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A hallmark of the development of solid and hematological malignancies is

the dysregulation of apoptosis, which leads to an imbalance between cell

proliferation, cell survival and death. Halogenated boroxine

[K2(B3O3F4OH)] (HB) is a derivative of cyclic anhydride of boronic acid,

with reproducible anti-tumor and anti-proliferative effects in different cell

models. Notably, these changes are observed to be more profound in

tumor cells than in normal cells. Here, we investigated the underlying

mechanisms through an extensive evaluation of (a) deregulated target genes

and (b) their interactions and links with main apoptotic pathway genes

upon treatment with an optimized concentration of HB. To provide deeper

insights into the mechanism of action of HB, we performed identification,

visualization, and pathway association of differentially expressed genes

(DEGs) involved in regulation of apoptosis among tumor and non-tumor

cells upon HB treatment. We report that HB at a concentration of

0.2 mg�mL�1 drives tumor cells to apoptosis, whereas non-tumor cells are

not affected. Comparison of DEG profiles, gene interactions and pathway

associations suggests that the HB effect and tumor-‘selectivity’ can be

explained by Bax/Bak-independent mitochondrial depolarization by ROS

generation and TRAIL-like activation, followed by permanent inhibition

of NFjB signaling pathway specifically in tumor cells.

A hallmark of the development of solid and hematologi-

cal malignancies is the dysregulation of apoptosis, which

leads to an imbalance between cell proliferation, cell

survival and death. Overexpression of apoptosis inhibi-

tors or inactivation of apoptosis promoters has been

observed in most of the human cancers [1,2]. Targeting

apoptotic regulators represents a major approach in

developing novel anti-tumor treatments. Due to the

genetic heterogeneity of leukemic cells, even within a

single patient, there is a growing need for the develop-

ment of precision treatment strategies [3]. Apoptosis is

induced through the activation of one of the two main

apoptotic pathways; intrinsic (mitochondrial) and/or

extrinsic (via plasma membrane receptors) [4,5]. Tar-

geted therapies designed to induce apoptosis in leukemia

are currently the most promising anti-leukemia strate-

gies for targeting and eliminating leukemia cells, espe-

cially those therapies that invoke relatively minor

collateral damage to normal hematopoietic progenitor

cells [6,7]. The regulation of apoptosis by inhibition of

proteins from the BCL-2 family has prompted a search

for a new class of anti-tumor drugs that target anti-

apoptotic members by imitating their natural antagonist

(such as BCL-2 homology proteins and BH3-only
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proteins), which are also called BH3 mimetics. These

molecules directly activate apoptosis by binding and

inhibiting selected anti-apoptotic members of the BCL-2

protein family [8,9].

Halogenated boroxine [K2(B3O3F4OH)] (HB) is a

derivative of cyclic anhydride of boronic acid [10]. It is

patented as a substance with potential antitumor and

anti-proliferative effects [11,12]. In a series of in vitro

and in vivo studies of the antitumor potential of HB,

its tumor-suppressive effect [13–16] was observed on

different tumor types, in the range of HB treatment

concentrations with possible clinical relevance. In a

recent study, Hadzic et al. [17] identified that HB neg-

atively affects BCL-2 expression, but it would be of

value to further dissect the mechanism of pro-

apoptotic activity of this compound in leukemia cells

by studying the interaction of pathways affected with

HB treatment and possible gene regulation switches

activated by this compound. Monitoring of apoptosis

at the molecular level is possible by analyzing the

expression of anti- and pro-apoptotic genes, positive

and negative regulators of apoptosis as well as caspase

activators and inhibitors, which may help to elucidate

some of the main molecular mechanisms of HB nega-

tive effects on tumor proliferation and progression. In

this study, we aimed to deeply assess a gene expression

dataset obtained earlier in work by Hadzic et al. [17]

to monitor possible specific effects of HB treatment on

leukemia (UT-7) cells. This involved the analysis of

associated pathways involved in apoptosis regulation

using different bioinformatics methods to compare the

response of tumor and non-tumor cells upon the most

efficient HB treatment (0.2 mg�mL�1), to gain new

insights into its mechanism of action and to assess

possible promising further application.

