

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Techniques for detecting or deterring cheating in
home exams in programming

Guttorm Sindre
Department of Computer Science

NTNU
Trondheim, Norway

guttorm.sindre@ntnu.no

Børge Haugset
Department of Computer Science

NTNU
Trondheim, Norway
borgeha@ntnu.no

Abstract— During the Covid-19 pandemic, the use of home
exams became widespread, with a perceived increase of
cheating. Pandemic or not, on-campus or off-campus
assessment – assessment integrity is a key challenge for higher
education. Apart from remote proctoring, what other
mitigations may be possible against cheating in home exams,
and specifically for programming courses with huge classes?
The paper presents our approaches to mitigate cheating, for
CS1 based on questions with subtly different variants, for CS2
based on plagiarism detection and timestamps – in sufficient
detail that others could use a similar approach. These two
approaches can be partially effective against collaboration, but
less so against contract cheating where help is acquired from
an outside third party. Hence, towards the end of the paper we
also outline possible approaches to mitigate such cheating,
without or in addition to remote proctoring.

Keywords—computing, programming, home exam, cheating,
academic integrity

I. INTRODUCTION
During the Covid-19 pandemic, most universities were

prevented from having supervised written exams on campus.
In many cases, the chosen substitute was home exams, each
student sitting alone at home or elsewhere, receiving
questions and delivering answers remotely. The
unsupervised nature of such exams led to a perceived
increase of cheating risks [1, 2]. Remote proctoring may
mitigate cheating for home exams [3, 4] – though not 100%
[5]. However, for many universities – including ours –
remote proctoring was not a short-term option and might also
raise legal [6] and ethical concerns [7, 8]. Many universities
thus opted for unsupervised home exams where mitigation of
cheating risk would mainly have to be done by means of
changes to question design [9].

Pandemic or not, on-campus or off-campus assessment –
cheating and assessment integrity is a key challenge for
higher education in general, and in some cases especially for
engineering education, as tech savvy students might have a
bigger than average repertoire of cheating techniques. The
research question addressed by this paper is: Apart from
remote proctoring, what other mitigations may be possible
against cheating in home exams, and specifically for
programming courses with huge classes?

The rest of this paper is structured as follows: Section II
presents related work on cheating in home exams and its
potential mitigation, with special focus on programming
exams. Section III then describes our experiences with
approaches to detect cheating in our CS1 and CS2 exams.
Section IV makes an in-depth discussion concerning which
types of cheating threats our approach can address, and

which types it will not address – for the latter outlining other
possible approaches. Finally, section V concludes the paper.

II. RELATED WORK
There have been many publications about cheating in

computer science courses. Harris [10] discusses plagiarism
from peers and other sources, arguing that prevention is
preferable to detection. Sheard et al. [11] made a study of
student perceptions related to cheating and plagiarism, later
followed up by several other studies, such as [12] surveying
strategies for maintaining academic integrity in first year
computing courses. Hellas et al. [13] studied plagiarism and
collusion in take-home exams, using a combination of
plagiarism detection and process tracing with time-stamps.
This is quite similar to the cheating detection approach used
in our CS2 course, except their approach was for research,
suspected students being invited to interviews so that their
behavior could be better understood, whereas our approach
was aimed at prosecution of cheating cases. Apoorv et al.
[14] present their own tool for plagiarism detection in take-
home coding exams, while we used the well-known tools
jplag and MOSS, which are among those analyzed in [15]
and [16]. Jeffries et al. [17] present an approach combining
plagiarism detection with MOSS and analysis of change
traces for the delivered code. Another work looking at
detection of cheating via time stamps is [18]. A systematic
review covering other works about plagiarism in computing
education can be found in [19], observing that there is much
research on prevention and detection of plagiarism, less on
the relationship between pressure felt by the students and
inclination to plagiarize.

Karnalim et al. [20] discuss the same problem as we
experienced for the CS1 course, namely that strongly
directed assignments (e.g., where the solutions are small and
rather straightforward programs) do not lend themselves
easily to plagiarism checking because many students may
plausibly have used the same solution approach. Their
proposal is to use syntactic similarity detection in such cases,
rather than semantic similarity detection, but this might not
have been effective in our case, as several of the students
who had copied code from others had been quite apt at
making syntactic changes to copied code (hoping to evade
plagiarism checking) while maintaining the semantics.

