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Abstract This study proposes a framework for dynamic segment criticality analysis and its impli-

cations on scheduling of some reactive maintenance routines in water distribution networks

(WDNs). The framework harmonises multilayer networks which are capable of ascertaining the

dynamics of WDNs in discrete time and a novel hybrid segment criticality measure (SCM) to

achieve dynamic segment criticality analysis. The novel hybrid SCM utilises reachability theory

from complex networks, which accounts for multiple sources, cyclic paths in WDNs, and demand

shortfall attributed to segment isolation is computed using Pressure Driven Analysis (PDA) cour-

tesy EPANET. Using a benchmark WDN, North Marin Water District Network, as a case study

we have demonstrated the efficacy of the proposed framework and its ability to capture the dynam-

ics of WDNs and evaluate the criticality of any segment given any temporal window. The results

indicate the framework accurately evaluates the criticality of all segments within any temporal win-

dow and establishes the fact that segment criticality varies with time. Based on the results of this

study reactive maintenance routines could be scheduled during temporal periods where the segment

criticality measure is minimal to avoid excessive service disruption and customer displeasure. This

study supports managers of water utilities with a decision support system to accurately schedule

maintenance routines and evaluate segment criticality.
� 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria

University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/

4.0/).
1. Introduction

Water Distribution Networks (WDNs) are critical infrastruc-
ture for the transport of water for domestic and industrial uses.
WDNs are generally buried underground, and are subjected to

intrinsic and extrinsic factors that make them susceptible to
failures [1,2]. Failure of a single component of a WDN could
affect the systems performance in delivering water at the right

quality and quantity [3]. Practically, when a single component
of a WDN (e.g., pipeline, pump, valve, etc) is out of service or
damaged, a segment (small collection of nodes and pipes) of

the WDN is isolated by closing appropriate isolation valves
to implement the needed maintenance. Segment isolation could
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result in unintended cut-off of other segments downstream of
the isolated segment [4,5], thereby depriving them of supply
from the main source(s). This makes segment isolation in

WDNs very critical and must be implemented carefully to limit
its impact.

Due to the dynamic nature of WDNs, WDN assets (e.g.,

pumps, valves, and reservoirs) are not operational 24/7. Flow
distribution on the network changes significantly depending on
the operational status of these assets. Additionally, the

demand and pressure at nodes also vary significantly with
time. This implies that the cumulative demand shortfall cre-
ated in the WDN due to the isolation of a segment for main-
tenance becomes a function of time. For instance, the impact

of isolating segment i at time t might differ from isolating it
at time tþ dt. Thus, the time of isolating a segment for reha-
bilitation determines the severity of its impact on the WDN.

Reactive maintenance is one of the most dominant rehabil-
itation/maintenance regimes in WDNs [6]. These maintenance
routines are carried out in response to component failure/dete-

rioration in order to restore the WDN asset to its normal oper-
ating condition. These routines include pipe flushing to
dislodge contaminants, repair of leakages and minor compo-

nent replacements (e.g., pumps and valves). In order to carry
out these activities, the affected segment has to be isolated dur-
ing the entire repair/maintenance period. Ill-informed isolation
of segments could also result in extensive pressure surge when

implemented at the wrong time of the day or temporal window
[7,8].

The identification and isolation of segments with minimal

impact on downstream water delivery is done through segment
criticality analysis. Segment criticality analysis used to study
the criticality of segments in WDNs and ascertain their isola-

tion impact on service delivery. Traditionally, segment critical-
ity analysis has been carried out from a static point of view
focusing exclusively on topological metrics. Abdel-Mottaleb

and Walski [9] developed a topological theoretical graph
approach based on reachability from water source(s) to seg-
ments to evaluate the criticality of segments in WDNs. A cou-
ple of studies [10,11] have applied the depth search segment

identification algorithm proposed by Li and Kao [12] for crit-
icality assessment of segments in WDNs. This depth search
segment identification algorithm is based on articulation point

identification method described by Horowits, et al. [13].
Another topological method based on segment degree distribu-
tion has also been proposed [14]. Even though the aforemen-

tioned topological methods provide a quick approximation
and screening technique for segment criticality assessment,
they utilised generic topological measures which do not cap-
ture some essential components of WDNs such as multiple

sources and cyclic (looped) paths. Additionally, the hydraulics
of the WDN which is mainly responsible for the amount of
water delivered when a segment is isolated is completely

ignored.
To address the hydraulic limitation of topological segment

criticality methods, studies have proposed the integration of

topological and hydraulic measures in segment criticality anal-
ysis. In this light, Gupta, et al. [15] presented a segment relia-
bility analysis of WDNs based on a depth search algorithm

and demand shortfall due to segment isolation. Other studies
[16,17] have evaluated the criticality of segments using the
modified depth search algorithm proposed by Li and Kao
[12] and its variants [4,11] in conjunction with EPANET-
simulated demand shortfall. Hernandez and Ormsbee [18] also
presented a graphical method for segment criticality analysis

based on loss of water supply due to loss of connectivity, loss
of water resulting from pressure deficiency and increased water
age as a result of segment isolation.

Previous studies in segment criticality analysis have
abstracted WDNs as static networks and utilised generic topo-
logical metrics, which fail to account for multiple sources (such

as tanks and reservoirs) and cyclic paths (loops). Additionally,
the above-mentioned studies considered only daily averages or
peak demands, which cannot realistically represent the critical-
ity of segments in WDNs at all times. Single snapshot analysis

of WDNs based on average or peak segment demand may
underestimate or overestimate the vulnerability/criticality of
segments.

