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Abstract— During the Covid-19 pandemic, the use of home 
exams became widespread, with a perceived increase of 
cheating. Pandemic or not, on-campus or off-campus 
assessment – assessment integrity is a key challenge for higher 
education. Apart from remote proctoring, what other 
mitigations may be possible against cheating in home exams, 
and specifically for programming courses with huge classes? 
The paper presents our approaches to mitigate cheating, for 
CS1 based on questions with subtly different variants, for CS2 
based on plagiarism detection and timestamps – in sufficient 
detail that others could use a similar approach. These two 
approaches can be partially effective against collaboration, but 
less so against contract cheating where help is acquired from 
an outside third party. Hence, towards the end of the paper we 
also outline possible approaches to mitigate such cheating, 
without or in addition to remote proctoring.  

Keywords—computing, programming, home exam, cheating, 
academic integrity 

I. INTRODUCTION 
During the Covid-19 pandemic, most universities were 

prevented from having supervised written exams on campus. 
In many cases, the chosen substitute was home exams, each 
student sitting alone at home or elsewhere, receiving 
questions and delivering answers remotely. The 
unsupervised nature of such exams led to a perceived 
increase of cheating risks [1, 2]. Remote proctoring may 
mitigate cheating for home exams [3, 4] – though not 100% 
[5]. However, for many universities – including ours – 
remote proctoring was not a short-term option and might also 
raise legal [6] and ethical concerns [7, 8]. Many universities 
thus opted for unsupervised home exams where mitigation of 
cheating risk would mainly have to be done by means of 
changes to question design [9].  

Pandemic or not, on-campus or off-campus assessment – 
cheating and assessment integrity is a key challenge for 
higher education in general, and in some cases especially for 
engineering education, as tech savvy students might have a 
bigger than average repertoire of cheating techniques. The 
research question addressed by this paper is: Apart from 
remote proctoring, what other mitigations may be possible 
against cheating in home exams, and specifically for 
programming courses with huge classes?  

The rest of this paper is structured as follows: Section II 
presents related work on cheating in home exams and its 
potential mitigation, with special focus on programming 
exams. Section III then describes our experiences with 
approaches to detect cheating in our CS1 and CS2 exams. 
Section IV makes an in-depth discussion concerning which 
types of cheating threats our approach can address, and 

which types it will not address – for the latter outlining other 
possible approaches. Finally, section V concludes the paper. 

II. RELATED WORK 
There have been many publications about cheating in 

computer science courses. Harris [10] discusses plagiarism 
from peers and other sources, arguing that prevention is 
preferable to detection. Sheard et al. [11] made a study of 
student perceptions related to cheating and plagiarism,  later 
followed up by several other studies, such as [12] surveying 
strategies for maintaining academic integrity in first year 
computing courses. Hellas et al. [13] studied plagiarism and 
collusion in take-home exams, using a combination of 
plagiarism detection and process tracing with time-stamps. 
This is quite similar to the cheating detection approach used 
in our CS2 course, except their approach was for research, 
suspected students being invited to interviews so that their 
behavior could be better understood, whereas our approach 
was aimed at prosecution of cheating cases. Apoorv et al. 
[14] present their own tool for plagiarism detection in take-
home coding exams, while we used the well-known tools 
jplag and MOSS, which are among those analyzed in  [15] 
and [16]. Jeffries et al. [17] present an approach combining 
plagiarism detection with MOSS and analysis of change 
traces for the delivered code. Another work looking at 
detection of cheating via time stamps is [18]. A systematic 
review covering other works about plagiarism in computing 
education can be found in [19], observing that there is much 
research on prevention and detection of plagiarism, less on 
the relationship between pressure felt by the students and 
inclination to plagiarize. 

Karnalim et al. [20] discuss the same problem as we 
experienced for the CS1 course, namely that strongly 
directed assignments (e.g., where the solutions are small and 
rather straightforward programs) do not lend themselves 
easily to plagiarism checking because many students may 
plausibly have used the same solution approach. Their 
proposal is to use syntactic similarity detection in such cases, 
rather than semantic similarity detection, but this might not 
have been effective in our case, as several of the students 
who had copied code from others had been quite apt at 
making syntactic changes to copied code (hoping to evade 
plagiarism checking) while maintaining the semantics. 