Considering the approach of having different variants of
programming questions, as used for two tasks in our CS1
course, this has been suggested by other authors before.
Fendler and Godbey proposed something similar for math
questions [21]. Rusak and Yan [22] report on an approach to
auto-generate unique exams for all students in a statistics
course for computer scientists, based on changing numerical

parameters. Fowler and Zilles [23] present an approach to
making minor variations of programming tasks along several
different dimensions: changing names of variables, changing
names of functions, swapping order of parameters, adding or
removing a function prototype, changing constant values,
reversing polarity (e.g., asking to find the last rather than
first, smallest rather than greatest), and change of data type.
Of these, we only used change of constant values.

A completely different approach to mitigating collusion
is presented in [24], partly giving students the same
questions, but not in the same order – and each question had
to be solved in a limited time-slot. Hence, a student B hoping
to receive help from another student A on task X, might
discover that student A had not yet received task X by the
time B needed to deliver it. As long as A was busy enough
with own tasks in the same time-slot, help would then be
hard to get. Such a mitigation approach was however not
viable for our CS1 exam, as our university’s e-exam tool did
not support more granular time-slotting within the exam.
Also, the approach in [24] was found to be most effective if
question sequencing could be based on previous knowledge
of student competency levels (so that more clever students
would always receive a certain task after weaker students),
and we did not have such information since the CS1 exam
was the first ever graded test they took at the university.

III. OUR MITIGATION APPROACHES
In our university, computing students have their

introductory programming course (henceforth abbreviated
CS1) in their first term (Autumn), and then a more advanced

programming course in the second term (Spring). Both these
courses are also taken by students from many other STEM
programs. CS1 teaches simple procedural programming in
Python, CS2 object-oriented programming in Java.

In mid-March 2020, all university campuses in our
country were locked down due to Covid-19, with a sudden
shift to remote teaching and assessment. The CS2 course,
previously assessed by an end-of-course BYOD e-exam in
supervised exam halls on campus, thus had to shift to an
open-book home exam in May 2020, and CS1 went the same
way in December 2020, and both courses again in 2021. Our
university uses the e-exam tool Inspera Assessment but does
not use any kind of remote proctoring. Hence, these home
exams were completely unsupervised. According to exam
regulations, students were allowed to use any books and web
sources – but not allowed to get help from peers or outsiders.
These rules were communicated beforehand, and also
included on the first interaction page shown in the e/exam
system, where the students had to accept before continuing.
Figure 1 shows the English version of this page for the CS1
exam / similar statements were used for CS2. Hence, it
would be hard for students found guilty of collaboration to
claim ignorance of the rules. However, the unsupervised
nature of the exams made it practically impossible to control
this.

Since the CS2 course preceded the CS1 course in the
shift to home exam - and in the corresponding experiences
with cheating - we present the CS2 experiences first, then
CS1.

A. CS2: Object-oriented programming (Java)
In the absence of any pandemic, the course in Object-

oriented programming (OOP) would have had a BYOD e-
exam on campus, supervised by invigilators who would
oversee that the students did not break the exam rules (e.g.,
collaborate, get help from outsiders). Moreover, the e-exam
system (Inspera Assessment) would run on top of a lock-
down browser (Safe Exam Browser) to prevent cheating via
e.g., email or social media. Given a home exam, it was
pointless to use the lock-down browser since a student
intending to cheat could simply use an extra device for
communication. Not using lock-down also had the advantage
that students could easily use their preferred IDE, and search
the Javadoc or other sources, which made the assessment
more authentic. In practice, the exam was conducted in the
following way:

1. Candidates would log in to the online e-exam system
using their university account.

2. There, they would download a folder consisting of
markdown files with the assignment text, and java
files which they would edit to write their answer.

3. In each java file, //TODO comments would indicate
places where code was supposed to be written. They
would work on this in their preferred IDE, outside
the e-exam system.

4. The code also included a test harness with a main-
method creating objects of classes and calling the
student-written methods so that they could check if
their code worked as intended.

5. At the end of the exam, students would then
compress the same files to a zip-file which they
delivered via the online e-exam system.

The fact that students (at least the successful ones)
produced running code was also helpful for censors grading
the answers, as it was much easier to grade based on a

Fig. 1. Rules as expessed on the first interaction page of the CS1 exam

combination of automated testing and manual reading of
code, than to just rely on manual reading.

