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Abstract
Real-time optimization with persistent parameter adaptation (ROPA) is an RTO approach, where the
steady-state model parameters are updated dynamically using transient measurements. Consequently,
we avoid waiting for a steady-state before triggering the optimization cycle, and the steady-state eco-
nomic optimization can be scheduled at any desired rate. The steady-state wait has been recognized as
a fundamental limitation of the traditional RTO approach. In this paper, we implement ROPA on an ex-
perimental rig that emulates a subsea oil well network. For comparison, we also implement traditional
and dynamic RTO. The experimental results confirm the in-silico findings that ROPA’s performance
is similar to dynamic RTO’s performance with a much lower computational cost. Additionally, we
present some guidelines for ROPA’s practical implementation and a theoretical analysis of ROPA’s
convergence properties.

1. Introduction
Real-time Optimization (RTO) is a production optimiza-

tion technique that aims at improving plant economic per-
formance in real-time. In the traditional steady-state RTO
(SSRTO), which was originally proposed by Chen and Joseph
(1987), a rigorous steady-state model is adapted to the cur-
rent plant state. Next, the updated model is used for comput-
ing the optimal operating point, which is then implemented
in the plant (see Figure 1a). Cutler and Perry (1983) found
that combining SSRTO with advanced process control can in-
crease plant profit up to 10%. Despite its potential benefits,
SSRTO is still not widely used in practice (Darby et al., 2011).

Multiple challenges and technical issues are associated
with this reluctant acceptance (e.g. corrupted information
coming from sensors, plant-model mismatch, interface be-
tween RTO and advanced control, etc.). Among them, the
need to wait for a steady-state (SS) before triggering the op-
timization cycle has been recognized as a fundamental limi-
tation (Friedman, 1995). This drawback comes from the fact
a steady-statemodel of the plant is used for finding the opti-
mal operating strategy. Since it uses a static model, the sys-
temmust be at steady-state for a reliable update of the model
parameters. Otherwise, the computed operating conditions
are likely to be sub-optimal and potentially hazardous to the
plant (Engell, 2007).

Figure 2 illustrates this limitation, showing the schematic
response of the traditional RTO to a ramp disturbance. At t0,the disturbance enters the system. The economic optimiza-
tion executes only at t0 + ΔtSSD. This delay is caused by
a combination of the time required for the SSD procedure
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to detect steady-state and the process settling time, which
can be considerably long for persistent disturbance as the
one shown in Figure 2. As an additional practical limitation,
identifying if the data comes from a stationary or transient
period is challenging (Menezes, 2016). Practitioners tend to
be conservative and only few data periods are identified as
steady-state (Câmara et al., 2016). As a result, RTO is too
seldom executed, decreasing its economic benefits.

The issue of steady-state wait for updating the steady-
state model can be addressed by using a dynamic real-time
optimization (DRTO) approach (Figure 1b). Although DRTO
is conceptually similar to SSRTO (i.e. a model adaptation
step followed by an economic optimization step), it relies
fully on a dynamic model of the plant. Thus, it is possible to
use transient measurements in the adaptation step, avoiding
the steady-state wait. In Figure 2, we schematically com-
pare DRTO and SSRTO. Since we do not have to wait for a
new steady-state, DRTO drives the plant to the new optimum
immediately after the disturbance starts, reaching the new
optimum faster than SSRTO. Despite being conceptually at-
tractive, only a few real-world applications were reported in
the literature (for example, Rawlings et al. (2018)).

Alternatively, a hybrid approach (Figure 1c) can be used,
where we use transient measurements and a dynamic model
of the system for the adaptation step (like in DRTO), whereas
the economic optimization is performed using a steady-state
model (like in SSRTO). As a consequence, the steady-state
economic optimization can be scheduled at any arbitrary rate
avoiding the need to wait for a steady-state. This schemewas
independently proposed by Valluru et al. (2015), by Krish-
namoorthy et al. (2018) using the nameHybrid RTO (HRTO),
and by Matias and Le Roux (2018), who called it Real-time
Optimization with Persistent Parameter Adaptation (ROPA).
We will use the latter nomenclature in this paper.

In this paper, we implement the three approaches men-
tioned above on an experimental rig that emulates a subsea
oil well network and compare the results. The main con-
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Figure 1: Block diagram comparing the three approaches. Here, u are the computed inputs (system manipulated variables); �̂
the estimated parameters, and yp the plant measurements.

tribution of this paper is to confirm the previous in-silico
findings: since ROPA avoids the steady-state wait, the op-
timization frequency increases, improving the overall eco-
nomic performance to levels similar to DRTO with a much
lower computational effort. Along with using experimental
evidence to support ROPA’s capabilities, we also perform a
theoretical analysis to illustrate ROPA’s convergence to the
steady-state optimum. Finally, we also propose some guide-
lines to its practical implementation. Our goal is to support
practitioners with important model design decisions and also
provide help for choosing values for ROPA’s tuning parame-
ters.
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Figure 2: Idealized response of the three approaches to a ramp
disturbance (d1 → d2). The computed inputs u⋆ and the re-
sulting economic index J are shown. tSSRTO, tDRTO and tROPA
represent the time the approaches take to drive the plant to
the new steady-state optimum J⋆,d2 . ΔtSSD is the steady-state
wait time of the traditional rto and ΔtROPA is ropa’s execu-
tion rate.

2. Real-time optimization with persistent
parameter adaptation - ROPA
ROPA works on the assumption that the SS predictions of

a sufficiently accurate dynamic model are a good indication
of the future plant steady-state. Then, by continuously es-
timating the model parameters, we capture the effect of the
current disturbances in the plant steady-state that is yet to
be achieved, i.e. current disturbances are measured and can
be accounted for before their effect is fully realized in the
system. Consequently, if we continuously adapt the value of
inputs u based on this future steady-state, ROPA can drive the
system to the desired stationary optimum.

Note that, since SSD is not necessary, ROPA can trigger
the model adaptation and update the inputs u everyΔtROPA,which is the approach’s sampling time (Figure 2). It must be
chosen such that relevant process dynamics and disturbances
are captured. For a discussion on how to tune this parame-
ter, see Section 6.3. As a consequence of frequently updating
the input u, ROPA reaches the new optimal steady-state point
J⋆,d2 faster than SSRTO. In the worst-case scenario, its per-
formance is at least as good as SSRTO. When compared to
DRTO, the input sequence computed by ROPA is sub-optimal
during the transients because they are not optimized.
2.1. Using a SS model instead of a dynamic for

economic optimization
Despite having sub-optimal transients, there are advan-

tages of running a steady-state instead of a dynamic eco-
nomic optimization. As mentioned, one of the main chal-
lenges with DRTO is the large amount of computation re-
quired. Both the dynamic model adaptation and dynamic
economic optimization problems need to be solved every
sampling time, which may result in a computation delay and
subsequently optimization performance degradation as well
as system instabilities (Findeisen and Allgöwer, 2004).

On the other hand, solving only the dynamicmodel adap-
tation problem (which, in addition, can be carried out by a re-
cursive method) is much more attractive from a computation
cost point of view. Especially, if this alternative leads to sim-
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Table 1
List of Acronyms

Acronym Full name
DAE Differential-algebraic equations

DRTO Dynamic RTO
EKF Extended Kalman filter

HRTO Hybrid RTO
MHE Moving Horizon Estimator
MILP Mixed-integer Linear Programming

MINLP Mixed-integer Nonlinear Programming
MPC Model Predictive Control
ODE Ordinary differential equation

ROPA RTO with persistent excitation
RTE Real-time Evolution
RTO Real-time Optimization

SS Steady-state
SSD Steady-state Detector

SSRTO Steady-state RTO
UKF Unscented Kalman Filter

ilar economic performances. For example, Krishnamoorthy
et al. (2018) applied ROPA and DRTO on a simulated subsea
well network and showed that both approaches achieved very
similar economic performance while ROPA had much lower
computational requirements.

