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Responsive to treatment individually, chronic migraine remains strikingly resistant collectively, incurring the second-highest popula-
tion burden of disability worldwide. A heterogeneity of responsiveness, requiring prolonged—currently heuristic—individual evalu-
ation of available treatments, may reflect a diversity of causal mechanisms, or the failure to identify the most important, single causal
factor. Distinguishing between these possibilities, now possible through the application of complex modelling to large-scale data, is
critical to determine the optimal approach to identify new interventions in migraine and making the best use of existing ones.
Examining a richly phenotyped cohort of 1446 consecutive unselected patients with chronic migraine, here we use causal multitask
Gaussian processmodels to estimate individual treatment effects across 10 classes of preventatives. Suchmodelling enables us to quan-
tify the accessibility of heterogeneous responsiveness to high-dimensional modelling, to infer the likely scale of the underlying causal
diversity. We calculate the treatment effects in the overall population, and the conditional treatment effects among those modelled to
respond and compare the true response rates between these two groups. Identifying a difference in response rates between the groups
supports a diversity of causal mechanisms. Moreover, we propose a data-driven machine prescription policy, estimating the time-to-
response when sequentially trialling preventatives by individualized treatment effects and comparing it to expert guideline sequences.
All model performances are quantified out-of-sample.We identify significantly higher true response rates among individuals modelled
to respond, compared with the overall population (mean difference of 0.034; 95% confidence interval 0.003–0.065; P=0.033), sup-
porting significant heterogeneity of responsiveness and diverse causal mechanisms. The machine prescription policy yields an esti-
mated 35% reduction in time-to-response (3.750 months; 95% confidence interval 3.507–3.993; P,0.0001) compared with
expert guidelines, with no substantive increase in expense per patient. We conclude that the highly distributed mode of causation
in chronic migraine necessitates high-dimensional modelling for optimal management. Machine prescription should be considered
an essential clinical decision-support tool in the future management of chronic migraine.
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Graphical Abstract

Introduction
Migraine presents a therapeutic paradox. It is the second
most disabling disease worldwide—first in the 15–50 age
interval—with enormous social and economic impact.1–4

Yet it is considered a treatable disease, responsive to a
wide array of readily administered, mechanistically diverse
interventions.5,6 How do we find ourselves losing a war
whose individual battles we are seemingly so well-equipped
to win?

Two polar possibilities arise, distinguished by migraine’s
currently unknown mode of causation. If its cause is uni-
tary—there is a necessary and sufficient mechanism common
to all patients—the response to current treatments may be
variable because their effect is collateral to the critical disease
process. Here, finding a new, universally effective agent is
theoretically possible, and its effect may be proven in an ad-
equately powered randomized trial.

Conversely, if its cause is distributed—there is no single
mechanism but a wide, heterogeneous field of interacting
causal factors—treatment variability may be explained by
varying correspondence between the chosen therapeutic
agent and the patient’s specific causal field.7 Here our task
necessarily complicates to identify not one but a family of
mechanisms—and therefore modifying agents—and cannot
be plausibly solved by any practicable set of conventional
trials, for the unknown fraction of a sample responsive to
any given treatment cannot be quantified without an over-
view of the treatment heterogeneity of the population as a
whole.

Reality may fall anywhere between these two extremes.
But in relying on randomized controlled trials, the currently
dominant approach to therapeutic innovation in migraine
excludes the second possibility entirely. It is, moreover, rad-
ically at odds with the widespread clinical impression of
treatment heterogeneity, and the established practice of

speculative, heuristic treatment, optimized by individual
feedback over many months.6

If a presumption is to be made, it is in favour of distribu-
ted, not unitary causation. But in the absence of widely ap-
plicable methods of studying complex distributed
causation, the distinction has been untestable. The recent ad-
vent of highly expressive, computationally assisted mathem-
atical models now allows us to investigate it empirically, and
to address two questions of major translational significance.

