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Abstract

In this work, we present a micro-service architecture
which defines a Digital Twin (DT) framework for adap-
tive building automation and control. The DT framework
primarily involves the orchestration of several container-
ized micro-services, promoting the scalability and deploy-
ability of the proposed framework within the industrial
context. In the proposed framework, containerized micro-
services facilitate: (i) model-based control strategies; (ii)
data-driven learning; (iii) data management; (iv) the inclu-
sion of an internal High-Fidelity Simulator (HFS) to en-
able bootstrapped learning; and (v) a User Interface/User
Experience (UI/UE) micro-service orchestrator. To vali-
date the usefulness of the proposed framework, we imple-
ment a Physics Inspired Neural Network (PINN) to adapt
the model-based control strategies for plant-model uncer-
tainty and utilize bootstrap sampling against an internal
HFS.

Introduction

Central to smart building automation and control is the
concept of Digital Twin (DT) architectures. A Digital
Twin can be defined as a virtual representation of a physi-
cal asset enabled through data and simulators for real-time
prediction, optimization, monitoring, controlling, and im-
proved decision making. While it is already common to
use numerical tools and simulation models in the proto-
typing and design phase of new projects, advances within
computational pipelines, artificial intelligence, big data
cybernetics bring the promise of digital twins closer to so-
ciety (Rasheed et al., 2020).

In the context of buildings, DTs has mostly been explored
in the first phase of development (i.e., design and con-
struction), and less attention has been paid to the operation
and management (O&M) phase, which has the longest
time span of the asset life cycle (Lu et al., 2019). The
process of developing, validating and maturing advanced
control and monitoring strategies is often considered the
biggest bottleneck, necessitating extensive off-line testing
prior to deployment (Drgonia et al., 2020). The adoption
and deployment of complex building automation strate-
gies, such as Model Predictive Control (MPC) and Fault
Detection and Diagnosis (FDD), can extensively benefit
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from DT frameworks.

The emergence of distributed cloud-based computing in-
frastructure has culminated in the adoption of several
service models such as Infrastructure-, Platform-, and
Software-as-a-Service (IaaS, PaaS, SaaS) (Mohammed
et al., 2021). Within the domain of SaaS, one is concerned
with micro-services deployed on a cloud-based platform
providing web-based functionality and data to end-point
customers.

The Building and Automation Control System Soft-
ware as a Service (BACS2?aaS) framework, proposed in
this work (see Figure 1), adopts a SaaS service model
characteristic by proving critical control, monitoring and
learning applications for the automation and intelligent
management of smart buildings. BACSZaa$, in addition,
adopts as PaaS characteristic where the micro-services
within the SaaS domain are containerized within Docker
containers. This enables the possibility for building and
deploying platform agnostic micro-services, within the
BACS?2aaS framework, on any platform infrastructure
supporting Docker. BACS?aaS comprises of five core
Functional Units (FU)s, or micro-services. With reference
to Figure 1, a high-level description of the BACSZaaS
framework is in order, where a more detailed description
of the individual FU’s are provided in subsequent sections.
BACS?aa$S information and functional data flow is man-
aged by the FU1, here called the Orchestrator. FUI is the
primary interface between BACS?aa$S and the external en-
vironment providing an informative User Interface/User
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Figure 1: A cloud-based SaaS framework for the au-
tomation and management of smart buildings.
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Experience (UI/UE) for querying and monitoring the au-
tomation of smart buildings. As a secondary prerogative,
FUI subscribes to external third-party application pro-
gramming interface (API) data services to stream criti-
cal information required for other micro-services related
to control and learning. FU2 defines a micro-service for
proving model-based control law to actuate either an in-
ternal High Fidelity Simulator (HFS), being encapsulated
in FU3, or some external building. Historical control ac-
tions, measurements taking from some external building
or internal HFS, and third-party supplied data is all stored
on a time-series database (FU5) which is consumed by the
data-driven micro-sevice contained in NEURON (FU4).
The latter, in principle, employ all data-driven learning
strategies typically associated with machine learning and
artificial intelligence.