Another important advantage of using steady-state mod-
els is related to solving mixed-integer (non)linear program-
ming (MILP/MINLP) optimization problems. For example,
in subsea oil well networks, the well flow can be routed to
one of different flowlines (Foss et al., 2018). If the routing
becomes a decision variable of a dynamic economic opti-
mization, the problem needs to be formulated as a dynamic
MILP/MINLP, which is much more challenging to solve than
the steady-state version.
2.2. ROPA building blocks

According to Figure 1, the two main building blocks of
ROPA are Dynamic model adaptation and SS economic opti-
mization, which are described in the next sections.
2.2.1. Dynamic model adaptation

In SSRTO, the model adaptation is typically formulated
as a parameter estimation problem (Darby et al., 2011), in
which the model parameters (or a subset of them) are up-
dated such that the difference betweenmodel predictions and
averaged plant measurements is minimized (see Section 3 for
more details). In contrast, there are different strategies based
on different paradigms for dynamic model adaptation. For
instance: optimization-based methods, like moving horizon
estimator (Rao and Rawlings, 2000), and recursive methods,
such as recursive least squares estimation, extended Kalman
filter (EKF), and unscented Kalman Filter (UKF). In this pa-
per we will use the extended Kalman filter for adapting the
model parameters.
Extended Kalman filter (EKF): this is the most common
method used for nonlinear dynamic state/parameter adapta-
tion in practice (Schneider and Georgakis, 2013). For im-

plementing it, we model the system as:
ẋ(t) = f (x(t), u(t) |�(t)) + �(t)
y(t) = h(x(t), u(t)|�(t)) + !(t)

(1)

where, x are the model states, u the set of inputs (manipu-
lated variables), y the model predictions, and � the model
parameters. The variables � and ! are the process and mea-
surement noise, both are assumed to be uncorrelated zero-
mean Gaussian random processes. The function f is the
system dynamic model1, and h is a function mapping x and
u to the model outputs y.

EKF is implemented by first using Equation 1 for evolv-
ing the current state estimates in time. Next, f and h are
linearized using an appropriatemethod. Then, since the non-
linear model in Equation 1 is now approximated by a linear
model, the estimates and their covariance matrix can be up-
dated using the standard Kalman filter equations (Walter and
Pronzato, 1997).

Since in ROPA context, we are also interested in estimat-
ing the parameters, we need to adapt our model in Equa-
tion 1. First, we assume that the parameter “dynamics” fol-
low a Gaussian random walk model. Then, we extend f
with the parameter “dynamics” as well as the state vector to
include �. As a result, we can use EKF’s framework for ob-
taining an estimation of the parameter �̂. For more details,
refer to e.g. Walter and Pronzato (1997).
2.2.2. Steady-state economic optimization

The economic optimization is executed repeatedly after
the model is adapted at every ΔtROPA. In this step, new
inputs u are calculated such that an economic criterion J is
optimized. The function J is typically chosen as profit (e.g.
product value – feed costs – variable costs). The optimized
inputs are then implemented in the plant. The SS economic
optimization problem can be posed as:

u⋆,x⋆ = argmax
x,u

J (y, u|�̂)

s.t. 0 = f (x, u |�̂)

y = h(x, u|�̂)
g(y, u) ≤ 0

(2)

where, x are the model states, u the set of inputs (manipu-
lated variables), g is the set of operational constraints and
�̂, the current parameter estimates from the dynamic model
adaptation step.

Note that we assume that parameters values are estimated
such that the process model is a proper representation of the
plant, i.e. no plant-model mismatch. Therefore, we do not
consider the noise � and!models in the economic optimiza-
tion (2). If that does not apply, production optimization tech-
niques that cope with plant-model mismatch (e.g. Marchetti
et al. (2016)), robust optimization schemes (e.g. Golshan

1For simplicity, we represent the model as a system of ordinary dif-
ferential equations (ODE) but it could be easily adapted to a system of
differential-algebraic equations (DAE).
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et al. (2008)), or online model updated schemes (e.g. Matias
and Jäschke (2021)) can be used.

To avoid upsetting the plant by implementing large in-
put changes between the sample times, it is common to filter
computed input sequence. Thus, it is ensured that the plant
gradually is moved to a new operation point, which is desir-
able for practical reasons. That is, the input implemented at
RTO iteration k + 1 is given by

u(k + 1) = (1 −Ku)u⋆(k) +Kuu⋆(k + 1) (3)
where u⋆(k) is the optimal input computed at sample time
k. In a similar manner, the estimated parameter �̂ can be
filtered with a parameterK� to realize a smoother operation.
2.3. ROPA convergence analysis

Despite updating a SS model with parameters estimated
from transient measurements, we show here that ROPA al-
ways drives the process to its steady-state optimum under
some assumptions. Its convergence is demonstrated based
on the SSRTO Point-Wise Stability test (Forbes and Marlin,
1996). We start the analysis by defining two stability con-
cepts.
Definition 2.1 (Lyapunov and asymptotic stability (Wig-
gins, 2003)). An equilibrium point uSS of a system of re-
cursive algebraic equations  (uk, k) ↦ uk+1 is said to be
Lyapunov stable, if:

∀� > 0, ∃� > 0 such that, if ‖u0 − uSS‖ < �, then ∀k ≥ 0,
‖uk − uSS‖ < �

The point uSS is said to be asymptotically stable if:

it is Lyapunov stable and ∃� > 0 such that, if ‖u0 − uSS‖ <
�, then lim

k→∞
‖uk − uSS‖ = 0

Note that we have given the definition above in terms of
u, and not x, because the states x can be formally eliminated
using the model equations. Now, consider ROPA diagram of
Figure 1c. At steady state, each block can be represented as
a static non-linear map:

u⋆ = (�), � = (y), y = (u, t) (4)
where,  maps the parameter value � to the optimal input u
(SS economic optimization); is the dynamic model adap-
tation block; and  accounts for the dynamic plant, which
maps the inputs and the sampling time into the process mea-
surements y. For arbitrarily small deviations of their inputs
and assuming that the appropriate derivatives exist, the maps
above can be represented by their first-order approximations

around the current values:
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(5)

Note that, ROPA execution periodΔtROPA is chosen such
that the most significant dynamic effects (related to the SS
economic optimization time scale) are negligible. As in Ma-
tias and Le Roux (2018), we assume that the model is struc-
turally identifiable (i.e. � ↦ y is one-to-one), and  has an
unique solution for a given value of the parameters (see the
conditions in Fang et al. (2009)). If the assumptions hold, we
can rearrange the three separate systems of linear equations
above into a single recursive system:

�u⋆(k+ 1) =
(

du⋆
d�

d�
dy

dy
du

)

|

|

|

|

|�̂k,yp,k,u⋆ROPA,k

�u⋆(k) (6)

where, k is ROPA iteration index.
Theorem 2.1 (ROPA convergence). If the plant gradients (5)
are boundend, the steady-state input u⋆SS is an asymptoti-
cally stable equilibrium point of the system in Equation (6).

Proof. All gradients in (5) are bounded. The first two terms
in (6) can be made arbitrarily small by decreasing the filter
parameters Ku and K� . As the last term inside the parenthe-
sis of (6) is also bounded, the filter parameters Ku and K�can be selected such that ∀k:
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< 1. (7)

Hence, all the eigenvalues of the system in Equation (6)
can be placed inside the unit circle. As a consequence, we
know that lim

k→∞
�u⋆(k) = 0 and the system is asymptotically

stable. Therefore, if proper values of Ku and K� are chosen,
ROPA is able to stabilize the system at a given steady-state
value u⋆SS for arbitrarily small (differential) changes in u.

Furthermore, if we assume that the solution of Equa-
tion (2) satisfy the first and second-order conditions of op-
timality at the plant optimum (Ganesh and Biegler, 1987),
u⋆SS will be a local optimum of the plant.
2.4. Related work

The use of transient measurements to speed up static pro-
duction optimization has been investigated in the literature
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since the 70s. The first studies in this area (e.g. Sawaragi
et al. (1971); Bamberger and Isermann (1978)) used tran-
sient measurements to estimate the parameters of a simpli-
fied dynamic input-outputmodel of the process online. Next,
the steady-state gradients of the system were calculated us-
ing the updated model. Then, a gradient search algorithm
was employed to solve the optimization problem. Despite
being successfully applied to some pilot plants (for example,
cooling water circulation of a thermal power plant (Bam-
berger and Isermann, 1978), a distillation column (Sawaragi
et al., 1971), and a fixed bed reactor (Lee and Lee, 1985)),
the proposed methods did not handle constraints.

