
[384] 18(3), 2022

Computational thinking as part of compulsory
education: How is it represented in Swedish
and Norwegian curricula?

Abstract
In recent years, many countries have revised their school policy documents to incorporate digital compe-
tence, computational thinking and programming. This study examines and compares how and in what
contexts Nordic curricula, Swedish and Norwegian in particular, embody aspects of computational thin-
king. Results show that only parts of the practices defined in the computational thinking framework used
for analysis could be explicitly identified in the curriculum documents. The most salient computational
thinking practice represented in both the Swedish and Norwegian curricula is programming, and pro-
gramming is primarily recognized as a method and tool for learning other subject content and not as
a knowledge domain in its own right. Both curricula leave leeway for teachers to implement a broader
approach to computational thinking. However, this would require much time and considerable teacher
competence, and the requirements for such an effort seems to be under-communicated in the curricula,
leaving schools and teachers with major challenges.

INTRODUCTION
In recent years, school policy documents in many countries have been revised to incorporate emerg-
ing knowledge and skills considered important in a technology dependent society (Voogt & Roblin,
2012). Such knowledge and skills encompass, for example, information literacy, problem solving
abilities and creativity, and are generally referred to as part of the broad notion of digital competence
(European Education and Culture Executive Agency, Eurydice, 2019). Part of this increased interna-

Peter Vinnervik holds a PhD degree in Pedagogical work with specialisation in Technology. He is a certi-
fied school teacher in Mathematics, Science and Technology and has more than 20 years of experience as
a teacher educator at Umeå University, with a special focus on digital transformation in schools.

Berit Bungum is Professor of science and technology education at The Norwegian University of Science
and Technology, Trondheim, and works at the Resource Center for Mathematics, Science and Technology
(“Skolelaboratoriet”). She has a broad background in research; she currently works with ways of incorpo-
rating programming with subject learning and creativity and is manager for the project KreTek.

PETER VINNERVIK
Centre for Educational Development, Umeå University, Sweden
peter.vinnervik@umu.se
https://orcid.org/0000-0002-4094-4503

BERIT BUNGUM
Department of Physics, The Norwegian University of Science and Technology, Trondheim, Norway
berit.bungum@ntnu.no
https://orcid.org/0000-0003-1739-7887

[385]18(3), 2022

tional discourse on digital competence has come to include elements of computer science, for example
programming (Crick, 2017; Passey, 2017).

Further, the broader concept of computational thinking (Barr, Harrison, & Conery, 2011; Barr & Ste-
phenson, 2011; Bocconi et al., 2016; Grover & Pea, 2013; Voogt, Fisser, Good, Mishra, & Yadav, 2015)
has caught the attention among school policy makers internationally. The notable interest for com-
puting has also reached the Nordic compulsory education discourse. Among the Nordic countries,
Finland (in 2016), Sweden (in 2018) and Norway (in 2020) have thus far introduced revised compul-
sory school curricula that emphasize the role and importance of digital competence for life and work
in the future.

This can be seen as an example of travelling policy ideas (Ozga & Jones, 2006). Such ideas are al-
ways interpreted and contextualised in the varying national contexts, and it is therefore of interest
to investigate how the current focus on programming and computational thinking is manifested in
curricula in Nordic countries. This paper reports an explorative study of curriculum documents in
Sweden and Norway, with the purpose to identify to what extent and how computational thinking
practices are manifested. By this, we illuminate the potential for integrating computational thinking
practices in compulsory school in these two countries. The study draws on a framework for compu-
tational thinking designed by Weintrop et al. (2016), and the research question is: In what ways are
computational thinking practices represented in curricula for subjects in Swedish and Norwegian
compulsory education?

BACKGROUND
Computational thinking (hereafter referred to as CT) derives from an academic debate which began
in the mid 20th Century, about whether the thought processes and procedural aspects of comput-
ing could be beneficial for other knowledge domains, and hence become a sort of general-purpose
thinking tool (Tedre & Denning, 2016). The exact expression, ‘computational thinking’, is generally
thought to have been introduced in Seymour Papert’s seminal book on computer literacy for children
and how programming could be a tool for thinking and learning (Papert, 1980). In 2006, the concept
received renewed attention when Wing (2006) argued that CT “represents a universally applicable at-
titude and skill set” (p. 33) for solving problems, closely related to computer science but beneficial for
and transferable to other knowledge domains. Wing proposed several characteristics that define CT
and since then, a wide range of proposals to define CT have been designed (Shute et al., 2017). More
elaborate frameworks have come from scholars (e.g. Brennan & Resnick, 2012; Weintrop et al., 2016)
as well as from various stakeholders (Barefoot Computing, n.d.; BBC, n.d.). Despite the clear connec-
tion to computer science, and Papert’s efforts to introduce children to computer programming, CT is
not to be equated with programming. Nevertheless, programming is generally seen as a tool that can
facilitate the understanding and development of CT skills (Voogt et al., 2015). The discussion about
what CT means, whether it is necessary to even talk about CT, and how the skills best can be developed
and assessed is ongoing (Guzdial, 2020; Guzdial, Kay, Norris, & Soloway, 2019; Saqr, Ng, Oyelere, &
Tedre, 2021).

Nordic approaches
In this section, we describe Nordic approaches to introducing CT in compulsory education at an over-
all level, before we present an analysis of curriculum documents in Sweden and Norway. A recent
report from the European Schoolnet (Bocconi, Chioccariello & Earp, 2018) illuminates that CT as a
concept is not explicitly deployed in Nordic school curricula. Instead, the predominant idea, as seen
in Finland, Sweden, and Norway, has been to integrate programming in the curricula for existing sub-
jects (Bocconi, Chioccariello & Earp, 2018). In all three countries, programming is part of the Mathe-
matics curriculum. Programming is further included in the Swedish Technology subject (Teknik), and
in Crafts in Finland. In Norway, programming is included in the Arts and Crafts, Music, and Science
curricula, in addition to Mathematics.

Computational thinking as part of compulsory education

[386] 18(3), 2022

In Denmark, digital competence permeates many contexts and subjects, but there is little about pro-
gramming in the curriculum for compulsory school. The subject curriculum for Mathematics refers
to the use of computer programs, but not how they are constructed (Børne- og Undervisningsminis-
teriet, 2019a). In Science (Natural sciences/Technology), there is a strong focus on modelling com-
petence, but computer programs are not mentioned (Børne- og Undervisningsministeriet, 2019b).
However, a new subject called Technology comprehension has been piloted in many Danish schools
between 2018 and 2021 (Børne- og undervisningsministeriet, 2021) and the subject includes CT as
an explicit part of the content.

