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Abstract: This study investigates applying the principles of the long-discontinued Pedersen process
as a possible route for producing metallurgical grade alumina from low-grade and secondary feed
materials. The investigation focused on the hydrometallurgical steps in the process, namely leaching,
desilication, and precipitation, and adapting it to valorize bauxite residue. The test material used was
a calcium–aluminate slag made by the smelting-reduction of a mixture of bauxite residue (dewatered
red mud) and a calcium-rich bauxite beneficiation by-product. Samples of the slag were leached in a
1 L jacketed glass reactor with Na2CO3 solution, varying Na2CO3 concentration and leaching time.
Additionally, different approaches to leaching involving mechanical treatment of the leached slag
and re-leaching using either fresh or recycled solution were also explored. The desilication step was
carried out by treating the leachate solution with powdered CaO, varying the amounts of CaO used.
Finally, the desilicated leach solution was sparged with a CO2 gas mixture, after which the precipitate
was allowed to age in the solution. The carbonation and aging temperatures and times were varied.
As much as 67% of the Al was leached from the slag. The desilication process successfully removed
88% of the Si. The precipitation process produced a product composed mostly of bayerite [Al(OH)3],
but some tests had considerable amounts of the unwanted phase dawsonite [NaAlCO3(OH)2]. The
results indicated that the highest Al recovery was obtained using low concentrations of Na2CO3

solutions, and aluminum tri hydroxide is formed from these solutions at low temperatures at a fast
rate compared to higher solution concentrations and temperatures.

Keywords: leaching; desilication; precipitation; alumina; Pedersen process

1. Introduction

The Bayer process has long been the premier, if not the exclusive, method for producing
metallurgical grade alumina. Alumina is mainly used in the production of aluminum metal
through high-temperature electrolysis and must be of high purity. The other application
of alumina is making metal matrix composites [1]. However, the use of this process is
limited to high-grade bauxite ores and is accompanied by the production of red mud.
Red mud is a highly voluminous, highly alkaline, and hazardous solid waste product
containing high amounts of iron, un-leached aluminum (15–25%), aluminum precipitated
during solid/liquid separation, titanium, and rare earth elements [2]. A need for more
environmentally friendly and sustainable methods to process mostly low-grade bauxite
ores is the chief motivator behind the ENSUREAL initiative to investigate a potential revival
of the Pedersen process. From 1928 to 1969, the process was successfully used to produce
alumina at a 17,000 tpa plant situated in Høyanger, Norway [3]. In addition, the plant
produced 4000 tpa of pig iron. It was eventually closed due to the economic strain of the
less efficient smelter technology of the time [4]. This prohibited it from competing with
the Bayer process in treating high-grade bauxite ores. However, improvements in smelter
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technology, the need for more sustainable processes in the mining industry, and the need
to address the red mud waste product from the Bayer process have renewed interest in
this process. The process addresses all these matters while potentially being a zero-waste
process producing by-products that can be used in other industries. Further, the Pedersen
process has the potential to be used to remediate the red mud problem resulting from
processing high-grade bauxite ores through the Bayer process.

The Pedersen process is a combined pyro- and hydro-metallurgical process [5–8], as
illustrated in Figure 1. It can be conveniently described in three stages. First is the smelting
of the bauxite ore at temperatures often exceeding 1500 ◦C. A reducing agent (carbon/coal)
and flux (lime) are added to aid the process. This produces a slag that is chiefly composed
of calcium–aluminate minerals and is easily separable from formed molten pig iron. The
pig iron can potentially be processed to make cast iron. The most desired composition of
the slag is to have Al in the form of mayenite (Ca12Al14O33) and mono-calcium aluminate
(CaAl2O4), which are the most leachable Al phases [9,10]. SiO2 and TiO2 are preferred in
the form of Ca2SiO4 and CaTiO3, respectively, which are difficult to solubilize and hence
will not contaminate the final alumina product. In the second stage, the slags are leached
with sodium carbonate solution to dissolve the aluminate minerals (reactions (1) and (2))
and leave behind a mostly calcium carbonate product referred to as grey mud. Unlike red
mud, this by-product is environmentally benign and may be used as the principal feed
material in the production of cement or fertilizer.