Since the optimum operation of chemical processes of-
ten lies at the constraints (Bhattacharya and Joseph, 1982),
new developments were suggested such as approximating
the nonlinear constrained optimization through Successive
Linear Programming (Bhattacharya and Joseph, 1982), and
obtaining an unconstrained problem by rearranging the sys-
tem of equations (McFarlane andBacon, 1989). Even though
the constraints were included in these methods, the optimal-
ity and feasibility of the optimization problem solution de-
pends on the accuracy of the gradient estimates. Inaccura-
cies in the dynamic model parameters can lead to oscillatory
behavior of the objective function (Bhattacharya and Joseph,
1982).

For obtaining more informative measurements, excita-
tion signals (e.g. pseudo random binary sequences) were
added to the inputs continuously (Lee and Lee, 1985), or at
least during an initial identification phase (Garcia andMorari,
1984). However, extra perturbations for identification pur-
poses may not be desired from an operational point of view.
Moreover, even if the accuracy problem is solved, steepest
descent algorithms converge slowly to the optimum for most
problems (Golden and Ydstie, 1989).

In the 80s, the two-step RTO became a central technol-
ogy for production optimization. Although the combination
of rigorous models with optimization algorithms improved
the convergence speed, the bottleneck shifted to the steady-
state wait. All the problems associated with this issue were
already discussed in details in the introduction of this paper.
The first reported attempts to speed up production optimiza-
tion in the context of steady-state RTOwere based on the idea
of a “step in the right direction should be better than to wait
until the process has settled to a new steady state” (Engell,
2007).

In Besl et al. (1998), the authors updated the model to the
plant condition when the plant reached steady-state; how-
ever, the production optimization algorithm was schedule at
a fixed rate, independently whether or not the plant was at
steady-state. Similarly, Prior and Lopez (1999) updated in-
dividual sections asynchronously when they reached steady-
state and ran the optimization at a fixed rate using using the
latest filtered parameter updates. In an interesting advance,
Sequeira et al. (2002) proposed a method called Real-time
Evolution (RTE). In RTE, steady-state information is used
for data reconciliation and model updating. Then, small ad-
justments in the inputs are computed with a given frequency

and within a small neighborhood around current operating
conditions. This optimum search mechanism is similar to
EVOP (Box, 1957) but based on the steady state model in-
stead of plant perturbations.

Even though the approaches above reported significant
benefits, they can only be applied to quasi-stationary systems
since they neglect dynamics. Also, the infrequent model up-
date can decrease predictive capability of the steady-state
models. This shortcoming was partially addressed by Ro-
drigues et al. (2018). The authors proposed an approach to
speed up SSRTO implementations by estimating the current
output change rate and its future steady-state effect using a
pure data-based strategy. The disadvantages are: the system
dynamics needs to be characterized by two different time-
scales (fast and slow states); the unknown part of the dy-
namics must depend only on the fast states; and the overall
performance is very sensitivity to noise.

Since the use of this data-driven strategy restricts the
amount of noise admissible for obtaining accurate steady-
state estimates (Rodrigues et al., 2018), the natural next step
is to apply a dynamic model to estimate the system dynam-
ics evolution, which is the strategy used in ROPA. The main
challenge becomes obtaining an accurate dynamic model for
parameter estimation. This issue was addressed in Delou
et al. (2021), where the authors use a Hammerstein model
structure to represent the system dynamics. This structure
exploits the static model with added dynamics by a linear
autoregressive model (ARX) identified from plant data or
experiment.

Various other approaches have been proposed in the con-
text of ROPA. Valluru and Patwardhan (2019) and Santos
et al. (2021) proposed using the dynamic estimator to up-
dated the model predictive control (MPC) model in order to
avoid mismatch between RTO and MPC layers. Shamaki and
Odloak (2020) combined ROPA with a infinite horizon zone
control MPC. Curvelo et al. (2021) studied ROPA’s perfor-
mance when applied to systems with different transient pat-
terns, such as long time delays and non-minimum phase be-
havior. ROPA has also been extended to a plant-wide op-
timization context using an asynchronous parameter adap-
tation strategy (Matias and Le Roux, 2020). Here, only a
subset of the plant-wide steady-state model parameters is
adapted dynamically. This strategy allows the plant-wide
optimization cycle to be triggered much more frequently.
From an economic point of view, it is advantageous to solve
the plant-wide economic problems since the trade-offs be-
tween plant units are taken into account (Friedman, 1995).
Moreover, the complete model is solved and no decomposi-
tion techniques are required.

Despite being an active research topic, the only exper-
imental validation of the method was proposed by Matias
et al. (2021). Here, the authors focused on the improvement
related to avoiding the steady-state detection rather than the
loss of performance connected to not optimizing the tran-
sients, which is one of the main contributions of this paper.

Note that the trend of combining transient measurements
with static optimization can also be seen in different pro-
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duction optimization strategies, such asModifier Adaptation
(François and Bonvin, 2013; Rodríguez-Blanco et al., 2017;
Gao and Engell, 2017), Extremum-seeking control (Guay
et al., 2005; Krishnamoorthy et al., 2019);, and feedback-
based RTO methods (Dirza et al., 2021).

3. SSRTO and DRTO implementation
The main goal of the paper is to compare the perfor-

mance of ROPAwith the state-of-the-art production optimiza-
tion approaches (steady-state and dynamic RTO) in a physical
system. In the next subsections, we briefly present both ap-
proaches and discuss their main characteristics. For a more
extensive review of SSRTO, refer to (Darby et al., 2011). For
DRTO, see e.g. (Srinivasan et al., 2003). Despite being fo-
cused on batch processes, this paper has a complete descrip-
tion of DRTO building blocks and solution methods.
3.1. Steady-state RTO
3.1.1. SS Detection

The first step of the SSRTO implementation is the steady-
state detection (Figure 1a). There are many different SSD
procedures available in the literature. Typically, they com-
pare intervals of measurements using statistical properties,
such as hypothesis tests using F-statistic (Alekman, 1994),
Student t-test (Kelly and Hedengren, 2013), and R-statistic
combined with first-order filters for the measurements (Cao
and Rhinehart, 1995). Although the methods rely on statis-
tical theory, they strongly depend on tuning inputs, such as
filter gains and tolerances (Câmara et al., 2016). Therefore,
it is common that different procedures applied to the same
data set yield different results (Menezes, 2016). Indepen-
dently of the chosen procedure, high-frequency or persistent
disturbances can hinder the start of the optimization cycle.
Also, if the system to be optimized is composed of several
units, SSRTO is triggered only if all units are at SS, which sig-
nificantly decreases the number of optimization runs (Ma-
tias and Le Roux, 2020). In our implementation, this step
is carried out using a Student t-test described in details in
Appendix A.
3.1.2. Model adaptation and economic optimization

After detecting the steady-state, the SS model adaptation
step is triggered (see Figure 1). The goal is to find the val-
ues of � that minimize the difference between the SS model
predictions y and the current plant measurements yp. The
model adaptation problem is posed as:

�̂, x̂ = argmin
x,�

||yp − y||V

s.t. 0 = f (x, up |�)
y = h(x, up)
� ∈ �

(8)

where,� is the allowable parameter constraint set; and || ⋅ ||
is a normweighted by a matrix V , which is usually chosen as
the identity matrix or inverse of the covariance of the mea-
surements yp. up are the inputs currently on the plant. After

adapting the parameters, the SS economic optimization uses
the updated steady-state model to find uSSRTO. This step
is performed by solving the optimization problem given by
Equation (2) (as in ROPA).
3.2. Dynamic RTO

The dynamic parameter estimation step is carried out in
the same way as for ROPA. We also use EKF in the dynamic
RTO implementation, but any other dynamic estimator is ap-
plicable.
3.2.1. Dynamic Economic Optimization

The dynamic economic optimization problem is defined
on a prediction horizonNp. It is stated as follows:

u⋆(t) = argmax
x(t),u(t) ∫

t0+Np

t0
J (y(t), u(t)) + u̇(t)TR u̇(t)dt

s.t. on t ∈ [t0, t0 +Np]

ẋ(t) = f (x(t), u(t) |�̂(t)), x(t0) = x̂
y(t) = h(x(t), u(t))
g(y(t), u(t)) ≤ 0
|u̇(t)| ≤ u̇max

(9)

All the symbols were previously defined, except the in-
put movement u̇, where the dot symbol represents the time
derivative. x̂, �̂ are the current estimates of the states and
parameters, and up the current implemented inputs. For the
implementation, the system is discretized in time using, for
example, orthogonal collocation on finite elements, and the
input signal u(t) is assumed to be piecewise constant on these
elements (Biegler, 2007). Then, the solution u⋆(t) can be
represented by a finite sequence U⋆ = [u0⋆, u1⋆,…]. Theproblem is then solved repetitively at each sampling time of
the system, and only the first control move in U⋆ is imple-
mented.