Considering the approach of having different variants of 
programming questions, as used for two tasks in our CS1 
course, this has been suggested by other authors before. 
Fendler and Godbey proposed something similar for math 
questions [21]. Rusak and Yan [22] report on an approach to 
auto-generate unique exams for all students in a statistics 
course for computer scientists, based on changing numerical 



 

 

parameters. Fowler and Zilles [23] present an approach to 
making minor variations of programming tasks along several 
different dimensions: changing names of variables, changing 
names of functions, swapping order of parameters, adding or 
removing a function prototype, changing constant values, 
reversing polarity (e.g., asking to find the last rather than 
first, smallest rather than greatest), and change of data type. 
Of these, we only used change of constant values.  

A completely different approach to mitigating collusion 
is presented in [24], partly giving students the same 
questions, but not in the same order – and each question had 
to be solved in a limited time-slot. Hence, a student B hoping 
to receive help from another student A on task X, might 
discover that student A had not yet received task X by the 
time B needed to deliver it. As long as A was busy enough 
with own tasks in the same time-slot, help would then be 
hard to get. Such a mitigation approach was however not 
viable for our CS1 exam, as our university’s e-exam tool did 
not support more granular time-slotting within the exam. 
Also, the approach in [24] was found to be most effective if 
question  sequencing could be based on previous knowledge 
of student competency levels (so that more clever students 
would  always receive a certain task after weaker students), 
and we did not have such information since the CS1 exam 
was the first ever graded test they took at the university. 

III. OUR MITIGATION APPROACHES 
In our university, computing students have their 

introductory programming course (henceforth abbreviated 
CS1) in their first term (Autumn), and then a more advanced 

programming course in the second term (Spring). Both these 
courses are also taken by students from many other STEM 
programs. CS1 teaches simple procedural programming in 
Python, CS2 object-oriented programming in Java. 

In mid-March 2020, all university campuses in our 
country were locked down due to Covid-19, with a sudden 
shift to remote teaching and assessment. The CS2 course, 
previously assessed by an end-of-course BYOD e-exam in 
supervised exam halls on campus, thus had to shift to an 
open-book home exam in May 2020, and CS1 went the same 
way in December 2020, and both courses again in 2021. Our 
university uses the e-exam tool Inspera Assessment but does 
not use any kind of remote proctoring. Hence, these home 
exams were completely unsupervised. According to exam 
regulations, students were allowed to use any books and web 
sources – but not allowed to get help from peers or outsiders. 
These rules were communicated beforehand, and also 
included on the first interaction page shown in the e/exam 
system, where the students had to accept before continuing. 
Figure 1 shows the English version of this page for the CS1 
exam / similar statements were used for CS2. Hence, it 
would be hard for students found guilty of collaboration to 
claim ignorance of the rules. However, the unsupervised 
nature of the exams made it practically impossible to control 
this.  

Since the CS2 course preceded the CS1 course in the 
shift to home exam - and in the corresponding experiences 
with cheating - we present the CS2 experiences first, then 
CS1. 

A. CS2: Object-oriented programming (Java) 
In the absence of any pandemic, the course in Object-

oriented programming (OOP) would have had a BYOD e-
exam on campus, supervised by invigilators who would 
oversee that the students did not break the exam rules (e.g., 
collaborate, get help from outsiders). Moreover, the e-exam 
system (Inspera Assessment) would run on top of a lock-
down browser (Safe Exam Browser) to prevent cheating via 
e.g., email or social media. Given a home exam, it was 
pointless to use the lock-down browser since a student 
intending to cheat could simply use an extra device for 
communication. Not using lock-down also had the advantage 
that students could easily use their preferred IDE, and search 
the Javadoc or other sources, which made the assessment 
more authentic. In practice, the exam was conducted in the 
following way: 

1. Candidates would log in to the online e-exam system 
using their university account. 

2. There, they would download a folder consisting of 
markdown files with the assignment text, and java 
files which they would edit to write their answer. 

3. In each java file, //TODO comments would indicate 
places where code was supposed to be written. They 
would work on this in their preferred IDE, outside 
the e-exam system. 

4. The code also included a test harness with a main-
method creating objects of classes and calling the 
student-written methods so that they could check if 
their code worked as intended. 