The investigation of cheating was mainly pursued by
checking code similarity using the tools jplag and MOSS1.
The check only considered the code added by students, not
the predefined code. In some cases, a high degree of code
similarity between students could be plausibly explained by
other factors than cheating. For a straightforward solution to
a simple coding problem, it would be unsurprising if many
students had similar solutions, and the first 25% of the exam
consisted of such small, simple problems. The remaining
75% of the exam consisted of one bigger program featuring
several collaborating classes, with problems that could be
solved in a variety of ways. Here, a high degree of similarity
would be more suspicious. However, two students might
independently have found and adapted the same code from a
web source for parts of the problem (which was allowed,
since it was an open book exam). Hence, a manual check of
similar code was necessary to determine whether similarity
could have legitimate causes rather than sharing of answers
among students. Since we also had timestamps indicating
when the students committed their last changes to each java
file, this could also be used as corroborating evidence in
some cases – for instance seeing that two students who had
suspiciously similar code, also had completed the various
tasks in the same sequence and almost simultaneously – for
instance, typically less than a minute apart. Figure 1 shows
an example of two candidates with closely matching time
stamps for a sequence of tasks. Similar timestamps would
not be evidence of cheating by itself (e.g., with clearly
different code, no suspicion would be raised), but if
suspicious similarity was found in the code, closely matching
timestamps could strengthen the suspicion of collusion
between students.

Fig. 2. Two candidates (left and right) with similar timestamps

All in all, of 700?? students taking the exam, ?? were
flagged as suspicious for cheating, of which ?? were formally
pursued. Of these, ?? came up with plausible explanations, so
in the end 60 ?? were convicted of cheating, about 8% of the
students taking the exam.

B. CS1: Introduction to programming (Python)
The CS1 exam mainly consists of many short

programming tasks. As an example, consider task 2g of the
exam in December 2021, where the task is to write a function
receiving L, a list of numbers, to be changed in place so that
any adjacent duplicates of the same number are removed,
e.g. [1,1,2,2,2,1,3,3,2] → [1,2,1,3,2]. A straightforward
solution to the task is shown in Figure 2 – as the function
mutates the list, it does not need to give a return value. The
for-loop iterates the list back to front, since the similar front-

1Information about these tools can be found at
https://jplag.ipd.kit.edu/
https://theory.stanford.edu/~aiken/moss/

to-back loop would have the index i go out of range as the
list shrinks due to deletion of elements. A front-to-back
while-loop is viable, though, deleting the element if it is a
duplicate, else leaving it in place and incrementing i by 1.
Yet another typical solution would be to make a local list
variable to which non-duplicate elements are iteratively
appended, then after the loop, mutate the new list into the old
one, e.g., L[:] = new_list.

Fig. 3. Example solution for CS1 task 2g, December 2021

With 2000+ students taking the exam, many would
plausibly have similar code for a task with such short
solutions. Each of the three alternative solution approaches
mentioned above might easily have been used by a triple
digit of exam candidates, only with small variations, e.g.,
some using the operator del to remove an element, others
using list methods like pop() or remove(). Likewise, there
would be many answers with similar mistakes, such as for-
loops where the index does go out of range, or functions that
build a local list without duplicates but fail to mutate the
original list by the contents of the new list, perhaps in the end
returning the result instead. Yet another frequent but wrong
solution was conversion to a set, e.g. L[:] = list(set(L)),
which erroneously removes all duplicates, not just adjacent
ones. Hence, for many solution attempts – right or wrong –
high similarity score in jplag would not be suspicious since
many candidates could plausibly come up with such
solutions, and mistakes, independently. With short tasks such
as this one, there would have to be something more peculiar
about the code for similarity to be really suspicious.

Hence, for the CS1 exam, a supplementary approach was
devised to detect cheating by collaboration, namely having
several different variants of some of the tasks, namely for 2h
(17 variants) and 2i (48 variants). The reason it was done
only for two tasks was that it was somewhat cumbersome to
handle such variants. Our e-exam tool lacked support for
making many variants of the same question. Hence, the
following work-around was used: (i) write a template task in
the e-exam system, with variable names instead of the
content to be parameterized, (ii) export this template task as a
QTI file, (iii) have a self-made Python script generate a list
of value tuples for concrete questions, (iv) have another
Python script read the QTI file and generate numerous QTI
files (one per variant), replacing variables with actual values,
and (v) import the resulting QTI files back into the e-exam
system as a question pool from which one variant could then
be randomly drawn for each student. Exporting a template
and then importing back instantiated variants guaranteed that
the QTI files were in the exact dialect used by our e-exam
system, whereas generating the QTI files in some other way
might have run into problems with different implementations
of the standard [25].