4. Case study: Subsea oil well network
In subsea oil production, the goal is to extract oil and gas

trapped in subsea geological structures, which is achieved by
drilling several wells in these hydrocarbon reservoirs. The
production of the well network is led to processing facili-
ties on sea level by long vertical pipelines, known as risers.
These facilities are responsible for separating the reservoir
outflow fluids, typically gas, oil and water.

Typically, the reservoir pressure drives the fluids from
below the seafloor to the top facilities. If this pressure is
not large enough, artificial lifting methods, such as electrical
submersible pumps, subsea boosting stations, and gas lift-
ing, need to be applied. The latter is commonly used since it
has a robust design and relatively low-cost (Amara, 2017).

In gas lifted systems, the excess gas that is produced is
compressed and injected back in the well (Hernandez, 2016).
As a result, fluid bulk density is reduced, decreasing the hy-
drostatic bulk pressure on the reservoir and increasing the
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production. Since the reservoirs can be located several kilo-
meters below sea level, such a decrease has significant pos-
itive effect on the system productivity. However, if the gas
injection flowrate becomes too large, the effect of frictional
pressure drop in the pipelines dominates, decreasing the gain
of injecting more gas to the system. The gas lift effect is il-
lustrated by Figure 3.

Gas injection

O
il
pr
od
u
ct
io
n

hydrostatic
pressure
decreases

frictional
pressure drop
dominates

Figure 3: Gas lift effect on well’s oil production. The dashed
line indicates the turning point, in which the frictional pressure
drop effect starts to dominate the hydrostatic pressure.

On a daily basis, operators and engineers are responsi-
ble for deciding the gas lift injection flowrates such that the
system operates as efficiently as possible, maximizing the
revenue (Foss et al., 2018). This decision process can be au-
tomated and improved by the usage of production optimiza-
tion approaches, such as SSRTO, ROPA, and DRTO.
4.1. Experimental rig

To study how the different approaches perform in a sub-
sea oil well network, a small-scale experimental rigwas built.
For simplification purposes, the setup uses water and air as
working fluids instead of oil and gas. Since the change in hy-
drostatic pressure induced by gas injection is the phenomenon
of interest, the denser the liquid, the larger the gas lift effect.
Thus, by changing the fluids we not only enhance the gas
lift effect but also have a cheaper and more environmentally-
friendly setup. Moreover, water and air have already been
used for replacing oil and gas in experimental rigs that rep-
resent subsea oil wells (see, e.g. Jahanshahi et al. (2017)).

A simplified flowsheet of the rig is shown in Figure 4.
The system is divided into three sections:
Reservoir: this section is composed of a 200 L stainless steel
tank, a centrifugal pump, and three control valves (CV101,
CV102, and CV103). We can freely manipulate the open-
ings of these valves, which are chosen for representing dif-
ferent reservoir behaviors. With this setup, the reservoir pro-
duces only liquid and its outflow ranges from 2 Lmin−1 to
15 Lmin−1. Flow meters (FI101, FI102, and FI103) are lo-
cated before the reservoir valves. A controller regulates the
pump rotation such that the its outlet pressure (PI104) re-
mains at a given setpoint, which is kept constant at 0.3 barg
in the experiments;
Wells: three parallel flexible hoses with 2 cm inner diame-
ters and length of 1.5m represent the wells. Approximately
10 cm after the reservoir valves, air is injected by three air
flow controllers (FIC104, FIC105, and FIC106) within the
range of 1 sLmin−1 to 5 sLmin−1;

Risers: this section is composed of three vertical pipelines,
orthogonal to the well section, with 2 cm inner diameters and
2.2m high. We measure the pressures on top of the risers
(PI101, PI102, and PI103). After the sensors, we have three
manual valves which are kept open during the experiments.
The air is vented out to the atmosphere. For environmen-
tal purposes, the liquid is recirculated to the reservoir water
tank.

5. Experimental Setup
The optimal operation point of the system is achieved

by maximizing the “oil” revenue, while accounting for gas
availability constraints and bounds on the gas lift flowrates.
The economic objective function J is chosen as:

J = 20 Ql,1 + 10 Ql,2 + 30 Ql,3 (10)
where, Ql are the liquid flowrates of wells 1, 2, and 3. For
illustration purposes, we assumed that the wells have dif-
ferent valued hydrocarbons, which are reflected by differ-
ent weights in J . The constraint set g in Equation (2) and
(9) is composed by the gas lift injection Qg lower and up-
per bounds (Qg,min = 1 sLmin−1 and Qg,max = 5 sLmin−1)and the gas availability constraint (Qg,1 + Qg,2 + Qg,3 ≤
7.5 sLmin−1).

To study ROPA’s performance in comparison with the
other approaches, we run experiments of 20min and change
the opening of the valves CV101, CV102 and CV103 ac-
cording to Figure 5, while keeping the pump outlet pres-
sure Ppump constant. Since the holdup inside the pipes is
small, the system response to changes in the gas flowrates
is fast (<1min). The reservoir valves are used to emulate
slow time-scale and persistent reservoir disturbances. This
is similar to what happens in practice with a significant time
scale separation between the wells and reservoir (Foss et al.,
2018). This disturbance scenario emulates the well’s deple-
tion (i.e. declining oil production over time), where larger
valve openings indicate larger reservoir outflows.

The initial value of the inputs is specified as Qg,1 =
Qg,2 = Qg,3 = 2.5 sLmin−1. During the experiment, we
want to find the best gas lift distribution among the three
wells. For carrying out this task, we implement the three
production optimization approaches and a naive strategy, in
which the inputs are fixed as 2.5 sLmin−1 during the entire
experiment. This specific distribution is obtained by divid-
ing the maximum gas availability equally by the three wells.
Since this is the natural choice when no information is avail-
able about the system, this is used as a baseline for the perfor-
mance comparison. The procedures for implementing ROPA,
SSRTO and DRTO are presented in Algorithms 1, 2, and 3, re-
spectively. The codes used in the experimental rig are avail-
able in ourGithub page2. In Appendix B, we show the tuning
parameters for the three approaches.

Note that we use first order input filters in the imple-
mentation ROPA (Algorithm 1/Step 10) and SSRTO (Algo-

2https://github.com/Process-Optimization-and-Control/
ProductionOptRig
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Figure 4: Experiment schematic. The system measurements yp are the well top pressures (PI101, PI102 and PI103), the pump
outlet pressure (PI104), the liquid flowrates (FI101, FI102, and FI103), and the gas flowrates (FI104, FI105, and FI106). Three PI
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Algorithm 1 ROPA
1: Get plant measurements yp,k and inputs up,k, where kindicates the current time instant

Dynamic model adaptation (EKF)
2: Define an extended state with x̂ek = [x̂k, �̂k]T
3: Use random walk for parameter evolution characteriza-

tion: �k+1 = �k + �k, � ∼ (0, Q�)
4: Obtain the affine version of the dynamic model f (⋅, ⋅|⋅)

using the sensitivity equations and extend it with the pa-
rameter evolution model from Step 3

5: Update extended state estimate covariance matrix and
the estimator gain

6: Compute the extended state estimate based on the cur-
rent prediction error

7: Obtain parameter estimates �̂k+1 based on current mea-
surements
Steady-state economic optimization

8: Update steady-state model 0 = f (⋅, ⋅|�̂k)
9: Compute u⋆k+1 using Equation (2)
10: Apply input filter uk+1 = up,k +Ku(u⋆k+1 − up,k)11: Implement uk+1

rithm 2/Step 6) as well as input regularization in the objec-
tive function of the dynamic economic optimization (Equa-

