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Abstract

Introduction: Replicability has become an increasing focus within the scientific communities with the ongoing
‘‘replication crisis.’’ One area that appears to struggle with unreliable results is resting-state functional magnetic
resonance imaging (rs-fMRI). Therefore, the current study aimed at improving the knowledge of endogenous
factors that contribute to inter-individual variability.
Methods: Arterial blood pressure (BP), body mass, hematocrit, and glycated hemoglobin were investigated as
potential sources of between-subject variability in rs-fMRI, in healthy individuals. Whether changes in resting-
state networks (rs-networks) could be attributed to variability in the blood-oxygen-level-dependent (BOLD)-
signal, changes in neuronal activity, or both was of special interest. Within-subject parameters were estimated
by utilizing dynamic-causal modeling, as it allows to make inferences on the estimated hemodynamic
(BOLD-signal dynamics) and neuronal parameters (effective connectivity) separately.
Results: The results of the analyses imply that BP and body mass can cause between-subject and between-group
variability in the BOLD-signal and that all the included factors can affect the underlying connectivity.
Discussion: Given the results of the current and previous studies, rs-fMRI results appear to be susceptible to a range of
factors, which is likely to contribute to the low degree of replicability of these studies. Interestingly, the highest degree
of variability seems to appear within the much-studied default mode network and its connections to other networks.

Keywords: blood pressure; BMI; dynamic-causal modelling; glycated hemoglobin; hematocrit; resting-state
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typical way of using DCM, but also by analyzing the underlying hemodynamic parameters, we were able to explore the un-
derlying vascular dependencies in a much broader perspective. Our results challenge the premise for studying changes in the
default mode network as a clinical marker of disease, and we add to the growing list of factors that contribute to resting-state
network variability.

Introduction

When studying the resting brain by utilizing resting-
state functional magnetic resonance imaging (rs-

fMRI), the brain’s energy consumption is measured as the
participant is resting in an MR-scanner (Biswal et al.,
1995). This activity fluctuates in a range below 0.1 Hz, and
it is hypothesized to support communication among neurons
in the absence of a specific task (Biswal et al., 1995; Raichle
and Mintun, 2006). The measured time-series of the fluctua-
tions can further be analyzed and organized into fairly con-
sistent resting-state networks (rs-networks) (Allen et al.,
2011).

Resting-state networks

The growth of rs-fMRI studies over the past decades can, in
part, be explained by the discovery of a consistent, function-
ally connected pattern of distributed brain regions as a persis-
tent network of ‘‘deactivation.’’ The activation of this default
mode network (DMN) ceases when a goal-directed or
attention-demanding behavior or task is initiated (Raichle
et al., 2001). Although there is no unified view of the function
of the DMN as of yet, it has been postulated to support a ‘‘de-
fault mode’’ of the brain when an individual is awake and
alert, but not actively involved in a task (Raichle et al., 2001).

Others have suggested the DMN to be involved in a self-
referential and introspective state (Greicius et al., 2003;
Singh and Fawcett, 2008), involved in mediating the pro-
cesses where one, for example, retrieves memories, plans
for the future, or processing of one’s own impressions and
feelings (Buckner et al., 2008).

As the DMN is ‘‘deactivated’’ when a cognitive task is per-
formed, the activation of the central executive network (CEN)
is increasing, and the anti-correlation between the DMN and
the CEN has been shown to increase with the degree of task
difficulty (Fox et al., 2005). The CEN is a task-related net-
work, and it is believed to be involved in the manipulation
and maintenance of information in working memory (Bressler
and Menon, 2010; Toro et al., 2008). It is further postulated to
be involved in decision making in goal-directed behavior, at-
tention, response inhibition, and other executive functions,
which qualitatively separates it from the DMN (Bressler and
Menon, 2010; Koechlin and Summerfield, 2007).

The salience network (SN) is involved in the bottom-up de-
tection of salience, by directing attention and memory resources
to salient events. It has been shown to play a mediating role in
the up- and downregulation of the DMN and the CEN (Srid-
haran et al., 2008), as a possible link between stimulus-driven
processing and monitoring the internal environment of the
brain and body (Craig, 2009; Menon and Uddin, 2010).

Endogenous sources of variability in rs-fMRI

Despite its recent rise in popularity, the results of rs-fMRI
seem to show between- and within-subject variability with a

variety of endogenous and exogenous factors (Specht, 2019).
Given that the blood-oxygen-level-dependent (BOLD)-
signal measured with fMRI is merely related to neuronal ac-
tivity, and actually arises from a combination of changes in
cerebral blood flow (CBF), cerebral blood volume (CBV),
and oxidative metabolism to meet the energy demands of
the active brain (Gauthier and Fan, 2019), other factors
that can contribute to changes in CBF and CBV, for example,
arterial blood pressure (BP), body mass and fat, and the ve-
locity of the blood, might impact the BOLD-signal, and in
turn the rs-fMRI results (Buxton et al., 1998).

Several mathematical models of the hemodynamic re-
sponse have been proposed to better understand and make
predictions about the intricate relationship between neuronal
and hemodynamic responses. Among these are the non-
linear Balloon model (Buxton et al., 1998), which treats
the venous compartments as a balloon that inflates due to in-
creased CBF. The CBV therefore increases, and as a conse-
quence deoxygenated hemoglobin (dHb) is released at a
faster rate. In turn, this affects the BOLD-signal, essentially
prolonging it (Buxton et al., 2004). Factors that can affect
CBV and CBF, such as body mass index (BMI) and BP,
are put forward in the model as affecting the BOLD-signal
(Buxton, 2012).

In addition to possibly affecting the BOLD-signal dynam-
ics, some studies also imply that the connectivity between
and within rs-networks can change with several endogenous
factors. The relationship between BP and connectivity in the
rs-networks, in normotensive individuals, has, to the best of
the authors’ knowledge, not been investigated. However,
several studies have been conducted on individuals with hy-
pertension, employing both rs-fMRI, rat models and func-
tional near-infrared spectroscopy (Bu et al., 2018;
Carnevale et al., 2020; Huang et al., 2016).

Hematocrit (HCT) levels have been associated with re-
gional differences in functional connectivity. Regions asso-
ciated with the DMN, the CEN and the SN, namely the
anterior cingulate cortex (ACC), and the medial prefrontal
cortex (mPFC), the intraparietal sulcus, the insula, and the
opercular cortex, have been found to show between-subject
variation with HCT levels (Yang et al., 2015). Yang and col-
leagues (2015) rightly point out that it is unclear whether these
differences are due to neuronal or non-neuronal variation.