BACS?aaS micro-services

To follow is a more detailed discussion of the functionality
associated with the respective micro-services, previously
introduced in context of Figure 1.

High fidelity simulator

In building performance simulation, we distinguish be-
tween three main modelling paradigms: (i) black-box, (ii)
grey-box, and (iii) white-box. For control-oriented pur-
poses, all three paradigms can be used, either separately
or in combination (Hensen and Lamberts, 2019). Fur-
thermore, in a building energy model, simplifications like
completely mixed air (as opposed to fine-grained compu-
tational fluid dynamics (CFD) for simulation of air flow
transients arising from e.g., window or door opening) and
1D heat transfer (from 3D partial differential equations)
are often made. This simplification is account for compu-
tational constraints on the one hand, and reduced impact
on variables of interest on the other hand. It should be
pointed out that white-box/high-fidelity simulators in this
context implies fraditional building energy models (with
the above-mentioned simplifications, among other things).
In Arroyo et al. (2022), the suitability of the three differ-
ent modelling paradigms are compared by doing experi-
ments on a thermally activated buildings with representa-
tive models from each paradigm. The authors concluded
that a modelling approach that synthesizes the physics-
and data-driven approaches is a promising avenue going
forward. Strengths of each paradigm, such as e.g., gen-
eralizability of white-box models and the ease of calibra-
tion/parameter identification for grey-box and black-box
models can be combined and leveraged for the most de-
ployable, adaptive and scalable solution to smart building
control.

Buildings Optimization Performance Tests (Blum et al.,
2021) (BOPTEST) framework defines a virtual test-bed
for prototyping control algorithms for HVAC systems in
buildings. The main motivation behind the development
of this framework was that test-case setup in different ex-
periments in literature usually is done in an ad-hoc dis-
tributed fashion, rendering comparisons between results
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Figure 2: Simple Modelica testcase.

impossible. The framework is based on the modelling
language Modelica, which enables object-oriented cyber-
physical modelling and the international standard Func-
tional Mock-up Interface (FMI), facilitating co-simulation
and model exchange. Building models developed in a
collection of Modelica libraries (ie., Buildings, IDEAS)
are compiled into Functional Mock-up Units (FMU)s and
packaged with the necessary boundary conditions in a
Docker container (Anderson, 2015), allowing the control
signals of local-level controllers in the building models to
be overwritten via a RESTful API. This enables mimick-
ing an ideal situation in which a building’s Building Au-
tomation Control (BAC), and system, is integrated with a
potential cloud-based platform, available for overwriting.
In the context of BACSZaaS, FU3 executes a fork opera-
tion on the main developer branch of BOPTEST, which
is subsequently updated, modified, and packaged as its
own micro-service within BACS?aa$S to serve as an in-
ternal HFS. As an example case study in this work, Figure
2 shows a relatively simple Modelica-model that has been
implemented for testing purposes. This model is analo-
gous to a 3R3C-network. (Bacher and Madsen, 2011),
with parameters based on identification experiments car-
ried out on a real building located in Bgrrestuveien 3,
Oslo. The baseline controller is an on-off controller, mod-
ulating the heat flow to the heater state 7}, such that the in-
terior temperature 7; stays within certain bounds. A white
noise generator is added to the measurement of 7;. Typi-
cal meteorological year (TMY) weather data from Oslo is
used.

Model-based control

The MOdelling, SImulation and OPtimization (MO-
SIOP), encapsulated in FU2, defines a micro-service
within the BACS?aa$ framework which includes a numer-
ical framework for formulating and solving discrete-time
optimal control optimization problems.

Model Predictive Control (MPC) defines a particular con-
trol strategy which primarily involves solving an optimal
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control problem, sequentially, over a receding horizon and
has seen significant adoption within industry (Qin and
Badgwell, 2003). Benefits of MPC is that physical white-
box models and their operational constraints are explicitly
incorporated into an optimization problem which, when
solved, defines a control law that promotes the optimiza-
tion of several operational and economic objectives (often
conflicting), simultaneously. Solving the MPC problem
over a receding horizon provides, in addition, a form of
robustness to external system disturbances as new infor-
mation becomes available and is incorporated into the op-
timization problem.