Figure 3 shows an example solution for one variant of
task 2h, whose function receives a text string, and is
supposed to return a list of characters, namely those that have
‘d’ 3 characters in front, and ‘b’ 2 characters after. E.g., from
the string ‘abcdefSabcdefOabcdefSabcdef’ the function
should return the list [‘S’, ‘O’, ‘S’].

Fig. 4. Example solution for CS1 task 2h, December 2021

The variation in this task implied that different candidates
got different characters and distances to look for, e.g.,
another candidate might be asked to check for ‘f’ 1 character
in front, ‘d’ 4 characters after. If such a candidate had not
written own code but instead copied code from a peer who
had a different variant (such as the ‘d’ 3 ‘b’ 2 variant shown
above), this would be quite revealing, then having wrong
numbers and letters in the if-test, as well as wrong numbers
for delimiting the range.

Since tasks 2h and 2i were in the genre “Code-Compile”
in Inspera Assessment, where the student was able to check
the code against a test suite during the exam, it was
important that this test suite would not reveal that a wrong
version had been copied (otherwise it would be too easy for a
student simply to copy something from a peer and then just
replace the values to have working code). Much like Moodle
CodeRunner, the Code-Compile genre allowed hidden tests
(not visible for the student) in addition to the visible tests.
The tasks 2h and 2i were developed in a way that the visible
tests were identical for all variants (and would thus work for
correct solutions of all variants), whereas the hidden tests
were different for each variant. Hence, a student who copied
code from a peer with a different variant might seemingly
have all tests showing green, but would fail at several of the
hidden tests.

Approximately 30 of 2000 students were flagged as
suspect of cheating due to this scheme, circa 1.5%. As cases
are still pending final decision higher up in the system, it is
impossible to say at this point exactly how many will end in
a cheating verdict. Anyway, it can be noted that 1.5% for the
CS1 course is much smaller than the 8% earlier caught for
CS2. It is hard to know whether this was because fewer
actually cheated on the CS1 exam, or because the catch ratio
was lower. There are some differences between the two
exams that could plausibly lead to less cheating:

• Students at the CS1 exam may have been more scared
of cheating, knowing that many were caught at the
preceding CS2 exam.

• While the CS2 exam had A-F grading, the CS1 exam
only had Pass/Fail, so the possible gain from cheating
would be limited, expect for the weakest students.

On the other hand, there may also be factors that could
explain a lower catch ratio:

• Plagiarism checking was much less helpful for small
programming tasks with short and straightforward
solutions. In the CS2 exam, 75% of the weight was
for a task with long and complex code, where
plagiarism checking proved much more effective.

• The CS1 exam had only two tasks with variants,
together accounting for 10% of the exam weight.
Students who colluded on other tasks – but not on 2h
and 2i – may have gone undetected

Even some cases of collusion on tasks 2h and 2i could
have gone undetected. Obviously, some colluding students
could incidentally have the same variants of tasks, but only
1/17 for 2h, 1/48 for 2i – hardly explaining the difference
between 8% and 1.5%. However, if two or more students sat
together during the home exam, they may have discovered
differences between the variants – after which the clever peer
could easily explain to the others how to adapt the code.
There may also have been cases of collaboration that did not
entail direct copying of code, e.g., a student giving partial
help to another, (“start by making an empty list, then iterate
through the string by index, …”), but where the student
receiving help also made some partial own effort, thus
ending up with the correct values.

IV. DISCUSSION
As explained in the previous section, our approach

against cheating differed between the two courses. In the
CS2 course, plagiarism detection was effective in many
cases, as 75% of the exam tasked the students with writing
long and complex code. Similar to other published
approaches such as Hellas et al. [13] and Jeffries et al. [17],
we also incorporated time-stamps as additional evidence for
collusion. For the CS1 course, with much shorter code
snippets, plagiarism checking was less effective – as also
observed by Karnalim et al. [20], so students were mainly
caught by having solved other variants of particular tasks
than then ones they actually got.