Some studies have found higher BMI to be related to de-
creased within-network connectivity of the DMN, the CEN
and the SN, as well as increased between-network connectiv-
ity (Chao et al., 2018; Doucet et al., 2017; Sadler et al.,
2018). However, the regions included in these studies, as
well as the results, vary. Still, several of the authors hypoth-
esize that higher BMI is linked to changes in networks that
balance sensory-driven and internally guided states (the
CEN and the DMN, respectively), a role often attributed to
the SN. This might lead to weight gain as a consequence
of poorly regulated eating behavior (Doucet et al., 2017;
Sadler et al., 2018).
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Glycated hemoglobin (HbA1c) and changes in rs-fMRI
connectivity have been studied by comparing pre-diabetic
or diabetic individuals (HbA1c 5.7–6.4) with healthy indi-
viduals (Sadler et al., 2019). Similar to the conclusions
drawn from the previously mentioned BMI results, the au-
thors discuss whether differences between groups are associ-
ated with differences in self-control; the functional
connectivity pattern of the healthy individuals shows stron-
ger functional connectivity between a ventral attention net-
work and a cingulo-opercular network (including regions
of the SN [insula] and the CEN [DLPFC]), whereas the func-
tional connectivity pattern of prediabetic individuals has
been found to be stronger between the ventral attention net-
work, a visual and a somatosensory network.

However, as compared with the results for BMI, no differ-
ence in DMN activity was observed (Sadler et al., 2019).
Individuals with type 2 diabetes mellitus have also been
found to exhibit weaker functional connectivity in the right
insula (region within the SN), and from the right insula to
the bilateral superior parietal lobule, compared with healthy
individuals (Liu et al., 2017).

The replication crisis in the field of rs-fMRI

As BP, HCT, BMI, and HbA1c possibly affect cerebral
hemodynamics, which could affect and disturb the BOLD-
signal, it is uncertain whether the previous results on func-
tional connectivity really represent changes in neuronal
activity. If the results can be ascribed to changes in cerebral
hemodynamics, the results mentioned earlier might have
been wrongly attributed to changes in neuronal activity. In
effect, rs-variability relates to the ongoing replication crisis
in the field of psychological and medical research.

Several studies indicate that rs-fMRI studies seem to pro-
duce highly unreliable results, showing within- and between-
subject variability with a range of different endogenous and
exogenous factors. These include the time of year and the
time of day, circadian rhythm, sleep duration, prior events,
mood, age, and gender, to mention only a few (Agcaoglu
et al., 2015; Choe et al., 2015; Curtis et al., 2016; Goldstone
et al., 2016; Harrison et al., 2008; Hodkinson et al., 2014;
Waites et al., 2005). Arguably, these findings give rise to
skepticism about the rs-networks presumed stability (Specht,
2019).

Toward higher replicability within the field of rs-fMRI

To further increase the knowledge on between-subject
variability in the rs-networks of healthy individuals, the ef-
fects of BP, HCT, BMI, and HbA1c were investigated in
this study. A research procedure that allows for functionally
separating the BOLD-signal variation that can be attributed
to hemodynamics, and the BOLD-signal variation that can
be attributed to neuronal activity, was considered as highly
relevant: First, if some of the variation ascribed to variance
in functional connectivity might, in fact, be attributable to
hemodynamic variance, the conclusions drawn from func-
tional connectivity studies might be flawed.

Second, if the variables cause variability in both the hemo-
dynamic and neuronal parameters of the BOLD-signal, it
would imply that at least some of the variation in the hemo-
dynamic parameters should be accounted for when drawing
conclusions on connectivity. Third, if all of the potentially

observed variability can be ascribed to the neuronal parame-
ters of the BOLD-signal, it could potentially confirm previ-
ous studies on rs-connectivity. And finally, a study that
aims at ascribing the potential variability caused by some en-
dogenous factors to either the hemodynamic response inde-
pendently of neuronal activity, or the neuronal activity in
rs-networks, has not previously been conducted.

The current study aimed at investigating the between-
subject variability that BP, HCT, BMI, and HbA1c might
cause in large scale rs-networks, as well as the between-
group variability potentially caused by BMI, in a healthy
population. The overarching implications of the current
study relate to the ongoing replication crisis and what mea-
sures can be taken to ensure more reliable results in the
fast-growing field of rs-fMRI, essentially facilitating more
reliable results for future studies.

Hypotheses

Increased BP, BMI, HbA1c, and HCT can affect the rate
at which oxygenated hemoglobin (oHb) is being utilized in
the capillaries and dHb is transported to the veins, affecting
the response from the venous compartments, given the
Balloon model of the BOLD-signal (Buxton et al., 1998).
It was hypothesized that increased BP, BMI, and HbA1c
will weaken the BOLD-signal (H1, H2, H3, respectively), as
higher BP can represent increased segmental vascular resis-
tance, and increased BMI can decrease the CBV, as a non-
linear negative correlation has been found for body weight
and blood volume (Lemmens et al., 2006).

As BMI affects CBV, it is included in the Balloon model, as
a factor that might affect the BOLD-signal (Buxton et al.,
1998). Given the assumed correlation between BMI (and
body fat) and HbA1c (Iso et al., 1991; Lalande et al., 2010),
we predict the same relationship for HbA1c, namely weakened
BOLD-signal with increased HbA1c scores. Increased HCT
scores, on the other hand, was hypothesized to strengthen the
BOLD-signal (H4). HCT is an indicator of the amount of Hb
available and the blood’s capacity to transport O2.

When HCT is low, the blood will lose some of its ability to
transport O2; however, when HCT is high, the blood is able
to transport more O2 (González-Alonso et al., 2006). Studies
on the relationship between baseline HCT and the BOLD-
signal have found it to be contributing to the degree of
BOLD-activation (Levin et al., 2001; Xu et al., 2018; Zhao
et al., 2007). These studies implicate a positive relationship
between the BOLD-signal activation and HCT levels, specif-
ically in men, in task-based fMRI.

Further, some hypotheses for the neuronal parameters
were postulated based on the literature described in the
‘‘Endogenous Sources of Variability in rs-fMRI’’-section.
As we are not aware of any studies on the relationship between
BP and rs-network connectivity, no hypothesis was made for
this relationship. For HCT, it was hypothesized that increased
HCT values would weaken the internal connectivity of the
DMN, the CEN and the SN (H5). As no study, to the best of
our knowledge, has investigated the relationship between
HCT values and between-network connectivity, specific pre-
diction was not made for this relationship.

Previous results with regards to changes in connectivity
associated with BMI are, as mentioned, varied, in terms of
both included networks and their results. However, the
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most often found, and therefore the presumably most robust,
result from the literature indicates that increased BMI is as-
sociated with a weakening of the SN; the network is associ-
ated with balancing sensory-driven and internally guided
states (the CEN and the DMN, respectively).

This result is often accompanied with a weakening of the
internal connectivity of DMN and a strengthening of the con-
nectivity between these two networks. It is, therefore, hy-
pothesized that increased BMI will weaken the internal
connectivity of the DMN and the SN, while strengthening
the between-network connectivity (H6).