The Icelandic compulsory school curriculum includes an interdisciplinary subject, Information and
Communication Technology, that covers a broad range of competences under the headline of infor-
mation and media literacy. Learning to use digital tools and computer programs is central. Program-
ming, however, is given a limited space in the Icelandic curriculum. It is mentioned once, in the Infor-
mation and Communication Technology syllabus which declares that grade 10 students are supposed
to be able to “use software for programming and communication in a creative manner” (Ministry of
Education, Science and Culture, 2014, p. 237). Programming does not form part of the stated learning
outcomes in Mathematics, Science, or other subjects.

THEORETICAL FRAMEWORK
To analyse the Swedish and Norwegian compulsory school curricula, an analytical framework had to
be identified. The predominant part of the CT practices in both Sweden and Norway is manifested in
the Mathematics, Science and Technology subject curricula. The CT framework developed by Wein-
trop et al. (2016) was therefore found to be a suitable tool for analysis and presentation of results. In
the framework, CT is represented as four categories of practices (see Table 1), where each is composed
of a subset of interrelated practices that relate to familiar conceptualisations of practices in science
and technology. The Data Practices category represents skills and knowledge of the role and use of
data for scientific and mathematical endeavours. The category Modelling and Simulation Practices
represents skills and knowledge required to design, create, and use models and simulations to rep-
resent and explore scientific or mathematical phenomena with the help from computational devices.
(However, in other subjects, ‘model’ may have different meanings). Both of these categories have sim-
ilarities with recent development in how scientific practices are described as part of the science curric-
ulum (Crawford, 2014). The Computational Problem Solving Practices category represents problem
solving practices “especially effective for working with computational tools and derived from the field
of computer science” (Weintrop et al., 2016, p. 138). The practices within this category encompass, for
example, algorithm development, computer programming, and to systematically identify and correct
encountered problems when computational tools are used. The category System Thinking Practices
represents skills and knowledge necessary to understand systems (e.g., technological, biological, eco-
nomical) and how its parts interact and function as a whole and change over time.

Vinnervik and Bungum

[387]18(3), 2022

METHODS
In this study, we analysed the curriculum documents that govern teachers’ work, and limited the
analysis to the documents teachers themselves are most likely to use in their work. We have not
analysed any strategic education policy documents, for example about school digitalisation strate-
gies and so forth, since we consider such documents as not primarily intended to provide guidance
for teachers’ work. In concrete terms, the governing formal written curricula for compulsory school-
ing (age 6-16) in Norway (LK20) and Sweden (Lgr11, implemented in 2018) were selected as main
targets of analysis. Both curricula follow the northern continental curriculum tradition represented
by a subject-based approach (Mølstad & Karseth, 2016) and are structured around a core curriculum
with values and principles for compulsory schooling, and curricula for subjects. A subject curriculum
captures the overall aim of the subject and further presents the core content and specific learning
outcomes, divided into age spans. Here, differences in structure, level of detail, and ideology between
Norway and Sweden emerge. Common for both countries is that teachers are entrusted to make their
own informed decisions about subject content in detail, teaching materials and methods (Mølstad &
Karseth, 2016).

In addition, three official complimentary documents, so called commentary materials, to the Swedish
formal written curriculum were included. These texts provide teachers with additional, and optional,
information regarding the governing guidelines in the formal written curriculum regarding a specific
subject or theme (e.g., the integration of digital tools and media in education). The data set also con-
tains a framework for algorithmic thinking developed by The Norwegian Directorate for Education
and Training. In total, six documents were selected for analysis (see table 2).

Table 1. Computational Thinking Framework (Weintrop et al., 2016)

Data Practices Modelling and
Simulation Practices

Computational
Problem Solving
Practices

System Thinking
Practices

Collecting Data Using Computational
Models to Understand a
Concept

Preparing Problems for
Computational Solutions

Investigating a
Complex System as a
Whole

Creating Data Using Computational
Models to Find and Test
Solutions

Programming Understanding the
Relationships within a
System

Manipulating
Data

Assessing Computational
Models

Choosing Effective
Computational Tools

Thinking in Levels

Analysing Data Designing
Computational Models

Assessing Different
Approaches/Solutions to
a Problem

Communicating
Information about a
System

Visualising Data Constructing
Computational Models

Developing Modular
Computational Solutions

Defining Systems and
Managing Complexity

Creating Computational
Abstractions

Troubleshooting and
Debugging

Computational thinking as part of compulsory education

[388] 18(3), 2022

The analysis was conducted through close reading and qualitative content analysis (Krippendorff,
2004). When the initial selection of documents was made (see table 2), the framework by Weintrop
et al. (2016) was used as an analytical tool to identify the potential for CT practices. In the first step of
analysis, we examined the documents to identify all instances related to the practice of programming,
since programming is the main CT practice that has received most attention in the development and
implementation of the curricula. This identification process was made via close reading and searching
for significant keywords (‘programming’ and related stems, and potential related terms, e.g., ‘cod-
ing’). In the succeeding step, we searched for instances of CT more broadly. This was done by search-
ing for segments of text that explicitly or implicitly represent any of the CT practices defined in the
framework. In the third step of analysis, each identified segment was carefully examined to establish
which specific CT practice it represented. Table 3 provides an example of how a text unit was catego-
rised in terms of main and subordinated CT practices.

Table 3. Example of analysis

RESULTS
This section presents the results of the analysis for each country separately. First, a general overview
of how digital competence and CT in a broad sense are embedded in the curriculum is presented. Then
follows a presentation of how programming is conveyed in the various subject curricula. Each section

Table 2. Documents selected for analysis

Document Publisher Comment Status

Norwegian compulsory
school curricula
(LK20), age 6-16
(Years 1-10)

Norwegian
Directorate for
Education and
Training

Analysis of the core
curriculum and subject
curricula for Mathematics,
Arts and crafts, and Natural
Science

Governing

Algoritmisk tenkning Norwegian
Directorate for
Education and
Training

Norwegian framework for
computational thinking

Guidance
(Optional
reading)

Swedish Curriculum
for Compulsory School
(Lgr11), age 7-16 (Years
1-9)

Swedish National
Agency for
Education (NAE)

Analysis of the subject
curricula for Mathematics,
Technology, and Natural
Science subjects

Governing

Commentary materials
to Lgr11

Swedish National
Agency for
Education (NAE)

Analysis of three commentary
materials for the subjects
Mathematics and Technology,
and about digital tools
and media in compulsory
education.