In addition to detecting cheating, it is even better to deter
students from cheating in the first place, which includes
making clear to them what the rules for academic integrity
are [12]. For both our courses, there was clear information
beforehand as shown in Figure 1, yet many students chose to
cheat. Likely, there were more students who cheated than the
number that were caught, as more sophisticated code sharing
would easily go beneath the radar of plagiarism detection.
Moreover, beyond code sharing there is another approach to
cheating which is hardly addressed by the countermeasures
discussed here, namely getting help from a third party who is
not a student taking the exam in the extreme case having
somebody else take the entire exam for you. The mitigation
approaches discussed here are not necessarily effective
against this as they mainly target cheating by collaboration:

• Collaborating students easily end up with similar
code and timestamps, while a student who has a
dedicated helper need not have similar code to
anybody else.

• Collaborating students reveal themselves by
delivering code solving other variants than they got of
certain tasks. The student with a dedicated outside
helper would however have the right variants all the
time.

• The approach with sequencing and time/slotting of
tasks as presented by is effective against collaboration
because other candidates are busy with their own
tasks. A helper who is not burdened with an own
exam at the time, will not be hindered by this.

There are various ways that students could acquire help
from a third person during a home exam. Some may get it for
free, for instance being in a friendly or romantic relationship

with someone more competent in the subject matter. Others
may buy it as a service, either from an acquaintance who
might be physically present during the exam, or
anonymously through a web service – so called contract
cheating [26]. In a case study for computer science courses,
Manoharan and Speidel found that good quality solutions
with programming tasks could be bought on short notice,
cheaply and easily [27]. As argued by Jeffries et al. [17],
different variants of tasks can in some cases help to detect
contract cheating, for instance if cheaters use services such
as Chegg where answers are visible also to other users (some
of whom might then erroneously believe that the provided
answer also solves their task). If teachers also register as
members and look through answers – and variants are unique
per student – one might even deduct from a provided answer
who has asked for help. However, with other types of
services, or if a student gets solo help from a dedicated third
person, variants of tasks will not help against this.

Alin [28] discusses various other mitigation attempts
against contract cheating, such as post-exam vivas where
students are asked to explain their answers, or comparing the
text the student delivered from the home-exam with
previously delivered text which is known to be written by the
student (e.g., having been delivered in more controlled
circumstances). Specifically, a “Doping Test” approach is
suggested, where text sample 1 (known to be authentic) is
compared to sample 2 (the work delivered for grading). If
these are suspiciously different according to various style
properties, the student is summoned to a test where sample 2
is provided to the student with various parts redacted and the
student is asked to fill in the blanks. If the resulting sample 3
is again suspiciously different from sample 2, it may be
prosecuted as a cheating case. While the approach is reported
as promising, it may be more suitable for deliverables in
natural language text than for introductory programming.
Whereas most students have written text in natural language
for many years, they may be beginners in programming –
thus not having developed a style yet. As novices, they may
improve a lot during the course, so it may not necessarily be
suspicious if they have delivered clumsy program code early
on but then deliver much better code for the exam.
Moreover, if students gradually learn that being summoned
to such an extra test means suspicion of cheating, they might
memorize all their exam code – and filling in blanks in code
is easier than writing the code from scratch.

As mentioned in the introduction, remote proctoring
could mitigate assistance from any helper. E.g., surveillance
through the webcam could see whether another person is
sitting beside the test taker – whether this is a peer student,
parent or hired expert – and surveillance of audio through the
computer’s microphone could hear if somebody is speaking
in the room. Also, the test-taker might be flagged if looking
frequently away from the screen – and the screen could be
surveyed and flagged if it shows anything else than the test
interface (e.g., student communicating via email or social
media about answers). However, such remote proctoring is
far from 100% secure. For instance, the helper need not be in
the same room, but could be in the next room (e.g., a close
friend) or far away (a remote helper). The student could use a
cable splitter to make the exam interface visible on an extra
monitor in the next room – or to be forwarded elsewhere – so
that the hired helper can also see the questions. Instructions
from the helper on what to type could be relayed back to the
student for instance via a hidden wireless earpiece – easily

audible to the test-taker but not to the surveillance through
the PC mic if there is anyway some ambient noise in the
room (e.g., traffic from the outside street, music from the
apartment next door). Hence, even with remote proctoring it
is impossible to prevent that some students may get help
from others, in the worst case having that other person solve
the entire exam [5].