Materials and methods

The previously reported pro-apoptotic effect of HB was

investigated by comparing DEG profiles – the correspond-

ing datasets of two reference cell lines: UT-7 and PBMC

(leukemia and control) generated in previous research with

special focus on results of treatment with 0.2 mg�mL�1 HB

that showed the best cytotoxic and cytostatic effects in dif-

ferent experimental settings published so far.

Gene expression datasets

Relative gene expression quantification data in the form of

Ct values for all target genes (anti- and pro-apoptotic

genes, positive and negative apoptosis regulators, as well as

genes for caspase activators and inhibitors), were obtained

by normalization against standard GAPDH expression

values (www.qiagen.com/shop/genes-and-pathways/data-

analysis-center-overview-page).

Identification and visualization of DEGs

Gene expression data were converted into a log2FC format

associated with an adjusted P-value in each group, scaled by

row and clustering_method = ‘complete’. DEGs were called

based on log2FC and P value. Data points with Benjamini–
Hochberg adjustment P > 0.05 were considered not signifi-

cant. The results were processed for display in a heatmap

format, using the R package ‘PHEATMAP’ (version ‘1.0.12’) [18].

The gene expression profiles in groups ‘UT-

7_HB_0.2 mg�mL�1’ and ‘PBMC_HB_0.2 mg�mL�1’ were

further characterized for differential expression patterns with

the help of a dumbbell plot, using R package GGPLOT2 (ver-

sion ‘3.3.2’) [19,20]. This involved filtering the 84 genes tested

in both samples for P < 0.05, leaving 53 significant gene pairs

in the comparison.

GeneMANIA

GENEMANIA (http://www.genemania.org; version: 3.6.0) [21] is

a user-friendly web server which contains rich genomics and

proteomics data and is used to construct protein–protein
interaction networks for functional enrichment analysis.

Given the query Gene set 3, functionally related proteins

were predicted and enriched pathways were shown.

Gene ontology (GO) enrichment and KEGG

pathway analysis

GO functional enrichment analysis and KEGG pathway

analysis were performed on the 53 significant genes in the

dumbbell plot, using the R package CLUSTERPROFILER (ver-

sion 3.16.1) [20]. The GO term results include the three cat-

egories molecular function (MF), cellular component (CC),

and biological process (BP), visualized in the variant chord

plot together with gene expression profiles in both tumor

and non-tumor samples via EnrichVisBox (https://www.

omicsolution.com/wukong/EnrichVisBox/).

ClueGO analysis

The CYTOSCAPE APP CLUEGO [21] was used to analyze and

visualize non-redundant biological terms of a single cluster

of genes that have not been previously analyzed in this set-

ting. Comparative analysis of several clusters of genes

KEGG pathways is shown in functional groups in the com-

parison of Gene set 1 and Gene set 2. Gene set 1 was

found in leukemia cells as downregulated ‘14 anti-apoptotic

genes’ and Gene set 2 was observed in non-tumor cells as

‘unaffected genes in normal cells’. Gene set 1 could be an

indicator of HB mode of action against leukemia cells since
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the expression of anti-apoptotic genes (which are generally

increased in tumors) was reduced. Gene set 2 could be an

indicator of non-tumor cell ‘resistance’ to HB activity.

CLUEGO (version 2.5.5) was used in combination with CLUE-

PEDIA (version 1.5.5), in CYTOSCAPE version 3.7.2 [22].

Results

Based on the analysis of transcript expression levels of

a panel of 84 apoptosis-associated DEGs, differences

in the response of tumor and non-tumor cells treated

with HB were used to gain insight into the affected

pathways and differences in response to HB of tumor

UT-7 and non-tumor PBMC cells.

Functional differences in deregulated genes

following differential treatment

The effects of the HB treatment on DEGs in tumor

and non-tumor cells are compared, over a range of

concentrations (Figs 1 and 2). A more detailed classifi-

cation of these genes to various functional classes

show that of the 84 genes present in this panel, 64%

can be classified as ‘pro-apoptotic’ and 36% ‘anti-

apoptotic’ (Fig. 1). Furthermore, 30 of the genes can

be assigned to the intrinsic apoptosis pathway, 29 to

the extrinsic pathway, and 24 are involved in both.