The practical implementation of MPC within the building
industry is, however, lagging behind the process industry
due to: (i) challenges associated with controller model de-
velopment and estimation of unknown states (Blum et al.,
2019); and, (ii) the lack of operational knowledge among
building management system engineers w.r.t modern opti-
mal control methods (Drgona et al., 2020).

To formulate a numerical tractable optimal control prob-
lem, that incorporates a high-fidelity model including its
operational constraints explicitly (i.e., the model associ-
ated with Figure 2), may be challenging from a mod-
elling and computational perspective when applied within
a MPC strategy. Often, MPC resorts to utilizing a reduced
order physical model of the process of interest that pro-
motes a computational feasible formulation when one is
concerned with solving it in real-time during online op-
eration. In context of the BACS2?aaS framework and the
HFS model depicted by Figure 2; in this work we are con-
cerned with a reduced order 3R3C model (see Figure (3)
(Maree et al., 2021)) to be incorporated within a MPC for-
mulation, defined by the following Ordinary Differential
Equation (ODE) (Bacher and Madsen, 2011):

dT; _ Tp=T; T —T; To—T; Awqst+aW
dt*thc+Rc+Rc+ Ief (la)

ar. _ T;—T, p(Is

i = R.Co +% RMC + (1b)
dly, _ T;—=Ty dn

dt " RipCh Ch (1C)

For numerical implementation of a MPC strategy, we are
often concerned with discrete-time formulations for time
t=kVk e Hzo. For (1), let the 33; = [Ti,Te,Th] e X»
define the temperature states of the internal, building en-
velope and heater, respectively at time ¢ = k. The process
is explicitly actuated by controlling the energy flux from
the heating system, uy, := [¢,] € U™. Here, {n, m} de-
fines the state and control vector dimensions, respectively.

The external forecast signals v, := [T}, ¢, being ambi-
ent air temperature and solar irradiance, actuates the pro-
cess (1), implicitly. The MPC objective is to minimize the
weighted mean square error of the following stage cost
function:

2 2
Uk, u) = [T — Trerlly, + llanll,, (2)

with the primary optimization objective to track some user
defined setpoint 7).y (weighted by o). As a secondary
objective is to minimize the weighted (ag) supplied en-
ergy qn. The MPC value function is defined over the pre-
diction horizon of N time steps as:

N

Vi (zg,r) := Zl(xk,uk) (3)

k=0

where x( is some admissible initial state v € X. r =
[ro, ..., 7] defines some externally supplied forecast tra-
jectory. The MPC problem is concerned with evaluating
the follow optimization problem:

minVy (xg, 1) (4a
(

Tp1 = f(og, up)
zr € X, up € U (4(3
" (4d

In (4d), we initialize (4) by some externally supplied state
estimate Z;. The discrete system evolution (4b) is defined
as the discrete-time counterpart of (1) and can readily be
evaluated by any numerical integrator. The optimal solu-
tion to (4) is evaluated for u*" := [ug, ..., u}_,] where
the MPC receding horizon control law is defined as the
first optimal control move: xx(zo) := wuf. Having de-
fined this control law, one can either actuate the HFS in
FU3, or some external smart building, by applying this
control law. The the next sampling time instant, ¢t = k+1,
one can obtain system measurements and repeat the pro-
cess.

Data-driven learning

All data-driven learning that necessitates the utilization
of machine-learning and/or artificial intelligence is sup-
ported in the NEURON micro-service of the BACSZaaS
framework (see FU4 in Figure 1). Often, due to high com-
putational loads, one would typically deploy the NEU-
RON mircoservice on a platform that has support for GPU
processing.