So what if you do not have the opportunity to gather
program code guaranteed to be written by the student earlier
in the semester (if you had such an opportunity, you might
have the exam itself under supervised conditions instead),
and you – or your university – do not want to use remote
proctoring, but you still want to do something to mitigate
cheating by help from a third party? Another possibility lies
in the observation that effective cheating (i.e., achieving
huge grade advantage) is much more difficult for oral
examinations [29] than for written examinations. Of course,
a candidate who is examined remotely via video conference,
may have a helper in the same room, or a device for
communicating with a helper elsewhere – as long as the
helper or device is kept outside view of the webcam.
However, the resulting gain from such help may be much
smaller, due to the live interaction between the student and
examiner. A written exam, which is more asynchronous in
that a question is received at one point in time, then
answered at a later point (after some thinking, problem
solving), makes it easy for the test-taker to forward the
problem to the helper, who then looks at it and returns hints
or a complete solution for the candidate to deliver. In an oral
exam, there is less time to think – which means less time for
the helper to produce any answers or hint in the first place,
and less time for the candidate to digest the hints, since the
answer must be spoken in the candidate’s voice, not simply
copy-pasted as could be done for writing. The big problem
with oral examinations, of course, they are hard to scale to
huge classes – and thus out of the question for many CS1 and
CS2 courses. However, what if we could mimic the
immediacy of the oral examination in a written examination?
For instance, imagine an exam containing problems with
possible solutions such as those shown in Figure 3 and 4, but
where the students were tasked not only with delivering the
written code, but also were supposed to deliver for each
problem a screencast video of 10 minutes duration where
they think aloud while writing the code to solve the problem.
This would make cheating harder in the following ways:

• Collusion between candidates would be harder. An
incompetent candidate who receives code from a
stronger candidate must likely also watch the other
candidate’s video before being able to make an own
think-aloud video while retyping the code – adding a
delay of 10-15 compared to just copy-pasting for a
task that only has written delivery. If needing to
cheat like this on many tasks, the weaker candidate
will likely run out of time with the latter half of tasks
unanswered, thus gaining much less from the
cheating.

• Getting help from a third party will similarly be
delayed. Although the competent third party helper –
who is not burdened with delivering an own exam
answer – does not need to make any video, the less
competent test-taker will need to pretend to write the
received code from scratch, and think aloud while
doing so. If the cheater does not understand the

received code, the think aloud will easily be
suspicious, unless the competent helper either sends
code that includes a natural language think-aloud
script or coaches the candidate on what to say. Either
way, this scheme increases the burden on the helper
(who must provide code + explanation, not just
code), and creates delay for the candidate who must
first receive this material, then make the video
pretending to make the code from scratch.

As opposed to remote proctoring, where the student is
under surveillance during the exam, the recording and
delivery of a screencast video could be controlled by the
student. Hence, if something happens during the recording
which the student does not want the rest of the world to see
(e.g., a friend busting into the room proposing a drug deal or
criticizing the country’s authoritarian regime in the midst of
recording), the student could redact that part and do it anew.
The downside of such a screen-casting approach, of course,
would be that grading screencast videos would be much
more demanding than just grading written code – and
especially in cases where the code could be auto-scored
against a test-suite, while the think-aloud explanation
certainly cannot. However, grading could focus on the
written code and the videos could be used mainly for control
purposes, e.g., flagging as suspicious (possibly by help of
some AI) videos where explanation is thin or in the wrong
voice. Also, for students whose auto-score is just below the
passing threshold, the voice explanation could be used to
assess whether the student – in spite of a wrong solution –
demonstrated enough understanding to deserve a passing
grade.

Such a screen-casting approach would likely demand
more student time per task. Although the think-aloud could
be recorded while the student solves the problem anyway,
not demanding any extra editing of the video, most students
would likely work a little slower if having to speak while
coding rather than just code. Hence, it might only be usable
for some select tasks, not the whole exam. It can of course
also be combined with other approaches such as having
variants of tasks and time-boxing the various tasks in an
exam so that different students get tasks in different orders.
With several such mitigations together, cheating would be
made increasingly difficult – though still not impossible.

