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ABSTRACT Construction equipment is one of the most significant resources in large construction projects,
accounting for a considerable portion of the project budget. Improving the performance of heavy machinery
can increase efficiency and reduce costs. However, research on boosting the machine efficiency is limited.
This study adopts a mixed review methodology (systematic review and bibliometric analysis) and evaluates
emerging technologies such as digital twin, cyber physical systems, geographic information systems, global
navigation satellite systems, onboard instrumentation systems, radio frequency identification, internet of
things, telematics, machine learning, deep learning, and computer vision for machine productivity, and
provides insights into how they can be used to improve the performance of construction equipment. This
study defined three major equipment operating areas—monitoring and control, tracking and navigation, and
data-driven performance optimization—classified technologies and explored how they can increase machine
productivity. Other circumstantial issues affectingmachine operation and loopholes in the existing innovative
tools used in machine processes have also been highlighted. This study contributes to the goal of deploying
digital tools and outlines future directions for the development of automated machines to optimize project
efficiency.

INDEX TERMS Digital models, earthmoving, equipment productivity, mobile equipment, emerging,
technologies, tracking, sensing.

I. INTRODUCTION
In recent years, practitioners and researchers have focused
on improving the performance of the construction sector,
which has a reputation for poor productivity, with only a 1%
increase over the previous two decades [1]. Even though con-
struction is one of the largest sectors in the world, account-
ing for 13% of global GDP, it continues to underperform,
although the industry has not been in recession [2]. Construc-
tion efficiency gains of 50%–60% or more are expected to
add $1.6 trillion to the industry’s value and increase global
GDP [3]. Construction equipment is a company’s greatest
asset during a time crunch because it streamlines and provides
the most assistance. As the global construction equipment
industry is expected to develop at a compound annual growth
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rate (CAGR) of 3.9 percent from 2022 to 2030, the sector
has enormous potential to add value to construction [4]. This
is because the global increase in construction activity is pro-
jected to stimulate the demand for machines. Mega projects,
such as roads, mines, dams, and open-pit mining, mostly rely
on earth moving operations [2]. The performance of heavy
machinery, such as excavators, loaders, and dump trucks,
has a significant impact on the overall project efficiency.
The growing popularity of electric construction equipment
is projected to provide new income streams for original
equipment manufacturers (OEMs) in the coming years [4].
Increasing heavy machinery utilization is crucial not only
for productivity but also for cost management. Therefore,
it is important to evaluate and improve the performance of
construction machines to increase the productivity of the
construction operations.
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Autonomous machine-working systems, which are used to
replace workers to enhance productivity, have been employed
in several fields. However, in comparison to them, the con-
struction industry is still in the early stages of adopting
such breakthroughs [5]. The traditional procedures used by
construction projects to manage heavy-duty machinery oper-
ations may be one of the causes of poor efficiency in the
industry [1]. The lack of skilled workers in utilizing inno-
vative solutions is a challenge. Companies and workers are
also reluctant to adopt innovative solutions, as they believe
that they can complicate existing procedures by acquiring
changes and disrupting existing workflows [6]. In addition,
the high cost of critical gears, such as advanced excavators,
cranes, and trucks, makes the industry more traditional [7].
In contrast, digital technologies such as artificial intelligence,
big data, machine learning, and the Internet of Things (IoT)
can improve the productivity of heavy-duty machinery oper-
ations owing to data-driven methodologies [8]. The urge to
improve productivity and safety is driving the adoption of IoT
in construction. IoTs allow real-time connectivity between a
computer platform and actual construction sites [5], which
can provide not only real-time monitoring and identification
of heavy machinery for integrated fleet management and
resource allocation, which is essential [10]; they also mea-
sure performance, analyze workflow, and reduce equipment-
related injuries [8]. Further, themarket for IoT in construction
was valued at USD 7.8 billion in 2019 and is expected to grow
at a CAGR of 16.5 percent to USD 16.8 billion by 2024 [9].

Several papers and extensive reviews have addressed
new automated data acquisition, processing, and visualiza-
tion methods for digital and real-time progress monitoring.
Most studies have focused on heavy machinery management
with an emphasis on equipment monitoring and localization
(Table 1). Some studies have employed computer vision or
sensor-based technologies to calculate earthmoving equip-
ment productivity, while others have examined variables that
influence efficiency. Although analyzing equipment produc-
tivity is crucial, and several authors have proposed solutions,
research on assessing heavy machinery productivity using
modern technology is minimal. This is because construction
machine research, such as data collection and analysis, is still
in its early phase. Another factor is that technologies are
still under development and constantly evolving. Therefore,
a complete literature review is required to evaluate equipment
productivity and investigate new technologies. This paper
provides an overview of emerging technologies for machine
productivity and insight into how they can contribute to opti-
mizing the performance of heavy-duty machines.

The authors collected literature from 2002 to 2022 using
a composite review technique (bibliometric analysis and
systematic review), studied the trends in this subject, and
categorized the papers into main areas that are impor-
tant to heavy-duty machinery. This study focuses on tech-
nologies that have been classified and examined in terms
of their potential contribution to improving the machine

performance. While monitoring the equipment, the authors
discovered that various technologies can be combined to
attain a specific target. Moreover, the authors discovered that,
in addition to heavy machinery, personnel, materials, and
even the activity itself are monitored for improved output.
Our literature review aims to answer the following research
question (RQ):

• RQ1: How can emerging technologies improve the per-
formance of the heavy-duty construction machinery
used in major construction projects?

To answer our main research question, we identified three
research tasks (RT):

• RT1: To identify the areas of machine operation in
which emerging technologies can potentially contribute
to adding value?

• RT2: Which technology can be used for which specific
area of machine operation?

• RT3:What are the existing challenges, and how can they
be addressed using new technologies?

The remainder of this paper is structured as follows: The
review technique and process are presented in Section 2
‘‘Review Method.’’ In Section 3, ‘‘Emerging technologies’’
for machine operation optimization (RT1, RT2) are discussed.
Section 4, ‘‘Technological Integration,’’ Section 5, ‘‘Indus-
try 4.0,’’ Section 6, ‘‘Discussion’’ (RT3), Section 7, ‘‘Iden-
tified Gaps,’’ Section 8, ‘‘Conclusion’’. Finally, Section 9,
gives ‘‘Future Work’’. Fig 1 illustrates the structure of the
document.

FIGURE 1. Article structure.

II. METHODOLOGY
Firstly, a systematic search of the literature was conducted
using PRISMA protocol guidelines and bibliometric analy-
sis. This was done by arranging the collected papers based
on their keywords, document types, language, and so on.
Second, bibliometric analysis was performed to improve the
quality of the research and find research trends via quantita-
tive analysis. Fig 2 illustrates the major phases of the review
process.
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TABLE 1. Related review papers and their contributions.

