight coupling 

issues may arise if the system becomes too complex and 

requires high computational effort; domain-specific challenge 

in FMU implementation also needs to be talked with. 

The Gunnerus twin ship is our best try of digital twin systems 

for marine operation. Even though there is still room for 

improvement in terms of accuracy and efficiency, we believe 

the implementation will enlighten both maritime industry and 

academia in developing twin ships in near future.  

VI. CONCLUSION 

This paper has illustrated a digital twin of Gunnerus ship. All 

 
 

Fig. 11. Three real-time digital twins. 

 

 
Fig. 12. Four channels of sensor data for crane status monitoring. 



 

related key technologies including co-simulation, how to model 

components, data transferring, enabling tools utilization, are 

presented in details. The team at the Norwegian University of 

Science and Technology with our cooperated stakeholders will 

continue the work towards realizing a full functional digital 

twin of the Gunnerus, gradually improving its accuracy. 

Continued development of use-cases will provide meaningful 

on-board decision support for the crews of the Gunnerus. The 

other application is digital commissioning. If we can feed 

different kinds of industrial data into a simulator to create a 

digital-twin system, and use the simulator to verify the concept, 

the process and the control efficiency, it will definitely reduce 

development time and enhance production efficiency. On the 

other hand, from a methodology point of view, academic 

research can make use of simulated data to verify the 

effectiveness of the digital-twin system. Once there are enough 

real data available, the digital-twin system can be updated and 

serve as a digital replica of the physical system. As a result, both 

industry and academia could take advantage of the digital-twin 

system to realize high-level applications. 
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