A potential problem with the approach of random
drawing among variants of tasks is if the tasks turn out to
have variation in difficulty. This problem is discussed in
[30], where variation was found in some cases, though
within ranges considered acceptable. Our approach to
variation was anyway somewhat more limited, only
amounting to changes of constant values. For instance, all
students got task 2h as shown in Figure 4, solvable by the
exact same Python function with a for-loop, except that the
two integer constants (3 and 2 in the example) and two string
constants (d and b) would vary from 1-6 and a-f respectively.
With such minor variations, the effect on difficulty would
likely be minor. However, a potential problem with such
minor variations is that they are only likely to catch cheaters
if the variation goes unnoticed. If a similar approach is used
several years in a row, the student population will probably
learn to look for such variations, and thus take care to avoid
the trap – either by adapting copied code to one’s own
variant, or seeking out someone with the same variant when
asking for a solution in the first place (which the students can

manage quite effectively if setting up a web site where
solutions are shared, including notification of which tasks
have multiple variants). It will therefore be interesting to see
if an approach using variants will be effective several years
in a row, or if it will catch gradually fewer cheaters.

TABLE I. MITIGATION APPROACHES

Cheating mitigations, assumed effectiveness
Mitigation approach Collusion 3p Helper

Plagiarism checking √ --

Time-stamps, traces √ (√)

Variants of tasks √ (√)

Time-slotting √ --

Stylometry √ √

Screen-casting √ √

Remote proctoring √ √

V. CONCLUSION
In our university we largely ended up with unsupervised

home exams, and all such exams would be open-book
exams, since it was anyway impossible to enforce a closed-
book test in a home setting. Thus, one type of cheating
(illegal use of textbook, cheat notes, googling for answers,
…) was handily eliminated simply by allowing the behavior.
Unfortunately, some other types of cheating (collaboration,
getting help from an outsider) cannot be eliminated in similar
fashion. If you allow students to get substantial help or
outsource their exam to a third party, the grade might be
totally invalid, reflecting the competence of the helper rather
than the student. For courses with a limited number of
students, oral examination via videoconference could be a
more tempting option, as this makes outsourcing much more
difficult. However, our large programming courses have way
too many students for oral examination to be scalable.
Hence, we were in a situation where the possibility to
prevent such forms of cheating was very limited, yet we had
to do something to mitigate cheating.

ACKNOWLEDGMENT
We thank Dr. Hallvard Trætteberg who was strongly

involved in the exam and cheating mitigation approach for
the CS2 course.

REFERENCES

[1] Bilen, E. and A. Matros, Online cheating amid COVID-19. Journal of
Economic Behavior & Organization, 2021. 182: p. 196-211.

[2] Chen, B., S. Azad, M. Fowler, M. West, and C. Zilles. Learning to
cheat: quantifying changes in score advantage of unproctored
assessments over time. in Proceedings of the Seventh ACM
Conference on Learning@ Scale. 2020.

[3] Gudiño Paredes, S., F.d.J. Jasso Peña, and J.M. de La Fuente Alcazar,
Remote proctored exams: Integrity assurance in online education?
Distance Education, 2021. 42(2): p. 200-218.

[4] Stapleton, P. and J. Blanchard. Remote proctoring: Expanding
reliability and trust. in Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education. 2021.

[5] Geiger, G., Students Are Easily Cheating ‘State-of-the-Art’ Test
Proctoring Tech, in Motherboard – Tech by Vice. 2021, Vice.

[6] Colonna, L., Legal Implications of Using AI as an Exam Invigilator.
Faculty of Law, Stockholm University Research Paper, 2021(91).

[7] Kleeman, J., Remote Proctoring: Fairness and Compliance. ITNOW,
2020. 62(4): p. 58-59.

[8] Caines, A. and S. Silverman, Back Doors, Trap Doors, and Fourth-
Party Deals: How You End up with Harmful Academic Surveillance
Technology on Your Campus without Even Knowing.

[9] Nguyen, J.G., K.J. Keuseman, and J.J. Humston, Minimize online
cheating for online assessments during COVID-19 pandemic. Journal
of Chemical Education, 2020. 97(9): p. 3429-3435.

[10] Harris, J.K. Plagiarism in computer science courses. in Proceedings of
the Conference on Ethics in the computer age. 1994.