For HbA1c, no alterations in the DMN have been observed
with increased (prediabetic/diabetic) HbA1c values. How-
ever, a weakening of the SN and the CEN has been indicated
by previous studies. In healthy individuals, a strengthening
of between-network connections for regions within the SN
and the CEN has been found, which was not observed in pre-
diabetic individuals. It is therefore, finally, hypothesized that
increased HbA1c values will weaken the internal connectiv-
ity of the SN and the CEN, and weaken the between-network
connectivity (H7). However, the relationship might not be as
evident from the current study, as only healthy individuals’
HbA1c scores will be compared.

To investigate these hypotheses, a hierarchical between-
subject and between-group (based on BMI) design was cho-
sen, based on the parameters from a cross-spectral density
dynamic-causal modeling (csd-DCM) analysis. Generally
speaking, DCM is a generative model that infers on hidden
neuronal states and activity given the measured fMRI signal
(Friston, 2009). For rs-fMRI, this framework has recently
been extended to infer on effective connectivity, by parame-
trizing the spectral characteristics of the neuronal fluctua-
tions (Friston et al., 2014; Razi et al., 2015).

Such a csd-DCM is superior to other methods in this con-
text, since it allows to separately examine the individual
parameters of the hemodynamic response, effective connec-
tivity, csd parameters a (amplitude) and b (density of the
neural fluctuations), and free energy (model evidence), and
their relationship to the endogenous factors BP, HCT,
BMI, and HbA1.

Methods

A large sample of healthy young subjects were studied, to
give indications of variability within a normal population,
and to ensure the study’s statistical power. After ethical and
practical considerations, previously collected data from the
Human Connectome Project (HCP) were considered sufficient
to answer the research question. Information on the subjects
and the data collection protocols are available online, allowing
transparency and insight into the potential advantages and dis-
advantages of the data used (Van Essen et al., 2013).

Subjects

The data used in the current study stem from the HCP
S1200 release, which consists of data from healthy subjects
from families with twins, born in the Missouri area (U.S.)
and ranging from 22 to 35 years of age (Van Essen et al.,
2013). A subsample (N = 594) was semi-randomly chosen
on the basis of an equal distribution of gender and age, as
a part of a study on time-of-day effects on rs-fMRI effective
connectivity and hemodynamic response.

Therefore, the participants were also equally distributed
throughout the day, in terms of scanning times (from 09.00
to 21.00) (for details, see Vaisvilaite et al., 2021). Individuals
with diabetes and high BP were excluded from the HCP data
collection ‘‘as these might negatively impact neuroimaging
data quality.’’ However, subjects with undiagnosed high
BP and diabetes kept under control by means of diet were in-
cluded in the study.

The study sample (N = 594) was similar to the total HCP
sample (N = 1206) in terms of BP, HCT, BMI, and HbA1c,
in addition to having a similar distribution of gender and
age: full sample (N = 1206; female = 656, male = 550, mean
age = 28.8; SD = 3.6), study sample (N = 594, female = 310,
male = 284, mean age = 28.8; SD = 3.6). For more information
on recruitment, inclusion and exclusion criteria, protocols for
the data collection, and image acquisition for the MR-scans,
please see Uğurbil and colleagues (2013) and Van Essen
and colleagues (2012, 2013). This study was approved by
the regional ethics committee for medical research.

Image processing

The current study utilized the minimally pre-processed
HCP data (HCP Minimal Pre-processing Pipeline); for
more information please see Glasser and colleagues (2013).
All further processing was performed within SPM12 in MAT-
LAB and included smoothing with a 6 mm full width at half
maximum Gaussian kernel and denoising, before extracting
the time-series for the DCM analysis. For denoising the
data, a two-step general linear model (GLM) was specified
to regress out non-gray matter sources of noise and move-
ment artefacts.

Two regions of interest (ROIs, sphere with a radius of
6 mm) were specified for each subject, one within the
white matter (Montreal Neurological Institute [MNI] coordi-
nates: [0� 24� 33]) and one within the cerebrospinal fluid
(MNI coordinate: [0� 40� 5]). To control for subject move-
ment in the course of the scanning session, the 12 movement
parameters, which are provided with the dataset and which
are based on the initial realignment of the raw data, were in-
cluded in the GLM analysis. As the rs-data were acquired in
two scanning sessions per individual (Van Essen et al.,
2012), the preprocessing steps were performed separately
for each of the sessions (Left/Right and Right/Left phase
encoding) and for each individual separately.

DCM analyses

To study the effects of BP, HCT, BMI, and HbA1c on the
hemodynamics and effective connectivity in three large-
scale rs-networks, the rs-fMRI time-series from eight
ROIs (sphere with a radius of 6 mm) were extracted. See
Table 1 for the coordinates for each region and which net-
work they are a part of. These networks and their coordina-
tes were chosen based on their assumed importance in
several clinical conditions (Menon, 2011). The number of
included ROIs was limited to eight due to computational
strain.

The time-series of each ROI were extracted and subjected
to individual csd-DCM analyses, and the csd-DCMs were
specified for each rs-fMRI acquisition separately. Each sub-
ject underwent two rs-fMRI acquisitions, and a total of 1188
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acquisitions were included in the analysis. This was done to
improve the robustness of the DCM estimation by exploring
only the averaged effects across the two acquisitions. Please
note, both acquisitions were done within the same session
(session 1). In the current study, the priors were turned on
for connections between all the included regions.

The csd-DCM resulted in parameters of effective connec-
tivity between and within each region (A-matrix) and hemo-
dynamic parameters (transit time for each region, epsilon,
and decay). In addition, csd-values (a- and b-values) and
Free Energy parameters were extracted.

The effective connectivity (A-matrix) refers to the correla-
tion in the frequency distribution of the BOLD-signal be-
tween brain regions. As the activity in one region is being
modeled as a function of the frequency distribution in an-
other region, it indicates the causal interference that one
brain region makes on another (Friston et al., 2014; Zeidman
et al., 2019a). The hemodynamic parameters are essentially
descriptions of the Balloon Model, which is incorporated
in the DCM framework and which is essential for the
DCM parameter estimation.

The hemodynamic response, as estimated by the DCM and
stated in the hemodynamic state equation (Stephan et al.,
2007), can be identified as: the transit time for each prede-
fined region (resting CBV divided by resting CBF, as a mea-
sure of BOLD-signal dynamics), decay as the global
parameter of the BOLD-signal (the reduction of the
BOLD-signal, which relates to the relaxation of the smooth
musculature of the arterioles), and epsilon as the neuronal ef-
ficacy (the relationship between CBF and neuronal activity,
reflecting an increase in relative CBF expressed as a number
of transients per second) (Friston et al., 2000; Zeidman et al.,
2019a).

The spectral density values, expressed as a- and b-values,
reflect the amplitudes and exponents of the spectral density
of the neuronal fluctuations, respectively. Further, model ev-
idence, expressed as ‘‘Free Energy,’’ is calculated (Friston
et al., 2014). For DCM analyses, the Free Energy appears
to be a better estimate for model evidence than alternative
approaches such as Akaike’s Information Criterion or the
Bayesian Information Criterion (Penny, 2012).