Ca12Al14O33 + 12Na2CO3 + 5H2O→ 14NaAlO2 + 12CaCO3 + 10NaOH (1)

CaAl2O4 + 3Na2CO3 → 2NaAlO2 + CaCO3 (2)

In the third stage, the leach liquor is then sparged with CO2 gas to precipitate alumina
tri-hydrate (reaction (3)).

2NaAlO2(aq) + CO2(g) + 3H2O(l) → 2Al(OH)3(s) + Na2CO3(aq) (3)

The precipitation process is very complex and starts with the hydrolysis of the sodium–
aluminate ion (reaction (4)). It also involves the absorption of CO2 gas by the sodium
aluminate solution (reaction (5)), which leads to the neutralization of free hydroxyl ions
by H+ ions in solution. During this step, several physiochemical sub-processes, such
as mass transfer through the gas-film, occur. This step creates a suitable pH for the
hydrolysis (decomposition) of aluminate ions and precipitation of fine aluminum tri-
hydroxide particles (reaction (6)). More details regarding the chemistry of this process are
available [11–15].

NaAlO2(aq) + 2H2O(l) = Na+
(aq) + Al(OH)4

−
(aq) (4)

CO2(aq) + H2O(l) ↔ CO3
2−

(aq) + 2H+
(aq) (5)

Al(OH)4
−

(aq) ↔ Al(OH)3(s) + OH−(aq) (6)

The carbonation process is usually conducted in the temperature range of 60–90 ◦C
for periods ranging from 5–10 h [9,16,17]. The quality and type of aluminum tri-hydroxide,
as well as the morphology and particle size of the product, are influenced by the process
parameters of pH, temperature, agitation speed, and duration of carbonation.

In the last stage, the aluminum tri-hydroxides are recovered from the slurry and dried.
Then they undergo calcination, an endothermic dihydroxylation reaction, to convert them
to metallurgical grade alumina according to reaction (7) [18].

Al(OH)3(s) = Al2O3(s) + H2O(g) ∆H◦ (at 900 ◦C) = 62.5 kJ/mol (7)
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Figure 1. Mass flow diagram of the Pedersen process. 

Detailed literature about the Pedersen process during the time it was in operation is 
not available due to confidentiality. The available literature is mostly short document pa-
tents and test reports [3,5,19] which have a very wide range and often conflicting process 
parameters. However, some studies have attempted to simulate the Pedersen process on 
ferruginous bauxite ores [9,20], and recently, the ENSUREAL initiative established to in-
vestigate the revival of the Pedersen process has conducted some studies whose results 
have provided data to better inform this study. The most notable outcomes from the EN-
SUREAL studies were the observations of the formation of a calcium-containing pas-
sivation layer around the slag grains, limiting the extraction of Al during leaching [21]. 
Further, leaching solutions with a Na2CO3 concentration higher than 100 g/L were ob-
served to promote dawsonite [NaAlCO3(OH)2] precipitation over the desired Al tri-

Figure 1. Mass flow diagram of the Pedersen process.

Detailed literature about the Pedersen process during the time it was in operation
is not available due to confidentiality. The available literature is mostly short document
patents and test reports [3,5,19] which have a very wide range and often conflicting process
parameters. However, some studies have attempted to simulate the Pedersen process on
ferruginous bauxite ores [9,20], and recently, the ENSUREAL initiative established to inves-
tigate the revival of the Pedersen process has conducted some studies whose results have
provided data to better inform this study. The most notable outcomes from the ENSUREAL
studies were the observations of the formation of a calcium-containing passivation layer
around the slag grains, limiting the extraction of Al during leaching [21]. Further, leaching
solutions with a Na2CO3 concentration higher than 100 g/L were observed to promote
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dawsonite [NaAlCO3(OH)2] precipitation over the desired Al tri-hydroxides gibbsite and
bayerite [22–24]. Additionally, it was noted that the precipitation process had to be a
combination of carbonation and aging (allowing the precipitate to sit in solution for at least
24 h after carbonation) to convert boehmite to bayerite and gibbsite [9,23,24]. Furthermore,
other studies [17,25] have reported that elevated temperatures exceeding 60 ◦C promote
gibbsite formation.