5. At the end of the exam, students would then 
compress the same files to a zip-file which they 
delivered via the online e-exam system. 

The fact that students (at least the successful ones) 
produced running code was also helpful for censors grading 
the answers, as it was much easier to grade based on a 

 

Fig. 1. Rules as expessed on the first interaction page of the CS1 exam 



 

 

combination of automated testing and manual reading of 
code, than to just rely on manual reading.  

The investigation of cheating was mainly pursued by 
checking code similarity using the tools jplag and MOSS1. 
The check only considered the code added by students, not 
the predefined code. In some cases, a high degree of code 
similarity between students could be plausibly explained by 
other factors than cheating. For a straightforward solution to 
a simple coding problem, it would be unsurprising if many 
students had similar solutions, and the first 25% of the exam 
consisted of such small, simple problems. The remaining 
75% of the exam consisted of one bigger program featuring 
several collaborating classes, with problems that could be 
solved in a variety of ways. Here, a high degree of similarity 
would be more suspicious. However, two students might 
independently have found and adapted the same code from a 
web source for parts of the problem (which was allowed, 
since it was an open book exam). Hence, a manual check of 
similar code was necessary to determine whether similarity 
could have legitimate causes rather than sharing of answers 
among students. Since we also had timestamps indicating 
when the students committed their last changes to each java 
file, this could also be used as corroborating evidence in 
some cases – for instance seeing that two students who had 
suspiciously similar code, also had completed the various 
tasks in the same sequence and almost simultaneously – for 
instance, typically less than a minute apart. Figure 1 shows 
an example of two candidates with closely matching time 
stamps for a sequence of tasks. Similar timestamps would 
not be evidence of cheating by itself (e.g., with clearly 
different code, no suspicion would be raised), but if 
suspicious similarity was found in the code, closely matching 
timestamps could strengthen the suspicion of collusion 
between students. 

 

Fig. 2. Two candidates (left and right) with similar timestamps 

 

All in all, of 700?? students taking the exam, ?? were 
flagged as suspicious for cheating, of which ?? were formally 
pursued. Of these, ?? came up with plausible explanations, so 
in the end 60 ?? were convicted of cheating, about 8% of the 
students taking the exam. 

B. CS1: Introduction  to programming (Python) 
The CS1 exam mainly consists of many short 

programming tasks. As an example, consider task 2g of the 
exam in December 2021, where the task is to write a function 
receiving L, a list of numbers, to be changed in place so that 
any adjacent duplicates of the same number are removed, 
e.g. [1,1,2,2,2,1,3,3,2] → [1,2,1,3,2]. A straightforward 
solution to the task is shown in Figure 2 – as the function 
mutates the list, it does not need to give a return value. The 
for-loop iterates the list back to front, since the similar front-

 
1Information about these tools can be found at 
https://jplag.ipd.kit.edu/ 
https://theory.stanford.edu/~aiken/moss/  

to-back loop would have the index i go out of range as the 
list shrinks due to deletion of elements. A front-to-back 
while-loop is viable, though, deleting the element if it is a 
duplicate, else leaving it in place and incrementing i by 1. 
Yet another typical solution would be to make a local list 
variable to which non-duplicate elements are iteratively 
appended, then after the loop, mutate the new list into the old 
one, e.g., L[:] = new_list. 

 

Fig. 3. Example solution for CS1 task 2g, December 2021 

With 2000+ students taking the exam, many would 
plausibly have similar code for a task with such short 
solutions. Each of the three alternative solution approaches 
mentioned above might easily have been used by a triple 
digit of exam candidates, only with small variations, e.g., 
some using the operator del to remove an element, others 
using list methods like pop() or remove(). Likewise, there 
would be many answers with similar mistakes, such as for-
loops where the index does go out of range, or functions that 
build a local list without duplicates but fail to mutate the 
original list by the contents of the new list, perhaps in the end 
returning the result instead. Yet another frequent but wrong 
solution was conversion to a set, e.g. L[:] = list(set(L)), 
which erroneously removes all duplicates, not just adjacent 
ones. Hence, for many solution attempts – right or wrong – 
high similarity score in jplag would not be suspicious since 
many candidates could plausibly come up with such 
solutions, and mistakes, independently. With short tasks such 
as this one, there would have to be something more peculiar 
about the code for similarity to be really suspicious. 