Statistical analyses

To test the hypotheses of between-subject variation in the
DCM parameters, a hierarchical linear regression analysis
was conducted. As some relationship between the independent
and dependent variables is assumed, a hierarchical linear re-
gression analysis was only conducted on the independent var-
iables (BP, HCT, BMI, and HbA1c) and the dependent
variables (DCM parameters) that showed a significant correla-
tion (Pearson two-tailed p < 0.05). The effective connectivity
parameters left inferior parietal cortex (LIPC) to ACC, right
inferior parietal cortex (RIPC), and PPC to mPFC did not
meet the assumptions of linear regression and were, therefore,
not included in the final regression analysis.

If more than one independent variable correlated signifi-
cantly with the same dependent variable, both were added to
the same regression model, while controlling for the effect
of gender. For the full models (including the independent var-
iable(s) and gender), it was examined as to which of the var-
iables made a significant unique contribution to explaining the
variance in the dependent variable, and whether the full model
significantly predicted the dependent variable. To investigate
the relative contribution of each factor independently, the
standardized beta coefficients were examined for each model.

The value quantifies the unique contribution that each inde-
pendent variable makes to the full model, and the related
sig.-value allows for determining whether the contribution
was significant. The R2 change for full models was examined
to determine whether the independent variables made a signif-
icant contribution to the model, after controlling for gender.
Extreme outliers, defined as >3.0 interquartile from the mean,
were removed. The unadjusted a-value was set to 0.05, and
the confidence interval was set to 95%. Multiple testing was
not controlled for; however, the results significant at the stricter
0.01 a-value are marked with double asterisks in Table 2.

In addition, a Kruskal–Wallis H test of between-group
variance was conducted, comparing three BMI groups on
the DCM parameters. A non-parametric test was chosen
over a parametric test of group comparison, as the groups
were not normally distributed. The BMI variable was split
into three groups: normal weight (BMI 19–24, n = 262),
overweight (BMI 25–29, n = 202), and obese (BMI >30,
n = 117), for comparison. The v2-distribution was defined
by the degrees of freedom (K� 1), which in this case was 2.

In the cases of significant group differences, a pairwise
comparison with Bonferroni corrections was used to investi-
gate which groups significantly differed ( p < 0.05). The
Mean Rank Value was used to determine which of the groups
showed a higher rank order, and effect sizes were calculated
(r = z/On + n) (see Supplementary Fig. S1 for the frequency
distribution of the groups across BMI scores/groups).

Results

Descriptive statistics

A two-tailed Pearson correlation analysis was conducted
with the independent variables (confidence interval = 95%).
It revealed a significant relationship ( p < 0.05) between sys-
tolic BP and HCT (r = 0.105, p = 0.015) and between systolic
BP and BMI (r = 0.335, p = 0.000). There was also a signifi-
cant relationship between diastolic BP and HCT (r = 0.085,
p = 0.048) and between diastolic BP and BMI (r = 0.291,

Table 1. Coordinates for Regions of Interest

Resting-state
network Regions R/L

MNI coordinates
(x, y, z)

Default mode
network

PCC R/L 0, �52, 26
mPFC R/L 3, 54, �2
LIPC L �50, �63, 32
RIPC R 48, �69, 35

Central executive
network

DLPFC R 45, 16, 45
PPC R 54, �50, 50

Salience network AI R 37, 25, �4
ACC R/L 4, 30, 30

The coordinates for each ROI, and which rs-network the given re-
gions are considered a part of.

ACC, anterior cingulate cortex; AI, anterior insular cortex;
DLPFC, dorsolateral prefrontal cortex; L, left hemisphere; LIPC,
left inferior parietal cortex; MNI, Montreal Neurological Institute;
mPFC, medial prefrontal cortex; PCC, posterior cingulate cortex;
PPC, posterior parietal cortex; R, right hemisphere; RIPC, right in-
ferior parietal cortex; ROI, region of interest.
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Table 2. Regression Table for Significant Results

Modell summary Coefficients

Model R2 R2 change (df reg, df res) = F Sig. Sig. F change b Sig.

A. Hemodynamic parameters
PCC transit time Gender

BMIa
0.010 0.009 (2, 578) = 2.936 0.054 0.021* 0.035

�0.096
0.396
0.021*

mPFC transit time Gender
Dia BP
BMI

0.028 0.028 (3, 573) = 5.567 0.001** 0.000** 0.028
�0.130

0.157

0.497
0.003**
0.000**

LIPC transit time Gender
Dia BP

0.006 0.006 (2, 575) = 1.803 0.166 0.060 0.002
�0.079

0.961
0.060

RIPC transit time Gender
Sys BP

0.013 0.005 (2, 575) = 3.707 0.025* 0.034* �0.065
�0.074

0.133
0.090

AI transit time Gender
Dia BP

0.013 0.013 (2, 575) = 2.936 0.020* 0.006** 0.036
�0.116

0.391
0.006**

DLPFC transit time Gender
Dia BP

0.006 0.005 (2, 575) = 2.679 0.069 0.085 0.053
0.073

0.211
0.085

PPC transit time Gender
Dia BPb

0.010 0.006 (2, 575) = 3.013 0.050 0.059 0.052
0.080

0.213
0.059

Decay Gender
Dia BP

0.009 0.008 (2, 575) = 2.683 0.069 0.028* �0.045
0.092

0.286
0.028*

Epsilon Gender
Dia BP
Sys BP

0.017 0.017 (2, 575) = 3.400 0.018* 0.007** �0.014
0.123
0.015

0.749
0.034*
0.804

B. Effective connectivity parameters
PCC to PPC Gender

HbA1c
0.016 0.010 (2, 409) = 3.393 0.035* 0.047* �0.077

0.098
119

0.047*
mPFC Gender

Dia BP
0.017 0.016 (2, 572) = 4.989 0.007** 0.002** �0.045

0.130
0.285
0.002**

mPFC to PCC Gender
BMI

0.011 0.011 (2, 578) = 3.150 0.044* 0.013* �0.014
0.104

0.739
0.013*

LIPC to RIPC Gender
HCT

0.013 0.012 (2, 533) = 3.514 0.030* 0.013* 0.031
�0.128

547
0.013*

ACC to RIPC Gender
Sys BP

0.013 0.012 (2, 575) = 3.745 0.024* 0.009** �0.001
0.114

0.974
0.009**

RIPC to mPFC Gender
Sys BP

0.019 0.011 (2, 575) = 5.648 0.004** 0.004** �0.057
�0.110

0.188
0.011*

C. Cross-spectral density values
Alpha (a) Gender

Dia BP
0.013 0.011 (2, 575) = 3.759 0.024* 0.012* �0.062

0.105
0.139
0.012*

Beta (b) Gender
Dia BPc

BMI

0.013 0.011 (3, 573) = 2.498 0.059 0.044* �0.062
0.105
0.002

0.139
0.019*
0.963

D. Free energy
Free energy Gender

Dia BP
Sys BP
BMI
HCT
HbA1c

0.079 0.050 (6, 400) = 5.750 0.001** 0.001** �0.162
0.104
0.053
0.096
�0.081

0.060

0.007**
0.124
0.457
0.068
0.157
0.217

Results from the regression analysis. See Supplementary Table S3A for the contribution of gender as predictor alone for these and notice
the R2. Change values in the current table for the change in explained variance by the full model as compared with gender alone. See Sup-
plementary Table S3B–D for all the regressions with effective connectivity parameters, including the cases where gender significantly pre-
dicted effective connectivity parameters alone. Confidence interval = 95%.