The aim of this study is to determine the feasibility of using the Pedersen process to
recover some value, chiefly in the form of aluminum, from secondary bauxite materials.
These secondary materials are characterized by higher silicon and lower aluminum content
than the usual bauxitic feed materials. The study will focus on evaluating (1) the extent of
leaching of Al from a slag in which the Al is partially in the form of the mineral gehlenite
(Ca2Al2SiO7), (2) the effectiveness of using a desilication step to reduce the presence of
Si in solution prior to precipitation to reduce the contamination in the alumina product,
(3) the precipitation of the Al tri-hydrates from the leach liquors after desilication. It
should be noted that gehlenite is the least desired form of Al in the slag as its formation
is accompanied by Al loss. Slow cooling profile methods during smelting [26] have been
shown to minimize the presence of this mineral. Due to its unique crystalline structure
incorporating Si, gehlenite does not hydrolyze with water and has thus been known to be
resistant to leaching even with aggressive chemical treatments [27–29].

2. Materials and Methods
2.1. Materials

The starting materials for the slag were bauxite residue (dewatered red mud), which
is a waste residue from the Bayer process leaching step, and a calcium-rich bauxite ore
by-product from the concentrator stage of the Bayer process. Both materials were supplied
by Mytilineos, Greece. The chemistry of each material, determined by x-ray fluorescence
(XRF), is detailed in Table 1.

Table 1. XRF quantitative analysis of bauxite residue and by-product (wt%).

Elements Bauxite Residue By-Product Elements Bauxite Residue By-Product

Al2O3 22.78 25.33 Na2O 1.93 -
CaO 8.44 34.49 MnO 0.10 -
TiO2 5.88 1.24 Cr2O3 0.26 0.01
SiO2 6.35 1.11 P2O5 0.19 -

Fe2O3 43.59 5.61 NiO 0.07 -
MgO 0.56 - S 0.15 0.01
V2O5 0.30 - LoI 9.30 32.20

Prior to any test work, the materials, including the lime, were individually calcined
for 3 h at a temperature of 900 ◦C to remove all moisture. The bauxite residue and the
calcite-rich bauxite beneficiation by-product were mixed in a ratio of 3:2 by mass. The total
mass of the mixture was 3 kg. To this mixture, lime (95.5% CaO) in a ratio of 21wt% of
the mixture was added to obtain a proper chemical composition for the slag [26]. Half
of the material was heated to 1650 ◦C in a cylindrical graphite crucible in an induction
furnace (Inductotherm Europe, Droitwich Spa, UK). The remainder of the material was
then added, resulting in a temperature drop. Some time was allowed for the temperature to
reach 1650 ◦C once again, and it was held at that temperature for 40 min before the furnace
was shut down and allowed to cool overnight. The resulting slag was separated from the
pig iron produced and crushed and screened to produce a bulk sample with a particle size
less than 75 µm. The material was then subjected to splitting using various size 2-way
rifle splitters and an 8-way Retsch DR rotary splitter to produce sample sizes of 100 g for
leaching test work. From the 100 g samples, smaller sub-samples were obtained using the
quartering method for chemical analysis by XRF (Table 2). Mineral phase analysis via X-ray
powder diffraction (XRD) (Figure 2) showed the slag contained Al in the form of mayenite
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and gehlenite, with the rest of the slag being composed of perovskite (CaTiO3) and larnite
(Ca2SiO4). An effort was made to quantify the mineral phases by mass, but the results
contradicted the spectrum (Figure 2). The intensity of the peaks shows that mayenite is the
mineral phase that is most present and likely houses a significant portion of the Al.

Table 2. XRF quantitative analysis of slag (wt%).

Al2O3 CaO SiO2 TiO2 Fe Na2O SO3 MgO ZrO2 MnO SrO Cr2O3 P2O5

39.6 43.9 6.99 5.84 1.82 1.19 0.18 0.17 0.14 0.06 0.06 0.03 <0.05
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Figure 2. XRD spectrum of slag with the identified phases.