The transcriptional expression dataset of 84 key genes

involved in apoptosis-related pathways was produced

with the RT2 Profiler PCR Array System (Qiagen,

Hilden, Germany) as described previously [17]; validated

and used as input to obtain graphical presentations of

the differential response of targeted genes between two

cell-types treatments. A heat map of the results of the

0.2 mg�mL�1 treated cells (Fig. 1) shows that 14 of the

84 anti-apoptotic key apoptotic genes were differentially

expressed between the two cell-cultures. Notably, 13

anti-apoptotic genes were downregulated in leukemia

cultures, five of which are involved in the extrinsic path-

way of apoptosis, three in the intrinsic pathway and six

genes are involved in both. However, there is a treatment

concentration related optimum observed in PBMCs

(non-tumor cells) that is absent in the UT-7 cell line (tu-

mor). As the observed pro-apoptotic effect is highest in

tumor cells treated with 0.2 mg�mL�1 of HB (Fig. 1),

where a large number of genes were downregulated, and

because of similar observations in human basal cell carci-

noma [13], human GR-M melanoma [16], mouse mam-

mary adenocarcinoma 4T1, and B16F10 mouse

melanoma [14] cell lines, this particular treatment is

explored in more detail in our subsequent analyses.

A dumbbell plot was constructed to visualize the

log2FC (significant fold changes in the 0.2 mg�mL�1

HB treatment against relevant negative control) of the

UT-7 and PBMCs lines (Fig. 2). The vast majority of

genes show a distinct pattern: downregulation in UT-7

cells and upregulation in PBMCs. Interestingly, seven

genes, namely NOL3, TNFRSF1A, TRADD,

TNFRSF1B, HRK, CYCS and IL10 seem to behave

differently as they are all significantly upregulated both

in tumor and non-tumor cells, defined as Gene set 3.

Five genes of Gene set 3 belong to the extrinsic apop-

tosis regulation pathway, which triggers apoptosis via

transmembrane receptor-mediated interactions, as can

be observed in Fig. 3A. A GENEMANIA (version: 3.6.0)

[23] protein–protein interaction network connected

Gene set 3 in the inner circle and 20 predicted proteins

in the outer circle. This analysis revealed the extrinsic

apoptotic signaling pathway as the most significantly

enriched, with FDR = 1.69 e�21 (Fig. S1). A total of

15 proteins are covered in this pathway, including

three genes from Gene set 3, namely TNFRSF1A,

NOL3 and TRADD. Some of the suggested proteins

are also measured in the assay, among them CFLAR,

BCL2L1, and BIRC2, which are also found in Gene

set 1 as significantly downregulated anti-apoptotic

genes. Other highlighted pathways are regulation of

extrinsic apoptotic signaling pathway

(FDR = 4.42 e�17), extrinsic apoptotic signaling path-

way via death domain receptors (FDR = 9.01 e�15),

and regulation of extrinsic apoptotic signaling pathway

via death domain receptors (FDR = 1.72 e�15).

Results of gene ontology (GO) and pathway

analysis

Apoptosis pathway focused gene profiling of non-

treated (negative control) compared with HB-treated

UT-7 leukemia cells and non-tumor PBMCs was used

as an input for further assessments. Functional classifi-

cation of the 84 genes was performed to identify the

biological classes, pathways and pathway modules that

were monitored in the analysis of HB treatment

responses.

All DEGs in both cell types were imported and GO

analysis was performed for sunburst plot construction

network representation (Fig. 3A). The top five biologi-

cal processes (BP) were associated with regulation of

peptidase, endopeptidase and cysteine-type endopepti-

dase activity, regulation of apoptotic, specifically extrin-

sic apoptotic signaling. The top five cellular component

(CC) terms were membrane raft, microdomain and

region as well as mitochondrial and organelle outer

membrane. The top five molecular function terms (MF)

included cytokine-receptor binding, tumor necrosis fac-

tor receptor superfamily binding, peptidase regulator
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Fig. 1. Heatmap representation of expression changes in all 84 genes. Expression changes that do not meet the P-value threshold (0.05)

are shown in gray. Colored blocks to the left of the heatmap denote different annotations of the genes. Color codes are explained on the

right side of the heatmap: ‘AA’ stands for the anti-apoptotic genes (gold) and ‘PA’ for the pro-apoptotic genes (light blue). Each gene is

assigned to the intrinsic apoptotic pathway ‘IN’ (blue), extrinsic apoptotic pathway ‘EX’ (red), or involved in both pathways ‘both’ (purple).
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activity, cysteine-type endopeptidase activity and pro-

tease binding. KEGG pathway analysis (Fig. 3B) shows

the top 20 related pathways, with TNF signaling path-

way, NF-kappa B signaling pathway and necroptosis as

the most relevant for this study.