A. Results for the hemodynamic parameter transit time for each of the included regions, and decay and epsilon.
B. Results for the effective connectivity parameters where the full models contributed significantly to predicting the outcome variable,

with the independent variables making a unique significant contribution to explaining the variance.
C. The results for the cross-spectral density values. Diastolic BP made a significant unique contribution to the model, and the full model

was close to statistically significant.
D. The results for the free energy parameter.
aBMI made a uniquely significant contribution to the model. The full model was not statistically significant, but it indicated a strong trend.
bAdding diastolic BP to the model did not explain significantly more of the variance in PPC transit time than gender alone, but it was close

to statistically significant. The full model was also very close to statistically significant.
cDiastolic BP made a significant unique contribution to the model, and the full model was close to statistically significant.
*p < 0.05, **p < 0.01.
AI, anterior insula; b, standardized coefficient beta; BMI, body mass index; df reg, degrees of freedom regression; df res, degrees of free-

dom residual; Dia BP, diastolic blood pressure; HbA1c, glycated hemoglobin; HCT, hematocrit; PCC, posterior cingulate cortex; PPC, pos-
terior parietal cortex.; Sys BP, systolic blood pressure.
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p = 0.000). Systolic and diastolic BP had the strongest signif-
icant covariation (r = 0.680, p = 0.000) (see Supplementary
Table S1 for the full correlation matrix).

Hemodynamic parameters

For mPFC transit time, adding BMI and diastolic BP
explained significantly more of the variance. Both variables
made significant unique contributions to the model, and the
full model was significant; diastolic BP and BMI together
explained 2.8% of the variance. For AI transit time, adding
diastolic BP to the model made a significant, unique, contri-
bution to explaining the variance, and the full model was sig-
nificant, explaining 1.3% of the variance.

For the remaining hemodynamic parameters, namely decay
and epsilon, diastolic BP and systolic BP made a significant
contribution to the model for epsilon, with diastolic BP making
a significant unique contribution to explaining the variance. The
full model was significant, explaining 1.7% of the variance. See
Table 2A for the regression table for these parameters.

The only hemodynamic parameter that differed between
BMI groups was PCC transit time (normal weight n = 262, over-
weight n = 202, obese n = 117), v2 (df = 2, n = 581) = 8.718,
p = 0.013. After the pairwise comparison with Bonferroni cor-
rection, the significant difference between the groups was

found between the overweight and the obese groups, with the
overweight group having a higher mean rank value (mean
rank = 314) than the obese group (mean rank = 258), p =
0.009, r = 0.166 (see Supplementary Table S2 for the
Kruskal–Wallis H tests with all hemodynamic parameters).

Effective connectivity parameters

The regressions with effective connectivity parameters as
outcome variables revealed some of the independent variables
to contribute significantly to explaining more of the variance
in the given parameter than gender, and that one or more of
the independent variables contributed significantly to this ten-
dency, with the full model (including gender) being significant
( p = >0.05). HbA1c made a significant contribution to
explaining the variance in PCC to PPC effective connectivity,
explaining 1.0% of the variance.

Diastolic BP significantly contributed toward explaining the
variance in mPFC, explaining 1.6% of the variance. BMI made
a significant contribution to explaining the variance in mPFC
to PCC, explaining 1.1% of the variance. HCT made a signif-
icant contribution to explaining the variance in LIPC to RIPC,
explaining 1.2% of the variance. Systolic BP made a signifi-
cant contribution to explaining the variance in ACC to
RIPC, explaining 1.2% of the variance. Systolic BP made a

Table 3. Sig. Kruskal–Wallis H Tests with Effective Connectivity Parameters, with sig. Group Differences

Connections

Kruskal–Wallis

Pairwise comparison

Pairwise comparisons

Sig. v2 Std. Stat. Adj. Sig r Mean rank

PCC to mPFC 0.011* 8.938 NW–OB
OW–OB
NW–OW

1.598
2.966
�1.648

0.330
0.009**
0.298

0.166 NW: 289.84
OW: 316.00
OB: 260.39

PCC to RIPC 0.003** 11.594 NW–OB
OW–OB
NW–OW

2.164
3.405
�1.509

0.091
0.002**
0.394

0.190 NW: 292.99
OW: 316.92
OB: 253.09

RIPC 0.002** 12.476 NW–OB
OW–OB
NW–OW

1.067
3.277
�2.632

0.857
0.003**
0.025*

0.183
�0.122

NW: 281.88
OW: 323.64
OB: 262.21

PCC to DLPFC 0.030* 7.042 NW–OB
OW–OB
NW–OW

2.566
2.155
0.435

0.031*
0.094
1.000

0.131 NW: 306.07
OW: 299.17
OB: 258.78

mPFC to RIPC 0.032* 6.899 NW–OB
OW–OB
NW–OW

�2.610
�1.431
�1.341

0.027*
0.457
0.539

0.134 NW: 274.42
OW: 295.70
OB: 322.52

LIPC to PCC 0.013* 8.637 NW–OB
OW–OB
NW–OW

1.601
�0883

2.904

0.328
1.000
0.004**

0.134 NW: 316.65
OW: 270.58
OB: 287.13

LIPC to mPFC 0.010** 9.290 NW–OB
OW–OB
NW–OW

0.769
�1.787

3.005

1.000
0.222
0.008**

0.139 NW: 313.84
OW: 266.16
OB: 299.65

LIPC 0.040* 6.435 — — — —
LIPC to RIPC 0.041* 6.409 NW–OB

OW–OB
NW–OW

1.556
�0551

2.460

0.359
1.000
0.042*

0.114 NW: 313.85
OW: 274.83
OB: 285.16

AI to mPFC 0.009** 9.368 NW–OB
OW–OB
NW–OW

�1.596
1.000
�3.037

0.331
0.952
0.007**

�0.140 NW: 268.59
OW: 316.76
OB: 298.02

The significant Kruskal–Wallis H test for BMI group differences in the effective connectivity parameters, and the pairwise comparison
statistics. Total N = 585, NW n = 262, OW n = 202, OB n = 117. Degrees of freedom = 2. Std. Stat. = standardized test statistic. Adj.Sig =
adjusted a-value after Bonferroni Correction. r = effect size. Dash indicates no data obtained, as the pairwise comparison was not run. Please
see Supplementary Table S4 for the non-significant results. *p = 0.05, **p = 0.01.