In the context of this work, we are concerned with using
MPC as a model-based control strategy in FU2 to gener-
ate a receding horizon control law for controlling either:
(1) some external process during the deployment of the
BACS?2aaS framework; or/and (ii) controlling some high
HFS during internal bootstrap learning (i.e., the model de-
picted by Figure 2 embedded in the BOPTEST framework
in FU3).

The simplified internal model used in the MPC formu-
lation (i.e, (1)) may exhibit significant plant-model mis-
match when compared to the process models associated
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with FU3, or the actual physics of a real physical build-
ing. A state estimator, in addition, is often combined with
the MPC formulation to infer unknown (not measurable)
process states subject to measurement noise and process
uncertainties. The Kalman filter, considered an industry
standard for state estimation (Auger et al., 2013), utilizes
some linear model dynamics (i.e., (1)) and requires esti-
mates to the process-, and measurement-covariance ma-
trices. It has been noted that tuning/identifying the covari-
ance matrices, however, may be time consuming and error
prone.

Deep Neural Networks (DNN)’s are characterized by uni-
versality theorem which implies the ability of learning
any function class in polytime (Abbe and Sandon, 2020).
Training a DNN, however, to accurately identify function
class mappings of real physical systems, using only a few
representative samples, may at best be considered naive
(Raissi et al., 2019). PINN’s extends on DNN’s by ex-
ploiting a-priori information of the underlying physical
laws associated with process models to be learned. Here,
physical laws can act as a neural network regularization
agent to constrain the admissible space over which learn-
ing should be conducted.

To illustrate how model-based concepts within the MO-
SIOP micro-service, and data-driven learning strategies
within the NEURON micro-service, can be facilitated
in the proposed BACS2aaS framework; we implement a
PINN in the NEURON micro-service to infer initial pro-
cess states for the MPC strategy, instead of using the more
conventional Kalman filter. Motivation for using a PINN
for state estimation is primarily to: (i) avoid the tuning of
the Kalman filter; and (ii) to exploit the universality prop-
erties of the underlying DNN which, when conditioned
with simplified physical laws of the process model (1),
may generalize and learn non-linear associations present
in the model depicted in Figure 2. Suppose the continuous
process model of (1) is defined in the following compact
ODE from:

‘é—f = f(x,u,r) (5a)
yr = h(x) +v (5b)

where (5b) define a noisy process measurement (v ~
N(0,0)) observed at time ¢ = k. Then, the objective here
is to infer the initial condition z in (4d) for time ¢ € I>q
as new measurements y; become available. Next, suppose
the approximate solution to the differential equation (5a),
at time ¢ = k, can be evaluated by the following PINN
trial function

Ty = Pp + N (t, Yk, kN (=1, 7)) (6)

For n = 3 states in (1), (6) defines n—trial functions with
N(-), in principle, being n-DNN functions (see Figure 4).
The vector ¥y, for indexing ¢ € 1., is defined as

| wyk(d)  if z(i) measured

740K Ty—1(1) else (7)

In the context of training PINNS, let the gradient evalua-

tion of (6) be % which serves as an approximation func-

————Forward (prediction)———»

input layer
hidden layer

Figure 4: Input and hidden layers of the PINN for-
mulation for inferring system states.

tion for the system physics defined in (5) (Antonelo et al.,
2021). We are subsequently interested in minimizing the
following mean squared error lose term:

@(i)—f(x,u,r)(i) +||Cit*yk||2 (8)

li =
%

where we adopt i € 1., to index the i*" ODE term in (1),
and the i*" gradient PINN evaluations, respectively. In
(8), we associate a loss term with each state where the lat-
ter includes the respective physical state dynamics to act
as regularization agent of the network. A backward pass
(evaluate a Stochastic Gradient Descent (SGD)) of this
loss term allows updating the respective PINN weights.