[11] Sheard, J., M. Dick, S. Markham, I. Macdonald, and M. Walsh.
Cheating and plagiarism: perceptions and practices of first year IT
students. in ACM SIGCSE Bulletin. 2002. ACM.

[12] Sheard, J., M. Butler, K. Falkner, M. Morgan, and A. Weerasinghe.
Strategies for maintaining academic integrity in first-year computing
courses. in Proceedings of the 2017 ACM Conference on Innovation
and Technology in Computer Science Education. 2017.

[13] Hellas, A., J. Leinonen, and P. Ihantola. Plagiarism in take-home
exams: help-seeking, collaboration, and systematic cheating. in
Proceedings of the 2017 ACM conference on innovation and
technology in computer science education. 2017.

[14] Apoorv, R., et al. Examinator: A Plagiarism Detection Tool for Take-
Home Exams. in Proceedings of the Seventh ACM Conference on
Learning@ Scale. 2020.

[15] Misc, M., Z. Sustran, and J. Protic, A comparison of software tools
for plagiarism detectionin programming assignments. The
International journal of engineering education, 2016. 32(2): p. 738-
748.

[16] Novak, M., M. Joy, and D. Kermek, Source-code similarity detection
and detection tools used in academia: a systematic review. ACM
Transactions on Computing Education (TOCE), 2019. 19(3): p. 1-37.

[17] Jeffries, B., T. Baldwin, and M. Zalk. Online Examinations in a Large
Australian CS1 Course. in Australasian Computing Education
Conference. 2022.

[18] Spanswick, E., M. Kastyak-Ibrahim, C. Flynn, S.E. Eaton, and N.
Chibry. Data mining of online quiz log files: Creation of automated
tools for identification of possible academic misconduct in large

STEM courses. in European Conference on Academic Integrity and
Plagiarism. 2021.

[19] Albluwi, I., Plagiarism in programming assessments: a systematic
review. ACM Transactions on Computing Education (TOCE), 2019.
20(1): p. 1-28.

[20] Karnalim, O., M. Ayub, G. Kurniawati, R.A. Nathasya, and M.C.
Wijanto. Work-in-progress: syntactic code similarity detection in
strongly directed assessments. in 2021 IEEE Global Engineering
Education Conference (EDUCON). 2021. IEEE.

[21] Fendler, R.J. and J.M. Godbey, Cheaters Should Never Win:
Eliminating the Benefits of Cheating. Journal of Academic Ethics,
2016. 14(1): p. 71-85.

[22] Rusak, G. and L. Yan. Unique exams: designing assessments for
integrity and fairness. in Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education. 2021.

[23] Fowler, M. and C. Zilles. Superficial Code-guise: Investigating the
Impact of Surface Feature Changes on Students' Programming
Question Scores. in Proceedings of the 52nd ACM Technical
Symposium on Computer Science Education. 2021.

[24] Li, M., et al., Optimized collusion prevention for online exams during
social distancing. npj Science of Learning, 2021. 6(1): p. 1-9.

[25] Piotrowski, M., QTI: A failed e-learning standard?, in Handbook of
Research on E-Learning Standards and Interoperability: Frameworks
and Issues. 2011, IGI Global. p. 59-82.

[26] Lancaster, T. and R. Clarke, Rethinking Assessment by Examination
in the Age of Contract Cheating, in Plagiarism Across Europe and
Beyond 2017. 2017: Brno, Czech Republic. p. 215-228.

[27] Manoharan, S. and U. Speidel. Contract cheating in computer science:
A case study. in 2020 IEEE International Conference on Teaching,
Assessment, and Learning for Engineering (TALE). 2020. IEEE.

[28] Alin, P., Detecting and prosecuting contract cheating with evidence–
a “Doping Test” approach. International Journal for Educational
Integrity, 2020. 16(1): p. 1-13.

[29] Akimov, A. and M. Malin, When old becomes new: a case study of
oral examination as an online assessment tool. Assessment &
Evaluation in Higher Education, 2020: p. 1-17.

[30] Fowler, M., D.H. Smith IV, C. Emeka, M. West, and C. Zilles. Are
We Fair? Quantifying Score Impacts of Computer Science Exams
with Randomized Question Pools. in Proceedings of the 53rd ACM
Technical Symposium on Computer Science Education. 2022.