This study presents a systematic framework for dynamic
segment criticality/vulnerability assessment of WDNs and its
implications for reactive maintenance scheduling. The frame-

work is based on the idea of charactering the dynamics of
the WDN via multilayer networks, where each layer depicts
the state of the WDN within a temporal window (e.g., 1 h).

The characterisation of the dynamics of WDNs and node vul-
nerability assessment via multilayer networks was recently
introduced by the authors [19] to accurately characterise the
dynamics of WDNs and ascertain the impacts of node failure

in discrete time. In this study, the concept is extended to
account for segments in WDNs. A novel dimensionless hybrid
Segment Criticality Measure (SCM), which is based on reach-

ability theory in complex networks and the cumulative demand
shortfall created in the WDN as a result of segment isolation is
proposed. Unlike previous studies that utilised generic topo-

logical measures (e.g., centrality measures) that are incapable
of accounting for multiple sources and cyclic paths in the
topology of WDNs, the proposed SCM utilises reachability

theory in graphs to account for these essential components
and features of WDNs.

Additionally, the proposed SCM accounts for the state of
the WDN during different temporal windows via multilayer

networks which is seldom considered by previous studies.
Much attention has not been dedicated to the dynamic nature
of segment criticality, which takes into consideration the

essence of time, variations in demand, and the operational sta-
tus of various components of the distribution network. Criti-
cality estimates of segments accounting for time present an

opportunity for managers of WDNs to optimally schedule
reactive maintenance routines to avoid prolonged service
downtime and minimise customer dissatisfaction. To the best
of our knowledge no study has represented the dynamics of

WDNs via multilayer networks and combined it with a seg-
ment criticality measure to derive the full benefit of both
worlds in dynamic segment criticality analysis. And evaluate

its implication on scheduling of reactive maintenance routines
in WDNs.

The study is organised as follows; Section 1 presents the

introduction, Section 2 details the methods and materials.
Specifically, it presents multilayer networks, segmentation in
WDNs and the proposed Segment Criticality Measure. Sec-

tion 3 presents the case study. Sections 4 presents the results,
detailed discussions, and implications of the study. Finally,
Section 5 concludes the study.
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2. Materials and methods

Dynamic segment criticality analysis in this study is imple-
mented in two phases. In phase one, we characterise the

dynamics of WDNs in discrete time (1-hour interval) using
the concept of multilayer networks. Phase two focuses on the
criticality estimation of each segment in each layer of the mul-

tilayer network using a Segment Criticality Measure (SCM).
SCM is a hybrid measure that takes into consideration both
topological (connectivity loss) and hydraulic (demand short-
fall) metrics. These two phases are then synthesized to achieve

dynamic segment vulnerability in WDNs.
2.1. Multi-layer networks

Multilayer networks have been used to study the dynamics of
complex system’s components interacting at comparable time
scales [20]. The temporal structure of edge or link activations

affect the dynamics of information flow in the network. As
such, snapshots of the same network through time exhibit dif-
ferent interaction properties. These snapshots are referred to as

the layers of the multilayer network. Multilayer networks are
known to retain multi-dimensional information [21], and are
able to reveal hidden structural properties not previously con-
sidered [22,23]. It has been widely used in literature to study

the reliability and robustness of transportation networks
[21,24], percolation in power grids [25,26], and information
cascade [27,28]. WDNs under extended period simulation rep-

resent a temporal system whose characteristics such as
demand, pressure and operational status of pumps & valves
and flow directions change with time. Network science has

shown that characterising such complex dynamic systems with
multilayer networks is fundamental for the comprehension of
these systems [29]. Generally, multilayer networks can be clas-

sified as either multiplex networks, network of networks or
multi-slice networks. The most suitable form of multilayer net-
works for WDNs is the multi-slice networks.
2.1.1. Multi-slice networks

A multi-slice network is a special type of multilayer network in
which there is one-to-one mapping of vertices in different lay-

ers [30]. Thus, the vertices replicate themselves across different
layers and each layer is a snapshot of the temporal network.
Each layer has the same set of vertices, but the interactions
(edge activations) differ in different layers. In the context of

WDNs under extended period simulation, these edge or link
activations represent the flow direction of water in the pipes
and operational status of the components (valves, pumps etc)

in the network. The concept of multi-slice networks is illus-
trated in Fig. 1.

Fig. 1 represents snapshots of a real type WDN within dif-

ferent temporal windows. The interactions exhibited determine
the criticality of the nodes in the WDN. Each layer corre-
sponds to the state of the network within a temporal win-
dowdt. The interactions between nodes are the unique flow

directions in each temporal window. The nodes replicate them-
selves across all snapshots, but the directional flow and opera-
tional status of the sources and pumps differ. Each node is

weighted by its corresponding demand within a predefined
temporal window. In the case of the segment valve topology,
each segment is weighted by the corresponding cumulative
demand within the predefined temporal window.

In the absence of connections/links between different lay-

ers, a multi-slice network is defined mathematically as:

M ¼ Y; G
!� �

ð1Þ

where G
!¼ G1;G2; . . . ;Gmð Þ and Ga ¼ Va;Eað Þ represents the

interactions occurring in a time window dt and Y represents
the layers. The interactions depicting each time window
describes each layer in the network. Each layer is fully charac-

terized by an N�N adjacency matrix, A a½ � wit h

a ¼ 1; 2; . . . ;m. We restrict the interactions in each layer to
be directed to suit WDNs. The adjacency matrix of any arbi-
trary layer a is defined as.