Micro-service and data management

The BACSZaaS framework needs to facilitate several
communication endpoints, depending on the user. The
management for information and data flow, and visual-
ization, is overseen by FUl. We can differentiate be-
tween upstream endpoints (being developers and utilities)
or downstream endpoints being third party API’s sourcing
information such as weather or pricing signals, or assets
deployed in buildings (i.e., FutureHome access via MQTT
(Hunkeler et al., 2008))

For developers, the BACSZaaS framework integrates
seamlessly with Visual Studio Code IDE (Microsoft,
2022) (remote container extensions enabled) which allows
attaching to remote containers running respective micro-
services. Third-party clients, on the other hand, can ac-
cess BACS?aa$S via an internet browser where a locally
deployed Flask server (Grinberg, 2018) will stream inter-
active visualizations by utilizing Plotly (Inc., 2015)

PostgreSQL (FUS5), being a Time series databases (TS-
DBs), is deployed as a data-management solution. Both
NEURON and MOSIOP micro-services interface with the
database to log bootstrap learning results and historical
closed-loop operation, respectively. In addition, informa-
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tion mined from third party API’s (via FU1) is stored to fa-
cilitate learning and help build informative forecast mod-
els (weather, load demands, pricing signals) to be incor-
porated in the MPC strategy running in MOSIOP.

Framework validation

To validate the proposed framework and demonstrate the
effectiveness of combining physics-based modelling with
data-driven learning, three simulation experiments have
been carried out. These experiments utilizes all micro-
services encapsulated within the BACS2aaS framework
(illustrated in Figure 2) with particular focus on validat-
ing closed-loop control and learning performance between
FU2 (MOSIOP) and FU3 (BOPTEST). The primary aim
of the experiments is to show that PINN can be used as
an alternative to Kalman filtering to aid as an observer,
with the benefit of avoiding the need for intrusive excita-
tion experiments and/or empirically tuning the covariance
matrices of the Kalman filter.

Experiment 1

For this case, MPC utilizes the Kalman filter for state esti-
mation. The covariance matrices are empirically tuned to
give reasonable performance. The MPC is run for k=1000
time steps, with ¢, = 900s. The set-point of the inte-
rior temperature 7; is perturbed each k = 200 time steps,
alternating between 22°C and 18°C. The stage cost, as
defined by 2, is weighted with coefficients a; = 1 and
a1 = le — 5, i.e., with a high priority weight on set-point
tracking.

Experiment 2

In this case, MPC is combined with a PINN with the lat-
ter serving as an online state observer. Training of the
PINN is partially done by using data previously generated
from running the MPC in combination with the Kalman
filter (i.e., Experiment 1). Motivation for this is to pro-
vide rich representative data-tuples 2, yx, ri /v for train-
ing the network, also here considered partial supervised
training.

Experiment 3

The last case entails combining MPC with a PINN as the
state observer, however, the training data from the Kalman
filter is made unavailable. This configuration may to some
extent be considered unsupervised training of the PINN.
In the experiments involving PINNs, the networks com-
prise of two hidden layers of 20 neurons each, with a
ReLU activation function used for all neurons. The PINNs
are trained with batches of 500 randomly sampled data
points that was historically logged on FUS.

Results and discussion

Figure 5 shows the state estimates &, obtained for experi-
ment 1. It can be seen that the Kalman filter estimates the
interior state 7; and T, accurately, with the estimated state
(solid grey line) closely following the true state (dashed
grey line). However, we see that the tracking of the un-
measured states 71, and 7} does not come close to this