A. SYSTEMATIC ANALYSIS
1) DATA ACQUISITION
A protocol for collecting articles was designed by reviewing
studies that used various methodologies and technologies
to measure the productivity of the construction equipment.
The scope was set to articles in English published between
2002 and 2020 that dealt with heavy machinery productivity
and technology in various construction projects.

2) DATABASE AND KEYWORDS
Five databases, Web of Science (WoS), Scopus, Science
Direct, ACM, and IEEE Explorer, were chosen to compile the
literature on innovative solutions for construction machinery.
Google Scholar was used to obtain the citation counts of the
collected articles.

The keywords were split into two categories: those con-
nected to technology and those related to construction.
Construction-related words are autonomous, construction,
equipment, operation, excavator, monitoring, management,
building, project, efficiency, productivity, earthmoving, track-
ing, and optimization. Data visualization, information,
modeling, mobile, machinery, digital, models, sensing, and
analytics are words used for technologies.

3) SEARCH STRATEGY
Table 2 lists the keywords used to perform these queries. Each
keyword within a group was paired using the OR operator,
whereas the groups were paired using the AND operator
(Table 2). The last row of Table 2 shows how keywords
from different groups are linked to create a query that was
run in all five bibliographic databases. The query was used
on the article title, article abstract, and article keywords to
locate relevant articles from the five selected bibliographic
databases published in English from 2002 to 2022.

TABLE 2. Selected keywords in different groups.

Using the established technique, a total of 1,980 papers
published between 2002 and 2022 were collected. The max-
imum number of articles was published in the last five years,
indicating that the subject is active in academia, and the
publishing trend is growing (Fig 3).Maximum data collection
was obtained from the Web of Science (WoS) and Scopus
databases.

4) DATA FILTRATION
This stage was divided into four steps, as shown in Fig 4:
identification, screening, article eligibility, and inclusion. The
first step was to determine the number of publications in
each database. The second step was screening, where the
publications were screened for duplication, title, and abstract.
Duplication was based on articles with the same titles that
were re-selected by alternative keyword combinations from
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FIGURE 2. Methodology review.

the same database or other databases, and 855 publica-
tions were removed. Screening of titles and abstracts was
used to filter out irrelevant articles. After evaluating the
title of each article, screening was performed, and irrelevant
studies were removed. In total, 510 irrelevant publications

FIGURE 3. Distribution of collected data (articles) published across the
years.

were eliminated. Subsequently, 440 irrelevant articles were
eliminated by reviewing the abstract of each paper.

In the third phase, the full text eligibility for each article
was carefully examined considering the tools and methodol-
ogy used, resulting in a total of 88 articles being included and
87 publications being removed. Following the filtering pro-
cedures stated above, the number of publications included in
each database yielded the following synopsis: Fig 4 displays
31 studies fromWoS, 25 from Scopus, 11 from IEEE, 2 from
ACM, and 19 from ScienceDirect.

B. BIBILIOGRAPHIC ANALYSIS
The articles from the selected publications were analyzed
based on the keywords, sources of articles, and technological
tools used for experimentation. The map of the selected pub-
lications was then evaluated based on the title and abstract to
establish the correlation betweenwords and themost frequent
terms.

1) PUBLICATIONS DISTRIBUTION BY YEAR
Fig 5 illustrates the pattern of publications growing over
time for the chosen period from 2002 to 2022, with a higher
number of publications published between 2017 and 2022.
This pattern indicates that innovation in this area is growing.
The number of publications increased in 2018 with 17 articles
showing an upward trend, indicating a growing volume of
research on this topic.

2) PUBLICATIONS DISTRIBUTION BY
JOURNAL/CONFERENCE
Collected publications were also analyzed for their sources to
determine the distribution by journal/conference, as shown
in Fig 6 and 7, respectively. Only 15 of the 88 papers
were chosen from conferences, and the remaining 73 pub-
lications were found in journals. In addition, it was found
that ‘‘Automation in Construction’’ had the highest num-
ber of articles among the selected journals and conferences
with 18 records, followed by ‘‘Information Technology in
Construction’’, ‘‘Journal of Computing in Civil Engineer-
ing’’, and ‘‘Advanced Engineering Informatics’’, with seven,
five, and five records, respectively. In the conference cat-
egory Construction Research Congress, IEEE, and ASCE
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FIGURE 4. PRISMA search methodology.

have five, four, and four records, respectively, as shown
in Fig 7.

3) PUBLICATION BY AREAS
The bibliographical network analysis of this manuscript led
to the development of six subgroups. Based on data collection
technology, there were 11 papers related to productivity mea-
surement and evaluation, 13 papers focused on productivity
monitoring, 8 papers related to performance enhancement,
10 papers on operation management, 9 papers on safety
execution of operation, and 37 papers related to technologies
and innovation. Fig 8 shows the percentage distributions of
these districts. Various technologies such as digital twins,

cyber-physical systems, telematics, machine learning, deep
learning, IoTs, and building information modeling (BIM)
have been studied to address the main RQ.

III. EMERGING TECHNOLOGIES
The use of information and communication technology (ICT)
in construction projects has the potential to improve project
efficiency [3]. Automation and robotics have recently been
introduced in the construction industry. These approaches
use a combination of computers, machine components, and
software to systematically run the equipment [7]. These tech-
nologies are used to improve the work environment, health
and safety, scheduling, product quality, and reduce on-site
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FIGURE 5. Distribution of collected publications over different years.

FIGURE 6. Journals-based distribution of collected articles.

FIGURE 7. Conferences-based distribution of collected articles.

labor costs [7]. Workers can be replaced by machines that
are significantly faster and more consistent when robotics
and automation are used. Human exhaustion reduces project
production, allowingmachines to performmorework per day.

FIGURE 8. Area-wise distribution of collected data.

However, it is important to determine which technologies
are used, how often they are used, and the environment in
which they are used because on-site job circumstances vary
in construction projects (RT2). We have studied several tech-
nologies used in construction machinery to improve produc-
tivity. Fig 9 depicts the classification of technologies based on
their potential for improving machine performance, which is
covered in detail in the following subsections (RT1 and RT2).

FIGURE 9. Distribution of technologies for optimizing construction
equipment based on their characteristics.

A. MONITORING AND CONTROL
In comparison to construction, the manufacturing sec-
tor is more advanced in utilizing digital solutions, and
research shows that most digitization processes in con-
struction share challenges like those of manufacturing.
The construction equipment industry has a well-established
distribution network that employs comparable production
methods [7]. Although researchers and practitioners are
working on launching digitally equipped machinery, they
have not succeeded in developing fully automated machines.
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New cutting-edge technologies have the potential to signifi-
cantly improve existing hardware [3].