Algorithm 2 SSRTO
1: Get plant measurements yp,k and inputs up,k
2: Steady-state detection of yp,k

If Steady-state is T rue
Steady-state model adaptation

3: Compute parameter estimates �̂k+1 using Equa-
tion (8)

Steady-state economic optimization
4: Update steady-state model 0 = f (⋅, ⋅|�̂k)
5: Compute u⋆k+1 using Equation (2)
6: Apply input filter uk+1 = up,k +Ku(u⋆k+1 − up,k)7: Implement uk+1

Else
8: Do nothing

Algorithm 3 DRTO
1: Get plant measurements yp,k and inputs uk

Dynamic model adaptation (EKF)
2: Implement Step 2 to 7 from Algorithm 1

Dynamic economic optimization
3: Update dynamic model f (⋅, ⋅|�̂k)
4: Compute U⋆

k+1 using Equation (9)
5: Extract uk+1 from U⋆

k+1
6: Implement uk+1

tion 9). Despite affecting the economic performance, pe-
nalizing large input variations is necessary for practical ap-
plications. For example, since the wells in our problem are
identical, small deviations in their models, which can result
from slightly different updates in their parameters, may lead
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to significant changes in the optimal gas lift flowrate distri-
bution. Potentially, these values can go from the minimum
to the maximum limits in one iteration. This type of de-
cision can easily raise credibility issues on the plant engi-
neers and operators concerning the production optimization
approaches’ performance. Thus, they need to be avoided and
input filters/regulation are an interesting alternative.

6. ROPA Implementation
Before showing the main results regarding the compari-

son of the three approaches, we present some recommenda-
tions for ROPA’s practical implementations3. They aremostly
based on lessons learned during the implementation on the
experimental rig and can be used as guidelines for other sys-
tems. They are focused on three aspects that should be de-
fined before the online deployment: Process modeling, on-
line parameter and state estimation, and ROPA execution pe-
riod tuning.
6.1. Process modeling

The first step for implementing ROPA is obtaining the dy-
namic and steady-state models. Their complexity should be
carefully taken into account. The models should reflect the
main economic trade-offs and accurately predict the system
operating constraints. The more precise the model, the bet-
ter the production optimization performance (Câmara et al.,
2016). However, if the model is too complex, the model
adaptation task becomes more challenging and little value
is then added over a simplified version (Darby et al., 2011).
Additionally, model maintenance also becomes harder.
6.1.1. Experimental rig modeling

The goal of the production optimization approaches is
to determine the optimal injection rate (i.e. the setpoints of
flow controllers FIC104, FIC105, and FIC106) such that J
is maximized, while considering maximum gas availability
constraints and gas injection bounds. Thus, when modeling
the system, we should take the following into account:
(a) Since the system dynamics aremainly related to the reser-

voir, the wells’ dynamics do not have to be considered in
detail. Therefore, the momentum balance can be simpli-
fied, i.e. the pressure dynamic does not need to be taken
into account given that its time scale is much faster than
the reservoir time scale;

(b) The phenomenon of interest is gas lift. Hence, both the
hydrostatic pressure and friction pressure loss need to be
computed. However, since the pressure difference be-
tween the bottom and top of the riser is not significant,
the gas cooking-off effect (Hernandez, 2016) does not
need to be considered. Thus, the pressure spatial vari-
ance is replaced by two lumped pressures, one at the bot-
tom and another one at top of the riser;

(c) The main system constraint is gas availability. Since the
gas flow rate is measured, the model precision with rela-
tion to this constraint is not an issue.
3In Appendix A, we also briefly discuss the implementations of SSRTO

and DRTO

Given the considerations above, the following dynamic
model is derived. It is based onKrishnamoorthy et al. (2018).
We only show the equations for one well, but the extension to
three wells is straightforward. The static model is obtained
by setting the time derivatives to zero. A model diagram is
shown in Figure 6.

∆h

Reservoir
Wells (ρmix, µmix, T )

Gas Lift

Riser

Ppump

Ql

Prh

Qg

wl,out

wg,out

Patm

θtop

Pbi

θres
vo = wl/ρl

= wg/ρg

Figure 6: Diagram of a single-well model. Prℎ, Ppump and Ql
are measured. Qg is controlled by the gas flowrate controller
and the reservoir valve opening vo is assumed as a measured
disturbance.

Differential equations. The liquid and gas mass bal-
ances are represented by:

ṁg = wg −wg,out (11a)
ṁl = wl −wl,out (11b)

where, ml and mg are the liquid and gas mass holdups in-
side the wells and riser. The dot symbol represents the time
derivative. wg is the gas injectionmass flowrate andwl is theliquid flowrate coming from the reservoir. wg,out and wl,outare the outlet production rate of gas and liquid.

Algebraic equations: The reservoir outflow is obtained
by the following relationship:

wl = vo�res
√

�l(Ppump − Pbi) (12)
where, �l is the liquid density, �res is the reservoir valve
flow coefficient, and vo the valve opening. The pump out-
let pressure Ppump is measured and the pressure before the
injection point Pbi is computed taking into account the hy-
drostatic pressure and the pressure drop due to friction (as
a simplification, we use the Darcy-Weisbach expression for
laminar flow in cylindrical pipes). Thus, Pbi becomes:

Pbi = Prℎ + �mixgΔℎ +
128�mix(wg +wl)L

��mixD4
(13)

where, Prℎ is the pressure at the riser head, which is mea-
sured. Δℎ, L and D are the height, length (well + riser),
and diameter of the pipes. g is the gravitational accelera-
tion. �mix is the mixture (liquid + gas) viscosity. In the ex-
perimental setup, the mixture viscosity is approximated as
the liquid viscosity. The mixture (liquid + gas) density �mix
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is obtained by:
�mix =

mtotal
Vtotal

=
mg + ml
Vtotal

(14)
which is complemented by an equation indicating that the
summation of the gas Vg and liquid Vl volumetric holdups is
equal to the total system volume:

Vtotal = Vg + Vl =
ml
�l
+
mg
�g

(15)
The liquid density �l is assumed constant, whereas the

gas density �g is computed using the ideal gas law:

�g =
PbiMg

RT
(16)

where, Mg is the air molecular weight, R the gas univer-
sal constant, and T the room temperature. The total outlet
flowrate is obtained by the following relationship:

wtotal = wg,out +wl,out = �top
√

�mix(Prℎ − Patm) (17)
where, Patm is the atmospheric pressure, and �top is the topvalve flow coefficient. We make an additional assumption
that the proportion between liquid and total outlet flowrate
is the same as the liquid fraction in the mixture �l, i.e.:

�l =
ml
mtotal

=
wl,out
wtotal

(18)
6.2. Online estimation of parameters and states

In order to adapt the model to the current plant condi-
tion, its states and parameters can be updated. However,
in order to obtain reliable updates of both, we need to en-
sure that the states are observable and the model parameters
are identifiable from the system outputs. Both observabil-
ity and structural identifiability are properties connected to
the model equations, meaning that they can be determined
by the system dynamics and output alone. For more details
about these properties, refer to Walter and Pronzato (1997)
and Ljung (1999).

Typically, structural unidentifability is connected to un-
observability, in a sense that the wrong estimates of the pa-
rameters may lead to wrong predictions of the states. How-
ever, one does not imply the other (Villaverde, 2019). Hence,
it is preferable to carry out both analysis (either simultane-
ously or separately) for decreasing the possibility of drawing
false conclusions from the model of interest. This becomes
even more significant when the model is used for produc-
tion optimization, since a poor model adaptation can have a
significant negative impact on the overall economic perfor-
mance (Quelhas et al., 2013).

For our system, we decided to use a two-tiered approach,
where we first choose a set of model parameters that can be
properly identified at stationary periods (i.e. they do not re-
quire any type of specific excitation to be properly estimated)
by performing a steady-state identifiability test. Next, since
we consider the system parameters as additional states with
trivial dynamics (Gaussian randomwalkmodel, as discussed
in Section 2.2.1), the identifiability and observability analy-
sis are performed together using an observability framework.