performance. For the envelope state T, the estimation re-
moves peaks and valleys, resulting in a flattened version
of the true state. The estimation of the heater state appears
similar, with the addition of an estimation bias leading the
estimated value to be consistently underestimated for the
duration of the experiment. As a result of the trouble the
Kalman filter has in estimating the unmeasured states, the
set-point tracking performance is not sufficient. Since the
controller (MPC) only has an accurate estimate of the inte-
rior state T3, which stores a small amount of energy com-
pared to the envelope T, state, it is not possible to track
the supplied reference signal (solid black line) without the
significant over- and undershoots that can be seen in the
first subplot. In Figure 6, the results of experiment 2 are
shown. Here, it can be seen that the estimation of the en-
velope temperature 7 is significantly more accurate than
in the previous experiment. This leads to better set-point
tracking, as the controller has a better overall state esti-
mate. The estimation of the heater temperature 7}, is still
not very good, however, this state does not store much en-
ergy. Thus, it has less of an impact on the calculation of
the optimal control action in the next step. One drawback
of the setup in this experiment is that it requires training
data from a Kalman filter to be present in first place. Thus,
such a configuration cannot replace a Kalman filter en-
tirely, but only after a certain amount of training data has
been generated, which can only happen after the filter has
been empirically tuned. However, it is worth noting that
the performance of the Kalman filter in experiment 1 is
not remarkable. Despite this less-than-ideal training data,
the PINN is trained and able to give significantly better
performance than the filter. Figure 7 shows the results of
experiment 3. Since no training data is available in this
experiment, and the selected batch size is 500, the PINN
idle for 500 time steps before training starts. We observe
a period of free-float for the estimation (where no estima-
tion is performed) and only the measured temperature is
used for the control. This can be seen by the large de-
viations incurred in the state estimates. After & = 500
time steps, PINN starts learning from sampling historic
data samples. After a short period in which the estimated
value of T; drops very low, we see convergence of the es-
timated state and the true state & = 800 time steps. The
set-point tracking performance stabilizes quickly after the
PINN estimator is deployed, as the estimation of the en-
velope temperature is close to the true state initially. We
see that after this initial delayed period of estimation, the
unsupervised PINN performs better than the empirically
tuned Kalman filter in experiment 1. Instead of provid-
ing the noise covariances explicitly and finding the opti-
mal weighting between measurement and model, which is
done in the Kalman filter, the noise is learned implicitly.

Concluding remarks

A prototype of the BACS?aaS framework, comprising of
5 micro-services, intended to facilitate real-time model-
based control through data-driven learning, and the DT
concept, has been demonstrated. It has been shown by
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and utilization of the former as state observer.

simulation that PINNs can easily be deployed in the pro-
posed framework, and validated against model-based con-
trollers and a HFS for improved learning and control per-
formance. Further steps for development have been iden-
tified, and include in particular an emphasis on: (i) incor-
porating more support for high-fidelity emulators (whose
structure can be exploited) (ii) combined state-parameter
identification by utilizing concepts within machine learn-
ing (iii) interface against a real physical building. In the
latter point, ongoing work is to stream data from a Future-

Temperature [*C]

104 ___ 7pmu il ,f'

T T T T T
0 200 400 600 800 1000

Figure 7: Using the PINN as a state observer in the
context of unsupervised learning.

Home device via the Futurehome IoT Messaging Protocol
(FIMP) (Futurehome, 2021); and, build data-driven fore-
cast models on energy consumption and user behaviour,
to be further utilized in the model-based strategy encapsu-
lated in FU3.

References

Abbe, E. and C. Sandon (2020). On the universality of
deep learning. Advances in Neural Information Pro-
cessing Systems 33, 20061-20072.

Anderson, C. (2015). Docker [software engineering]. leee
Software 32(3), 102—c3.

Antonelo, E. A., E. Camponogara, L. O. Seman, E. R.
de Souza, J. P. Jordanou, and J. F. Hubner (2021).
Physics-informed neural nets for control of dynamical
systems. arXiv preprint arXiv:2104.02556.

Arroyo, J., F. Spiessens, and L. Helsen (2022, May).
Comparison of Model Complexities in Optimal Control
Tested in a Real Thermally Activated Building System.
Buildings 12(5), 539. Number: 5 Publisher: Multidis-
ciplinary Digital Publishing Institute.

Auger, F., M. Hilairet, J. M. Guerrero, E. Monmasson,
T. Orlowska-Kowalska, and S. Katsura (2013). Indus-
trial applications of the kalman filter: A review. IEEE
Transactions on Industrial Electronics 60(12), 5458—
5471.