Guidance
(Optional
reading)

Text unit Source CT practices

Technical solutions that use
electronics and how they can
be programmed

Curriculum for
Technology, Core
content (Lgr 11)
Age 13-16

System Thinking: Understanding the
Relationships within a System
Computational Problem Solving:
Programming

Vinnervik and Bungum

[389]18(3), 2022

concludes with a presentation of how specific CT practices in terms of the framework from Weintrop
et al. (2016) are represented in the curriculum. This structure of presentation reflects the process of
analysis, where the curricula were investigated first with regards to programming and thereafter with
regards to CT in a broader sense.

Representations of CT in the Swedish curriculum
General aspects of the Swedish curriculum related to CT
The current formal curriculum was updated in 2017 to incorporate and emphasise digital compe-
tence. The Swedish digital competence framework draws on the EU Digital Competence Framework
(Carretero et al., 2017) and contains the following competence goals (NAE, 2017a):

1. Understanding the impact of digitalisation on society
2. The ability to use and understand digital tools and media
3. Having a critical and responsible approach (towards media and information sources)
4. The ability to solve problems and put ideas into action

There are several abilities and skills that the recent and ongoing push for digital competence in the
curriculum is believed to help develop, such as creativity, curiosity, self-confidence, design thinking,
problem solving, collaboration, and critical thinking (NAE, 2017a).

Programming was added to the curriculum in the 2017 revision and explicitly integrated in three sub-
jects: Mathematics, Technology, and to a lesser extent in Civics. Programming is described as a tool
for learning subject specific content, for example “to explore problems and mathematical concepts,
make calculations and to present and interpret data” (NAE, 2018, p. 55). A broader aim of program-
ming emerges in one of the optional commentary materials:

… programming must be seen in a broader perspective that also includes creative making, control
and regulation, simulation, and democratic dimensions. This broader perspective on program-
ming is an important starting point in teaching and programming is thus included in all aspects
of digital competence (NAE, 2017a, p. 10).

However, this role of programming is not reflected in the formal written curriculum. We therefore
believe that a potential consequence is that many teachers miss out on this more comprehensive
declaration of intent. Research (Vinnervik, 2022) suggests that to fully capture the organisational
structure and intentions of programming, it is necessary to read not only the formal written curricu-
lum (Lgr11) but also the non-governing commentary materials for mathematics, technology, and the
cross-curricular commentary material about digital competence.

CT as a concept is not formally used by the school authorities in Sweden. The concept is however
mentioned once in the thematic commentary material about digital tools and media in compulsory
education in which CT is described as a process that encompasses “problem solving, logical thinking,
pattern recognition and creating algorithms that can be used in programming” (NAE, 2017a, p. 9).
Here, it is further argued that these aspects of CT are captured in “different parts of the curriculum
and subject curricula”. We interpret this as the school authorities taking the position that CT practices
are represented in the formal curriculum but sees no need to be more precise.

Programming in the Swedish Mathematics curriculum
The main message about programming is conveyed in the subject curricula for Mathematics and
Technology. Additional information, for example about cross-subject collaboration and learning pro-
gression is provided through commentary materials. In the Mathematics curriculum, programming
is tied to digital tools and is presented as such, to be used to “explore problems and mathematical
concepts, make calculations and to present and interpret data” (NAE, 2018, p. 55). In the commen-
tary material for Mathematics, it is stated that children should learn the ‘programming fundamentals’
(NAE, 2017b). These fundamentals are captured in three condensed statements in the Mathematics
curriculum, all linked to algebra:

Computational thinking as part of compulsory education

[390] 18(3), 2022

• How unambiguous, step-by-step instructions can be constructed, described and followed as a
basis for programming. The use of symbols in step-by-step instructions (Years 7-9)'

• How algorithms can be created and used in programming. Programming in visual program-
ming environments (Years 4-6)

• How algorithms can be created and used in programming. Programming in different program-
ming environments (Years 7-9)

These statements illuminate that algorithms are essential constructs in programming. The state-
ments further seem to link learning progression to the inherent complexity of the programming en-
vironment.

A fourth core content statement is related to the working area Problem solving:

• How algorithms can be created, tested and improved when programming for mathematical
problem solving (Years 7-9)

Here, we see that programming is tied to solving mathematical problems rather than specific pro-
gramming problems. Although the statement does not provide any additional details of what con-
structs (e.g., sequence, repetition) a programming algorithm may be based on, it adds some under-
standing for procedures and working methods associated with programming.
In the commentary material for mathematics, additional details about the curriculum intentions
emerge. Here, the iterative, back-and-forth, aspect of programming as a process is emphasized, cau-
tiously implied in the core content bullet point for problem solving presented above. There is also
some information about the role of programming environments, their inherent complexity and learn-
ing progression. Students are expected to first use block based environments, but with increased age,
they should be “given the opportunity to deepen and broaden their programming skills and how pro-
gramming can be used” (NAE, 2017b, p. 17). Therefore, they should also be given the opportunity to
program in “different programming environments” (NAE, 2017b, p. 17). Implicitly related to the issue
of programming environments concerns programming languages, but no specific information about
languages is found neither in the Mathematics texts, nor in any of the other texts. Learning progres-
sion is generally expressed as growth in knowledge and/or skills, but there is no such information in
terms of programming knowledge in any of the Swedish texts.

Programming in the Swedish Technology curriculum
In the subject curriculum for Technology, programming is mentioned in four core content statements
(NAE, 2018, pp. 297–299):

• Controlling objects by means of programming (Years 1-3)
• Controlling pupils’ own constructions or other objects by means of programming (Years 4-6)
• Technical solutions that use electronics and how they can be programmed (Years 7-9)
• Pupils’ own constructions in which they apply control and regulations, including with the aid

of programming (Years 7-9)

Here, programming is mainly represented as a tool to attain technological knowledge rather than
being technological knowledge in itself, and primarily tied to technological systems, methods of con-
trol and regulation, construction work and electronics. The overarching aim of Swedish technology
education, however, covers other aspects of technology that concern both programming and digital
competence. For example, aspects of digital safety (dimension 3 in the Swedish digital competence
framework), consequences of technological choices and the impact of technology on people, society,
and the environment (dimension 1) and problem solving (dimension 4) are represented in the Tech-
nology curriculum. Furthermore, conceptual understanding is one of five core abilities of technology
education (NAE, 2018). This core ability could also encompass the understanding of programming
concepts, even though no such concepts are explicitly defined in the subject curriculum.