Hence, for the CS1 exam, a supplementary approach was 
devised to detect cheating by collaboration, namely having 
several different variants of some of the tasks, namely for 2h 
(17 variants) and 2i (48 variants). The reason it was done 
only for two tasks was that it was somewhat cumbersome to 
handle such variants. Our e-exam tool lacked support for 
making many variants of the same question. Hence, the 
following work-around was used: (i) write a template task in 
the e-exam system, with variable names instead of the 
content to be parameterized, (ii) export this template task as a 
QTI file, (iii) have a self-made Python script generate a list 
of value tuples for concrete questions, (iv) have another 
Python script read the QTI file and generate numerous QTI 
files (one per variant), replacing variables with actual values, 
and (v) import the resulting QTI files back into the e-exam 
system as a question pool from which one variant could then 
be randomly drawn for each student. Exporting a template 
and then importing back instantiated variants guaranteed that 
the QTI files were in the exact dialect used by our e-exam 
system, whereas generating the QTI files in some other way 
might have run into problems with different implementations 
of the standard [25].  

Figure 3 shows an example solution for one variant of 
task 2h, whose function receives a text string, and is 
supposed to return a list of characters, namely those that have 
‘d’ 3 characters in front, and ‘b’ 2 characters after. E.g., from 
the string ‘abcdefSabcdefOabcdefSabcdef’ the function 
should return the list [‘S’, ‘O’, ‘S’].  



 

 

 

Fig. 4. Example solution for CS1 task 2h, December 2021 

The variation in this task implied that different candidates 
got different characters and distances to look for, e.g., 
another candidate might be asked to check for ‘f’ 1 character 
in front, ‘d’ 4 characters after. If such a candidate had not 
written own code but instead copied code from a peer who 
had a different variant (such as the ‘d’ 3 ‘b’ 2 variant shown 
above), this would be quite revealing, then having wrong 
numbers and letters in the if-test, as well as wrong numbers 
for delimiting the range.  

Since tasks 2h and 2i were in the genre “Code-Compile” 
in Inspera Assessment, where the student was able to check 
the code against a test suite during the exam, it was 
important that this test suite would not reveal that a wrong 
version had been copied (otherwise it would be too easy for a 
student simply to copy something from a peer and then just 
replace the values to have working code). Much like Moodle 
CodeRunner, the Code-Compile genre allowed hidden tests 
(not visible for the student) in addition to the visible tests. 
The tasks 2h and 2i were developed in a way that the visible 
tests were identical for all variants (and would thus work for 
correct solutions of all variants), whereas the hidden tests 
were different for each variant. Hence, a student who copied 
code from a peer with a different variant might seemingly 
have all tests showing green, but would fail at several of the 
hidden tests.  

Approximately 30 of 2000 students were flagged as 
suspect of cheating due to this scheme, circa 1.5%. As cases 
are still pending final decision higher up in the system, it is 
impossible to say at this point exactly how many will end in 
a cheating verdict. Anyway, it can be noted that 1.5% for the 
CS1 course is much smaller than the 8% earlier caught for 
CS2. It is hard to know whether this was because fewer 
actually cheated on the CS1 exam, or because the catch ratio 
was lower. There are some differences between the two 
exams that could plausibly lead to less cheating: 

• Students at the CS1 exam may have been more scared 
of cheating, knowing that many were caught at the 
preceding CS2 exam. 

• While the CS2 exam had A-F grading, the CS1 exam 
only had Pass/Fail, so the possible gain from cheating 
would be limited, expect for the weakest students. 

On the other hand, there may also be factors that could 
explain a lower catch ratio: 

• Plagiarism checking was much less helpful for small 
programming tasks with short and straightforward 
solutions. In the CS2 exam, 75% of the weight was 
for a task with long and complex code, where 
plagiarism checking proved much more effective. 