First, examining an unselected, consecutive, fully inclu-
sive, richly phenotyped cohort of 1446 patients with chronic
migraine, here we quantify the individualized treatment ef-
fects of major categories of prophylactic treatment, exploit-
ing causal multitask Gaussian processes models of proven
power to extract heterogeneous causal effects from high-
dimensional observational data.8 In the setting of unitary
causation, where individual variability to current agents
arises incidentally, there should be no marked difference be-
tween treatment effects evaluated across the population—
average treatment effects—and treatment effects evaluated
across the subpopulation identified to be susceptible—condi-
tional average treatment effects. Conversely, finding such a
difference would support the presence of distributed caus-
ation, reflecting consistent individual patterns of diverse
mechanistic susceptibility.

Second, if we find individual responsiveness to be deter-
minable, the order in which candidate agents are sequentially
evaluated in a patient could be objectively optimized. Here
we compare the theoretical benefit—quantified in
time-to-response—of such machine prescription against es-
tablished heuristic treatment policies, contextualized by esti-
mates of the treatment cost. If the substantial benefit is
observed, machine prescription ought to be preferred over
the current expert-driven approach to treatment selection.

To assure generalizability, we quantify all effects on
out-of-sample test data, unseen by the models in training.
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Moreover, our focus is on the general extent of achievable
treatment individuation and its impact, not the precise ob-
served rank of individual treatments, for our questions
seek to establish the correct causal framework in chronic mi-
graine, and the best use of existing evidence in guiding treat-
ment while we await further insight into the aetiology of this
complex disorder.

Materials and methods
Patients, interventions and outcomes
An unselected, consecutive, retrospective cohort comprising
all patients seen by one of the authors, a neurologist with
headache expertise (M.M.), at the secondary and tertiary
Headache Centre at the National Hospital for Neurology
and Neurosurgery, Queen Square, UK, from May 2007 to
September 2019 was examined. The inclusion criteria were
a diagnosis of chronic migraine and the availability of a
structured clinical phenotypic record completed according
to the template used at the clinic. Participants were not re-
quired to strictly fulfil the diagnostic criteria for chronic mi-
graine,9 but all exhibited the distinctive features of migraine
as a firm diagnosis. Patients with chronic migraine only con-
sidered a differential diagnosis or in cases where the diagno-
sis was unclear were excluded. All patients evaluated at the
Headache Centre routinely undergo a structured clinical
assessment, including comprehensive detailed phenotyping
and documentation of prior medical history. A proportion
undergoes further investigations, including imaging as

clinically indicated. Modelling incorporating brain imaging
is the subject of a subsequent report. The study population
characteristics are provided in Table 1.

The interventions modelled in this study were classed by
mode of action and included all preventive therapies for
which there were at least 100 adequately documented pa-
tient trials. The modelled therapeutic classes were
onabotulinumtoxinA, flunarizine, candesartan, serotonin
noradrenaline reuptake inhibitors (SNRI), topiramate, tri-
cyclic antidepressants (TCA), acupuncture, valproate, beta-
blockers and serotonergic agents (pizotifen and
methysergide). Treatment response for a therapeutic class
was defined as positive where more than 50% reduction in
the number of headache days across the last 3 months of
trialling was observed, and negative otherwise, by any agent
within the class, over an evaluation period of at least 3
months. A headache day was defined as a day when the pa-
tient was affected by headache for any part or whole of the
day, as per the international classification of headache disor-
ders third edition definition.9 Headache days were recorded
by patients prospectively on a paper headache diary and
evaluated by the neurologist. Treatment responses to
onabotulinumtoxinA were labelled as effective only if the
PREEMPT paradigm was followed, and a treatment effect
remained after the second set of injections, to account for
the known high placebo response.

A total of 1831 patients were eligible for inclusion. Of
those, 131 were excluded owing to diagnostic uncertainty,
and a further 269 owing to missing data for more than
10% of all features, leaving 1446 for analysis
(Supplementary Fig. 1).