1) DIGITAL TWIN (DT)
DT is the cyber-physical integration of systems, processes,
or assets for virtual simulations, benchmarking, and test-
ing [18]. The cyber-physical system (CPS) is an Industry
4.0 paradigm that can be used to build a DT [19]. DT serves
as a link between the physical and virtual worlds, allowing
for the collection of real-time entity data. DT aids com-
panies in product creation, testing, budgeting, and process
optimization, allowing them to increase the performance of
their final products [18]. DT technology, particularly in smart
construction, can play a vital role in Industry 4.0. Compared
to traditional modeling techniques, this technology is more
attractive owing to its distinct features, such as bidirectional
communication, real-time self-management, and optimiza-
tion. Table 3 summarizes the strengths, contributions, chal-
lenges, and potential services of DT for designing DT-based
machinery. Although the ideas of DT and building informa-
tionModeling (BIM) seem to be similar to those of some aca-
demics, building professionals have pointed out distinctions.
According to [20], they differ in various phases, including
goals, capabilities, users, and development. BIM applica-
tions primarily focus on a corpus of construction knowl-
edge and target construction clients. Several studies have
been conducted to enhance the safety of construction equip-
ment. These projects use technologies such as autonomous
crane lifting route development, 3D operator information,
operator warnings, and simulations to identify threats [21].
For prefabricated components (PCs) hoisting control, [22]
developed a digital twin model (DTm) employing Dijkstra’s
algorithm to calculate hoisting routes using BIM data in
the model. The lifting path was created after the worker
obtained the material ID. Similarly, using 4D BIM models,
cloud computing, database platforms, and real-time field data
acquired by sensors and analyzed by artificial intelligence
algorithms, [23] created a digital twin system to increase
real-time safety monitoring. A complete database and an
integrated 4D crane simulation and onsite operation manage-
ment system for numerous contemporaneous mobile crane
operations were designed in [24]. Similarly, [25] developed
a BIM-based solution for the site layout and equipment mon-
itoring. One approach for monitoring construction progress is
tomodel the gap between projected and actual productivity on
the ground in BIM [15]. For instance, [26] used a web-based
operational mechanism to monitor precast work progress in
real time and color-coded the status of the precast throughout
production, material handling, on-site arrival, and installation
using a BIM model. Moreover, it is possible to verify and
explain delays in precast production and delivery by viewing
domestic and field progress in real-time. This type of perfor-
mance monitoring improves communication and cooperation
between managers and field personnel [21].

DT can also be useful for tracking, regulating, and exam-
ining the equipment [18]. A digital entity has geometric

dimensions, shapes, and other features that correspond to the
real objects. DT has the potential to map the logic and rules
used by physical entities and determine the past, present,
and future of a physical entity (assets or processes) [27].
Moreover, in extreme circumstances during project execu-
tion or remote operations, where manual monitoring is chal-
lenging, DT can be anticipated to gain self-awareness and
self-optimization as it offers two-way data exchange and
control [18]. Thus, contractors can meet their daily objectives
on dangerous or crowded building sites with the support of
digital versions of machinery [27]. In addition to improving
robustness, DT can assist practitioners and managers to save
energy and other resources.

AlthoughDT is a new technology, it is continually evolving
and has not yet been developed in the construction indus-
try. However, the literature reveals that researchers have
suggested several DT designs to utilize this technology in
automating machine operations in the manufacturing indus-
try. Table 4 provides a summary of the scholarly research
on DT in manufacturing management systems. Research on
DT is still in its early stages, and numerous challenges and
shortcomings must be resolved before DT can be broadly
used in the construction sector. Modeling every unit of
a real-world system requires significant computing power,
data storage, and continuous data transmission and process-
ing [28]. The infrastructure required to achieve a high degree
of performance has not yet been achieved. Precision, accu-
racy, data collection, and synchronization are important for
reliable simulations [29]. Therefore, real-time communica-
tion, sophistication, precision, connectivity, and architectural
foundations are challenges that must be overcome before DTs
can be used in practice [28]. The use of a secure, reliable,
and rapid connection to transmit data in real-time is a well-
known requirement. In addition, the technical components,
protocols, and tools needed to build a DT or describe it as an
all-encompassing technology are yet to be agreed upon [30].
Sophisticated technologies, such as wireless sensor networks,
industrial artificial intelligence, blockchains, and transfer
learning algorithms, can also be integrated to increase the
functioning and capabilities of DT in different areas.

2) CYBER PHYSICAL SYSTEMs (CPS)
CPS combines informatics, real-time control subsystems,
components, and human operators to affect physical pro-
cesses through collaboration and a partially automated con-
trol mechanism [5]. One of the primary distinctions between
DT and CPS is that CPS embeds a system-level thinking
approach based on networked products and functions (inte-
grating the connectivity principle), whereas DT is an engi-
neering system that drives new abilities to design, execute,
maintain, and develop new services to optimize its worth [30].
CPS includes the coupling of physical systems with their dig-
ital replicas via sensors and actuators, whereas DT provides a
digital copy of the facility as designed and implemented [34].
Table 5 presents the typical CPS architecture. As auto-
mated mobile machinery is more appealing for operation in
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restricted work zones and is owned by different stakeholders,
this technology offers simpler fleet-coordination setups.

TABLE 3. Strengths, contributions, issues, and potential usage of DT for
improving machine performance.

Collectively, these characteristics make mobile equipment
situations intriguing for automation, and certain solutions
show economic viability. Earthmoving equipment generally
uses electrohydraulic automated control systems with posi-
tion detectors that provide digital outputs when required.
Tractors, graders, scrapers, and back hoes, among other con-
struction and agricultural machinery, are now fitted with
electronic control systems such as telematics for excavation
operations [1], [5]. The primary function of these machines
and their systems is to measure the topography, cutting, and
filling of high and markedly low areas. To perform these
duties, a machine must be able to assess and manage the
height and thickness of a material [10]. Table 6 outlines the
potential advantages, design problems, and smart machine-
based applications using DT technology.

Because on-site crosslinking of single-value processes is
becoming more significant in construction projects [35],
future construction processes will require rapid adaptation to
counter unfavorable situations. The CPS can address these
challenges in the development of mobile machines. Future
transformation of communication strategies will require the
classification of data in mobile machinery into time depen-
dency, data relevance, and the degree of data collection
and consumption. Fig 10 shows the key technologies and
algorithms for creating CPS-based mobile machinery in the
construction sector [33]. Data and algorithms constitute the
virtual world. The data represent the storage information.
This storage may be on a CPS central server or decentralized
server network. The algorithms process information acces-
sible via bidirectional transfer from existing data or a con-
necting interface, including the HMI from sensors. The CPS
is essential for the development of mobile machines. CPS

TABLE 4. Literature review of articles illustrating DT implementation.

upgradation in construction machinery can potentially lower
overall construction expenses by 20–30% [34], [35]. The
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algorithms shown in Fig 10 can reduce fuel costs and heavy
machine moving times by 40% and 50%, respectively [35].
Compared to other sectors that have already embraced Indus-
try 4.0, CPS can increase construction productivity by a factor
of three [35]. This technology can also promote small farms
and businesses, leading to the formation of a new industrial
sector.