NW, normal weight; OB, obese; OW, overweight.

876 SJULS AND SPECHT



significant contribution to explaining the variance in RIPC to
mPFC, and the full model was significant, with systolic BP
explaining 1.1% of the variance (Table 2B).

The Kruskal–Wallis H test revealed significant BMI group
differences, which can be seen in Table 3 and Figure 1. After
the pairwise comparison with Bonferroni correction, the
overweight group and the obese group significantly differed
in the effective connectivity from PCC to mPFC, from PCC
to RIPC, and within RIPC, with the overweight group having
the highest mean rank value. The normal weight group and
the overweight group significantly differed on effective con-
nectivity from LIPC to PCC, from LIPC to mPFC, from
LIPC to RIPC, from AI to mPFC, and within RIPC.

The normal weight group had the highest mean rank value for
all the connections except for from AI to mPFC, where the over-
weight group had the highest mean rank value. The normal
weight and the obese group significantly differed in effective
connectivity from PCC to dorsolateral prefrontal cortex
(DLPFC) and from mPFC to RIPC. For PCC to DLPFC, the
normal weight group had the highest mean rank value, indicat-
ing stronger effective connectivity, whereas the obese group had
a higher mean rank value from mPFC to RIPC. As can be seen
from Table 3, the effect sizes are low for all the significant dif-
ferent group differences (Cohen, 1988). See Supplementary
Table S4 for the non-significant between-group results.

csd parameters

Diastolic BP made a significant contribution toward
explaining the variance in the a-value, explaining 1.1% of
the variance (Table 2C). The Kruskal–Wallis H test revealed
no significant group differences on the csd parameters

a-value or b-value between the BMI groups; a-value (normal
weight n = 262, overweight n = 202, obese n = 117), v2 (df = 2,
n = 581) = 0.439, p = 0.803, and b-value (normal weight n = 262,
overweight n = 202, obese n = 117), v2 (df = 2, n = 581) =
2.644, p = 0.267.

Free energy

For the free energy parameter, the full regression model
explained significantly more variance than gender alone.
However, gender made the only significantly unique contribu-
tion to the full model. The full model explains around 7.9% of
the variance in Free Energy, and BP, HCT, BMI, and HbA1c
accounted for 5.0% of the explained variance (Table 2D).

Discussion

Several of our hypothesis, regarding variability in hemo-
dynamic and effective connectivity parameters, were sup-
ported. The results of the regression analyses imply that
between-subject variance in the hemodynamic parameters
of rs-fMRI is predicted by diastolic BP and BMI (in support
of H1). Further, the variance in the effective connectivity
within and between rs-networks is predicted by diastolic
and systolic BP, HCT, BMI, and HbA1c (in support of H5,
H6). The between-group comparison for BMI gives insight
into hemodynamic and effective connectivity differences be-
tween BMI groups (in support of H2 and H6).

However, the effect sizes were quite small, as can be seen
from the regression analysis with Free Energy, including the
independent variable increases the explained model evi-
dence, collectively explaining around 5% of the variance.

FIG. 1. Illustration of the significant group differences of the Kruskal–Wallis H test for the effective connectivity param-
eters. Please see Table 1 for the exact MNI coordinates for each region. The arrows indicate which groups are being com-
pared, and the directionality of the connection. Based on the mean rank value of the given groups in the comparison, it was
determined whether the connection was strengthened (green arrow) or weakened (red arrow) with increased BMI. The color
of the solid circles indicates the networks in which the regions showed sig. group differences, with yellow being the DMN
(mPFC, PCC, LIPC, RIPC), dark red being the CEN (DLPFC), and blue being the SN (AI). The white circles with a colored
border are the regions that did not exhibit significant group differences: PPC (dark red circle, as it is a part of the CEN) and
ACC (blue circle, as it is a part of the SN). As can be seen from the figure, all of the affected connections are within the DMN,
or between the DMN and the CEN or the SN. Please see Table 3 for the full analysis. ACC, anterior cingulate cortex; AI,
anterior insula; CEN, central executive network; DLPFC, dorsolateral prefrontal cortex; DMN, default mode network;
LIPC/RIPC, left/right inferior parietal cortex; MNI, Montreal Neurological Institute; mPFC, medial prefrontal cortex;
PCC, posterior cingulate cortex; PPC, posterior parietal cortex; SN, salience network.
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Hemodynamic parameters: effects of BP and BMI

When including BP in the full regression models, it was
found that an increase in diastolic BP has an impact on the
shape and amplitude of the BOLD-signal, with a globally in-
creased amplitude of the BOLD-signal, as reflected by the
global parameter epsilon and the csd-parameter a, and a
local shortening in the regions of mPFC and AI, as indicated
by an inverse relationship with the local parameter transit
time. The shortened transit times confirm our hypothesis
for mPFC and AI, and the hemodynamic signal appears to
be altered in all the ROI.

The results indicate that diastolic BP affects the rate at
which oHb is being utilized in the capillaries and dHb is
transported to the veins, essentially weakening the response
from the venous compartments in terms of the Balloon model
proposed by Buxton and colleagues (1998). One explanation
of this tendency might be related to stiffer venules and veins,
which could increase diastolic BP and prevent the Balloon
effect (Buxton, 2012; Buxton et al., 1998).

The explanation of the observed variance is, however,
probably multifaceted, as the dynamics of the BOLD-signal
is complex and generally poorly understood (Arthurs and
Boniface, 2002; Ekstrom, 2010; Handwerker et al., 2012;
Logothetis and Wandell, 2004). For example, we observed
a strong trend for diastolic BP and PPC transit time in the op-
posite direction of the results for diastolic BP and AI/mPFC.

Increased BMI was found to prolong the BOLD-signal in
mPFC whereas the shape/amplitude remained the same, in
our regression model. However, the BOLD-signal was short-
ened in PCC with high BMI in the group comparison analysis
(overweight group vs. obese group). A similar trend was
found for PCC in the regression model, though only close
to significant. Higher BMI is associated with decreased
CBV, which is believed to alter the Balloon effect in terms
of making the BOLD-signal shorter (Buxton et al., 1998;
Lemmens et al., 2006).

As the results from the regression analysis and the group-
comparison differ somewhat, in terms of the results’ direc-
tion, it might be the case that the hemodynamic responses
in different brain regions are affected differently by in-
creased BMI.

The effect that BMI and BP have on transit time is not ev-
ident in all the regions within the examined rs-networks, but
they are limited to mPFC and AI for diastolic BP, and mPFC
and PCC for BMI. The mPFC and AI are situated close to
two of the big arteries of the brain, namely arteria cerebri an-
terior and media, which might be one explanation of why
these regions appear to be sensitive to differences in hemo-
dynamics. These results are highly intriguing as mPFC and
AI are the main hubs of the DMN and the SN, respectively,
and, interestingly, as the BOLD signal of mPFC is affected
by both diastolic BP and BMI.