• The CS1 exam had only two tasks with variants, 
together accounting for 10% of the exam weight. 
Students who colluded on other tasks – but not on 2h 
and 2i – may have gone undetected 

Even some cases of collusion on tasks 2h and 2i could 
have gone undetected. Obviously, some colluding students 
could incidentally have the same variants of tasks, but only 
1/17 for 2h, 1/48 for 2i – hardly explaining the difference 
between 8% and 1.5%. However, if two or more students sat 
together during the home exam, they may have discovered 
differences between the variants – after which the clever peer 
could easily explain to the others how to adapt the code. 
There may also have been cases of collaboration that did not 
entail direct copying of code, e.g., a student giving partial 
help to another, (“start by making an empty list, then iterate 
through the string by index, …”), but where the student 
receiving help also made some partial own effort, thus 
ending up with the correct values. 

 

IV. DISCUSSION 
As explained in the previous section, our approach 

against cheating differed between the two courses. In the 
CS2 course, plagiarism detection was effective in many 
cases, as 75% of the exam tasked the students with writing 
long and complex code. Similar to other published 
approaches such as Hellas et al. [13] and Jeffries et al. [17], 
we also incorporated time-stamps as additional evidence for 
collusion. For the CS1 course, with much shorter code 
snippets, plagiarism checking was less effective – as also 
observed by Karnalim et al. [20], so students were mainly 
caught by having solved other variants of particular tasks 
than then ones they actually got. 

In addition to detecting cheating, it is even better to deter 
students from cheating in the first place, which includes 
making clear to them what the rules for academic integrity 
are [12]. For both our courses, there was clear information 
beforehand as shown in Figure 1, yet many students chose to 
cheat. Likely, there were more students who cheated than the 
number that were caught, as more sophisticated code sharing 
would easily go beneath the radar of plagiarism detection. 
Moreover, beyond code sharing there is another approach to 
cheating which is hardly addressed by the countermeasures 
discussed here, namely getting help from a third party who is 
not a student taking the exam in the extreme case having 
somebody else take the entire exam for you. The mitigation 
approaches discussed here are not necessarily effective 
against this as they mainly target cheating by collaboration: 

• Collaborating students easily end up with similar 
code and timestamps, while a student who has a 
dedicated helper need not have similar code to 
anybody else. 

• Collaborating students reveal themselves by 
delivering code solving other variants than they got of 
certain tasks. The student with a dedicated outside 
helper would however have the right variants all the 
time. 

• The approach with sequencing and time/slotting of 
tasks as presented by is effective against collaboration 
because other candidates are busy with their own 
tasks. A helper who is not burdened with an own 
exam at the time, will not be hindered by this.  

There are various ways that students could acquire help 
from a third person during a home exam. Some may get it for 
free, for instance being in a friendly or romantic relationship 



 

 

with someone more competent in the subject matter. Others 
may buy it as a service, either from an acquaintance who 
might be physically present during the exam, or 
anonymously through a web service – so called contract 
cheating [26]. In a case study for computer science courses, 
Manoharan and Speidel found that good quality solutions 
with programming tasks could be bought on short notice, 
cheaply and easily  [27]. As argued by Jeffries et  al. [17], 
different variants of tasks can in some cases help to detect 
contract cheating, for instance if cheaters use services such 
as Chegg where answers are visible also to other users (some 
of whom might then erroneously believe that the provided 
answer also solves their task). If teachers also register as 
members and look through answers – and variants are unique 
per student – one might even deduct from a provided answer 
who has asked for help. However, with other types of 
services, or if a student gets solo help from a dedicated third 
person, variants of tasks will not help against this. 

Alin [28] discusses various other mitigation attempts 
against contract cheating, such as post-exam vivas where 
students are asked to explain their answers, or comparing the 
text the student delivered from the home-exam with 
previously delivered text which is known to be written by the 
student (e.g., having been delivered in more controlled 
circumstances). Specifically, a “Doping Test” approach is 
suggested, where text sample 1 (known to be authentic) is 
compared to sample 2 (the work delivered for grading). If 
these are suspiciously different according to various style 
properties, the student is summoned to a test where sample 2 
is provided to the student with various parts redacted and the 
student is asked to fill in the blanks. If the resulting sample 3 
is again suspiciously different from sample 2, it may be 
prosecuted as a cheating case. While the approach is reported 
as promising, it may be more suitable for deliverables in 
natural language text than for introductory programming. 
Whereas most students have written text in natural language 
for many years, they may be beginners in programming – 
thus not having developed a style yet. As novices, they may 
improve a lot during the course, so it may not necessarily be 
suspicious if they have delivered clumsy program code early 
on but then deliver much better code for the exam. 
Moreover, if students gradually learn that being summoned 
to such an extra test means suspicion of cheating, they might 
memorize all their exam code – and filling in blanks in code 
is easier than writing the code from scratch. 