Vinnervik and Bungum

[391]18(3), 2022

The commentary material for technology (NAE, 2017c) reveals an intended organisational relation-
ship between mathematics and technology with regards to programming. Here it is indicated that
children should learn the ‘programming fundamentals’ in mathematics, but whether this knowledge
is meant to scaffold and amplify the programming experience in technology is not clearly expressed.

The Swedish curriculum in terms of CT
Using the CT framework by Weintrop et al. (2016) as analytical tool, several categories and practices
represented in the framework could be identified. At a category level, Data Practices is an already
existing category of practices in the Swedish curriculum in several subjects. The CT perspective is
potentially possible as there are guidelines in several subject curricula that informs teachers to col-
lect, analyse and visualise data with digital tools, for example: “Tables and diagrams to describe the
results of investigations, both with and without digital tools. Interpretation of data in tables and dia-
grams” (NAE, 2018, p. 58). The message is partly clarified in the thematic commentary material about
digital tools and media in compulsory education. Here it is suggested that digital tools can be used to
“make simple tables” as well as to “perform advanced and comprehensive calculations, handle large
amounts of data or produce forecasts using mathematical models and programming” (NAE, 2017a, p.
22). This suggests that several of the CT practices subordinated to Data Practices could be covered.
Worth noticing, however, is that the commentary materials are optional reading, which means that
any clarifications provided in such texts may not be perceived by teachers.

The category Modelling and Simulation Practices is represented in the mathematics curriculum:

Teaching should help pupils to develop their knowledge in order to formulate and solve prob-
lems, and also reflect over and evaluate selected strategies, methods, models and results (NAE,
2018, p. 55)

Even though this quote does not explicitly mention computational aspects, it reflects practices within
the Modelling and Simulation Practices category, such as using (“selected”) and assessing (“reflect
over and evaluate”) models and thereby, implicitly, opens for aspects of CT.

In the curriculum as a whole, the different categories of CT practices are to some extent intertwined,
as shown by the following quote:

… pupils should be given opportunities to develop knowledge in using digital tools and program-
ming to explore problems and mathematical concepts, make calculations and to present and in-
terpret data (NAE, 2018, p. 55)

The quote reflects several different CT practices. The practice Using Computational Models to Un-
derstand a Concept from Modelling and Simulation Practices is reflected through the connection
between programming and understanding mathematical concepts. Digital tools (e.g., Geogebra) and
programming are described as enabling tools to formulate and explore problems and concepts in
mathematical settings, reflecting the practices Preparing Problems for Computational Solutions and
Programming from the category Computational Problem Solving Practices. In addition, the two
quotes above in combination could be interpreted to reflect Choosing Effective Computational Tools
as well as Assessing Different Approaches/Solutions to a Problem. The second quote further adds a
Data Practices perspective reflecting the practices Analysing Data and Visualising Data.

Modelling and Simulation Practices are reflected in the technology curriculum, for example: “How
digital tools can provide support in technical development work, for example when producing draw-
ings and simulations“ (NAE, 2018, p. 299) as well as in the natural science subjects, for example:
“Systematic studies and how simulations can be used as support in modelling” (NAE, 2018, p. 181).
In the natural science curricula, there is no explicit reference to programming or other computational
aspects, besides the broad cross-curricular call for the use of digital tools in all school subjects.

Computational thinking as part of compulsory education

[392] 18(3), 2022

The Computational Problem Solving Practices category is primarily represented through program-
ming. There are, however, openings for other practices within this category, as previously shown for
Mathematics. A competence aim in the Technology curriculum (year 9) states that: “Pupils can carry
out simple work involving technology and design by studying and testing and retesting possible ideas
for solutions and also designing developed physical or digital models” (NAE, 2018, p. 300). There
is no explicit connection to programming or the use of computational tools, but the quote contains
keywords that opens for such an interpretation. For example, “design by studying and testing and
retesting possible ideas” points towards both Assessing Different Approaches/Solutions to a Prob-
lem and Troubleshooting and Debugging, while “digital models” could be interpreted to broadly
point towards Choosing Effective Computational Tools. Having a systematic approach to testing and
retesting is a core practice and competence aim for problem solving and content creation, and is rep-
resented in the curricula not only in the technology curriculum but also in Crafts and Art.

The category System Thinking Practices have similarities with how systems form part of Technology
education in Sweden (Hallström & Klasander, 2020; Svensson, 2017) and consequently, the practices
subordinated to this category can be identified in the Technology curriculum. The practices Investi-
gating a Complex System as a Whole, Understanding the Relationships within a System and Think-
ing in Levels are reflected in the following core content statements (NAE, 2018, p. 299):

• Technical solutions that use electronics and how they can be programmed (Years 7-9)
• How components and subsystems work together in larger systems, such as the production and

distribution of electricity (Years 7-9)

Representations of CT in the Norwegian curriculum
General aspects of the Norwegian curriculum related to CT
The new Norwegian curriculum, referred to as LK20, emphasises digital skills in every subject along-
side reading, writing, numeracy, and oral skills. The digital skills are categorised as follows (NDET,
2012):

1. Search and process
2. Produce
3. Communicate
4. Digital judgement

These skills signal a view of the learner as primarily a user of digital tools and products, with less
emphasis on the technological principles behind these tools, or how students themselves can develop
digital tools and products, for example through programming. Programming could potentially have
been part of the skill Produce, but this skill is described as “being able to use digital tools, media and
resources to compose, reapply, convert and develop different digital elements into finished products,
e.g., composite texts” (NDET, 2012, p. 12). This means that programming or other aspects of CT do
not form part of how the curriculum describes digital skills on a general level, perhaps with the ex-
ception of Visualising Data as described in the framework by Weintrop et al. (2016). Nonetheless,
programming is presented as part of digital skills specific for several subjects in the curriculum. Pro-
gramming and other aspects of CT are also highly visible in the descriptions and competence aims of
several subjects, as will be presented in the following.

Alongside the curricula, The Norwegian Directorate for Education and Training has developed a
framework and resources for CT. The document uses the term algorithmic thinking (“algoritmisk
tenkning”) with the explicit reference to this term as a translation of CT, despite that CT is used inter-
nationally in a much broader sense where algorithmic thinking is considered to be part of CT (Doleck
et al., 2017; Labusch, Eickelmann, & Vennemann, 2019). The meaning of algorithmic thinking/CT is
in the Norwegian Directorate described as:

breaking down complex problems into smaller sub-problems that can easier be handled. It in-
cludes to organise and analyse information in a logical way and to create procedures (algorithms)

Vinnervik and Bungum

[393]18(3), 2022

to arrive at a desired solution. It also involves creating abstractions and models of the real world
by omitting unnecessary detail and focusing on what is relevant for the problem at hand and its
solution. A solution to a specific problem can often be generalized, in order to be applicable to
other problems, and the solution to several sub-problems may be combined in order to solve
more complex problems (NDET, 2019, authors’ translation).