Table 1 Study population demographics

All patients (n= 1446)
Fulfilling ICHD-3 criteria for
chronic migraine (n= 1096)

Gender female, n (%) 1042/1445 (72.1) 834/1096 (76.1)
Age, mean (SD) 41.4 (14.6) 40.8 (14.7)
Headache frequency in days/month, mean (SD) 25.4 (7.6) 26.9 (5.3)
Exacerbation intensity, mean (SD) 8.2 (1.3) 8.2 (1.2)
Pain laterality
Only unilateral, n (%) 393/1434 (27.4) 272/1090 (25.0)
Only bilateral, n (%) 565/1434 (39.4) 405/1090 (37.2)
Unilateral and bilateral, n (%) 476/1434 (33.2) 413/1090 (37.9)

Throbbing headache, n (%) 796/1394 (51.1) 653/1068 (61.1)
Motion sensitivity, n (%) 1215/1446 (84.0) 1016/1096 (92.7)
Nausea and/or vomiting, n (%) 1079/1446 (74.6) 945/1096 (86.2)
Photophobia, n (%) 1090/1446 (75.4) 944/1096 (86.1)
Phonophobia, n (%) 1133/1446 (78.4) 955/1096 (87.1)
Aura, n (%) 494/1446 (34.2) 452/1096 (41.2)
Cranial autonomic symptoms, n (%) 819/1446 (56.6) 680/1096 (62.0)
1–2, n (%) 516/1446 (35.7) 422/1096 (38.5)
3–4, n (%) 219/1446 (15.1) 186/1096 (17.0)
.5, n (%) 84/1446 (5.8) 72/1096 (6.6)

Family history of migraine, n (%) 817/1366 (59.8) 671/1054 (63.7)
Total follow-up time, person-days 690 197 — 497 060 —

Follow-up time in days, median (IQR) 135 (0–652) 119 (0–561)
Migraine prophylactics tried, median (IQR) 4 (2–6) 4 (2–7)
Effective migraine prophylactics, median (IQR) 1 (0–1) 1 (0–2)

SD, standard deviation; IQR, interquartile range; ICHD-3, international classification of headache disorders third edition.
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Data acquisition and data
management
Data were collected through automated extraction of the
Microsoft Word template-based structured clinical record
employed by the Headache Centre. Standard natural lan-
guage processing techniques such as string matching with
regular expressions and grammatical decomposition were
used. One of the authors (A.S.) reviewed the complete re-
cords of a held-out subset of 60 patients and manually ex-
tracted and plotted all features to serve as a comparison to
the automated data extraction. Accuracy against manual ex-
traction from the held-out subset was 90.73%.Note that this
processing was performed for service optimization purposes
whollywithin the clinical digital environment; all subsequent
analysis was performed on data from which all identifiers
had been removed.

Categorical and continuous variables were converted to a
continuous interval scale. All other features were binarized
as present or absent. Supplementary Table 1 outlines details
on all included features and outcomes. Subjects with missing
data for more than 10% of the features were removed from
the dataset. The mean and standard deviation were used for
precision and variance estimates in cases of normal distribu-
tion; the median and interquartile range were used other-
wise. Normality assumptions were based on visual
inspection of histograms and the Shapiro–Wilk test for nor-
mality. Effect estimates were reported with 95% confidence
intervals (CI). The significance level was set to α= 0.004
after Bonferroni correction for 14 comparisons (0.05/14=
0.004) in the prescriptive modelling, and the conventional
0.05 in the individualized treatment effect modelling.

Modelling and statistical analysis
Individualized treatment effect modelling
We randomly split the dataset into three stratified subsets:
training, validation and test, the last providing a held-out,
out-of-sample definitive benchmark of performance. The
partitions were kept separate and created with the following
ratios: 4:1 training to test and within the training set, 4:1
training to validation (Supplementary Fig. 1). Missing data
were imputed with a probabilistic principal component ana-
lysis imputer based on the training dataset, and the data were
scaled.