As mentioned in the introduction, remote proctoring 
could mitigate assistance from any helper. E.g., surveillance 
through the webcam could see whether another person is 
sitting beside the test taker – whether this is a peer student, 
parent or hired expert – and surveillance of audio through the 
computer’s microphone could hear if somebody is speaking 
in the room. Also, the test-taker might be flagged if looking 
frequently away from the screen – and the screen could be 
surveyed and flagged if it shows anything else than the test 
interface (e.g., student communicating via email or social 
media about answers). However, such remote proctoring is 
far from 100% secure. For instance, the helper need not be in 
the same room, but could be in the next room (e.g., a close 
friend) or far away (a remote helper). The student could use a 
cable splitter to make the exam interface visible on an extra 
monitor in the next room – or to be forwarded elsewhere – so 
that the hired helper can also see the questions. Instructions 
from the helper on what to type could be relayed back to the 
student for instance via a hidden wireless earpiece – easily 

audible to the test-taker but not to the surveillance through 
the PC mic if there is anyway some ambient noise in the 
room (e.g., traffic from the outside street, music from the 
apartment next door). Hence, even with remote proctoring it 
is impossible to prevent that some students may get help 
from others, in  the worst case having that other person solve 
the entire exam [5].  

So what if you do not have the opportunity to gather 
program code guaranteed to be written by the student earlier 
in the semester (if you had such an opportunity, you might 
have the exam itself under supervised conditions instead), 
and you – or your university – do not want to use remote 
proctoring, but you still want to do something to mitigate 
cheating by help from a third party? Another possibility lies 
in the observation that effective cheating (i.e., achieving 
huge grade advantage) is much more difficult for oral 
examinations [29] than for written examinations. Of course, 
a candidate who is examined remotely via video conference, 
may have a helper in the same room, or a device for 
communicating with a helper elsewhere – as long as the 
helper or device is kept outside view of the webcam. 
However, the resulting gain from such help may be much 
smaller, due to the live interaction between the student and 
examiner. A written exam, which is more asynchronous in 
that a question is received at one point in time, then 
answered at a later point (after some thinking, problem 
solving), makes it easy for the test-taker to forward the 
problem to the helper, who then looks at it and returns hints 
or a complete solution for the candidate to deliver. In an oral 
exam, there is less time to think – which means less time for 
the helper to produce any answers or hint in the first place, 
and less time for the candidate to digest the hints, since the 
answer must be spoken in the candidate’s voice, not simply 
copy-pasted as could be done for writing. The big problem 
with oral examinations, of course, they are hard to scale to 
huge classes – and thus out of the question for many CS1 and 
CS2 courses. However, what if we could mimic the 
immediacy of the oral examination in a written examination? 
For instance, imagine an exam containing problems with 
possible solutions such as those shown in Figure 3 and 4, but 
where the students were tasked not only with delivering the 
written code, but also were supposed to deliver for each 
problem a screencast video of 10 minutes duration where 
they think aloud while writing the code to solve the problem. 
This would make cheating harder in the following ways: 

• Collusion between candidates would be harder. An 
incompetent candidate who receives code from a 
stronger candidate must likely also watch the other 
candidate’s video before being able to make an own 
think-aloud video while retyping the code – adding a 
delay of 10-15 compared to just copy-pasting for a 
task that only has written delivery. If needing to 
cheat like this on many tasks, the weaker candidate 
will likely run out of time with the latter half of tasks 
unanswered, thus gaining much less from the 
cheating. 

• Getting help from a third party will similarly be 
delayed. Although the competent third party helper – 
who is not burdened with delivering an own exam 
answer – does not need to make any video, the less 
competent test-taker will need to pretend to write the 
received code from scratch, and think aloud while 
doing so. If the cheater does not understand the 



 

 

received code, the think aloud will easily be 
suspicious, unless the competent helper either sends 
code that includes a natural language think-aloud 
script or coaches the candidate on what to say. Either 
way, this scheme increases the burden on the helper 
(who must provide code + explanation, not just 
code), and creates delay for the candidate who must 
first receive this material, then make the video 
pretending to make the code from scratch. 