TABLE 5. Fundamental structural and functional components of a CPS.

B. MACHINE TRACKING AND NAVIGATION
Tracking the operational efficiency of construction machin-
ery improves its productivity and sustainability [47]. Auto-
mated assessment of construction equipment efficiency offers
crucial information for findingways to boost productivity and
reduce environmental impacts [2]. However, conventional
project site progress monitoring approaches are inaccurate
and time-consuming to collect and evaluate data because they
rely heavily on manual procedures. One of the key variables
causing project delays and budgets was identified as a flaw in
this strategy [49]. Traditional management approaches have
raised key concerns such as shorter monitoring periods, inad-
equate reportingmethodologies, and poor quality ofmanually
obtained data [15]. However, in recent years, a variety of
new automated data collection, processing, and visualization
technologies have been employed to develop approaches for
digitized, real-time progress monitoring. Several articles and
comprehensive reviews have addressed these initiatives. The
authors examined systems based on two prominent naviga-
tion technologies from the perspective of construction equip-
ment tracking to monitor productivity.

1) GEOGRAPHIC INFORMTAION SYSTEM (GIS)
Real-time monitoring and positioning of heavy machinery
is useful in many construction and mining operations [10].
It enables integrated asset tracking and active distribution of
resources in large construction places. Additionally, geospa-
tial data can be utilized to analyze machine activities and,
as a result, evaluate the efficiency [50]. New prospects for
intelligent administration of earthmoving operations have
surfaced with the introduction of smartphones. These devices
are integrated with multiple sensors connected to an internet

TABLE 6. Potential properties, design issues and application of CPS.

FIGURE 10. Technologies and algorithms for designing CPS-based mobile
construction machinery [35].

global positioning system (GPS), accelerometer, three-axis
gyroscope, etc., and can function as standalone computers
through multiple connectivity options, including wireless,
Wi-Fi, and Bluetooth [51]. GPS and GIS integrated solutions
increased effective construction equipment operating hours
and decreased construction duration and labor costs [50].
GIS can visually analyze spatial information, accurately pre-
dict, and analyze schemes, and evaluate geographical data in
the real world [52]. Moreover, the integration of GPS and
GIS technology has proven to be an effective and easy way
to anticipate the time and cost required for transportation
asset operations [53]. For example, using GPS and GIS [53],
a method for tracking and estimating the performance of a
hauling unit was developed. Similarly, [50] created a Wi-Fi-
based indoor localization and communication system called
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the voice communication and locating system (VCLS) and
integrated it with BIM and GIS. BIM and GIS were used
to monitor the mobile devices and personnel in the planned
region. Using GPS/GIS technology to automate site data
collection, [54] proposed a technique for probabilistic fore-
casting of earthmoving productivity using discrete event
simulation (DES). Similarly, [51] designed a prototype for
construction material and equipment (M&E) management
onsite by connecting GIS and GPS to the M&E system based
on awide area network (WAN) to decrease constructionwaste
and improve project efficiency by barcoding an automated
data collection tool.

2) GLOBAL NAVIGATION SATELLITE SYSTEM (GNSS)
Deployment of a global navigation satellite system provides
accurate and timely positioning. Machines and vehicles can
be located in a designated area such as a job site. Most
positioning systems for objects are based on measuring the
distance [54]. Positioning systems depend on the well-known
evaluation of distance signals and translation of data into
position information to work correctly [51]. It relies on the
distance and type of transmitter and receiver carriers [35].
GNSS is an example of a positioning technology that acts as
a carrier by constantly delivering signals [13].

The two most prominent GNNS technologies are the
American-based GPS and the Russian-made GLObal’naya
NAvigatsionnaya Sputnikovaya Sistema (GLONASS) [52].
GPS has revolutionized navigation. It offers dependable and
durable solutions for tracking and monitoring the equip-
ment [10]. However, these methods have certain limita-
tions. Because every piece of equipment must be labelled,
this might be troublesome when employing rental equip-
ment or subcontractors, and spatiotemporal data may not
be adequate for activity identification, necessitating mul-
timodal sensing [10]. Similarly, for highway construction,
GPS was proven to be more reliable and effective for col-
lecting data [53]; however, inconsistencies occurred in GPS
data owing to objects that eventually blocked the connection
between the GPS receiver and satellites. Compared to the
onboard instrumentation system, GPS offers several bene-
fits in terms of poor productivity tracking. For example,
GPS can distinguish idle time from activity duration, collect
large amounts of data, accurately describe operating situa-
tions, and distinguish between truck loading and dumping
times [49]. Another difference is that onboard instrumen-
tation can only record the total travel time, whereas GPS
data can be used directly to calculate the hauling and return
times [54]. Although GPS monitoring offers various advan-
tages, it also requires the collection of large amounts of data,
which can make the project manager’s work more difficult
because of the need to organize, process, and evaluate the
collected data [53]. Table 7 summarizes several studies that
have used GPS to monitor the productivity and utilization of
different types of equipment.

TABLE 7. Methods based on GPS sensors for recognizing equipment
operation and analyzing productivity.
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TABLE 7. (Continued.) Methods based on GPS sensors for recognizing
equipment operation and analyzing productivity.

C. DATA DRIVEN PERFORMANCE OPTIMIZATION
The construction industry is one of the wealthiest industries
that produces massive amounts of data [3]. Therefore, there
is great potential for using such data to enhance production.
In addition, data collection techniques have evolved beyond
broadcast and cable transmission to incorporate open com-
munication technologies, such as RFID tags and sensor-based
actuator modules [72].

In addition, because of the recent expansion in the con-
struction industry and the usage of information technology,
which has provided possibilities such as data collection and
analysis, artificial intelligence (AI) algorithms have been
used to address complex engineering problems [8]. However,
to collect data from jobsites, current productivity evaluation
methods require an information system that can analyze and
process the collected data [9]. This can be achieved by eval-
uating the data patterns as inputs and outputs to develop a
quantitative evaluation [1]. Models based on such strategies
are often data-driven [47]. The data can be used to train a
sophisticated prototype model that can understand the com-
plicated links between different input factors and provide
relevant outputs to assist engineers in improving their design
processes [3]. Here, we investigated the tools and technolo-
gies for collecting and analyzing data regarding construction
processes.