To model individualized treatment effects, we implemented
a causal multitask Gaussian process model.8 The model has
been validated to be capable of inferring individualized treat-
ment effects from observational data, accounting for a non-
random distribution of the treatment factor. The model learns
from the high-dimensional array of features (in our case, head-
ache phenotype and comorbidities) to infer treatment effects.
Treatment effects may be interpreted as the theoretical differ-
ence in response (here defined as≥50% reduction in headache
frequency) when exposed to a treatment versus not exposed to
a treatment. In the implementation of the model, two different
interventions are compared, and by learning from the training

data, the model can predict treatment effects in unseen data at
the individual level—i.e. individualized treatment effects. The
model was trained and optimized using the training and valid-
ation subsets. The discounted cumulative gain was used as a
scoringmetric to evaluate the choice of kernel hyperparameters
(SupplementaryTable2).Thebestperformingmodel in theval-
idation set was finally evaluated on the out-of-sample test set.

We made pairwise comparisons between all prophylactic
intervention classes giving individualized treatment effects
for each intervention compared with each of the others.
Each patient’s individualized treatment effect for an inter-
vention class was calculated as the mean of all pairwise ef-
fects including that class. Thus, we arrive at a modelled
individualized treatment effect for all intervention classes
for each patient. We calculate the average treatment effects
—i.e. the estimated population treatment effect inferred
from the Gaussian process model—as the median and inter-
quartile range of individualized treatment effects for each
intervention class. We also report the median and interquar-
tile range of the mean of individualized treatment effects
across all pairwise comparisons to provide descriptive in-
sample and out-of-sample average treatment effect estimates
for each intervention class (Supplementary Fig. 2).

Next, we defined a conditional subgroup consisting of the
patients whose modelled individualized treatment effect was
above the median (owing to skewed data). By calculating the
average treatment effect similarly as above for the condition-
al subgroup, we derive the conditional average treatment
effect—i.e. each intervention class’ average treatment effect
among those predicted by the model to respond. We then
compare the conditional true treatment effect (the true re-
sponse rate captured from headache diaries in the condition-
al subgroup) with the overall true treatment effect using a
one-sample t-test of the differences across all intervention
classes and report the mean difference with a 95% CI.
Finally, we estimate the validity of the machine prescription
by calculating the 10-fold cross-validated accuracy of a logis-
tic regression model using the predicted individualized treat-
ment effects as the independent variable and the true
response as the dependent variable. A logistic regression
model was deemed as most suited as there was only one con-
tinuous independent variable (predicted individualized treat-
ment effect) and one binary dependent variable (response or
no response).

Impact and prescriptive modelling
To model the impact of machine prescription, we implemen-
ted the following strategy: the individualized treatment ef-
fects were used to rank the preventative therapies from
highest to lowest probability of response for each individual
patient. From this, we ascertained the proportion of patients
having tried in reality their top three predicted treatments.

Further, given a patient and a sequence of agents ordered
according to their response probabilities—i.e. individualized
treatment effects—from highest to lowest, p1, p2, p3 … p10,
we calculated the probability of arriving at a treatment suc-
cess after a given number of failed treatments, delivered in
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the optimal predicted sequence, as follows:

P X{ = k
} = p1, k = 0

P{X = k} = (1− p1)( p2), k = 1

P{X = k} = (1− p1) . . . (1− pk)( pk+1), k ≥ 2

whereX denotes the number of independent failures before a
success (at trial k+ 1). Given treatment success at trial k+ 1,
we are able to calculate the expected number of months in
pain (i.e. months with failed treatments) before completion
of a successful treatment trial as

(k+ 1)× t× P{X = k}

for eachpatient atk= 0,k= 1,k= 2…k= 9.Here t equals the
necessary time to evaluate a treatment trial which was defined
as 3 months for all treatments except onabotulinumtoxinA
which was 6 months. This gives a population distribution of
the number of months to completion of a successful treatment
trial, allowing us to estimate time-to-response given different
sequences of intervention trialling.