6.2.1. Tier 1: Steady-state parameter identifiability
Given that our goal is to implement the estimator in an

experimental rig, we should account not only for the model
structure but also for limitations regarding experimental data
quality/availability when choosing the estimable parameter
set. Therefore, we run a practical identifiability analysis in
this step. This analysis is related to its structural counter-
part; however, the focus shifts to assess the effect of noisy
measurements into the parameter estimation performance.

To run the practical identifiability analysis, we need to
collect experimental data that properly represent operational
situations. The goal is to ensure that the inputs that are typi-
cally applied to the plant are able to excite the system enough
and, consequently, guarantee that the parameter estimates
converge to their true value. Since the input moves gen-
erated by the optimization may not fulfill this requirement,
using data from previous experimental runs may affect the
analysis outcomes. For example, when using a given input
sequence, the analysis may indicate that parameters can be
uniquely identified; however, if the data sequence is slightly
changed, the parameters would not be identifiable anymore.

As an alternative, the practical identifiability analysis can
be carried out using stationary data and the steady-state ver-
sion of the dynamic model. Then, the results of the analysis
will not be linked to any specific excitation pattern to ensure
convergence. That is, as the steady-state model is identifi-
able, the extended dynamic model is also identifiable (Schei,
2008). Hence, there is no need for persistence of excitation
as there is in general system identification to guarantee pa-
rameter identifiability.
Experimental rig model parametrization

A good starting point for selecting the adjustable param-
eters is to choose the ones that can be updated such that the
most significant process disturbances are represented in the
model. For example, since our main disturbances are associ-
ated with the reservoir valves (CV101, CV102, and CV103),
it is interesting to estimate parameters associatedwith the be-
havior of these valves. Additionally, by selecting the number
of estimable parameters to be smaller or equal to the num-
ber of measured variables, zero steady-state deviations in the
predicted outputs can typically be achieved (Schei, 2008).

In the system of interest, we have 6 available measure-
ments, one liquid flowrate and one pressure for each well
(see Figure 4). By analyzing the model structure, the pa-
rameter candidates are: for each well, the reservoir �res andtop valve �top constants, the mixture viscosity �mix, and the
liquid fraction �l. Note that, if we choose �mix and �l, weneed to exclude some of the model simplifying assumption,
namely: mixture viscosity equals to the liquid viscosity, and
the liquid ratio of the outlet flowrate is equal to the liquid
fraction.

Based on the available candidates and the number ofmea-
surements, we chose different sets containing 6 parameters.
To decrease the number of possible combinations, we con-
sidered that parameters representing the same variables (e.g.
top valve constants) should be estimated simultaneously for
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Figure 7: 100 independent steady-state model adaptation runs using historical data. The histograms of the individual parameters
are plotted, with a red line indicating the mean. Also, we show the 2-dimensional distribution, analyzing two parameters at a
time. In these plots we also the average (red dot) and 95% confidence interval (black line).

the three wells, i.e. if we add the valve constant for reser-
voir valve at well 1 (�res,1) to the set, we also must include
�res,2 and �res,3. Next, we estimated the parameters of the
set 100 times based on on 100 different SS data points from
our database. The sample size is arbitrarily chosen, but we
consider it as a large enough sample to draw conclusions
about the underlying parameter distribution. The following
estimable parameter was chosen:

� = [�res,1, �res,2, �res,3, �top,1, �top,2, �top,3]T . (19)
The distribution of these estimates of � is shown in Figure 7.
We see that the computed confidence regions of the esti-
mated parameters are bounded and small compared to their
magnitudes. Also, none of the estimates lies on the con-
straints (which are not indicated in the plots). When �l wasincluded in � and we ran the same test (see Appendix C),
a considerable part of the estimates of �l was at the con-
straints. Although these bounds force the parameters esti-
mates to adequate physical ranges, such a pattern would have
been a clear indication of an ill-conditioned model adapta-
tion problem and/or improper definition of the bounds. As a
consequence, the adapted parameter values would lose their
physical and statistical meaning and the model updating step
may become useless.

Another characteristic of ill-conditioned model adapta-
tion problems is parameter estimates with high correlations
(i.e. main axes of the confidence interval ellipsoid in Fig-
ure 7 are not perpendicular to the plot axes). A correlation
pattern can be noted among the reservoir valve parameters
(�res,1, �res,2, and �res,3), which is mainly caused by the large
influence of the pump outlet pressure in the estimated value.
Since the correlation is not significant (the inclination angle
is relatively small), the parameters can be individually esti-
mated. Usually, this is the desired case; however, it may be

advantageous to pose an ill-determined estimation problem
for flexibility of the estimation problem (cf. Chapter 7 in
(Bard, 1974)).
Remark. If this analysis is carried out, the tuning step of
the EKF becomes much simpler, since a good initial guess
for the estimate covariance matrices (both the model states
and parameters) is available.

6.2.2. Tier 2: Combined observability and
identifiability analysis

After choosing �, we need to check if the dynamic ex-
tended state (system states plus parameters) of the nonlinear
model in Equation (1) is observable.

One alternative is to use results from differential geome-
try based as in Hermann and Krener (1977). In this test, a lo-
cal nonlinear observability matrix , which is defined prop-
erly in the next section, is constructed using Lie Derivatives.
Then, a necessary condition for local observability of a non-
linear ODE model is that the rank of  is equal to the states
dimension. If this condition is met, it means that for every
state x0 there exists a neighbourhood where it can be distin-guished from any other state x (Villaverde, 2019), i.e. it is
possible to determine x0 from output measurements in finite
time. Despite the fact that the original test considers only
states, it can be easily extended for parameters by consider-
ing � as additional states with trivial dynamics, i.e. �̇ = 0.

Note that this approach may not be adequate if the model
is complex (Alexander et al., 2020); however, in our case, it
is tractable to construct  based on the system equations.
Testing The experimental rig model

In order to perform the analysis, we use the model of a
single well. Since the models for the three wells are identi-
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cal, this simplification does not affect the results. Next, we
transform the DAE model described in Section 6.1.1 into an
ODEmodel as in Equation 1. In our case this step is straight-
forward because the DAE system is index one. Finally, the
model is rearranged in an extended form, where the system
dynamics are augmented by the trivial parameter dynamics.
Consequently, the parameters can be considered as pseudo-
state variables and added to the state vector (xe = [x,�]T ).The model then becomes:

ẋe(t) = f e(xe(t), u(t))
y(t) = he(xe(t), u(t))

(20)

For this nonlinear system of equations, we can recon-
struct the extended states xe from the outputs y by comput-
ing the derivatives ẏ, ÿ, and so on, which are performed by
taking Lie derivatives of the output function he at a given
time instant:

Lfhe(xe, u) =
)he(xe, u)
)xe

f e(xe, u) (21)

The time-dependent notation is dropped here for simplicity.
The higher-order Lie derivatives can then be recursively cal-
culated as:

Lifhe(xe, u) =
)Li−1f he(xe, u)

)xe
f e(xe, u) (22)

Finally, we obtain the nonlinear observability identifia-
bility matrix by stacking nxe − 1 Lie derivatives, where nxeis the dimension of the extended state:

 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

)he(xe,u)
)xe

)Lfhe(xe,u)
)xe

)L2fhe(xe,u)

)xe
⋮

)L
nxe−1
f he(xe,u)

)xe

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(23)

If the rank() = nxe , the extended state vector can be
uniquely obtained from the knowledge of the measurements.
Note that, even if this local analysis is successful, it only in-
dicates that two adjacent states are distinguishable (Villaverde
et al., 2016); thus, distant states may be unobservable. To
mitigate that, we run the analysis at several operation points,
which are located along the trajectory of a previous pro-
duction optimization experiment based on steady-state RTO.
The results can be seen in Figure 8.

Since the dimension of the extended state for a single
well is 4 (xe = [mg , ml, �res, �top]T ) at every point, the anal-ysis indicates that the system is locally observable along the
whole trajectory. Thus, we consider that the extended sys-
tem is observable for practical purposes and we can proceed
to the online implementation.
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Figure 8: Nonlinear observability-identifiability matrix rank
along the trajectory of a previous production optimization ex-
periment based on steady-state RTO.