A
a½ �
ij ¼

1; if node i connects to node j in the time

window tþ a� 1ð Þdt; tþ adt½ Þ
0; otherwise

8><
>:
2.2. Segmentation of WDNs

One of the fundamental requirements for segment criticality
assessment is the optimal segmentation of WDNs to meet

hydraulic conditions. Suboptimal segmentation results in
astronomical nodal pressure, a scenario where nodal pressures
are significantly higher than the maximum allowable pressure
for service delivery, increasing the probability of pipe failure

in the network [7]. Over the last decade, several studies have
looked at cost-effective strategies of designing [31] and retrofit-
ting WDNs with isolation valves to achieve robust segmenta-

tion in WDNs [7,8,32]. Recently, more effective methods
based on modularity [33,34] have been proposed. A
modularity-based method is available in the commercial soft-

ware WaterGEMS. Another critical issue of relevance is the
programmatic identification of segments in WDNs. Scalable
algorithms [4,5,10,35] have been proposed in literature to

rapidly identify segments in WDNs. In this study, we utilised
an efficient depth search algorithm [14] for the identification
of segments with minimal computational time.

To facilitate the use of graph theory in segment criticality

analysis, segments are usually represented as vertices and iso-
lation (ISO) valves as edges. This representation is generally
referred to as the segment valve topology [36]. Segment valve

topology is an alternate representation of WDNs which pre-
serves the properties (state) of the WDN. Fig. 2 presents a real
type WDN which is fitted with 9 ISO valves using the concept

of modularity and delineated into 6 distinct segments via the
aforementioned depth search algorithm. Each segment is then
represented as a vertex graphically.

This study focused exclusively on dynamic segment critical-
ity analysis with the assumption that majority of the WDNs in
use have already been optimally segmented to meet prevailing
hydraulic conditions. For detailed information on optimal seg-

mentation and identification of segments see [33] and [14],
respectively.

2.3. Segment criticality measure

Segment Criticality Measure (SCM) is a hybrid segment criti-
cality metric that is based on the connectivity loss of the seg-



Fig. 1 Real type WDN represented as a multi-slice network.

Fig. 2 A: Real type WDN with 9 ISO valves. B: Segment valve topology of the network.
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ment valve topology and the cumulative demand shortfall cre-
ated in the WDN as a result of segment isolation. In segment

criticality analysis, WDNs are represented using segment valve
topology. When a segment is isolated for maintenance, its iso-
lation does not sequentially impact all segments directly con-

nected to it but rather all paths from the source(s) that
contain this segment become invalid. As such, computing the
number of segments impacted by the isolation of a single seg-

ment is complex. Using tools from graph theory, a novel algo-
rithm is presented in this study to compute the number of
impacted segments due to the isolation of any arbitrary

segment.
Given a graph G V;Eð Þ representing the segment valve

topology, all segments connected directly or indirectly to any
arbitrary segment k can be retrieved. Let N kð Þ ¼ RG kð Þ repre-
sent the set of all segments reachable from segment k in G. To
find the number of segments affected, n, due to the isolation of
segment k, we iterate through N kð Þ to see if there is/are path(s)

from the source(s) to these segments that do not traverse seg-
ment k. Here, source(s) refers to segment(s) that have a source
(reservoir). Segments with tanks cannot be considered as true
sources in WDNs since they have limited capability in terms

of service delivery [9]. If there is/are path(s) from the source
(s) to segment i in N kð Þ that do not traverse segment k, then
segment i is not affected by the isolation of segment k. This

implies that there are no unintended isolation events due to
the isolation of segment k for maintenance purposes. If there
is no path from the source(s) to segment i in N kð Þ; then the iso-

lation of segment k will result in unintended isolation of seg-
ment i.

In order to circumvent unintended isolations, WDNs are

generally designed to have alternate paths and loops (cyclic
paths). These loops introduce significant bottlenecks in path
computations in WDNs. To the best of our knowledge, seg-
ment criticality measures presented in literature seldom con-

sider looped segment valve topology architecture with
multiple sources. A modified Dijkstra Algorithm [37] with
the ability to handle loops is utilised in the computation of

water paths in the segment valve topology representation of
the WDN. Algorithm 1 outlines the pseudocode for computing
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the number of affected segments due to the isolation of any
arbitrary segment for maintenance. For WDNs with multiple
sources, Line 9 of Algorithm 1 can be modified to compute

the paths from these individual sources. The algorithm takes
the segment valve topology of the WDN as input and outputs
the number of segments impacted due to the isolation of each

segment in the WDN.