We then aimed to evaluate the optimal predicted sequence
of intervention trialling to other possible sequences. We
compared the population distribution given by the
Gaussian processmachine prescription to the population dis-
tribution given by ranking by different guideline and expert
recommendations,10,11 following a random sequence, and
ordering treatments by increasing costs. We constructed a
series of sequences to reflect different available guidelines
and expert opinions. Guideline recommendation 1 sequence
was constructed by picking three random of the evidence-
based oral preventives suggested in at least one guideline
(TCA, SNRI, betablockers, candesartan, topiramate, valpro-
ate and flunarizine) followed by onabotulinumtoxinA.10

Guideline recommendation 2 sequence was based on picking
two random among betablockers, candesartan, TCA and
SNRI, followed by one random of topiramate, valproate
and flunarizine, followed by onabotulinumtoxinA.11 The
National Institute for Health and Care Excellence guideline
sequence was based on the recommendation of trying each
of betablockers, topiramate and TCA (order not specified),
followed by onabotulinumtoxinA. The expert panel se-
quence was based on an aggregate of 23 UK headache specia-
lists asked to order the treatments based on a general
understanding of efficacy and adverse events
(Supplementary Table 3). The random sequence was created
from the mean at each timepoint k0, k1, k2 … k9 of a Monte
Carlo simulation with 1000 realizations, i.e. 1000 random
sequences. For the machine prescription, we also restricted
onabotulinumtoxinA to be the fourth trialled treatment to
mitigate bias from the difference in evaluation period
between onabotulinumtoxinA and other treatments. A two-
tailed t-test was used to compare the population distribu-
tions of time-to-response, reporting the mean difference
with 95% CI.

Using the British National Formulary price tariffs, we de-
rived estimates of individual treatment-related expenses in
pound sterling. We then compared the optimal machine pre-
scription sequence of intervention trialling to sequences or-
dered by treatment costs. Moreover, we reported the
difference in expenses defined as the sum of the n top predicted
trials subtracted from the sum of the n actual trials, where n is
the number of trials. We reported estimates for the lowest and
highest available price tariffs (Supplementary Table 4).

We also conducted a sensitivity analysis on sub-strata of
severely affected patients versus less severely affected pa-
tients comparing machine prescription to the guideline rec-
ommendation 1 sequence. We reiterated the individualized
treatment effect and impact analysis on two sub-strata of
the population. The first strata consisted of patients with at
least 25 headache days/month and a headache intensity of
9 or higher. The second strata consisted of patients with
,25 headache days/month and headache intensity below 9.

Data availability
The minimum dataset required to replicate this study con-
tains personal data and is not publicly available. The code
used in this study is available upon reasonable request to
the authors.

Results
Individualized treatment effects
The out-of-sample modelled average treatment effects ran-
ged from 0.44 (interquartile range 0.33–0.56) to 0.06 (inter-
quartile range 0.04–0.09). The out-of-sample modelled
conditional average treatment effects ranged from 0.56
(interquartile range 0.48–0.65) to 0.09 (interquartile range
0.08–0.11). OnabotulinumtoxinA had the largest
out-of-sample treatment effects, followed by flunarizine,
candesartan, SNRI, topiramate, TCA, acupuncture, valpro-
ate, betablockers and serotonergic agents.

Out-of-sample comparison of the true treatment effect
across the population to the conditional true treatment effect
within the subpopulation of predicted responders for each
treatment class showed a mean difference of 0.034 (95%
CI 0.003–0.065; P= 0.033) in favour of the latter (Fig. 1).
This discrepancy was greatest for flunarizine, serotonergic
drugs and valproate. The accuracy of validating the mod-
elled individualized treatment effects compared with true
treatment effects was consistently high (0.731+ 0.103).
Table 2 outlines modelled average treatment effects, mod-
elled conditional average treatment effects and true treat-
ment effects for all intervention classes.

Machine prescription and its impact
Out of the 253 patients included in the test set, 85 (33.6%)
had tried their model predicted best treatment, 140
(55.3%) patients had tried at least one of their top two
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treatments and 170 (67.2%) had tried at least one of the top
three treatments.