One of the most interesting sets of genes was named

the ‘14 anti-apoptotic genes’ (Gene set 1), that was

found to be downregulated with HB treatment in both

cell types regardless of treatment concentration: BAG3,

BCL2, BCL2L1, BFAR, BIRC2, BIRC3, BIRC6,

CD40LG, CFLAR, IGF1R, MCL1, NAIP, NFKB1 and

XIAP. A second set comprised ‘unaffected genes in nor-

mal cells’ (Gene set 2), with AIFM1, AKT1, BAD,

BAG1, BAK1, BCL2L2, CASP2, CASP6, CD27,

CIDEB, FADD, FASLG, TNFRSF25, TP53 and

TRAF2, and was used to explore the basis for resistance

of healthy cells (PBMCs) to antitumor and anti-

proliferative effects of HB. The ClueGO functional

analysis results of the comparison between the ‘14 anti-

apoptotic genes’ gene set and the ‘unaffected genes in

normal cells’ gene set against the KEGG pathway data-

base show that deregulation of selected anti-apoptotic

and pro-apoptotic genes concomitantly affects several

pathways directly associated with promotion of pro-

grammed cell death following HB treatment. The largest

number of target genes deregulated by HB treatment is

engaged in regulation of apoptosis via three specific

pathways: NF-kappa B signaling (eight genes directly

engaged in apoptosis associated pathways), toxoplasmo-

sis (eight genes associated with cellular immune

response), and direct apoptosis (seven genes including

mediation via BIRC6 family of proteins; Fig. 4).

For a further assessment of specific functional mecha-

nisms explaining the HB effects on gene deregulation at

the transcriptional level, we used Reactome (Tables S1

and S2) and PANTHER (Tables S3 and S4) [24,25]. This

analysis revealed shared pathway hits linked to cyto-

toxic and apoptosis related processes, which is of partic-

ular interest in UT-7 leukemia cells upon HB treatment.

Common annotations among the 20 most significant

pathways in leukemia cells included regulation of intrin-

sic and extrinsic apoptotic pathways, regulation of other

types of cell death such as anoikis, necrosis or necropto-

sis, NFjB activity mediation, regulation of endopepti-

dase activity, and protein poly-ubiquitination.

Discussion

The anti-proliferative effect of HB in tumors and not

in non-tumor cells has been observed previously [15],

Fig. 2. The log2FC separation between UT-7 leukemia and non-tumor PBMCs, shown only for 54 differentially expressed genes in HB treat-

ment of 0.2 mg�mL�1. In each paired sample, the red dots denote gene expression data from UT-7 leukemia samples and blue ones from

PBMCs, ranked based on the variance of log2FC in UT-7 and PBMCs, in descending order. Each gene is annotated with extrinsic or intrinsic

apoptotic pathways and pro- or anti-apoptotic pathways.
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Fig. 3. Variant chord plot of DEGs related to apoptosis in non-tumor and UT-7 leukemia cells indicates biological process (BP), cellular com-

ponent (CC) and molecular function (MF) (A) KEGG pathway analysis of DEGs, top 20 shown (B).
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yet the mechanism of this effect was not explored in

any detail. We used a gene expression dataset targeting

genes that are implicated in apoptosis, to identify the

genes deregulated by HB in leukemia cell line (UT-7)

and non-tumor cells (PBMCs) that could explain for

differences in cytotoxicity observed between tumor and

healthy cells. As this gene set comprises mainly

apoptosis-related genes, we focused on comparing the

specific pro-apoptotic mechanism triggered in UT-7

and PBMC cells, and corresponding signaling path-

ways to elucidate the underlying mechanism of stron-

ger cytotoxic HB action in tumor cells.