Hence, the variability in diastolic BP and BMI might have
affected the results of previously conducted functional con-
nectivity studies on the DMN and the SN, while actually
being attributable to hemodynamic variability (Rangapra-
kash et al., 2018).

The amplitude of the low-frequency fluctuations of the rs-
fMRI BOLD-signal and the amplitude of the frequency of
cardiovascular fluctuations are within the same range:
below 0.10 Hz for the BOLD-signal and around 0.08 Hz for

the cardiovascular fluctuations (Zhu et al., 2015). The results
of the current study are in line with previous results finding
the BOLD-signal to be highly coupled with cardiovascular
fluctuations and CBF globally, and with regions within the
DMN showing the strongest significant coupling (Kobuch
et al., 2019; Tak et al., 2014; Whittaker et al., 2019).

Although the amount of explained variance by diastolic
BP and BMI alone is fairly low, when considering all of
the endogenous and exogenous factors that have been
found to affect the connectivity of rs-networks and the
BOLD-signal, these components might be contributing fac-
tors to the overall low replicability and high variability in
rs-fMRI studies.

Effective connectivity

For BP, there was a positive relationship between the dia-
stolic BP and the ‘‘self-inhibitory connection of’’ mPFC,
which indicates that mPFC is more inhibited with increased
diastolic BP. Further, the systolic BP displayed a negative re-
lationship with connections within the DMN, and a positive
relationship for the connectivity from the SN to the DMN.
The relationships between BP and some of the connections
might be related to previous research, which indicated al-
tered connectivity with hypertension in combination with
cognitive impairments (Bu et al., 2018).

In the regression analysis, increased BMI predicted a
strengthening in one of the connections within the DMN
(mPFC to PCC), which is not in line with our hypothesis.
By contrast, the comparison of the different BMI groups
did, to a large extent, confirm our hypothesis. In short, the re-
sults indicate an internal weakening of the connectivity
within the DMN with increased BMI, as well as stronger con-
nectivity from the SN to the DMN. The results also indicate
that the normal weight group, compared with the obese
group, has stronger connections from the DMN to the CEN.

The only connection within the DMN that was stronger
with increased BMI in the group comparison was from
mPFC to RIPC, for the obese compared with the normal
weight group. It should be noted that, when taking the
mean rank of all the groups into consideration, a non-linear
relationship appears for some of the effective connectivity
parameters. This might be why the results of the group com-
parison differ somewhat from the regression analysis, as it
assumes a linear relationship. It might also be why previous
research has indicated a linear relationship between higher
BMI and changes in rs-connectivity, as most of the studies
compare only two groups. This relationship could be further
investigated in future studies.

As suggested in previous studies, the results might be
reflecting poorly regulated eating behavior, as the networks
involved in balancing sensory-driven and internally guided
behavior are affected (Doucet et al., 2017; Sadler et al.,
2018). The current study contributes to a deeper under-
standing of the interactions between these networks, as ef-
fective connectivity as opposed to functional connectivity
is investigated.

It is, for example, interesting to notice that the strength-
ened connection between AI and mPFC with increased
BMI, namely between the SN and the DMN, is, in fact, in
the direction from the SN to the DMN. In addition, connec-
tions from LIPC to several regions in the DMN appear to be
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weaker with increased BMI, which might indicate that LIPC
mediates the weakened connectivity in the other regions of
the DMN (PCC, mPFC, and RIPC).

As expected, the internal connectivity of the DMN was
weakened by increased HCT. The authors are, however,
not confident in determining why this relationship arises. Ini-
tially, it could be considered as related to the sex differences
observed in rs-networks (Agcaoglu et al., 2015), as there are
sex differences in normal HCT scores (Murphy, 2014). How-
ever, HCT does not explain significantly more than gender
for the connection (LIPC to RIPC). Previous studies have in-
dicated that HCT accounts for a weakening of the internal
cohesiveness of all of the rs-networks included in this
study (Yang et al., 2015).

As the assumptions of regression were only met for LIPC
to RIPC, it was the only conducted analysis with HCT, thus
not allowing for testing whether there is a weakening of the
internal connectivity of all the included networks. However,
one might consider the correlation analysis as indicative of
minimal relationship between HCT and the effective connec-
tivity of the rs-networks.

HbA1c exhibited a positive relationship with the effective
connectivity from the DMN to the SN, which is not in line
with our a priori hypothesis, but might, as for BMI, be re-
lated to regulatory mechanisms for eating behavior. A weak-
ening of the internal connectivity in the CEN and the SN
was, however, not observed. Previous research has indicated
altered connectivity in AI and its connections, but in our case
the assumptions of regression were not met for many of the
analysis that included HbA1c as predictor and connections
with AI.

The only one included in a regression model was AI to
ACC, and HbA1c did not contribute to explaining the vari-
ance in this case. However, the previous results have mostly
compared subjects with pre-diabetes or diabetes, as opposed
to the normal scores of the current study (Liu et al., 2017;
Sadler et al., 2019; Yang et al., 2016).

General discussion

Seen together, the results indicate that all the factors in-
cluded in this study can affect the underlying connectivity
of the resting human brain, and that diastolic BP and BMI
specifically can affect the measured BOLD-signal. As the ef-
fect sizes and the percent of explained variance are low, these
factors are likely to not cause a large degree of variability in
the results independently. However, as implied by Free
Energy, they might collectively contribute to unreliable re-
sults. Further, the current study adds to the growing body
of research on rs-fMRI variability, as the results support
the notion that variability in the BOLD-signal and connectiv-
ity of rs-networks are to be found even within a fairly healthy
population.

Taking BP, HCT, BMI, and HbA1c into account when
studying rs-networks might thus be advantageous for future
studies, to increase the studies’ reproducibility. Further,
some of the benefits of using DCM are highlighted with
the current study. Utilizing the DCM technique enables fu-
ture studies to assess whether their results arise from neuro-
nal changes, as well as the directionality of these changes, or
whether the changes merely represent variation in cerebral
hemodynamics.

As the results of this study indicate that the included
endogenous factors are associated with changes in the under-
lying connectivity and hemodynamic variability of rs-
networks, it adds to the number of studies that undermine
the notion of rs-networks as being stable between subjects
in terms of connectivity, as well as being susceptible to he-
modynamic variation caused by BP and BMI. Interestingly,
the DMN seems to be more affected by individual factors,
as it is susceptible to vary with the endogenous factors in
both hemodynamic and effective connectivity parameters.

However, one must bear in mind that the current analysis
only explored a subset of networks and only the most central
nodes of the different networks. Further, all reported effects
are between-subject effects and might represent more a trait
than a state, whereas within-subject fluctuations might be
lower, as demonstrated earlier (Almgren et al., 2018).