Algorithm 1: Number of Affected Segments

Inputs: Segment Valve Topology denotedG v; eð Þ, MaxPaths,

Source

Outputs: Number of segments affected

1. n ¼ vj j
2. for k ¼ 1 : n

3. A  neighbors(G,k, 1) //All neighbours of segment i

4. A  [A k] // Concatenate segment to its neighbors

5. m ¼ Aj j, C ¼ ½�
6. for j ¼ 2 : m

7. path{j}  kShortestPath(G,source,A jð Þ, MaxPaths) //

paths in G

8. pth ¼ pathj j
9. for i ¼ 1 : pth

10. B find(path{i}==k) // Index B if segment i is

in path k

11. if B ¼ ½�
12. C CA jð Þ½ � //Concatenate non affected

segments

13. break

14. end

15. end

16. end

17. if C ¼ ½�
18. D A // All neighbors are impacted

19. else

20. D setdiff(A;C) // Remove non impacted

segments from neighbors of segment i

21. end

22. E ¼ Dj j // Number of affected segments

23. End

Connectivity Loss (CL) in the context of segment criticality
analysis is defined as the fraction of the segment valve topol-
ogy invalidated due to the isolation of a segment. The CL of

a segment k is mathematically defined on the segment valve
topology represented by graph G V;Eð Þ as:.
CL kð Þ ¼ n

NT

8k 2 V ð2Þ

where, n is the number of segments impacted due to the isola-

tion of segment k using algorithm 1 and NT ¼ Vj j is the total
number of segments in the WDN.

The computation of the cumulative demand shortfall in the

entire WDN due to segment isolation is partially based on the
computation of the number of affected segments in Algorithm
1. The demand shortfall created in the network as a result of

isolating segment k,DS kð Þ, is defined as the demand not satis-
fied due to the isolation of n number of segments (affected seg-
ments). Under demand driven hydraulic simulation, this

demand shortfall represents just the cumulative sum of only
the demand not supplied to the affected segments. However,
studies [7,38] have shown that isolation of segments induce
pressure variations in other segments of the WDN and the
actual amount of water delivered to customers becomes a func-
tion of prevailing pressure. As such, demand driven hydraulic
simulation which does not account for these induced pressure

variations underestimates the actual demand supplied in the
network. Pressure dependent hydraulic simulation resolves this
issue by accounting for prevailing pressure in the hydraulic

simulation and provides a reliable estimate for the actual
amount of water delivered to customers [39]. The pressure
dependent formulation proposed by Wagner et al. [40] to eval-

uate the water delivered at any arbitrary node i in a WDN is
given as;.

Dact
i ¼

0 Pi � Pmin
i

Dreq
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pi�Pmin

i

Pser
i
�Pmin

i

r
Pmin

i < Pi < Pser
i

Dreq
i Pser

i � Pi

8>>><
>>>:

ð3Þ

where Dact
i ¼ actual demand at node i, Dreq

i ¼ required demand

at nodei, Pmin
i ¼ minimum pressure required to deliver any

amount of demand at nodei, Pser
i ¼ service pressure required

to supply demand at node i, Pi ¼ pressure computed via
hydraulic simulation at nodei. This cumulative demand short-
fall created in the WDN is estimated using pressure dependent
simulation in EPANET 2.2 [41].

Mathematically, DS kð Þ can be expressed as the sum of the
difference between the nominal segment demands and the
actual delivered segment demands at time t when a segment

k isolated.

DS kð Þ ¼
XNT

i¼1
Dn ið Þ �Dact ið Þð Þ ð4Þ

whereDnðiÞ = nominal demand on segment i under normal
working conditions (no isolation incident). DactðiÞ ¼ actual

delivered demand at segment i due to isolation of segment k.
NT ¼ total number of segments in the WDN. When segment
k is isolated, the actual demand delivered at this segment

and all segments affected (topological point of view as com-
puted in algorithm 1) are set to zero. Pressure dependent sim-
ulation helps to ascertain the service delivery impact of

isolating segment k on other segments that are not impacted
topologically. Thus, segments that are not cut off from the
reservoir(s) due to the isolation of segmentk.

Finally, the SCM which weighs the connectivity loss of the

segment valve topology as a result of isolating segment k,
CL kð Þ; with its cumulative demand shortfall, DS kð Þ, is given
as:.

SCM kð Þ ¼ CL kð Þ �DS kð ÞPNT

i¼1Dn ið Þ ð5Þ

The SCM defined above is a local dimensionless metric for
segment criticality assessment. In defining SCM, both the con-

nectivity loss of the segment valve topology and cumulative
demand shortfall created in the WDN due to the isolation of
each segment is normalized by the number of segments and

the overall nominal demand respectively. Coupling connectiv-
ity loss with cumulative demand shortfall ensures that the crit-
icality of segments with the same connectivity loss are
differentiated based on cumulative demand shortfall in the

WDN. The isolation of any two arbitrary segments in a
WDN could result in the same connectivity loss of the segment
valve topology structure but their respective demand shortfall
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might not be the same. In the event of unintended isolation,
both the topological impact (connectivity loss) and hydraulic
impact (cumulative demand shortfall) increase significantly.

Since SCM combines connectivity loss and cumulative demand
shortfall, the SCM for a segment whose isolation results in
unintended isolation might have a significantly higher critical-

ity measure/ranking than segments whose isolation do not
result in unintended isolation. In a scenario where the resulting
cumulative demand shortfall is minimal, the SCM will be

moderate.