6.2.3. Data cleansing
So far, we assume a good instrumentation design and

maintenance, which can provide unbiasedmeasurementswith
low noise levels. However, in an industrial implementation,
it is very likely that plant data is subjected to errors because
of miscalibration, faulty sensors or just random events. Con-
sequently, the collected data will not represent the underly-
ing statistical distribution of themeasurements (Albuquerque
and Biegler, 1996). In this case, a data reconciliation needs
to be carried out. In SSRTO, good results have been achieved
when the parameter estimation algorithm is combined with
data reconciliation procedures (Prata et al., 2009). For dy-
namic estimation, moving horizon estimators have been used
as methods of state estimation, data reconciliation for non-
linearmodels (see, for example Rawlings andBakshi (2006)).
6.3. ROPA execution period tuning

The final step for ROPA implementation is determining
its execution period ΔtROPA. For this decision, we should
consider the system response time. As in any RTO imple-
mentation, we assume that there is a control layer (either ad-
vanced or PIs controllers) implementing the set points de-
termined by ROPA. Therefore, we need to take into account
the dynamic effects of the system and the controller when
determining ΔtROPA.IfΔtROPA is excessively small, the system becomes sen-
sitive to rapid changes in the disturbance and noise. In this
case, the inputs computed by ROPA can oscillate significantly
before converging to the optimum and, in the worst-case sce-
nario, they may not be physically realizable. On the other
hand, if ΔtROPA is too large (on the order of the plant’s set-
tling time), ROPA performance approaches the SSRTO perfor-
mance. Based on the authors’ experience, ΔtROPA can be
initially chosen as half of the difference between the change
in the controller setpoints and the smallest plant time con-
stant, in which only the RTO-relevant dynamics are consid-
ered.
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6.3.1. Choosing ΔtROPA for the rig implementation
For determining the system response time in the exper-

imental rig, we apply a step-change in the setpoint of the
gas lift flowrate controller in one of the wells and analyze
the effect on the liquid flowrate. In Figure 9, we show the
normalized profiles of QSPg , Qg and Ql. For reference, weindicate the time of the setpoint step change (0 s); PI con-
troller response (4 s); and system response (approx. 21 s).
The results show that the difference between the changes in
the setpoint and the plant response is around 20 s. Thus, ac-
cording to the rule of thumb, choosing ΔtROPA = 10 s is agood tuning.
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Figure 9: Step response. The initial and final mean values of
Ql are also indicated. The values were normalized for facili-
tating the visualization. We step the gas injection setpoint at
0 s. The control takes 4 s to track the new setpoint, while the
system settles at a new steady-state after approximately 20 s.

7. Experimental results and discussion
The results comparing the three approaches are presented

in Figure 10. As shown previously, we defined ΔtROPA as
10 s. For comparison reasons, DRTO is also executed ev-
ery ΔtROPA and the steady-state detection step of SSRTO is
schedule at the same rate. If ROPA and DRTO present similar
results, it is an indication that there are no major advantages
in optimizing the transients in the system of interest. If ROPA
and SSRTO performances are the same, thismeans that we are
waiting too long to re-optimize (i.e. ΔtROPA is of the same
order of magnitude than the plant settling time). In this case,
we lose the potential benefits of implementing ROPA due to
improper tuning.

In order to mitigate the effect of noise and unmeasured
disturbances in the analysis, we run two independent exper-
iments for each approach and present the average profiles of
the computed inputs and profit. On the other hand, for the
estimated parameters, we show the results of a single run.
The reason is that SSRTO is triggered in different time in-
stants during different experiments due to the SSD procedure.
Therefore, showing the average at a given time instant is not
relevant. We show the profiles of the estimated parameter of
two independent SSRTO runs in Appendix A.

In Figures 10a and 10b, we present the values of the es-
timated reservoir valve and top valve coefficients. Since in
ROPA and DRTO, we estimate the parameter every execution
time (i.e. every 10 s), we use a continuous line. In turn, for
SSRTO, we use markers to indicate not only the estimated
values but also when it was executed. The approaches show

a consistent �res estimation profile with low variability of
both steady-state and dynamic model adaptation steps. This
is a direct consequence of the proper choice of the model
parametrization, which means that the parameter values are
not greatly affected by measurement noise. Moreover, the
reservoir parameter profiles reflect the disturbances shown
in Figure 5, which is in line with the guidelines that indicate
that the chosen parameters should reflect the most significant
process disturbances.

In turn, the top valve coefficient estimates oscillate more
and the consistency between the steady-state and dynamic
estimation is smaller. In our case, EKF was tuned based on a
visual comparison between the predicted liquid flowrate and
the measured one (not shown here). Since the sensitivity of
the liquid flowrateQl prediction and the reservoir valve coef-ficient is larger, our tuning prioritized �res over �top. Despitethe acceptable results, we believe that the tuning can still be
improved to decrease the noisy �top estimates.

Figure 10c shows the average profile of the manipulated
variable Qgl. Similarly to the parameters results, the ma-
nipulated variables profiles are consistent among the three
approaches. Moreover, the computed inputs are also consis-
tent with the profiles inferred from engineering insight. In an
exploratory experiment, we determined that lower reservoir
valve openings are connected to larger input/output gains
(for example, adding one unit of gas lift flowrate when vo =
40% increases the liquid flowratemore thanwhen vo =80%).Therefore, between 0min to 4min, we expected the approaches
to increase production in wells 1 and 3 due to the larger
weights in the objective function. However, the fact that well
1 has a larger input/output gain should be considered. At
the end of the experiment, after 17min, all three wells have
similar input/output gains. Thus, we expect the approaches
to distribute the available gas more evenly among the three
wells, taking only the different weights in J into account.

The profiles in Figure 10c confirm that the methods fol-
low the expected behavior. In the beginning, well 3 is pri-
oritised, but its value is not kept at the maximum (Qg,max =
5 sLmin−1). Since the first well has a larger input/output
gain, the methods choose to balance the gas injection be-
tweenwells 1 and 3. In turn, the gas injection inwell 2 is kept
at the minimum (Qg,min = 1 sLmin−1). At the end, the gasis more evenly distributed but still withQg,3 > Qg,1 > Qg,2,which follows the weights on J .

We also note that, on average, SSRTO is much slower to
adapt the inputs in face of disturbances. The main changes
in Qgl are made only after the disturbances stops, around
12min and 18min. On the other hand, ROPA andDRTO quick-
ly adapt the inputs to the disturbance. Additionally, we see
that ROPA and DRTO input profiles are mostly overlapped,
which indicates that there is not much advantage in optimiz-
ing the transients on this system. The main reason is that
the well time constants are much faster than the disturbances
time constants. This is in line with the behavior of actual
subsea oil wells, where the system dynamics are mainly de-
termined by the reservoir dynamics (Foss et al., 2018).

Figure 10d compares the profit obtained by the three ap-
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Figure 10: Experimental results.

proaches with the naive strategy, in which available gas lift is
equally divided among the three wells (i.e. Qgl,1 = Qgl,2 =
Qgl,2 = 2.5 sLmin−1). Instead of showing absolute values,
we plot the difference, in percentage, between the instanta-
neous profit the approach of interest and fixed input approach
which is calculated as 100(J − Jfix)∕Jfix. In addition, we
use a 60 s moving average for smoothing the profiles, be-
cause the instantaneous profit measurements are noisy.

As expected, ROPA and DRTO have a better performance
than SSRTO due to the higher frequency of the production
optimization execution. All the approaches present better
economic results than the fixed input strategy, except around
17min. In this case, an equal gas distribution yields bet-
ter performance. However, since we apply input filters in
ROPA/SSRTO and input usage regulation in DRTO, the ap-
proaches are not able to increase the inputs to this level so
rapidly.

Next, we computed the total profit difference. We see
ROPA andDRTO increase the obtained profit by approximately
38% and SSRTO by 20% when compared to the fixed nom-
inal input approach. Such improvements represent a signif-
icant advantage of the production optimization approaches.
Regarding the average instantaneous profit improvement, ROPA
andDRTO are around 1.8%, whereas SSRTO around 1%. These
values are in accordance to the profit improvement achieved
in real systems by production optimization approaches (Foss
et al., 2018).