This description mirrors several practices in the category Computational Problem Solving Practices
in the framework by Weintrop et al. (2016), but does not capture the other categories and hence not
the totality of how this framework describes CT.

The curricula for subjects provide contextual descriptions of what digital competence means. For
example, digital competence in terms of being a critical user is highly represented in Social Science,
but this subject does not contain programming. In Music and Arts and Crafts, the curriculum states
that students are to use programming in creative processes in the subjects. In Arts and Crafts, this
is specified in a competence aim for Years 5-7 as “use programming to create interactivity and visual
expressions” (NDET, 2019b, p. 7).

With these exceptions, we mainly find programming and other aspects of CT as part of the subjects
Natural Science and Mathematics. In the following section, we outline in more detail what opportu-
nities these subjects provide for integrating CT practices. We present how the curriculum for each
subject places programming in core elements, digital skills and competence aims. The core elements
are subject areas across years where a progression is made through specific competence aims for each
year (for mathematics) or groups of years (for other subjects).

Programming in the Norwegian Mathematics curriculum
In the curriculum for Mathematics, CT forms part of the core element Exploration and problem solv-
ing. Here, problem solving is described this way:

Problem solving in mathematics refers to developing a method for solving problems not encoun-
tered previously. Computational thinking is important in the process of developing strategies and
procedures to solve problems and means breaking a problem down into sub-problems that can
be systematically solved. This also includes assessing whether sub-problems would be best solved
with or without digital tools. Problem solving also means analysing, rethinking and finding new
ways of approaching known and unknown problems, solving them and assessing whether the
solutions are valid (NDET, 2019c, p. 2).

This description is much in line with the curriculum’s somewhat narrow description of CT (algorith-
mic thinking) as referred above, which suggests that CT is conceptualized with problem solving in
mathematics as a starting point.

In the more specific competence aims in mathematics, essential concepts and skills in programming
are explicitly represented from grade 5, in which the pupil is expected to be able to (NDET, 2019c,
pp. 9–15):

• create and program algorithms with the use of variables, conditions, and loops (Year 5)
• use variables, loops, conditions, and functions in programming to explore geometric figures

and patterns (Year 6)

From grade 7, programming is presented mostly as a tool to use while doing mathematics:

• use programming to explore data in tables and data sets (Year 7)
• simulate outcomes in random trials and calculate the probability that something will happen

by using programming
• explore mathematical properties and relationships by means of programming (Year 10)

Computational thinking as part of compulsory education

[394] 18(3), 2022

In Year 8, however, we also find the concept of algorithms explicitly mentioned in connection to
programming: “explore how algorithms may be created, tested, and improved by means of program-
ming” (NDET, 2019c, pp. 9–15). Other competence aims (Year 10) can be seen as inviting teachers
to use programming, even if it is not stated explicitly, for example: “model situations related to real
datasets, present the results and argue for the validity of the models”. In sum, programming in math-
ematics appears as a distinct area of knowledge and skills, notably in Year 5 and 6, while in later
school years, it is described mainly as a tool for working with other fields of mathematics.

Programming in the Norwegian Natural Science curriculum
In Natural science, the core element Technology contains explicit reference to programming:

The pupils shall understand, develop and use technology, including programming and model-
ling, in their natural-science work. By using and creating technology, the pupils can combine
experience and know-how with creative and innovative thinking. The pupils shall understand
technological principles and procedures. They shall assess how technology can contribute to so-
lutions, but also create new challenges. Knowledge of and competence in technology are there-
fore important in a sustainability perspective. Work with the core element technology shall be
combined with work linked to the other core elements (NDET, 2019d, p. 3)

We here find the representation of programming as a tool, but also that students should develop
technology, including programming. This clearly requires knowledge and skills in programming at a
certain level.

In this subject, digital skills are described as:

using digital tools to explore, register, calculate, visualise, program, model, document and pub-
lish data from experiments, fieldwork, and studies by others. Digital skills also refer to using
search engines, mastering search strategies, critically assessing sources, and selecting relevant
information on natural-science topics. The development of digital skills in natural science pro-
gresses from the ability to use simple digital tools to demonstrating increasing independence and
judgement in the choice and use of digital sources (NDET, 2019d, p. 5)

The first sentence connects digital tools to real world data in ways that represent all the Data Prac-
tices in Weintrop et al.’s (2016) framework, and programming is listed as a tool students should be
able to use. This is consistent with the competence aims, where we find programming mentioned in
the following (NDET, 2019d, pp. 6–11):

• explore, make and program technological systems that consist of parts that work together
(Years 5-7)

• use programming to explore natural-science phenomena (Years 8-10)
• explore, understand, and make technological systems that have a transmitter and receiver

(Years 8-10)

Programming skills are here needed for a wide range of potentially comprehensive activities, where
technological systems have received a prominent place. The curriculum does not state what is meant
with a system (for example a boundary to environment and a flow of information, energy or matter as
described by e.g., Hallström & Klasander, 2020). Still, it makes it possible to include System Thinking
Practices from the model for CT (Weintrop et al., 2016), provided that the system is explicitly treated.

The Norwegian curriculum in terms of CT
In terms of the framework of CT (Weintrop et al., 2016), the competence aims in Mathematics that
constitute programming knowledge and skills fall into Computational Problem Solving Practices.
Programming may also form part of the core element Modelling and applications, which the curricu-
lum for Mathematics describes this way:

Vinnervik and Bungum

[395]18(3), 2022

A model in mathematics is a description of reality using mathematical language. The pupils shall
gain insight into how mathematical models are used to describe everyday lives, working life and
society in general. Modelling in mathematics refers to creating such models. It also refers to criti-
cally assessing whether the models are valid, what limitations the models may have, assessing
them in view of the original situations, and evaluating whether they can be used in other situa-
tions. Applications in mathematics refers to giving the pupils insight into how to use mathematics
in different situations, in subject-related and other situations (NDET, 2019c, p. 3)

Although not explicitly mentioned in the core element, working with mathematical models with some
sophistication often involves programming and it is natural that this is the case for students in later
school years.