Sequentially evaluating treatments by machine prescrip-
tion resulted in arriving at a successful treatment in signifi-
cantly fewer months than administering treatments in
order by generic guideline recommendations (−3.750
months; 95% CI −3.993 to −3.507; P,0.0001), or indeed
any other justifiable order, including experienced clinician
rankings (Fig. 2 and Supplementary Table 5). The best treat-
ment policy did not differ from randomly evaluating therap-
ies. Finally, the average additional 3-monthly cost for
machine prescription was −£2 for low drug tariff estimates
and £1 for high drug tariff estimates.

In the sensitivity analyses, reduction in time-to-response
was −3.782 months (95% CI −4.574 to −2.990; P,

0.0001) in the high-severity strata; and −3.343 months
(95% CI −4.860 to−1.825, P, 0.0001) in the low-severity
strata (Table 3).

Discussion
Surveying a chronic migraine population among the largest
and most finely phenotyped in the literature, here we show
treatment heterogeneity to be robustly predictable from
high-dimensional causal modelling of routinely collected
clinical data. This finding supports a complex, distributed
underlying mode of causation in chronic migraine, and sug-
gests that neither the pursuit of a unitary causal mechanism,
nor the evaluation of treatment effects within conventional
randomized controlled trials is likely to be productive.
Rather, deeper characterization of patient heterogeneity is
likely to be needed, through modelling richer additional fea-
tures, such as imaging, physiological and genetic data12–18 at
larger data scales, illuminating the wide causal field of fac-
tors that clearly underpins this complex disorder.

We show further that current treatment policy guidelines
yield broadly the same time-to-response as chance. This is

Figure 1 Individualized treatment effects. Violin-plot representing modelled individualized treatment effects for overall out-of-sample data
(the left violin of each pair) and the conditional subgroup predicted to respond (the right violin of each pair) of the 253 subjects included in the test
set. Individualized treatment effects are estimated using a causal multitask Gaussian process model for all modelled intervention classes. The two
rightmost violins represent the overall discrepancy between modelled treatment effects and modelled conditional treatment effects, with a mean
difference of 0.034 (95% CI 0.003–0.065; P= 0.033) in favour of the latter. Recall that this observed discrepancy in treatment effects, reclaimed in
the true treatment effects, supports highly heterogenous treatment responsiveness and distributed mode of causation. SNRI, serotonin
noradrenaline reuptake inhibitors; TCA, tricyclic antidepressants.
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Table 2 Treatment effects

Intervention class (n)

Modelled average
treatment effect
(interquartile

range)

Modelled
conditional average
treatment effect
(interquartile

range)

Overall true
treatment

effect (overall
response rate)

Conditional true
treatment effect
(response rate in

conditional
subgroup)

Accuracy of 10-fold
cross-validated logistic

regression of predictions
compared with true
outcomes (standard

deviation)

Botulinum toxin (111) 0.44 (0.33–0.56) 0.56 (0.48–0.65) 0.47 0.51 0.53 (0.03)
Flunarizine (42) 0.31 (0.23–0.42) 0.42 (0.35–0.49) 0.64 0.76 0.64 (0.11)
Candesartan (25) 0.27 (0.15–0.41) 0.42 (0.36–0.47) 0.16 0.17 0.87 (0.16)
Tricyclic antidepressants (185) 0.22 (0.14–0.32) 0.32 (0.25–0.41) 0.31 0.35 0.69 (0.02)
Valproate (68) 0.17 (0.14–0.32) 0.29 (0.20–0.36) 0.26 0.32 0.74 (0.05)
Topriamate (121) 0.16 (0.10–0.27) 0.27 (0.20–0.33) 0.29 0.28 0.71 (0.04)
Serotonin noradrenaline
reuptake inhibitors (66)

0.16 (0.13–0.22) 0.22 (0.20–0.30) 0.29 0.33 0.71 (0.05)

Acupuncture (74) 0.13 (0.10–0.19) 0.19 (0.16–0.28) 0.28 0.24 0.72 (0.03)
Betablockers (146) 0.11 (0.06–0.18) 0.18 (0.14–0.34) 0.14 0.16 0.86 (0.02)
Serotonergic (55) 0.06 (0.04–0.09) 0.09 (0.08–0.11) 0.16 0.22 0.84 (0.06)

The table shows for each class of migraine prophylactics the out-of-sample modelled average treatment effect; the out-of-sample modelled conditional average treatment effect; the
out-of-sample overall and conditional true treatment effect (true response rates) and the accuracy of a logistic regression fitting the modelled individualized treatment effects to the
true response. Although the magnitude of the absolute increase in true treatment responders in the conditional subgroups may seem small, viewing these figures in light of the already
small treatment effects highlights the significance of the difference. Moreover, the high accuracy of the regression models validates the generalizability of the findings.