Finally, we compare the three approaches in terms of
computational efficiency in Figure 11, where we show the
computation time distribution in one experimental run. The
results show that ROPA has an average computational time
approximately two times smaller than DRTO. Even though
the computational times are small here, they can steeply in-
crease with the system size and complexity. This increase
will depend on particularities of the system, the model equa-
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tion, the solvers, etc.
However, due to the nature of the solvers and the prob-

lems being solved, we hypothesize that in different applica-
tion the relative computational time distribution will be sim-
ilar to the one obtained in our validation experiments. There-
fore, it can be advantageous to use ROPA in online imple-
mentations due to its lower computational time and similar
economic performance. Note that the computational time of
SSRTO is higher than ROPA. Themain reason is the parameter
estimation step. While in ROPA we use a recursive method,
which is computationally cheap, in the steady-state RTO we
solve an optimization problem. However, even in this case,
the maximum SSRTO execution time is in the same order of
magnitude that the minimum execution time of DRTO, illus-
trating how computationally expensive is to solve a dynamic
optimization problem.

0.05 0.1 0.15 0.2 0.25

DRTO

ROPA

SSRTO

Computational time [s]

Figure 11: Distribution of the computation time of the three
approaches. The average computational time values are:
�̄SSRTO = 0.1437 s,�̄ROPA = 0.1090 s, �̄DRTO = 0.2005 s. All
computational are carried out with an Intel Core i7-8650U CPU
at 2.8 GHz and 16GB RAM.

8. Conclusion
In this paper, we show the implementation of Real-time

Optimization with Persistent Parameter Adaptation (ROPA)
on a small pilot scale plant. ROPA is an RTO variant, in which
the steady-state wait is avoided by replacing the steady-state
model parameter adaptation step by a dynamic estimator.

The main contribution of this paper regards the exper-
imental validation of this method. We implemented ROPA
in a system similar to the synthetic example used in (Krish-
namoorthy et al., 2018) (a gas-lift subsea oil well network).
Our paper confirmed the previous in-silico findings, show-
ing that ROPA has an economic performance similar to DRTO
in the system of interest without the need of optimizing the
plant transients. Therefore, ROPA becomes an interesting al-
ternative for systems that have optimal operation around a
steady-state, since it optimizes the system much more fre-
quently than SSRTO but does not require the solution of a
dynamic economic optimization like in DRTO.

As secondary contributions, we showed ROPA ability to
converge to the steady-state optimum in cases without signif-
icant plant-model mismatch, and present some guidelines for
its practical implementation. We believe that this latter con-
tribution moves ROPA closer to actual implementation, in-
creasing its potential industrial impact. Instead of emphasiz-
ing only the applied mathematics and advanced algorithms
of ROPA, we used domain knowledge about the small pilot-
scale plant in order to illustrate some decision that need to be
made regarding modeling, model parametrization, and ROPA

execution period.
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A. Extra details about SSRTO and DRTO
implementation on the rig

A.1. Steady-state RTO
The first step of the SSRTO implementation is the steady-

state detection (seeAlgorithm 2). We use the liquid flowrates
Ql,1, Ql,2, and Ql,3 as SS representative measurements. For
performing SSD, we carry out a linear regression over a data
window ofNSSD =40 s for each of themeasurements. Next,
we perform a hypothesis test (with �SSD = 95%) on the lin-ear models’ slope parameter, in which the null hypothesis is
that the slope is equal to zero. If the test fails to reject the null
hypothesis, the measurement is tagged as steady-state. We
consider that the system is at SS if all three measurements
pass the test. The results of one experimental run are shown
in Figure 12a. The linear regression method presented con-
sistent results in 3 independent runs as shown in Figure 12b.
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Figure 12: Steady-state detection procedure analysis

Despite not beingwidely used in practice (Cao andRhine-
hart, 1995), this SSD procedure is easy to tune. The tuning
parameter are the window length NSSD and the hypothesis
test power �SSD. From a practical point of view, SSD pro-
cedures with fewer tuning parameters are preferable, since
a poor tuning choice can significantly affect the statistical
foundation of the methods and, consequently, the SSRTO re-
sults (Quelhas et al., 2013).

A.1.1. Parameter Estimates
In Figure 13, we show the value of the profiles of the es-

timated parameter of two independent SSRTO runs. We can
see that the profiles are coherent and the variance of the esti-
mates is relatively low. In the plot, we can also see the reason
why we do not show the average values of the parameters in
Figure 10. Since the steady-state RTO execution times are
not the same in the two runs, using the average value for a
given time instant is irrelevant.
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Figure 13: Parameter profiles for two independent ssrto runs.
Run 2 was the one shown in Figure 10

A.2. Dynamic RTO
Note that, in Equation (9), we have an input movement

regulation term in the objective function, and a constraint
on the input movement. By adding both terms, we guaran-
tee smooth input profiles as seen in Figure 10c. However,
two extra parameters Δumax and R need to be tuned. The
former is easier to define given that it has physical meaning.
Finding proper values of R is more challenging. Besides,
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we want to assure that the chosen tuning yields a similar in-
put usage to the other approaches, which allows us to make
a fair comparison.

After a trial-and-error process, the values shown in Ta-
ble 2 are used. For checking the inputs usage, we calculate
the input changes ΔQg along one experimental run. We re-
peat the procedure for SSRTO and ROPA. We show the dis-
tribution of ΔQg for the three approaches in a box plot (Fig-ure 14). We see that input usage of the DRTO is in a similar
level similar to SSRTO and DRTO.
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Figure 14: Comparing the input usage of the three approaches.
The values indicate that both the input filter (ropa and ss-
rto) and the input regularization have similar performances.

B. Tuning parameters
Table 2 shows the tuning parameters used in the imple-

mentation of the three approaches. Refer to the codes avail-
able on our Github page4 for a complete overview of how
the methods are implemented. There, the methods are im-
plemented in a high-fidelity dynamic model (digital twin)
of the rig, where low level controller dynamics were also
included and the noise levels were tuned according to the
information obtained from the rig.

C. Model Parameter Estimation When Liquid
Fraction is Included
In Figure 15, we illustrate the effect of choosing a dif-

ferent estimable parameter set �. In this case, instead of es-
timating the top pressure valve coefficient, we included the
liquid fraction in the pipelines, �l, for each one of the wells
in the set �:

� = [�res,1, �res,2, �res,3, �l,1, �l,2, �l,3]T . (24)
Consequently, we did not need the model assumption re-

lated to the liquid ratio (i.e. the outlet flowrate liquid fraction
is equal to �l. Then, we ran the same test as in Figure 7. The

4https://github.com/Process-Optimization-and-Control/
ProductionOptRig

Table 2
Tuning parameters. Is indicates an identity matrix of size s.

Description Variable Value

Experimental rig sensors sampling time Ts 1 s

ropa

Execution periods ΔtROPA 10 s
ropa Input filter gain Ku 0.4

ekf parameters see Codes in Github

ssrto

ssd execution period ΔtROPA 10 s
ssd hypothesis test power �SSD 0.9

ssd measurement window length NSSD 40 s
ssrto Input filter gain Ku 0.4

Model adaptation weighting matrix V I6
drto

drto sampling time Tp 10 s
Prediction horizon Np 6

Input movement regulation R 0.01
Max input change Δumax 2 sLmin−1

top valve flow coefficients were set to a nominal value dur-
ing the test. First, there is a clear correlation pattern between
�res and �l of the same well. Secondly, some of the estimates
�l lie on the constraints. One could potentially set new val-
ues for the upper bounds; however, this test shows that the
chosen value has a large influence on the estimation of this
particular parameter set. Hence, it could be misleading to to
make claims about the physical meaning of �l if the boundsare not properly defined. On the other hand, the original set
led to estimates in the interior of the feasible parameter re-
gion and the bounds had no influence on them. As an extra
disadvantage of this estimable parameter set, the sampling
density of �̂l is truncated. Since it is positive on the feasi-
ble side, infinite on the constraint and zero on the unfeasi-
ble side, the computation of the covariance matrix becomes
challenging (Bard, 1974).
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Figure 15: 100 independent steady-state model adaptation runs using historical data. The histograms of the individual parameters
are plotted, with a red line indicating the mean. Also, we show the 2-dimensional distribution, analyzing two parameters at a
time. In these plots we also the average (red dot).
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