2.4. Ranking of segment criticality

Kendall’s rank correlation coefficient is used to measure simi-
larities in the criticality ranking of segments in different layers
of the multilayer representation of the segment valve topology.
Mathematically, Kendall’s rank correlation coefficient, s;
determining the strength of ordinal association between the
criticality ranking of segments in layers X and Y accounting
for ties is given as:.

s ¼ nc � ndffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n n�1ð Þ

2
� T

� �
n n�1ð Þ

2
�U

� �r ð6Þ

where nc ¼ number of concordant pairs, nd ¼ number of dis-

cordant pairs, n ¼ number of segments,

T ¼P
iti ti � 1ð Þ=2;U ¼P

juj uj � 1
� �

=2; ti ¼ number of X val-

ues that are tied at a given rank and uj ¼ number of Y values

that are tied at a given rank. Kendall’s rank correlation coef-
ficient assumes values between the closed interval½�11�.
s ¼ �1 implies the criticality rankings are opposite (reversed
order), s ¼ 0 indicates the criticality rankings are independent
(no relationship) and s ¼ þ1 implies the ranking are exactly

the same. Generally, as s values approach +1 we say the crit-
icality rankings are similar. On the other hand, as s values
approach �1, we say the criticality rankings are dissimilar (ap-

proaching reversed order).

3. Case study

A benchmark WDN, North Marin Water District Network,
California-USA [42] is used as a case study to demonstrate
the proposed methodology. This network has been segmented
into 20 distinct segments based on the concept of modularity

[33]. Fig. 3 shows the network and its alternate segment valve
topology representation. Segments 1 and 2 are demarcated as
sources in Fig. 3. This implies that these segments have reser-

voirs and are capable of supplying water to the entire fleet of
segments in the network either independently or simultane-
ously. Using flows in the links (pipes with ISO valves) between

adjoining segments, their functional status within any tempo-
ral window can be ascertained.

Using the EPANET MATLAB toolkit [43], a pressure

dependent extended period simulation is carried out for 24 h
so that the criticality of each segment is captured for any given
temporal period within the day. The WDN is then charac-
terised as a multi-slice network with 24 layers. Each layer rep-

resents the state of the WDN within a 1-hour temporal
window. This ensures that we can study the criticality of seg-
ments (impact of segment isolation) in discrete time and ascer-

tain their impact on the entire network in terms of disruption
and service delivery on hourly basis. To speed up the compu-
tational time, the parallelization toolbox in MATLAB R2019b
[44] was extensively used to speed up the computational time

required to evaluate every segment isolation scenario in each
layer of the segment valve topology representation. To ensure
thorough analysis of segment criticality, the isolation impact of

each segment in each layer of the WDN in terms of connectiv-
ity loss and demand shortfall is evaluated.

4. Results and discussion

This section presents the results of the study, discussions, and
the general implications. First, segment criticality analysis for

different temporal periods is presented and the correlations
between these temporal periods are evaluated. Then, we pre-
sent the implications of dynamic segment criticality on

scheduling of reactive maintenance routines.

4.1. Multilayer segment criticality analysis

The SCM results of the segments for three temporal windows

of the case study WDN are presented in Fig. 4, where the col-
our bar represents the degree of criticality (0 – least critical and
1 – most critical). The higher the criticality ranking of a seg-

ment, the higher its impact on the entire network in terms of
service delivery when it is isolated within a particular temporal
period. The absence of a link between two adjacent segments

implies a non-interaction (no water flow) between them within
the temporal period considered.

Layer 0 in Fig. 4 presents the SCM of each segment within
the temporal period 00:00am – 0:59am. Within this temporal

period, source segment 1 (S1) is dormant, an indication that
it does not supply water. As such, segment 1 is the least vulner-
able. Source segment 2 (S2) has the sole responsibility to sup-

ply the entire fleet of segments. Isolation of this source segment
will invalidate the entire WDN and therefore is ranked as the
most critical segment. The successor of S2 in the connectivity

structure of the segment valve topology, S4, is the 2nd most
critical segment. S20, which is a sink/terminal segment is
among the least ranked segments as a result of low demand

shortfall created in the network due to its isolation. In layer
7 of Fig. 4, both source segments, S1 and S2, are functioning
simultaneously. The isolation of S2 has a significant impact
on service delivery compared to S1 due to the huge demand

shortfall created in the entire network as a result of its isola-
tion. Therefore, S2 is ranked the most critical segment within
this temporal period. S4 ranks the second most critical seg-

ment. The isolation of this segment will cut off majority of
the downstream segments from the source segment S2.

Furthermore, the isolation of S16 in layer 13 of Fig. 4 will

result in the unintended isolation of S17, S18, S19 & S20. From
a connectivity loss point of view, the impact of isolating S16 is
enormous. However, considering only connectivity loss as a

criticality measure would significantly exaggerate the criticality
of S16. This is due to the fact that the cumulative demand
shortfall created in the network within this temporal period
is very small. The demand shortfall created in the network

due to the isolation of S13, which does not result in unintended
isolation is significantly higher than that of S16 in this tempo-
ral window. As such, the proposed SCM, which weights con-

nectivity loss with relative demand shortfall, ranks the



Fig. 3 A: North Marin Water District WDN. B: Segment valve topology representation.

Fig. 4 Layers 0 and 7 of the segment valve topology multilayer representation.
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criticality of S13 higher. It is important to highlight the fact
that generally, the higher the connectivity loss the higher the

cumulative demand shortfall created in the network. However,
the isolation of S16 within this temporal period presents itself
as an exception since the segment demands of S17, S18, S19

and S20 are very minimal within this temporal period. The



Table 1 Kendall’s rank correlation coefficient of segment criticality rankings in Layers 0 to 23 of the real-life WDN.