The most remarkable feature of cancer is the ability

of tumor cells to escape apoptosis through shifting the

balance of pro-apoptotic and anti-apoptotic proteins,

reduced expression of caspase, and a loss of death

receptor signaling [26]. Anti-apoptotic genes are stably

expressed in tumors, constituting one of the basic

mechanisms for avoiding apoptosis and contributing

to dysregulation of cell proliferation [26]. Compounds

that impinge on this mechanism, i.e. Bcl-2 antagonists

or BH3 mimetics, may prove to have useful anti-

cancer properties. According to DEGs representation

(Fig. 1) the most anti-apoptotic genes were downregu-

lated in UT-7 cells in HB 0.2 mg�mL�1 treatment sug-

gesting triggering of apoptosis and necrosis only in

leukemia (Figs 1 and 2). The BCL-2 and MCL1 joint

downregulation is previously confirmed in AML cell

lines as a mechanism of their synergistic pro-apoptotic

effect that underpins the anti-leukemic response [27].

These data suggest that HB induces a pro-apoptotic

cascade of events by affecting pro-apoptotic pathways

rather than to have a direct antagonistic effect to Bcl-

2. In another recent study on GR-M human mela-

noma [16], more than 30 tumor associated genes were

found to be deregulated in cancer cells upon treatment

with HB. Conversely, in non-tumor PBMCs, all anti-

apoptotic genes were upregulated, which may be the

most common cellular response to stress stimuli as it

provides them the ability to repair potential damage

i.e. from ROS generation [28], by activation of inflam-

mation pathways rather than entering apoptosis [29].

Fig. 4. CLUEGO functional comparison analysis results between gene set 1 and gene set 2 against the KEGG pathway database. The

pathways enriched are shown as larger ellipses, while genes associated are smaller ones. Genes from gene set 1 shaped as ‘ellipse’ and

genes from gene set 2 ‘square’. The P-value threshold is set to be 0.05 and the pathway network connectivity (kappa score) is set to be

0.4. Color coding: blue lines suggest links to anti-apoptotic and green lines suggest links to pro-apoptotic pathways.
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As described previously [17], similar observations have

been reported for non-tumor control cells in other

experiments.

In this work, we showed that UT-7 and PBMC cul-

tures react differently to treatment with HB. In leuke-

mia cells grown in vitro, treatment with HB evidently

induces the TNFa [26] regulated pro-apoptotic cas-

cade, whilst in PBMC a pro-inflammatory process is

induced with notable association of anti-apoptotic fac-

tors (c-FLIP, caspase-8 and -10), which forms the

apoptosis inhibitory complex (AIC). Upregulation of

anti-apoptotic factors was observed less in UT-7 cells,

which explains why pro-apoptotic events in these two

types of cells are not of the same intensity and nature

(Table S4). According to the results of log2FC separa-

tion between UT-7 and PBMCs (Fig. 2) for DEGs

after HB 0.2 mg�mL�1 treatment, seven genes (NOL3,

TNFRSF1A, TNFRSF1B, TRADD, HRK, CYCS and

IL10) were upregulated in both cell types. These speci-

fic responses indicate that at least parts of the apop-

totic triggers are common to both cell types. It could

be explained that HB triggers apoptosis in both cells,

possibly in the same way via the death receptor extra-

cellular signaling by activation of TNFa signaling cas-

cade [26], but with different signal processing and final

outcome in tumor and normal cell types. In PBMC,

this signal is transmitted but within 72 h it is stabilized

possibly by intrinsic anti-apoptotic mechanism activa-

tion without committing cells to apoptosis. This find-

ing is in line with previously observed effects of HB

treatment compared with positive apoptosis control

treatment in UT-7 cells using other cytogenetic meth-

ods of evaluation [17]. The observed difference in

response between the two cell types might be related

to the adaptive response of PBMCs to induced cellular

stress, resulting in a transient initiation of the process

of apoptosis, without a full commitment [28,29]. The

activation of genes associated with the oxidative dam-

age pathways (cellular responses to induced stress;

Table S4) only in PBMCs further supports the idea of

a differential response to HB. In extension to this,

tumor cells (UT-7) are more prone to pro-apoptotic

effects of HB, with several activated genes suggesting

that other forms of cell death (necrosis, necroptosis,

anoikis) in UT-7 cells are also possible (Table S3) and

have been first observed here. Association with those

types of cell death could provide additional insight

into the HB mechanism of action considering their tar-

geting in tumors [30,31].