However, seen along with results from other studies, the
range of potential sources of variability might be one of
the reasons why it has been proven a challenge to come to
a unified view on the function of the DMN (Agcaoglu
et al., 2015; Choe et al., 2015; Curtis et al., 2016; Goldstone
et al., 2016; Harrison et al., 2008; Hodkinson et al., 2014;
Waites et al., 2005). In addition, the results implicate that
the DMN might not inhabit the between-subject stability
that it is ascribed when studying clinical deviations (Greicius
et al., 2004; Mevel et al., 2011).

Limitations of the current study

Alternative to the current approach might be the use of
parametric empirical Bayes (PEB) (Zeidman et al., 2019b),
which could not be implemented here for technical reasons.
There are some advantages of using PEB with csd-DCM data
as compared with other GLMs, and it can therefore be con-
sidered a limitation of this study that a more traditional
GLM was utilized for the analyses of between-subject effects
on the DCM parameters.

Specifically, many of the analyses were not performed
with HCT and HbA1c as independent variables, as the as-
sumptions of the regression analysis prevented it. Even for
the significant correlations, which ‘‘allowed’’ the variables
to be entered into the regression analysis, the relationships
between the variables were quite low (around 0.10). Using
PEB instead would allow for all the scores on all the indepen-
dent variables to be analyzed with the DCM parameters, to
examine their effect. Running several hierarchical regression
models also posed a challenge in terms of controlling for
multiple testing, which could have been avoided if using
PEB.

Further, the current article focuses on variations that orig-
inate from between-subject differences. It would be interest-
ing to explore, more explicitly, which of the identified effects
are presented also on the within-subject level. However, a
longitudinal study demonstrated rather stable within-subject
DCM estimations (Almgren et al., 2018), even though the au-
thors did not take into account the possible causes of individ-
ual fluctuations.

Also, an extension to larger network models might give
new and more differentiated insights, like a recent large-
scale DCM approach where they have explored the same net-
works as the current report, but with more nodes per network
(Bajaj and Killgore, 2021). In the current study, only two
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regions were included per network for the CEN and the SN.
Although these regions are considered central nodes of the
given networks, we acknowledge that several other regions
could have been included in our analysis.

For the DMN, four regions were chosen, which might be
more representative of the network as a whole, as compared
with the CEN and the SN. Therefore, we recommend the
reader to place more emphasis on the results from the
DMN and its connections, and we highlight that further stud-
ies should be conducted to clarify the relationship between
the endogenous factors included in this study and the CEN
and the SN.

Lastly, the analyses were based on the minimally pro-
cessed dataset. Future studies need to explore more explicitly
to which degree the results reported here propagate through
different pre-processing and denoising strategies. So far,
mostly simulation studies have explored the effect of various
types of (physiological) noise on DCM parameter estimates
(Bielczyk et al., 2017, 2019). Besides, also residual subject
motion has been shown, despite various correction proce-
dures, to affect the estimates of functional connectivity mea-
sures (Bolton et al., 2020; Power et al., 2012).

Conclusion

The low cost, short scanning times, and absence of task,
which initially made rs-fMRI an intriguing, useful, and pop-
ular tool for neuroimaging, come with a price. Evidently, the
rs-networks are susceptible to a variety of exogenous and en-
dogenous factors, which makes the results of the studies un-
reliable and as a consequence, challenging to replicate. This
tendency adds to the difficulty of studying and understanding
the function of rs-networks such as the DMN and using alter-
ations in rs-networks as a clinical marker of disease.

Along with previous studies and results, the current study
is an indicator of the nature of the DMN as showing larger
between-subject variability, in which case it is unsurprising
that its function seems to ‘‘slip through the fingers’’ of the
researcher. If rs-networks are to be truly understood, studies
should at least take the effect of BP and BMI into account, to
ensure more reliable results for the future. By doing so, the
researcher would also take a step in the right direction in
terms of the ongoing replication crisis.
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Uğurbil K, Xu J, Auerbach EJ, et al. 2013. Pushing spatial and
temporal resolution for functional and diffusion MRI in the
Human Connectome Project. Neuroimage 80:80–104.

Vaisvilaite L, Hushagen V, Grønli J, et al. 2021. Time-of-day ef-
fects in resting-state functional magnetic resonance imaging:
changes in effective connectivity and blood oxygenation
level dependent signal. Brain Connect. [Epub ahead of
print]; DOI: 10.1089/brain.2021.0129.

Van Essen DC, Smith SM, Barch DM, et al. 2013. The WU-
Minn Human Connectome project: an overview. Neuroimage
80:62–79.

Van Essen DC, Ugurbil K, Auerbach E, et al. 2012. The Human
Connectome Project: a data acquisition perspective. Neuro-
image 62:2222–2231.

Waites AB, Stanislavsky A, Abbott DF, et al. 2005. Effect of prior
cognitive state on resting state networks measured with func-
tional connectivity. Hum Brain Mapp 24:59–68.

Whittaker JR, Driver ID, Venzi M, et al. 2019. Cerebral autore-
gulation evidenced by synchronized low frequency oscilla-

tions in blood pressure and resting-state FMRI. Front
Neurosci 13:433.

Xu F, Li W, Liu P, et al. 2018. Accounting for the role of hemat-
ocrit in between-subject variations of MRI-derived baseline
cerebral hemodynamic parameters and functional BOLD re-
sponses. Hum Brain Mapp 39:344–353.

Yang SQ, Xu ZP, Zhan YF, et al. 2016. Altered intranetwork and
internetwork functional connectivity in type 2 diabetes melli-
tus with and without cognitive impairment. Sci Rep 6:32980.

Yang Z, Craddock RC, Milham MP. 2015. Impact of hematocrit
on measurements of the intrinsic brain. Front Neurosci 8:452.

Zeidman P, Jafarian A, Corbin N, et al. 2019a. A tutorial on
group effective connectivity analysis, part 1: first level anal-
ysis with DCM for FMRI. Neuroimage 200:174–190.

Zeidman P, Jafarian A, Seghier ML, et al. 2019b. A guide to
group effective connectivity analysis, part 2: second level
analysis with PEB. Neuroimage 200:12–25.

Zhao JM, Clingman CS, Närväinen MJ, et al. 2007. Oxygenation
and hematocrit dependence of transverse relaxation rates of
blood at 3T. Magn Reson Med 58:592–597.

Zhu DC, Tarumi T, Khan MA, et al. 2015. Vascular coupling in
resting-state FMRI: evidence from multiple modalities. J
Cereb Blood Flow Metab 35:1910–1920.

Address correspondence to:
Guro Stensby Sjuls

Language Acquisition and Language Processing Lab
Department of Language and Literature

Norwegian University of Science and Technology
Trondheim 7491

Norway

E-mail: guro.s.sjuls@ntnu.no

882 SJULS AND SPECHT