L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 L10 L11 L12 L13 L14 L15 L16 L17 L18 L19 L20 L21 L22 L23

L0 1 0.56 0.50 0.49 0.45 0.44 0.45 0.47 0.25 0.51 0.48 0.51 0.51 0.46 0.50 0.70 0.67 0.67 0.66 0.67 0.67 0.67 0.70 0.86

L1 1.00 0.95 0.94 0.84 0.46 0.75 0.79 0.54 0.48 0.44 0.44 0.44 0.41 0.44 0.24 0.22 0.22 0.21 0.22 0.22 0.22 0.24 0.43

L2 1.00 0.99 0.88 0.46 0.80 0.82 0.59 0.44 0.43 0.39 0.39 0.40 0.43 0.19 0.17 0.17 0.17 0.17 0.17 0.17 0.19 0.38

L3 1.00 0.89 0.47 0.81 0.81 0.60 0.43 0.42 0.38 0.38 0.39 0.42 0.18 0.16 0.16 0.16 0.16 0.16 0.16 0.18 0.37

L4 1.00 0.47 0.83 0.77 0.62 0.39 0.38 0.31 0.31 0.32 0.36 0.14 0.14 0.14 0.13 0.14 0.14 0.14 0.14 0.33

L5 1.00 0.64 0.62 0.81 0.87 0.86 0.76 0.76 0.79 0.84 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.40

L6 1.00 0.92 0.77 0.56 0.55 0.49 0.49 0.50 0.53 0.31 0.31 0.31 0.30 0.31 0.31 0.31 0.31 0.41

L7 1.00 0.73 0.62 0.61 0.53 0.53 0.54 0.57 0.33 0.36 0.36 0.35 0.36 0.36 0.36 0.33 0.43

L8 1.00 0.70 0.69 0.57 0.57 0.59 0.65 0.40 0.42 0.42 0.42 0.42 0.42 0.42 0.40 0.21

L9 1.00 0.97 0.87 0.87 0.87 0.93 0.68 0.70 0.70 0.70 0.70 0.70 0.70 0.68 0.49

L10 1.00 0.88 0.88 0.90 0.96 0.69 0.71 0.71 0.71 0.71 0.71 0.71 0.69 0.50

L11 1.00 1.00 0.97 0.92 0.81 0.79 0.79 0.78 0.79 0.79 0.79 0.81 0.63

L12 1.00 0.97 0.92 0.81 0.79 0.79 0.78 0.79 0.79 0.79 0.81 0.63

L13 1.00 0.95 0.77 0.75 0.75 0.76 0.75 0.75 0.75 0.77 0.58

L14 1.00 0.72 0.70 0.70 0.71 0.70 0.70 0.70 0.72 0.53

L15 1.00 0.98 0.98 0.97 0.98 0.98 0.98 1.00 0.82

L16 1.00 1.00 0.99 1.00 1.00 1.00 0.98 0.80

L17 1.00 0.99 1.00 1.00 1.00 0.98 0.80

L18 1.00 0.99 0.99 0.99 0.97 0.79

L19 1.00 1.00 1.00 0.98 0.80

L20 1.00 1.00 0.98 0.80

L21 1.00 0.98 0.80

L22 1.00 0.82

L23 1.00
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Fig. 5 Criticality rankings of Segment 2.

Fig. 6 Criticality rankings of Segment 8.
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general dynamics of the network is similar to layer 7 & 13.

However, the criticality ranking of the segments differ. This
is due to the differences in segments demands and total
demand shortfall within these separate temporal windows.

Table 1 presents the Kendall’s correlation coefficient

between the criticality ranking of segments in each of the 24
layers. A perfect correlation, correlation coefficient of one,
implies the criticality ranking of segments between any pair

of layers is similar. Perfect correlation is evident between layers
19, 20 & 21. This implies that the criticality ranking of these
segments are identical despite the variation in cumulative seg-

ment demand. However, the criticality ranking in majority of
the layers (temporal windows), are very much distinct. Extre-
mely low correlation could be seen between layers 4 & 18, lay-

ers 3 & 21, etc. On average, majority of the entries in Table 1
have values less than 0.5, which give an indication of how the
criticality rankings of segments vary from one temporal period
to another. Adjacent temporal periods (layers) seem to exhibit

much similarity as indicated by their relatively high correlation
coefficients. This is expected as the dynamics of the network in

terms of demand patterns and the operational status of valves
and pumps do not differ significantly between adjacent tempo-
ral periods. The results presented in Fig. 4 and Table 1 lend
credence to the fact that static networks fail to account for

the variabilities exhibited from one temporal period to
another. They rather focus on peak or average estimations
which are not realistic for the different temporal windows

within the day.
4.2. Segment criticality ranking and scheduling of maintenance
routines

To facilitate maintenance scheduling, bar plots of the critical-
ity ranking of each segment are presented considering all time

periods in the pressure dependent extended period simulation.
These plots enable us to identify precisely which temporal peri-
ods are most favourable for maintenance routines to be carried



Fig. 7 Criticality rankings of segment 16.
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out on components of each segment such as pipes, valves, and
pumps etc.

Fig. 5 presents the SCM ranking of one of the source seg-

ments, S2. Between the temporal window 1:00 am to
2:59 pm both source segments, S1 & S2, are functional. This
is evident in the demand shortfall created in the entire network.

It is significantly less than the demand shortfall when only S2 is
operational (3:00 pm to 00:59 am). According to the bar chart,
the optimal period for isolating S2 for maintenance is between
4:00 am and 4:59 am. Isolating S2 within any other temporal

period will result in higher service disruption. In circumstances
where it is impossible to schedule maintenance routines within
this temporal period, a compromise can be reached by opting

for other temporal periods in which the criticality ranking is
low, and the overall demand shortfall is minimal.