Digital skills in Mathematics are described as:

the ability to use graphing tools, spreadsheets, CAS, dynamic geometry software and program-
ming to explore and solve mathematical problems. It also means finding, analysing, processing,
and presenting information using digital tools. The development of digital skills refers to choos-
ing and using digital tools to an increasing degree that are well-reasoned as aids for exploring,
solving, and presenting mathematical problems (NDET, 2019c, p. 5)

The formulation “choosing and using digital tools for exploring, solving and presenting mathematical
problems” reflects the practice Choosing Effective Computational Tools in the CT framework (Wein-
trop et al., 2016) since programming forms one of the tools described. Interpreted this way, the de-
scription of digital skills in Mathematics may in fact reflect all the Computational Problem Solving
Practices, and hence signals high ambitions with regards to this category of CT.

The ambition in the competence aims seem to be lower than in the description of digital skills in
Mathematics with regards to Computational Problem Solving Practices, since the competence aims
cover mainly the practice described as Programming in the framework. On the other hand, the com-
petence aims also cover practices within Data Practices and to some degree Modelling and Simula-
tion Practices, through the competence aims

• find and discuss measures of central tendency and measures of spread (variability) in real da-
tasets (Year 9),

and
• model situations related to real datasets, present the results and argue for the validity of the

models (Year 10)

Modelling is represented also in the curriculum for Natural Science, but not in any sense related to
programming or other aspects of CT. For example, after Year 10, students are to be able to (NDET,
2019d, pp. 6–11) “use and make models to predict or describe natural-science processes and systems
and explain the strengths and limitations of the models” (Years 8-10). As with Data Practices de-
scribed above, this competence aim is formulated without reference to digital technology or program-
ming but might be realised in ways that include these.

With regards to Data Practices in Weintrop et al.’s framework, we may here also include the science
curriculum’s competence aims about data collection and data presentation. These are reflected across
school years, without reference to the use of programming or computer software, for example (NDET,
2019d, pp. 6–11):

• use tables and figures to structure data, make explanations based on data and present findings
(Years 3-4)

• analyse and use collected data to make explanations, discuss the explanations in the light of
relevant theory and assess the quality of one’s own and others’ explorations (Years 8-10)

Computational thinking as part of compulsory education

[396] 18(3), 2022

DISCUSSION AND CONCLUSION
The study reported in this paper has explored how practices related to computational thinking (CT) is
represented in the Swedish and Norwegian compulsory school curricula. Both curricula have recently
been reshaped in a surge of travelling reform (Ozga & Jones, 2006) focusing to incorporate broad and
‘future-proof’ 21st century skills, such as problem solving abilities, creativity and digital competence
(Baker, 2015; Wahlström & Sundberg, 2015). Since CT is anchored in computation, and the frame-
work used for this study (Weintrop et al., 2016) is based on Mathematics and Science, it is natural
that results are dominated by these subjects. However, this did not limit the possibility of detecting
CT practices in other subjects as well. In the analysis of curricula, it was found that programming is
the most salient CT practice represented in both the Swedish and Norwegian curricula. In both cases,
programming is broadly referred to as part of the digital competence and more specifically as a tool,
not only for problem solving but for learning content within traditional subjects. This may suggest
that programming, or CT more generally, is not fully acknowledged as a domain of knowledge in it-
self. A further similarity between the Swedish and Norwegian curricula is that programming is linked
to mathematics and algorithms. In Sweden, Mathematics is positioned with the responsibility to pro-
vide for basic programming skills, but the essence of these skills in terms of practices and concepts is
not made clear in the curriculum (Vinnervik, 2022). In the Norwegian curriculum, some attention is
directed towards algorithms and certain basic programming concepts in Mathematics, while in other
subjects, programming is represented mostly as a tool for learning subject matter.

The realisation of a curriculum in classrooms depends on teachers’ interpretations and priorities.
Results from the analysis show that the Swedish as well as the Norwegian curriculum provide a po-
tential for incorporating more CT practices than programming in teaching in general education. In
the Norwegian curriculum, descriptions of digital skills in the subjects signal higher ambitions for
the incorporation of CT than what is reflected in the competence aims, and the latter tend to govern
teachers’ planning as well as the design of textbooks and other materials for schools. Considering only
the competence aims of the subjects separately will lead to teaching that contains some programming
in mathematics and its use in other subjects, notably Natural Science. This means that the curricu-
lum, when realised in schools, may be fragmented and mainly reflect a narrow subset of Computa-
tional Problem Solving Practices, while Data Practices and Modelling and Simulation Practices are
represented without the use of digital tools.

A broader interpretation, on the other hand, provides room for three of the main practices in Wein-
trop et al.’s (2016) framework: Data Practices, Modelling and Simulation Practices and Computa-
tional Problem Solving Practices. To realise the potential for a broad coverage of CT, teachers will
therefore need to read the curriculum across subjects, and combine programming with data practices,
modelling and system thinking. An example of how CT can be concretised in this broader sense, is
illustrated in a teaching project (see Bungum & Mogstad, 2022) where Grade 9 students design, build
and program their own weather station with electronic sensors that collect and transfer weather data
by means of microcontrollers. The project is run as part of Science teaching, and data can be analysed
as part of the teaching of statistics in Mathematics. This teaching project covers many of the practices
in the framework by Weintrop et al. (2016), and meets a range of competence aims in Mathematics
and Science, possibly also Arts and Crafts. However, the project is time consuming and requires an
awareness for cross-curricular and cross-subject competences beside the subject specific competence
aims.

Consequently, considerable resources must be put into teacher professional development if CT is to
become a natural and constructive part of the curriculum realised in classrooms. Recent research
has shown that teachers face several challenges during implementation of programming in existing
subjects (Stigberg & Stigberg, 2020; Vinnervik, 2020). These challenges are, for example, related
to resources (e.g., time, teaching materials), their professional understanding of programming as a
domain of knowledge, and professional development opportunities. Further, teachers are uncertain
how to use programming to amplify the understanding of other subject content (Kilhamn, Rolands-

Vinnervik and Bungum

[397]18(3), 2022

son, & Bråting, 2021). If such challenges are left unsolved, the result may be a reform that is not
implemented as intended (Larke, 2019).