1) DATA COLLECTION
a: ONBOARD INSTRUMENTATION SYSTEM (OBIS)
OBIS is a powerful asset management application that pro-
vides managers and operators with relevant data collected
from different job activities. It was designed to collect data
to avoid equipment failure or to discover abnormalities to

improve safety [15]. The system detects faults in multiple
parts of the equipment by placing sensors in the monitored
unit [49]. These sensors are used to identifymechanical issues
with tracked equipment and measure specific features, such
as temperature, pressure, and control lever position, which
affect the equipment cycle time and productivity [49]. For
example, the OBI of a crane has an encoder sensor and load
moment indicator. Encoder sensors, which are used to mea-
sure the rotation angle, are either installed between the body
of the crane and truck base or between the boom and crane
boom. To collect obstacle data, [73] used a mobile crane’s
boom head and accessible sensors (boom length, rotation
angle, and elevation angle). In addition, the crane overturning
motion (load multiplied by radius) can be calculated and dis-
played using the load moment indicator (LMI) [21]. OBI and
LMI are well-established technologies. It is currently used
as an overload mechanism for large cranes. This technology
displays the crane’s rated capacity and the percentage of the
lifted object’s moment to the operator, as well as sounding an
alert if the moment exceeds the limit [15].

TheOBI offers efficient cost savings and is used for various
tasks in a number of earthmoving processes, such as avoiding
loader rollovers, regulating scraper wheel slippage and gear-
box shifting, and increasing dozer productivity [49]. Caterpil-
lar, a pioneer in the field of operational business intelligence,
developed a vital information management system (VIMS)
to monitor real productivity and machine conditions [49].
Because OBI is already used as a standard tool for most heavy
equipment, no additional installation costs are required. How-
ever, systems based on OBI are expensive and cannot antici-
pate fleet performance, project costs, or completion times in
a deterministic or stochastic manner [49]. The use of OBI
to track progress has several drawbacks. The information
quality is proven to be poor in encoder-based cable length
measurements, which are approximated by cable stretch and
winch spooling [74]. In addition, data collected through OBI
is not useful for tracking productivity [1]. Therefore, to make
it more effective, it must be combined with information
regarding material quality and site environment, as presented
in [48]. It is difficult to avoid accidents involving other cranes
and building structures, as well as swaying loads, in terms
of workplace safety [21]. In addition to OBI, no additional
sensors are available, which is a limitation [73].

b: RADIO FREQUENCY IDENTIFICATION (RFID)
RFID is a wireless-based technology that uses radio fre-
quency (RF) to interact with distinctively traceable tags.
RFID systems comprise tags and readers. Tags connected
to the equipment were used to collect and transmit digital
data to readers via radio waves. These tags are used to track
and identify objects [75]. RFID can be used to measure dis-
tance, identify targets, and determine proximity [14]. Using
triangulation and signal propagation time, the location of tag
can be calculated. Event detection begins with a fingerprint
pattern [14]. To estimate the tag placement, a biometric is
matched to a digital scan. The transmitter density is used to
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determine the distance. Readers can set a specific voltage
rating to set the range distance in which RFID tags can be
detected.

Dump truck loading, hauling, and dumping hours can be
predicted using RFID tags [49]. Here, RFID tags connected to
dump trucks are scanned through fixed readers and mounted
on the entry gates of the loading and dumping facilities.
Thus, the loading, traveling, and dumping cycle times can be
calculated to monitor the time variations [49]. To estimate
the machinery placement, tags are placed in various work
zones. For instance, [76] placed RFID readers at the loading
and dumping gate entrances to determine the loading and
dumping timeline. To establish an appropriate work sched-
ule, [75] proposed a mechanism that uses RFID technology to
monitor the locations of heavy construction machines. Equip-
ment must be maintained and repaired regularly to ensure
dependability and efficiency. Similarly, [75] recommended
using RFID to checkmachinerymaintenance. Following their
evaluation, all the data were saved in RFID tags and automat-
ically updated via a centralized location. An RFID portable
device can also scan a machine’s RFID tag to obtain infor-
mation about all repairs and maintenance performed [52].
In open-pit mines, [77] demonstrated that RFID technology
can not only monitor construction machines but also prevent
collisions. In the following experiment, the equipment fleet
was mounted with RFID tags, and those with blind spots
had RFID readers. Thus, RFID technology detects machine
movements and avoids dangerous collisions.

RFID, on the other hand, has certain drawbacks. Because
fixed RFID readers are only installed at project entry points,
this technology cannot pinpoint the source of poor perfor-
mance because the data provided are insufficient to determine
howmuch soil was excavated orwhen truckswere completely
loaded [49]. Such positioning sensors simply gather location
and time data, making it difficult to distinguish between the
productive and idle states of themachinery [14]. Furthermore,
RFID has significant flaws that must be addressed, such
as the fact that it has a higher failure rate when used with
metals [14]. With the ongoing digitalization of the fast rate
of technical innovation in the construction sector, the term
Construction-IT was coined [3]. Therefore, potential RFID-
based solutions will reduce costs, enhance device storage,
extend the transmission range and power transfer of radio
waves, and increase data processing [52].

c: INTERNET OF THINGS (IoTs)
IoT sensors can detect thermal, mechanical, optical, elec-
trical, acoustic, and displacement signals, offering relevant
data for processing, transmission, analysis, and feedback,
and enabling managers to perform preventative maintenance
to maximize performance and avoid accidents [17]. For
instance, sensors can monitor significant vibrations or ther-
mal expansion to detect whether a machine’s engine or air
filter must be serviced or replaced. The IoT system can
generate an alarm on managers’ digital devices, so they can
fix the issue before it is exacerbated. UWB is a wireless-based

technology that offers high-speed communication over small
distances. It can be used to track the locations of multiple
pieces of equipment and to obtain information about them.
It can also locate and identify multiple dynamic pieces of
equipment on a job site. Like, [62] used a UWB positioning
system to collect job data from a worksite. By periodically
attaching a tag to the deployed component, workers and
supervisors can trace operations. Similarly, [78] developed
a system that uses UWB to help operators find equipment
and assess hazards. Wearable gadgets and connected IoT
devices were developed in [79], which can alert a worker
to potentially harmful areas. [80] developed a method for
compiling site equipment and creating management analyt-
ics. To do this, they proposed ‘‘Smart Connected Objects,’’
which include machinery, tools, materials, and even buildings
with sensing, processing, and communication capabilities.
This edge computing method provides machines with auton-
omy and awareness to make better decisions. A closed-loop
lifecycle management system framework based on the IoT
was developed by [81]. To improve the efficiency and safety
of mining equipment, [82] used coal mine safety monitor-
ing and maintenance to construct an IoT-based predictive
maintenance system. Using IoT and RFID, [83] developed a
warning system to inform employees of the possible dangers.
An IoT-based system was also employed on-site in [84] to
enable data collection, supervision, and analytics. To ensure
the safety of each tower crane during operation, [85] uti-
lized the IoT to capture the status information on the crane
arms and designed an anti-collision algorithm. The issue and
intricacy of tracking job status and productivity assessment
can also be resolved by integrating multiple wireless tech-
nologies [42]. Vision-based wireless technology can assist in
precisely tracking the progress of earthmoving operations and
evaluating the machine usage. Adding electronic sensors to
target items and/or their parts, capturing consistent point posi-
tions of the sensors, and assessing the motion of machinery,
such as acceleration, velocity, and rotation, are examples of
IoT-based methodologies [62].

d: TELEMATICS
Telematics refers to the use of wireless technology to connect
equipment-monitoring systems. Telematics includes wireless
communications, vehicle monitoring systems, and position-
ing sensors that provide real-time location and operation
data [79]. The sensors used in these devices capture and
transmit data through cellular and GPS networks [42]. This
specific data depends on themachine type and telematics unit.