Figure 2 Time-to-response given different strategies to decide sequence of evaluating treatments. Each violin represents the
distribution of estimated time-to-response for all 253 subjects in the test dataset given different sequences of sequentially evaluating therapies.
The population time-to-response using machine prescription was compared with other treatment evaluation strategies using a two-tailed t-test.
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consistent with the widespread belief among clinicians that
the individual selection of optimal treatment based on a small
subset of individual patient factors is very difficult,6 a belief
reinforced by expert panel rankings of treatments
(Supplementary Table 3). By contrast, machine prescription
offers a significantly shorter time-to-response,with a substan-
tial mean effect size exceeding 3 months—equating to a 35%
reduction. Crucially, better treatment is here achieved with-
out a marked increase in cost, or plausibly greater risk of
side-effects,19,20 and without substantial variability across
different severity strata. Close consideration must clearly be
given to adopting the approach at scale, for the balance of
risks and benefits is here heavily weighted in our favour.

It may seem premature to draw so general a set of conclu-
sions from a single centre, tertiary referral population, even if
this is one of the largest reported in the literature. But it is
crucial to appreciate that all inferences are here drawn
from out-of-sample test data, indicating generalizability be-
yond the training data. Moreover, if a marked discrepancy
between individual and population responsiveness is robust-
ly identified within a comparatively small population with
lower levels of heterogeneity than are observed in wider
care, a larger-scale analysis can only magnify it. This is be-
cause the tractability of patterns of heterogeneity can only
be enhanced with data of greater scale and inclusivity.
Indeed, our analysis invites replication with primary care
data which we here show can be readily performed automat-
ically with structured clinical records. The objective of this
study is less to derive a set of specific models than to illustrate
the optimal way of approaching machine prescription in mi-
graine, given its manifest complexity.

Though a small proportion of patients did not fulfil strict
diagnostic criteria, theywere judgedbyanexpert headache spe-
cialist to have chronic migraine, and our population demo-
graphics overall are in line with other large chronic migraine
cohorts.21,22 Such patients should, and generally would, be
treated as chronic migraine in real-world practice, and exclud-
ing themwould limit rather thanenhancegeneralizability to the
wider population. Without objectively determinable aetio-
logical criteria, all classification is in any event heuristic. That
the conclusions here apply to a slightly broader population
does not make them invalid: it extends their reach.

Finally, though allocation bias inevitably corrupts obser-
vational studies, in the context of heterogeneous treatment
effects clearly exemplified here, it is only one contributory
factor to the fidelity of the inference, and becomes increas-
ingly secondary to the quality of the outcome model as the
scale of available data rises.23 In any event, a multi-agent
randomized controlled trial is obviously infeasible here,
and evaluatedwith conventional statistics would be critically
confounded by the individual level, high-dimensional pat-
terns of treatment responsiveness we have already
demonstrated.

Conclusion
Our analysis of a large and richly characterized dataset of
chronicmigraine phenotypes demonstrates—not only the va-
lue—but also arguably the necessity of high-dimensional
modelling in the management of migraine. We develop and
evaluate a causalmodel of commonly used anti-migraine pre-
ventives that demonstrate both the distributed mode of caus-
ation, and the feasibility of machine prescription at the
individual level. We conclude that the application of high-
dimensional modelling to prescribing is a critical step to-
wards reducing the massive global burden of migraine
through realizing the personalized, precisionmedicine this re-
markably complex condition demands.
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