The curricula examined in the present study can be seen as initial attempts to incorporate CT prac-
tices into a school curriculum. The study has shown similarities in how programming and CT are
represented in Swedish and Norwegian curricula, even though the division into separate subjects is
different. Working with cross-curricular competencies, such as CT, requires that schools and teachers
agree on a unified effort and find deliberate and functional strategies for cross-subject collaboration
(Fullan, 2007). The transfer between contexts and subjects is not a straightforward process. There-
fore, the professional leeway left for teachers in both Sweden and Norway may work best within tra-
ditional subject boundaries, for which teachers are prepared.

Future curriculum revisions could represent a more elaborate and explicit approach to practices
where computational aspects are applicable, as there are opportunities to strengthen the representa-
tion of CT practices in both the Swedish and Norwegian curricula. For example, a more deliberate
combination of programming with Data Practices in terms of scientific processes rather than content,
would represent a wider range of the practices that form part of CT as represented in the framework
by Weintrop et al. (2016). Another area of development concerns the clarity of learning progressions
between grades: What should the children know about programming (or CT) and when? Further,
a practice that could serve the purpose of programming well is to clarify the relationship between
programming, systematic testing and retesting, and the practice of Troubleshooting and Debugging.
This would be in line with how debugging is emphasised as a very valuable aspect of learning pro-
gramming in literature (McCauley et al., 2008). The curriculum concedes that improving algorithms
is part of the programming process but do not explicitly stress the place and value of a systematic
approach to debugging in benefit of learning the fundamentals of programming. Another area of im-
provement concerns the Swedish curriculum, which declares that students should first meet block-
based programming environments, and eventually text-based programming environments. There is,
however, no information about how such a transition from block-based to text-based programming
environments may contribute to both deepen and broaden the children’s understanding for program-
ming principles and concepts. The implicit assumption seems to be that increased syntactic com-
plexity leads to increased understanding (Vinnervik, 2022). Research (Weintrop & Wilensky, 2019)
expresses concern and suggests that choosing appropriate programming environments and program-
ming languages can be challenging and have implications for children’s experience and understand-
ing of programming.

To conclude, the most salient computational thinking practice represented in both the Swedish and
Norwegian curricula is programming. It is primarily recognized as a method and vehicle for learning
other subject content and not as a knowledge domain in its own right. Both curricula leave leeway for
teachers to implement a broader approach to computational thinking. However, this would require
much time and considerable teacher competence, and the requirements for such an effort seems to be
under-communicated in the curricula, leaving schools and teachers with major challenges.

REFERENCES
Baker, D. P. (2015). A note on knowledge in the schooled society: Towards an end to the

crisis in curriculum theory. Journal of Curriculum Studies, 47(6), 763–772. doi:
10.1080/00220272.2015.1088069

Barefoot Computing. (n.d.). Computational Thinking Concepts and Approaches. Retrieved 6 De-
cember 2021, from https://www.barefootcomputing.org/concept-approaches/computational-
thinking-concepts-and-approaches

Barr, D., Harrison, J., & Conery, L. (2011). Computational thinking: A digital age skill for every-
one. Learning & Leading with Technology, 38(6), 20–23

Computational thinking as part of compulsory education

[398] 18(3), 2022

Barr, V., & Stephenson, C. (2011). Bringing computational thinking to K-12: What is involved and
what is the role of the computer science education community? Acm Inroads, 2(1), 48–54. doi:
10.1145/1929887.1929905

BBC. (n.d.). Introduction to Computational Thinking. Retrieved 6 December 2021, from https://
www.bbc.co.uk/bitesize/guides/zp92mp3/revision/1

Bocconi, S., et al. (2016, June). Developing computational thinking: Approaches and orientations in
K-12 education. In EdMedia+ Innovate Learning (pp. 13-18). Association for the Advancement
of Computing in Education (AACE)

Bocconi, S., Chioccariello, A., & Earp, J. (2018). The Nordic approach to introducing Computa-
tional Thinking and programming in compulsory education. Report prepared for the Nordic@
BETT2018 Steering Group, 42.

Bungum, B., & Mogstad, E. (2022) Building and programming a weather station: Teachers’ views on
values and challenges in a comprehensive STEM project, Research in Science & Technological
Education. doi: 10.1080/02635143.2022.2103108

Børne- og undervisningsministeriet. (2021). Forsøg med teknologiforståelse i folkeskolens obligato-
riske undervisning. Retrieved 6 December 2021, from https://emu.dk/grundskole/forskning-
og-viden/paedagogisk-it/evaluering-af-forsoeg-med-teknologiforstaaelse?b=t5-t34-t2868

Børne- og Undervisningsministeriet. (2019a). Faghæfte for Matematik.
Børne- og Undervisningsministeriet. (2019b). Faghæfte för Natur/teknologi.
Brennan, K., & Resnick, M. (2012, April). New frameworks for studying and assessing the develop-

ment of computational thinking. In Proceedings of the 2012 annual meeting of the American
educational research association, Vancouver, Canada (Vol. 1, p. 25).

Carretero, S., Vuorikari, R., & Punie, Y. (2017). The digital competence framework for citizens. Pub-
lications Office of the European Union.

Crawford, B. A. (2014). From inquiry to scientific practices in the science classroom. In Handbook
of research on science education, volume II (pp. 529-556). Routledge.

Crick, T. (2017). Computing education: An overview of research in the field. London: Royal Society.
Doleck, T., Bazelais, P., Lemay, D. J., Saxena, A., & Basnet, R. B. (2017). Algorithmic thinking, coop-

erativity, creativity, critical thinking, and problem solving: exploring the relationship between
computational thinking skills and academic performance. Journal of Computers in Educa-
tion, 4(4), 355-369. doi: 10.1007/s40692-017-0090-9

European Education and Culture Executive Agency, Eurydice (2019). Digital education at school in
Europe, Publications Office. doi: 10.2797/763

Fullan, M. (2007). The New Meaning of Educational Change (4th ed.). New York: Teachers College
Press.

Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Edu-
cational researcher, 42(1), 38–43. doi: 10.3102/0013189X12463051

Guzdial, M. (2020, January 13). Computing education lessons learned from the 2010’s: What
I got wrong. Computing Education Research Blog. https://computinged.wordpress.
com/2020/01/13/computing-education-lessons-learned-from-the-2010s-what-i-got-wrong/

Guzdial, M., Kay, A., Norris, C., & Soloway, E. (2019). Computational thinking should just be good
thinking. Communications of the ACM, 62(11), 28–30. doi: 10.1145/3363181

Hallström, J., & Klasander, C. (2020). Making the invisible visible: Pedagogies related to teaching
and learning about technological systems. In Pedagogy for technology education in secondary
schools (pp. 65-82). Springer, Cham. doi: 10.1007/978-3-030-41548-8_4

Kilhamn, C., Rolandsson, L., & Bråting, K. (2021). Programmering i svensk skolmatematik: Pro-
gramming in Swedish school mathematics. LUMAT: International Journal on Math, Science
and Technology Education, 9(1), 283-312. doi: 10.31129/lumat.9.2.1457

Krippendorff, K. (2018). Content analysis: An introduction to its methodology. Sage publications.
Labusch, A., Eickelmann, B., & Vennemann, M. (2019). Computational thinking processes and their

congruence with problem-solving and information processing. In Computational thinking
education (pp. 65-78). Springer, Singapore.