Today’s equipment rental companies depend on telematics
to collect real-time machine data [1]. Telematics can be used
to improve the efficiency of thework locations. Implementing
telematics in an equipment footprint can enhance productiv-
ity, reduce expenses, and provide data-driven patterns [86].
Working hours, location, fuel consumption, and productivity
are significant features of heavy-equipment efficiency [2].
Compared to RFID, telematics has a reduced transmission
frequency by default, which restricts its use for precise
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operation tracking. However, it is possible to increase this
frequency, but doing so would require a robust data storage
system to support a high volume of information [1], [79].
A detailed description of the RFID, IoT, and telematics is
provided in Table 8.

TABLE 8. RFID, IoTs, and Telematics.

2) DATA ANALYTICS
a: MACHINE LEARNING (ML)
The use of machine learning to solve problems in the
construction sector has increased. ML is used to assess
and forecast project delays, improve asset design, manage
safe operation, assist offsite construction, and categorize and
locate facility management components [1]. This process
uses more digital data for design, construction, and operation.

Algorithms based on ML make substantial contributions
to a variety of heavy machinery-related sectors, such as
machine utilization, administration, maintenance, service
schemes, acquisition, and monitoring. However, deep exca-
vations in residential areas are challenging, and defining
risk levels requires a thorough assessment of the excavation
hazards [3]. Here, the key challenge is the complex and vari-
able relationship between components and risk profiles. The
complexity of such profiles can be decrypted using machine-
learning algorithms [89]. Fuzzy set theory [87], as well as
machine learning models such as artificial neural networks

(ANNs) [88], [89], random forests (RF) [90], support vector
machines (SVM) [91], and Bayesian networks (BN) [92],
[93], [94], have been proposed recently to forecast and evalu-
ate the risks of deep excavation.MLmethods can also be used
in challenging situations, such as construction accidents, and
assist management in making better choices [47]. In general,
machine learning algorithms based on data collected from
fieldwork are often more effective in predicting hazards in
excavations [91], [92], [94]. However, each method has its
own set of advantages and disadvantages, making it diffi-
cult to determine which one is the most appropriate and
effective, but it mostly depends on the quality and integrity
of the data collected on the field side [3]. Fig 11 shows
how machine learning algorithms have been used recently to
address issues regarding equipment management and earth-
moving operations.

b: DEEP LEARNING (DL)
Deep learning is a subfield of machine learning that deals
with algorithms inspired by the structure and function of the
brain and is known as artificial neural networks (ANN). It is
an extension of ANN for issues requiring more than one
hidden layer in active learning [1], [66]. The term ‘‘deep’’
in deep learning refers to the depth of the network, whereas
an ANN can be very short. With the assistance of hierarchi-
cal structures, high-level abstraction was discovered in the
data. Recent vision-based algorithms, such as deep learning-
based computer vision solutions, have attracted the interest
of researchers in various civil and infrastructure engineering
projects [89]. Although academics have used neural networks
for decades, deep learning has made substantial advances
owing to the availability of inexpensive computer power such
as graphical processing units (GPUs) and massive datasets
to train deep models [91]. Although DL algorithms are used
in a range of applications, the equipment used has not yet
been upgraded to integrate deep-learning-based automated
systems.

c: COMPUTER VISION (CV)
CV-basedmethods have the potential to become new data col-
lection and analytics technologies for earthmoving machine
optimization; however, there is still a long way to go before
a reliable and automated system can be employed in con-
struction projects. Although some researchers have suggested
methods for extracting cycle time from video, which is used
as an input for process simulation tools, the number of articles
that combined construction-process simulation and vision-
based monitoring to analyze the existing earthwork produc-
tivity and suggest an optimal resource allocation plan were
found minimal [95]. Table 9 summarizes the deep learning
and computer vision algorithms proposed by various authors
for construction machines.

IV. TECHNOLOGICAL INTEGARATION
The integration of information and communication tech-
nology (ICT) has a positive influence on the progression
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FIGURE 11. ML contribution to construction machinery and excavation.

of development in the construction sector. Web-based tech-
nologies, cloud computing, BIM, and tracking technologies
have been progressively employed at construction sites to
improve project communication, cooperation, scheduling,
and supervision [14]. Such unique solutions are frequently
used in various technology combinations to optimize con-
struction monitoring and model comparisons. The quantity
of data collected increases as technology advances. There-
fore, by integrating BIM, GIS, and GPS, researchers are
actively analyzing these tools to improve the productivity of
construction projects. For example, for productivity analysis,
[108] studied the relevance of unmanned aerial vehicle (UAV)
technology and BIM and [109] integrated 3D BIM models
with geotechnical data to increase earthwork efficiency. Sim-
ilarly, by integrating GPS, telematics, and web applications to
improve the operational performance of site equipment, [110]
determined the productivity of site equipment and estimated
its impact on sustainability using an accelerometer. An IoT-
ML-based framework was developed in [47] to determine
the emission levels of an excavator. To calculate the cycle
times, a machine learning approach was used by [111] to
simulate the loading process by classifying raw data collected
through GPS, gyroscope, and accelerometer sensors and
incorporating them into a smart system placed in front of the
loader. Similarly, [47] designed and deployed a methodology
for estimating heavy equipment emissions based on on-site

acceleration data collected from excavators. [112] created a
system that uses accelerometers to monitor equipment effi-
ciency and environmental performance. They used vibration
signal analysis as their primary technique to identify and
track equipment operations. Supervised learning algorithms
were used to classify the accelerometer data into equipment
activities (working, idling, and engine-off). Table 10 provides
a detailed breakdown of these studies. Although researchers
have integrated multiple machine learning techniques, such
as ANN and support vector machine (SVM), with BIM to
automate construction productivity tracking, these existing
techniques are applied on a very limited scale to different con-
struction areas, such as workers, processes, and machinery,
and do not cover large-scale job sites [103]. Furthermore, the
number of surveillance tools (such as tags and cameras) are
limited [48]. Although many AI-related construction activi-
ties are still in the development stage, they are anticipated to
allow the seamless integration of automated equipment in a
5D BIM planning environment [113].