Bacher, P. and H. Madsen (2011). Identifying suitable
models for the heat dynamics of buildings. Energy and
Buildings 43(7), 1511-1522.

Blum, D., J. Arroyo, S. Huang, J. Drgonia, F. Jorissen,
H. T. Walnum, Y. Chen, K. Benne, D. Vrabie, M. Wet-
ter, and L. Helsen (2021). Building optimization testing



E3S Web of Conferences 362, 13001 (2022)
BuildSim Nordic 2022

https://doi.org/10.1051/e3sconf/202236213001

framework (BOPTEST) for simulation-based bench-
marking of control strategies in buildings. 586-610.
Accepted: 2021-11-15T09:53:06Z Publisher: Taylor &
Francis.

Blum, D. H., K. Arendt, L. Rivalin, M. A. Piette, M. Wet-
ter, and C. T. Veje (2019, feb). Practical factors of
envelope model setup and their effects on the perfor-
mance of model predictive control for building heating,
ventilating, and air conditioning systems. Applied En-
ergy 236, 410-425.

Drgonia, J., J. Arroyo, L. C. Figueroa, D. Blum, K. Arendt,
D. Kim, E. P. Ollé, J. Oravec, M. Wetter, D. L. Vrabie,
et al. (2020). All you need to know about model predic-
tive control for buildings. Annual Reviews in Control.

Drgonla, J., J. Arroyo, 1. Cupeiro Figueroa, D. Blum,
K. Arendt, D. Kim, E. P. Ollé, J. Oravec, M. Wetter,
D. L. Vrabie, and L. Helsen (2020, January). All you
need to know about model predictive control for build-
ings. Annual Reviews in Control 50, 190-232.

Futurehome  (2021). Local API  access
over MQTT (Beta). https://support.
futurehome.no/hc/en-no/articles/

360033256491-Local-API-access-over-MQTT-Beta-.

[Online; accessed 4-May-2021].

Grinberg, M. (2018). Flask web development: developing
web applications with python. ” O’Reilly Media, Inc.”.

Hensen, J. and R. Lamberts (edited by) (2019). Building
performance simulation for design and operation (Sec-
ond edition ed.). Abingdon, Oxon ; New York, NY:
Routledge.

Hunkeler, U., H. L. Truong, and A. Stanford-Clark (2008,
January). MQTT-S - A publish/subscribe protocol for
Wireless Sensor Networks. In 2008 3rd International
Conference on Communication Systems Software and
Middleware and Workshops (COMSWARE ’08), Ban-
galore, India, pp. 791-798. IEEE.

Inc., P. T. (2015). Collaborative data science.

Lu, Q., A. K. Parlikad, P. Woodall, X. Xie, Z. Liang,
E. Konstantinou, J. Heaton, and J. Schooling (2019, Oc-
tober). Developing a dynamic digital twin at building
and city levels: A case study of the West Cambridge
campus. Journal of Management in Engineering 36.

Maree, J. P., S. Gros, and H. T. Walnum (2021). Adaptive
control and identification for heating demand-response
in buildings. In 2021 European Control Conference
(ECC), pp. 1931-1936. IEEE.

Microsoft (2022). Visual Studio Code - Code Editing. Re-
defined.

Mohammed, C. M., S. R. Zeebaree, et al. (2021). Suf-
ficient comparison among cloud computing services:
laas, paas, and saas: A review. International Journal
of Science and Business 5(2), 17-30.

Qin, S. J. and T. A. Badgwell (2003). A survey of in-
dustrial model predictive control technology. Control
engineering practice 11(7), 733-764.

Raissi, M., P. Perdikaris, and G. E. Karniadakis (2019).
Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems
involving nonlinear partial differential equations. Jour-
nal of Computational physics 378, 686-707.

Rasheed, A., O. San, and T. Kvamsdal (2020). Digital
Twin: Values, Challenges and Enablers From a Model-
ing Perspective. IEEE Access 8,21980-22012. Confer-
ence Name: IEEE Access.