In Fig. 6, we present the criticality ranking of segment 8. All

the nodes in S8 have the same demand pattern and its isolation
does not result in unintended isolation of downstream seg-
ments. S8 have the least SCM between the temporal period

6:00 pm-7:59 pm. Maintenance routines involving components
of segment 8 ought to be carried out within this temporal per-
iod. Since all the nodes in S8 have the same demand pattern
and its isolation does not result in any unintended isolation,

its SCM over the 24-hour period should agree with the diurnal
demand pattern. A strong similitude is evident between the
SCM of S8, demand shortfall and the default demand pattern

(see Appendix A for default demand pattern). It is important
to highlight the fact that in instances where nodes in a partic-
ular segment have different demand patterns and unintended

isolation is possible, it is impossible to identify the temporal
period in which its isolation will have minimal impact based
on intuition or experience alone. This aforementioned scenario

is illustrated in the segment criticality analysis of S16 presented
in Fig. 7.

The isolation of S16 results in the unintended isolation of
downstream segments S17, S18, S19 and S20. Some of these

downstream segments have nodes that exhibit different
demand patterns. The hourly cumulative demand shortfall cre-
ated in the network due to the isolation of S16 will differ sig-

nificantly from one temporal window to another in the
network. This phenomenon demands that a robust SCM that
considers the time varying component of WDNs as the one
proposed in this study be implemented to capture these vari-

abilities. The optimal temporal window for scheduling mainte-
nance routines on components of S16 is 7:00 pm to 7:59 pm.
As mentioned earlier, if it is impossible to schedule mainte-

nance within this optimal temporal window a compromise
can be reached. Since the SCM for the entire 24 hrs of each
layer is considered, it is easy to evaluate alternate temporal
windows that are suitable operationally albeit suboptimal per

SCM.
The following practical implications can be drawn from this

study. The proposed framework for dynamic segment critical-

ity analysis could be used as a decision support system to opti-
mally schedule maintenance in WDNs. It is important to
highlight the fact that not all maintenance routines have to

be scheduled, some must be implemented immediately to
ensure the smooth functioning of the WDNs. This study pre-
sents stakeholders with a method to evaluate the criticality

of segments within different temporal periods in a day in order
to either prioritize the maintenance of a particular component
or schedule its maintenance to limit service disruptions.

The framework could also be used to study the criticality of

segments in general, simulate disaster scenarios, predict the
resulting service delivery loss, and design disaster impact mit-
igating strategies. System reliability and diagnosis is another

avenue to utilize the proposed SCM. The SCM introduced in
this study could be utilized for emergency planning and
response in near real-time to limit the catastrophic conse-

quences of component failure in WDNs. Whenever there is a
component failure, the proposed framework could be utilised
by water engineers in near real-time to assess the impact of iso-

lating the affected segment and evaluate the optimum temporal
window to fix the damage.

5. Conclusions

A systematic framework for dynamic segment criticality anal-
ysis of WDNs have been proposed and validated on a real-life
WDN in this study. The proposed Segment Criticality Mea-
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sure (SCM) presents a hybrid approach that combines both
topological and hydraulic metrics for segment criticality anal-
ysis. Based on the results of this study we have demonstrated

that relying exclusively on topological metrics for segment crit-
icality can be misleading at times. Collectively, we have
demonstrated how the criticality of segments of WDNs under

pressure dependent extended period simulation vary with time
(different temporal windows) using multilayer networks. It is
impossible to capture these variabilities using single period

simulation and static networks. The consideration of time,
thus varying segment demands, is crucial in the identification
of the optimum window to implement scheduled maintenance
routines. The following key points are highlighted from this

study.

� A robust decision support framework to optimally schedule

reactive maintenance routines in WDNs has been estab-
lished. This framework identifies the most suitable time to
carry out reactive maintenance routines or suggest alterna-

tive periods with less impact on service delivery. It alleviates
the problems associated with guess work of engineers in seg-
ment isolation or over reliance on intuition which can be

catastrophic at times.
� The SCM introduced in this study is primed for system
diagnosis and reliability analysis. Segment isolations that
result in colossal amount of demand deficit and unintended

cut-off of other segments downstream could be identified
and additional pipes added (or rings formed) to alleviate
the burden of unintended segment isolation. This will go

a long way to ensure reliable and consistent water delivery
even in the event of segment isolation for reactive mainte-
nance routines.

� The design and implementation of flushing regimes in
WDNs to dislodge intruded contaminants or routine flush-
ing to improve water quality could benefit immensely from

the results of this study. The connectivity loss based on
reachability theory in complex network introduced in this
study could easily be used for contaminant zoning analysis.
It can evaluate the impact of different zoning strategies by

the closure of appropriate isolation valves to cut off con-
taminated segments and limit the impact of possible con-
Fig. 8 Default demand pa
tamination scenarios.

� Disaster scenario analysis and impact mitigation strategies
can be evaluated using the proposed segment criticality
measure. Different disaster mitigation strategies to combat

natural disasters such as earthquakes could be simulated
as isolation of single or multiple segments to assess their
impact on service delivery. Pipes are buried underground
and could suffer from landslides and earthquakes in

regions/areas with fault lines. Therefore, frameworks to
analyse disaster scenarios are very crucial to water utilities
to help them come up with rapid and timely interventions

to limit the impact.