V. INDUSTRY 4.0
The surge of technology in recent years has been underlined
by Industry 4.0 (I4) and projects in the smart city, engineering,
and construction (SCEC) sectors, such as building 4.0, real
estate 4.0, construction 4.0, mining 4.0, education 4.0, and
manufacturing 4.0 [27]. Connecting physical environments
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TABLE 9. Deep learning and computer vision algorithms for construction
machines.

TABLE 9. (Continued.) Deep learning and computer vision algorithms for
construction machines.

TABLE 10. Illustration of studies based on integration.

with digital ecosystems is a crucial element of the industry 4.0
paradigm. Autonomous operations tend to develop through
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the seamless integration of various digital tools, technologies,
and programming languages [119]. These include cloud-
based storage, fuzzy systems theory, steel work design and
construction, and efficient product assembly setup. The syn-
ergistic connection can be visualized using computer systems
that can autonomously optimize logistics-relatedmanufactur-
ing operations [118]. The transition of industrial processes
enables the collection and analysis of real-time data, resulting
in more efficient, adaptable, and timely operations [120].
Such developments result from direct machine-to-machine
communication. This creates a cyber-physical environment
by enabling machines to interact and communicate directly
with one another (M2M) without human interaction, leading
to an agile production line with efficient communication and
optimal decision-making capabilities [121]. Fig 12 shows the
leading technologies used in Industry 4.0.

Currently, most construction firms recognize how crit-
ical it is to use I4 applications and practices to increase
their economic value [120]. Advanced automation, robotics,
M2M communications, and human-to-machine or human–
computer–machine communications are required [27].
Through a variety of self-operative functions, DT supports
the connections necessary for such advances. It can be used
to leverage construction data [23]. However, DT has not been
distinguished from the existing computations, virtual models,
and simulations [32]. I4 technologies have been used for
static data/model visualization in construction, but effective
frameworks for IoT developments have not been widely
used [122]. However, focusing on the smart interaction
between industrial components and IoT devices, construction
lags in technology deployment compared to automobile man-
ufacturing and maintenance. This is because of high acqui-
sition costs, lack of training resources, and unwillingness to
alter long-established systems and processes [119]. Construc-
tion equipment operations in project management are still
milestone-based, that is, progress monitoring is performed
through nD BIM completion phases [122]. The real-time
smart operation and monitoring of construction machines
will improve project timelines and cost management. It adds
another layer to sensor-based safety management by tracking
how personnel and machinery move and are utilized [122].

FIGURE 12. Industry 4.0 main technologies.

VI. DISCUSSION
As construction operations grow on a large scale, the com-
plexity also increases. To achieve the accuracy requirements,
the techniques and technologies must be employed to exe-
cute them also be upgraded. Because too many machines
are simultaneously used on the worksite to complete the
job, the connectivity of single value-adding processes is
important [10]. In terms of architectural needs, timing, and
commitment to project completion, each stage must be care-
fully planned and scheduled in the initial phases to avoid
divergence from the expected outcomes that can affect all
subsequent processes. Ideally, the goal is to optimize the
workflow rather than the individual phases. Because work
is being done simultaneously, better synchronizations are
required to avoid serious deadlocks if the activity outputs
diverge. There must be a constant flow of information to the
equipment that is performing other jobs and to the supervi-
sory system, preferably in parallel. Parameters such as time,
fuel usage, and the quantity of equipment and personnel are
also involved in determining the optimum performance [53].
Hence, a multicriteria performance assessment tailored to
the specific conditions of the entire construction process
is required to achieve the desired results. In other words,
smarter machines require better methods to measure their
performance. Digital transformation is the first step toward
implementing a production model, and digitalization of the
operation is the most important step [64]. Once the process
is digitized, all essential data can be accessed and collected
for the application of sophisticated technologies. One of the
initial phases of digitization in certain industrial upgrades is
data harvesting and transfer [74]. Subsequently, the acquired
data can be used to optimize machine performance, stream-
line operations, control defects, and make smart decisions to
build a digital infrastructure. Hence, a solid platform for data
collection and exchange is required [3].

Power, transmission, and control systems, as well as pri-
mary support technologies for construction machines, have
all seen significant technical advancements [17]. However,
complex structures, difficult construction site environments,
and substantial load fluctuations for construction machines
cause technical problems. Therefore, detailed construction
site data collection, more automated solutions, and effective
condition-monitoring systems are essential. One of the most
desirable pieces of information from heavy equipment is
the downtime. Telematics can be used to record the engine
status during idle time, depending on the configuration set-
ting of the machine [86]. Minimizing the idle time of a
machine can reduce the emissions and fuel usage. Two major
challenges with automated productivity data collection are
the potential overflow of low-level data or information that
might burden project managers [79], and the lack of direc-
tion in evaluating workflow in construction operations [48].
Because increased data access and communication between
sensors, devices, machinery, monitoring, and control sys-
tems are required to optimize the entire operation, a digital
twin and a cyber-physical system can be useful solutions,
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as physical objects (equipment, actuators, and tools) can link
with cyber entities that provide data storage, processing, and
analysis. Moreover, the availability of wireless technologies
that allow the Internet of Things (IoT) has increased dra-
matically, and this is expected to be a major advancement in
the future integration of online services [72]. Images, videos,
and audio books were among the collected data, leading to
the creation of large metropolitan datasets. Documentation
from machines, maintenance, and subscriptions has previ-
ously been overlooked, but it has now been brought to light,
like a gold mine, providing for the extraction of previously
unknown data, invisibility, and other important details to
improve prediction and productivity [84]. Rather than spend-
ing time on data to be produced, continuous data techniques
must be devised to collect, retain, filter, and analyze large
amounts of data to maximize their utility [42]. This is espe-
cially important given that data harvesting and development
goals, such as Auto-ID, laser scanners, and sensor networks,
as well as basic data operating costs, have become more
affordable [54]. The lack of qualified and skilled laborers and
managers to use sophisticated tools and software discourages
the promotion of emerging technologies [6].