An important subset of responder genes (Gene set

1- downregulated anti-apoptotic genes in leukemia) is

associated with the NF-jB signaling pathway (Figs 3B

and 4; Table S1), which plays a fundamental role in

the development of AML and represents an attractive

target for therapeutic intervention [32–34]. In fact, new

NF-jB signaling inhibitors offer a promising strategy

for the development of candidate drugs in antitumor

therapy [35]. NFjB inhibition is associated with the

proteasome inhibition by bortezomib (Velcade, Millen-

nium Pharmaceuticals, Cambridge, MA, USA), an

antitumor agent chemically similar to HB. Bortezomib

shows tumor-selective toxicity and its mechanism of

toxicity is based on inhibition of NFjB [36]. Studies of

apoptosis induction in other tumor cell types suggest

the possibility of Bax/Bak-independent apoptosis

induction with TRAIL agonists, which bind to the

tumor cell surface [37] and may lead to a tumor cell

sensitization by ROS generation and mitochondrial

depolarization as a way to override anti-apoptotic

mechanisms that are upstream of the mitochondrial

apoptosis cascade. As boron-containing compounds

(BCCs) are widely used for tumor sensitization to

treatment, the observed HB selectivity to tumors could

be additionally explained by its boron constituent [38–
40]. According to DEGs and GO analysis (Fig. 3A),

the most prominent biological processes related to

peptidase and endopeptidase activity implicate HB as

possible peptidase regulator and protease binding

moderator. This kind of HB activity might be expected

because it was previously reported that HB interferes

with different enzyme activities [41–44]. In addition,

statistically significant inhibition of anti-apoptotic

BCL-2 protein by HB 0.2 and 0.4 mg�mL�1 treatments

was confirmed in UT-7 leukemia only [17]. Positive

regulation of protein polyubiquitination was also

observed among the significantly affected biological

processes in UT-7 leukemia (Table S3). It seems that

HB as a new BCC, might have a potential to inhibit

formation of key cellular proteins involved in anti-

apoptotic processes. However, the relationship between

NFjB activity inhibition and peptidase activity of HB

is based on apoptotic events, which are also suggested

by some GO Cellular Component terms (membrane

region and mitochondrial membrane inclusion;

Fig. 3A). Changes in mitochondrial membrane perme-

ability and potential are one of the first signs of intrin-

sic apoptotic pathway events [45]. Additionally, the

GO enrichment of extrinsic apoptotic signaling sup-

ports the induction of apoptosis in this way, which is

also related to transmembrane death domain factors

mediation and seven observed upregulated genes in

both cells. A GENEMANIA protein–protein interaction

network connected genes from the Gene set 3 with 20

predicted proteins and the analysis revealed the extrin-

sic apoptotic signaling pathway as the most significant

enriched function. It also highlighted several additional
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extrinsic apoptosis related pathways, giving overall

deeper insight into functional relationships of HB

treatment with induction of apoptosis.

All pathway classification results suggest that HB

has an evident pro-apoptotic effect in UT-7 leukemia

but not in non-tumor PBMCs. This apparent selectiv-

ity of treatment effect on tumor cells is caused by

apoptosis induction via deregulation of genes engaged

mainly in pro-apoptotic cellular processes and inhibi-

tion of anti-apoptotic regulators highly expressed in

tumors. Since similar HB-selective responses have been

observed both in vitro and in vivo with a calcium ion-

dependent effect [15], one of the possible explanations

of the cancer specific effect of HB could be its effect

on ion balance and cell membrane depolarization lead-

ing to apoptosis. In this study, we found that the HB

effect in UT-7 leukemia is realized through the extrin-

sic apoptosis induction via death domain receptors,

ROS generation and concomitant mitochondrial mem-

brane depolarization followed by intrinsic apoptosis

activation. Extended deregulation of genes engaged

with NF-jB and peptidase activity mediation ensures

apoptosis signaling persistence in tumor cells and not

in non-tumor (PBMC) cells.

Conclusions

Searching for drugs that could induce apoptosis in

tumor cells is a main trend in current anticancer

research. In this work, we showed that HB, especially

at a concentration of 0.2 mg�mL�1, initiates a process

of tumor cells sensitization to pro-apoptotic activation,

probably via the Bax/Bak-independent mitochondrial

depolarization by ROS generation and TRAIL-like

activation, followed by inhibition of NFjB signaling

pathway. This is supported by reproducible HB effects

observed in different cell types and extensive bioinfor-

matics analysis of treatment induced DEGs as mark-

ers, their functional interactions and pathway

enrichment analysis and warrants further functional

studies for therapeutic use of HB.
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