Segment criticality largely depends on the topology and

hydraulics of the WDNs. Even though the SCM presented in
this study is generally applicable to all WDNs, the results
may vary significantly depending on the topology, hydraulics,
and location of ISO valves. Additionally, the SCM is confined

to a predetermined temporal window. Future studies could
evaluate the impact of ISO valve failure on segment criticality
analysis. Since this will result in the inability to properly isolate

segments thereby increasing the number of segments to be iso-
lated for the implementation of reactive maintenance routines.
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[28] E. Estrada, J. Gómez-Gardenes, Communicability reveals a

transition to coordinated behavior in multiplex networks, Phys.

Rev. E 89 (4) (2014) 042819.

[29] S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang,

Complex networks: Structure and dynamics, Phys. Rep. 424 (4-

5) (2006) 175–308.

[30] G. Bianconi, Multilayer networks: structure and function,

Oxford University Press, 2018.

[31] E. Creaco, M. Franchini, S. Alvisi, Optimal placement of

isolation valves in water distribution systems based on valve cost

and weighted average demand shortfall, Water Resour. Manage.

24 (15) (2010) 4317–4338.

[32] M. Cattafi, M. Gavanelli, M. Nonato, S. Alvisi, M. Franchini,

Optimal placement of valves in a water distribution network

with CLP (FD), arXiv preprint arXiv:1109.1248, 2011.

[33] O. Giustolisi, L. Ridolfi, A novel infrastructure modularity

index for the segmentation of water distribution networks,

Water Resour. Res. 50 (10) (2014) 7648–7661.

[34] E. Creaco, M. Cunha, M. Franchini, Using heuristic techniques

to account for engineering aspects in modularity-based water

distribution network partitioning algorithm, J. Water Resour.

Plann. Manage. 145 (12) (2019) 04019062.

[35] T. Gao, Efficient identification of segments in water distribution

networks, J.WaterResour. Plann.Manage. 140 (6) (2014) 04014003.

[36] T.M. Walski, Water distribution valve topology for reliability

analysis, Reliab. Eng. Syst. Saf. 42 (1) (1993) 21–27.

[37] C. Liu, J. Wu, Scalable routing in cyclic mobile networks, IEEE

Trans. Parallel Distrib. Syst. 20 (9) (2008) 1325–1338.

[38] O. Giustolisi, T.M. Walski, Demand components in water

distribution network analysis, J. Water Resour. Plann. Manage.

138 (4) (2012) 356–367.

[39] C. Siew, T.T. Tanyimboh, Pressure-dependent EPANET

extension, Water Resour. Manage. 26 (6) (2012) 1477–1498.

[40] J.M. Wagner, U. Shamir, D.H. Marks, Water distribution

reliability: simulation methods, J. Water Resour. Plann.

Manage. 114 (3) (1988) 276–294.

[41] L.A. Rossman, EPANET 2: users manual, 2000.

[42] M.D. Jolly, A.D. Lothes, L. Sebastian Bryson, L. Ormsbee,

Research database of water distribution system models, J. Water

Resour. Plann. Manage. 140 (4) (2014) 410–416.

[43] D.G. Eliades, M. Kyriakou, S. Vrachimis, M.M. Polycarpou,

EPANET-MATLAB toolkit: An open-source software for

interfacing EPANET with MATLAB, in: Proceedings of the

14th International Conference on Computing and Control for

the Water Industry, CCWI, 2016.

[44] MATLAB, 9.7.0.1190202 (R2019b). Natick, Massachusetts: The

MathWorks Inc., 2018.

http://refhub.elsevier.com/S1110-0168(22)00178-8/h0005
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0005
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0005
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0010
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0010
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0010
https://doi.org/10.1029/2012WR011897
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0020
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0020
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0020
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0025
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0025
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0025
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0030
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0030
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0030
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0035
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0035
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0035
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0040
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0040
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0040
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0050
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0050
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0060
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0060
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0060
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0070
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0070
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0070
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0070
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0075
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0075
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0075
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0080
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0080
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0080
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0080
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0095
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0095
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0095
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0095
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0100
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0100
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0100
https://doi.org/10.1038/srep01344
https://doi.org/10.1038/srep01344
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0110
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0110
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0115
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0115
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0115
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0120
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0120
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0120
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0125
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0125
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0125
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0135
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0135
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0135
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0140
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0140
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0140
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0145
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0145
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0145
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0150
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0150
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0150
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0155
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0155
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0155
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0155
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0165
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0165
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0165
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0170
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0170
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0170
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0170
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0175
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0175
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0180
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0180
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0185
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0185
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0190
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0190
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0190
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0195
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0195
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0200
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0200
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0200
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0210
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0210
http://refhub.elsevier.com/S1110-0168(22)00178-8/h0210

	Dynamic segment criticality analysis: A precursor to scheduling of maintenance routines in water distribution networks
	1 Introduction
	2 Materials and methods
	2.1 Multi-layer networks
	2.1.1 Multi-slice networks

	2.2 Segmentation of WDNs
	2.3 Segment criticality measure
	2.4 Ranking of segment criticality

	3 Case study
	4 Results and discussion
	4.1 Multilayer segment criticality analysis
	4.2 Segment criticality ranking and scheduling of maintenance routines

	5 Conclusions
	Declaration of Competing Interest
	Acknowledgement and data
	Appendix A 
	References