Modern technology offers solutions to major challenges,
enabling industrialized production to fully achieve its poten-
tial. The latest technological integration, for example, IoT,
optimization algorithms, and sensing technologies, can sig-
nificantly improve management techniques in construction
projects [121], [6]. Moreover, soft computing methodologies
have improved predictive capabilities compared with tradi-
tional methods in modeling the complicated dynamics of
most geotechnical engineering systems. The use of emerging
artificial intelligence tools can assist in understanding the
complicated behavior of subsurface construction [8]. It is
possible to operate earthmoving equipment using information
models that provide the information required for machine
control systems to function properly [14]. The construc-
tion sector has the potential to be transformed through dig-
ital technology, which can address and offer solutions to
some of its issues. The production management system sup-
port (PMSS) can be designed by creating a DT-based installer
base management system (IBMS) that aids in data structure
and machine management [18]. Construction projects are
characterized by several overlapping and concurrent tasks and
processes, which can increase the likelihood of error as well
as the cost of time and potential losses [29]. Real-time sensor
data is therefore highly beneficial for virtual solutions [118].
With the use of a digital twin, enhanced simulation results are
required for better decision-making and monitoring of data
coming from sensors [28]. It is also feasible to support the
lifecycle of a machine process such as material recovery by
establishing an IBMS [43]. Likewise, advances in construc-
tion technology, upgrading existing components, adding new
parts, intelligently processing existing data, and developing
new sensors that offer information that is not currently avail-
able will contribute to increased heavy-duty machine pro-
ductivity [52]. Techniques regarding autonomous excavation,

where the machine is placed next to its working area and
digging can be performed via sensors and control, have been
growing [113]. In 2015, Komatsu, a well-known producer
of equipment that specializes in data-driven and machine-
learning-enhanced analysis, introduced its smart construction
system. Automated systems enhance the analytical efficiency,
accuracy, and quality [13]. INSITE is currently working on
a system that combines computer vision, deep learning, and
aerospace algorithms to make a machine smarter by predict-
ing its location and visual perceptions [113]. Such solutions
will make machine operation more reliable, productive, and
efficient. Further digitization will improve the equipment
performance and provide more opportunities to achieve the
overall aim of process optimization.

VII. IDENTIFIED GAPS
In this section, we discuss major gaps in the applications
of new technologies employed in construction projects to
evaluate the performance of the equipment.

1) Computer-vision-based solutions are proposed in inte-
gration with other tools, like BIM, to evaluate the pro-
ductivity of construction activities, such as crane cycles
and excavation operations. However, the challenging
environment of construction sites limits the accuracy
of these procedures despite improvements over con-
ventional methods. Congestion, background clutter,
obstructions, and varying lighting at construction sites
influence the accuracy of these techniques [102], [105].

2) Several studies have integrated audio signals, Blue-
tooth, and smartphone sensors with machine-learning
algorithms, such as ANN and SVM, to moni-
tor machine productivity and excavation operations
[85], [42]. Adopting these techniques with machine
learning algorithms has improved their ability to mon-
itor construction productivity and performance; how-
ever, anomalies, monitoring range, and tagged device
privacy problems still need to be addressed.

3) Recently, sensor technology has been used in con-
struction machines. However, owing to the complex
mechanical structure, power and transmission systems,
and operational environment of construction machines,
sensor-based applications experience tougher require-
ments [17]. Therefore, sensor technologies cannot be
instantly applied to construction machines, and exten-
sive testing and optimization are required to ensure
their suitability for construction machinery.

4) Radio-based technologies, notably GPS, offer reliable
and robust solutions for equipment tracking and mon-
itoring. However, these solutions have certain limita-
tions. First, every piece of equipment must be tagged,
which might be a problem for rental equipment or
subcontractors. Second, spatiotemporal data cannot be
sufficient for activity recognition, necessitating a mul-
timodal sensing system [10].

5) Telematics is a cost-effective method to manage large
machinery deployments. However, the reduced data
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transmission frequency restricts the use of telemat-
ics for extensive performance observations [123]. Its
frequency can be enhanced, but it requires additional
data storage capacity to manage higher projected data
volumes.

6) RFID tags can communicate up to 100 m, which
is beneficial for large-scale construction. They also
worked without lines of sight. However, this requires
an algorithm to identify the tagged construction equip-
ment [62]. Moreover, when signals from multiple read-
ers overlap, an RFID reader collapses. Several other
Wi-Fi networks can interfere with or distort the signals
used by the RFID tags.

VIII. CONCLUSION
Heavy-duty machinery, which is a significant contributor to
all construction projects, will lead the market in the com-
ing years. Owing to an increase in worldwide infrastructure
projects, the demand for such equipment will also increase.
In addition, the size and complexity of construction projects
have increased, necessitating innovative solutions. This study
evaluated the potential of advanced technologies to improve
the performance of construction equipment. As construction
machine research using innovative tools is still under devel-
opment, the authors presented significant insights into CPS,
DT, GPS, OBIS, RFID, IoTs, ML, DL, and CV. The review
found that DT and CPS self-operative functions for advanced
automation, machine-to-machine communications, human-
to-machine or human computer-machine communications,
RFID for equipment in open-pit mines and collision preven-
tion, ML in anticipating challenging environments, and GPS
and GIS integration to increase equipment operating hours
and reduce idle time, useful. To improve the quality of data
collected through OBI for tracking performance, it must be
integrated with information regarding the material quality
and site environment. Moreover, reluctance to accept modern
technologies, unwillingness to interrupt workflow, shortage
of trained people, and expansive gearing have been found to
be some of the existing factors behind delayed advancements.
To increase the overall productivity, the authors also consid-
ered all important players, such as people, equipment, and
bottlenecks. There are still several possible research trajecto-
ries for the use of new technology in construction equipment.
This evaluation is expected to serve as an important source of
information for scholars in this area.

The technologies discussed in this article only cover off-
road construction machinery. The equipment performance on
energy consumption and emission issues was not included in
this study. Additionally, the data collected for this study are
worldwide and do not cover any machine-operating zone.

IX. FUTURE WORK
Most ongoing research is still in the proof-of-concept phase
and makes little or no use of ground truth data. These studies
have employed small datasets and partially covered complex

construction sites. The number of sensors that can collect
data is limited. Vision-based technologies require a reliable
data-storage platform, which limits their usage. Larger-scale
experiments with multiple machines operating simultane-
ously would assist in understanding the added value of these
technologies. Existing commercial accident warning systems
use radio-based sensors to identify hazards; however, this
requires tagging every worker. This would be beneficial to
research passive technologies, such as laser scanning and
vision systems. Real-time accident warnings are a promis-
ing area of investigation. This method prioritizes strategic
accident avoidance over reactive intervention. Commercial
machine control systems have increased productivity. How-
ever, these systems depend on expensive real-time locat-
ing systems (RTLs), which limits their industrial usage.
There is great potential in this area to develop low-cost
alternatives based on smart technology. Remote control and
autonomous operation are complex and comprehensive areas
because both require synchronized modules to operate the
process. Existing research has focused on navigation, 3D
environment modeling, motion planning, and optimum end-
effector trajectory, providing substantial improvements in the
area. Future teleoperated and autonomous operations will
require systems such as situational awareness of the opera-
tor, operator response, communication performance, obstacle
avoidance, machine-to-machine communication, and simul-
taneous localization and mapping. Heavy machinery gener-
ates significant emissions during construction. Optimizing
such processes using digital solutions can reduce the envi-
ronmental impact. The use of DT as a key tool is required for
Industry 4.0, deployment in the development of sustainable
construction.
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