Vinnervik and Bungum

[399]18(3), 2022

Larke, L. R. (2019). Agentic neglect: Teachers as gatekeepers of England’s national computing cur-
riculum. British Journal of Educational Technology, 50(3), 1137-1150. doi: 10.1111/bjet.12744

McCauley, R., et al. (2008). Debugging: a review of the literature from an educational perspec-
tive. Computer Science Education, 18(2), 67-92. doi: 10.1080/08993400802114581

Ministry of Education, Science and Culture. (2014). The Icelandic National Curriculum Guide for
Compulsory Schools–With Subject Areas.

Mølstad, C. E., & Karseth, B. (2016). National curricula in Norway and Finland: The role
of learning outcomes. European Educational Research Journal, 15(3), 329–344. doi:
10.1177/1474904116639311

NAE. (2017a). Få syn på digitaliseringen på grundskolenivå – Ett kommentarmaterial till läro-
planerna för förskoleklass, fritidshem och grundskoleutbildning. Stockholm: Skolverket.

NAE. (2017b). Kommentarmaterial till kursplanen i matematik. Stockholm: Skolverket.
NAE. (2017c). Kommentarmaterial till kursplanen i teknik. Stockholm: Skolverket.
NAE. (2018). Curriculum for the compulsory school, preschool class and school-age educare. Stock-

holm: National Agency for Education.
NDET. (2012). Framework for basic skills. Oslo: Norwegian Directorate for Education and Train-

ing. Retrieved 6 December 2021, from https://www.udir.no/in-english/Framework-for-Basic-
Skills/

NDET. (2019a). Algoritmisk tenkning. Oslo: Norwegian Directorate for Education and Training. Re-
trieved 6 December 2021, from https://www.udir.no/kvalitet-og-kompetanse/profesjonsfaglig-
digital-kompetanse/algoritmisk-tenkning/

NDET. (2019b). Curriculum for Arts and Crafts. Oslo: Norwegian Directorate for Education and
Training. Retrieved 6 December 2021, from https://data.udir.no/kl06/v201906/laereplaner-
lk20/KHV01-02.pdf?lang=eng

NDET. (2019c). Curriculum for Mathematics Year 1-10. Oslo: Norwegian Directorate for Education
and Training. Retrieved 6 December 2021, from https://data.udir.no/kl06/v201906/laereplan-
er-lk20/MAT01-05.pdf?lang=eng

NDET. (2019d). Curriculum for Natural Science. Oslo: Norwegian Directorate for Education and
Training. Retrieved 6 December 2021, from https://data.udir.no/kl06/v201906/laereplaner-
lk20/NAT01-04.pdf?lang=eng

Ozga, J., & Jones, R. (2006). Travelling and embedded policy: The case of knowledge transfer. Jour-
nal of Education Policy, 21(1), 1–17. doi: 10.1080/02680930500391462

Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. New York: Basic Books.
10. 1095592

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum: Implications
for future research. Education and Information Technologies, 22(2), 421–443. doi: 10.1007/
s10639-016-9475-z

Saqr, M., Ng, K., Oyelere, S. sunday, & Tedre, M. (2021). People, Ideas, Milestones: A Scientometric
Study of Computational Thinking. ACM Transactions on Computing Education, 21(3), 1–17.
doi: 10.1145/3445984

Shute, V. J., Sun, C., & Asbell-Clarke, J. (2017). Demystifying computational thinking. Educational
Research Review, 22, 142–158. doi: 10.1016/j.edurev.2017.09.003

Stigberg, H., & Stigberg, S. (2020). Teaching programming and mathematics in practice: A case
study from a Swedish primary school. Policy Futures in Education, 18(4), 483–496. doi:
10.1177/1478210319894785

Svensson, M. (2017). Learning About Systems. In M. J. de Vries (Ed.), Handbook of Technology
Education (pp. 1–16). Cham: Springer International Publishing. doi: 10.1007/978-3-319-
38889-2_34-1

Tedre, M., & Denning, P. J. (2016, November). The long quest for computational thinking. In Pro-
ceedings of the 16th Koli Calling international conference on computing education re-
search (pp. 120-129). doi: 10.1145/2999541.2999542

Computational thinking as part of compulsory education

[400] 18(3), 2022

Vinnervik, P. (2020). Implementing programming in school mathematics and technology: teachers’
intrinsic and extrinsic challenges. International Journal of Technology and Design Education.
doi: 10.1007/s10798-020-09602-0

Vinnervik, P. (2022). An in-depth analysis of programming in the Swedish school curriculum -
rationale, knowledge content and teacher guidance. Journal of Computers in Education, 1-35.
doi: 10.1007/s40692-022-00230-2

Voogt, J., Fisser, P., Good, J., Mishra, P., & Yadav, A. (2015). Computational thinking in compulsory
education: Towards an agenda for research and practice. Education and Information Technolo-
gies, 20(4), 715–728.

Voogt, J., & Roblin, N. P. (2012). A comparative analysis of international frameworks for 21st
century competences: Implications for national curriculum policies. Journal of Curriculum
Studies, 44(3), 299–321. doi: 10.1080/00220272.2012.668938

Wahlström, N., & Sundberg, D. (2015). En teoribaserad utvärdering av läroplanen Lgr 11. Institu-
tet för arbetsmarknads-och utbildningspolitisk utvärdering (IFAU).

Weintrop, D., & Wilensky, U. (2019). Transitioning from introductory block-based and text-based
environments to professional programming languages in high school computer science class-
rooms. Computers and Education, 142(July), 103646. doi: 10.1016/j.compedu.2019.103646

Weintrop, D., et al. (2016). Defining Computational Thinking for Mathematics and Science Class-
rooms. Journal of Science Education and Technology, 25(1), 127–147.

Wing, J. (2006). Computational thinking. Communications of the ACM, 49(3), 33–35.

Vinnervik and Bungum