As opposed to remote proctoring, where the student is 
under surveillance during the exam, the recording and 
delivery of a screencast video could be controlled by the 
student. Hence, if something happens during the recording 
which the student does not want the rest of the world to see 
(e.g., a friend busting into the room proposing a drug deal or 
criticizing the country’s authoritarian regime in the midst of 
recording), the student could redact that part and do it anew.  
The downside of such a screen-casting approach, of course, 
would be that grading screencast videos would be much 
more demanding than just grading written code – and 
especially in cases where the code could be auto-scored 
against a test-suite, while the think-aloud explanation 
certainly cannot. However, grading could focus on the 
written code and the videos could be used mainly for control 
purposes, e.g., flagging as suspicious (possibly by help of 
some AI) videos where explanation is thin or in the wrong 
voice. Also, for students whose auto-score is just below the 
passing threshold, the voice explanation could be used to 
assess whether the student – in spite of a wrong solution – 
demonstrated enough understanding to deserve a passing 
grade. 

Such a screen-casting approach would likely demand 
more student time per task. Although the think-aloud could 
be recorded while the student solves the problem anyway, 
not demanding any extra editing of the video, most students 
would likely work a little slower if having to speak while 
coding rather than just code. Hence, it might only be usable 
for some select tasks, not the whole exam. It can of course 
also be combined with other approaches such as having 
variants of tasks and time-boxing the various tasks in an 
exam so that different students get tasks in different orders. 
With several such mitigations together, cheating would be 
made increasingly difficult – though still not impossible. 

A potential problem with the approach of random 
drawing among variants of tasks is if the tasks turn out to 
have variation in difficulty. This problem is discussed in 
[30], where variation was found in some cases, though 
within ranges considered acceptable. Our approach to 
variation was anyway somewhat more limited, only 
amounting to changes of constant values. For instance, all 
students got task 2h as shown in Figure 4, solvable by the 
exact same Python function with a for-loop, except that the 
two integer constants (3 and 2 in the example) and two string 
constants (d and b) would vary from 1-6 and a-f respectively. 
With such minor variations, the effect on difficulty would 
likely be minor. However, a potential problem with such 
minor variations is that they are only likely to catch cheaters 
if the variation goes unnoticed. If a similar approach is used 
several years in a row, the student population will probably 
learn to look for such variations, and thus take care to avoid 
the trap – either by adapting copied code to one’s own 
variant, or seeking out someone with the same variant when 
asking for a solution in the first place (which the students can 

manage quite effectively if setting up a web site where 
solutions are shared, including notification of which tasks 
have multiple variants). It will therefore be interesting to see 
if an approach using variants will be effective several years 
in a row, or if it will catch gradually fewer cheaters. 

 

TABLE I.  MITIGATION APPROACHES 

Cheating mitigations, assumed effectiveness 
Mitigation approach Collusion 3p Helper 

Plagiarism checking √ -- 

Time-stamps, traces √ (√) 

Variants of tasks √ (√) 

Time-slotting √ -- 

Stylometry √ √ 

Screen-casting √ √ 

Remote proctoring √ √ 

 

V. CONCLUSION 
In our university we largely ended up with unsupervised 

home exams, and all such exams would be open-book 
exams, since it was anyway impossible to enforce a closed-
book test in a home setting. Thus, one type of cheating 
(illegal use of textbook, cheat notes, googling for answers, 
…) was handily eliminated simply by allowing the behavior. 
Unfortunately, some other types of cheating (collaboration, 
getting help from an outsider) cannot be eliminated in similar 
fashion. If you allow students to get substantial help or 
outsource their exam to a third party, the grade might be 
totally invalid, reflecting the competence of the helper rather 
than the student. For courses with a limited number of 
students, oral examination via videoconference could be a 
more tempting option, as this makes outsourcing much more 
difficult. However, our large programming courses have way 
too many students for oral examination to be scalable. 
Hence, we were in a situation where the possibility to 
prevent such forms of cheating was very limited, yet we had 
to do something to mitigate cheating. 
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