The microstructure of the slag was further characterized by electron microprobe
analysis (EMPA) supported by a wavelength dispersive spectrometer (WDS). A sample
of the slag was mounted onto polished resin blocks, and analyses included elemental
mapping, imaging, and quantification. The extract (Figure 3) from the total elemental
mapping for the slag shows it is rich in Al and Ca, with Ti and Si being the elements next
in abundance. Element quantification performed at the six selected points (Figure 4) by
percentage mass (Table 3) confirms the presence of the minerals identified by XRD analysis.
This was done by comparing the masses with the chemical formulas of the minerals. The
Al/Ca mass ratio is 1.27 and 1.48 for the stoichiometric compositions of mayenite and
gehlenite, respectively. However, as both phases can have levels of silica dissolved [30],
they have some deviation from the stoichiometric ratio. The Al/Ca ratio in points 1 and
2 suggested a higher presence of mayenite, while the Al/Ca ratio, along with the high Si
content, at points 3 and 4 suggested the gehlenite in these parts was more than mayenite
and possibly had the highest content of larnite among the six points selected. Points 5 and
6 had the highest amounts of Ti, showing higher amounts of perovskite.
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Table 3. Percentage mass quantification of selected elements in the slag by EMPA.

No. Al2O3 CaO SiO2 TiO2 Al/Ca Proposed Phase

1 52.65 1.49 4.16 0.41 1.06 Mayenite
2 51.00 1.72 4.37 0.60 1.10 Mayenite
3 41.76 8.26 5.76 0.73 1.56 Gehlenite (+larnite)
4 40.48 8.63 5.61 1.36 1.62 Gehlenite (+larnite)
5 15.71 6.36 1.98 34.43 - Pervoskite
6 16.42 6.88 1.97 35.16 - Perovskite

2.2. Methods

A total of 6 test programs were conducted using a 1 L jacketed glass reactor. The
same reactor was used for all three processes. After each individual test, the reactor was
thoroughly cleaned in preparation for the next test.

2.2.1. Leaching Tests

Each test program commenced with a leaching test in which a 100 g sample of slag
was leached with 1 L of Na2CO3 solution in the reactor. The leaching solution was prepared
by dissolving a specified amount of analytical grade Na2CO3 in 1 L of deionized water.
The resulting slurry was heated to the desired temperature and held at that temperature
for the desired duration. The temperature was controlled by circulating a heated silicon
oil through the reactor jacket and was monitored using a temperature probe placed in the
reactor vessel. The slurry was agitated using an overhead stirrer with a paddle impeller.
The temperature probe was connected to the agitator, which displayed the temperature in
addition to the agitation speed. All tests were conducted at 90 ◦C with an agitation rate
of 500 rpm. The volume of the reactor was maintained using a water-cooled condenser.
The tests varied in terms of different concentrations of Na2CO3 solution used and leaching
durations. Additionally, some NaOH was added to test no. 2 to determine if its addition
would result in less Si dissolved [3,19]. It was worth investigating this, although previous
studies have shown that the addition of NaOH reduced Al extraction [21]. Further, for
some tests, the leached sample residue was recovered, dried, and subjected to physical
treatment using a pestle and mortar. The force provided by the pestle and mortar was
not expected to grind or break particles but perhaps help remove the passivation layer
of CaCO3 over the particles that are formed via reaction (1) [21]. The sample was then
re-leached with recycled solution or with fresh solution. All tests are detailed in Table 4.
Depending on the duration of the test, solution samples were taken at intervals of 15 and
30 min and vacuum filtered using a 0.22 µm filter for inductively coupled plasma mass
spectrometry (ICP-MS) analysis. At the end of the tests, the slurries were vacuum filtered
with Whatman general-purpose filter paper to separate the solid residue (grey mud) and
leachate solution. The grey mud was dried overnight at 100 ◦C and analyzed via XRD to
determine the mineral phases and XRF for chemical composition for a material balance.
The leachate solution was allowed to cool overnight for the desilication step.
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Table 4. Schedule of leaching tests using 100 g slag, 1 l solution, 90 ◦C leaching temperature, and
500 rpm agitation rate.

Test No. First Stage Leach Intermediate Step Second Stage Leach

1 60 g/L Na2CO3 (90 min) Physical treatment with pestle
and mortar

Recycled solution from 1st Stage
Leach (90 min)

2 60 g/L Na2CO3, 4 g NaOH
(90 min) N/A N/A

3 60 g/L Na2CO3 (180 min) N/A N/A

4 100 g/L Na2CO3 (90 min) Physical treatment with pestle
and mortar

Recycled solution from 1st Stage
Leach (90 min)

5 40 g/L Na2CO3 (90 min) Physical treatment with pestle
and mortar

Leach with fresh solution 40 g/L
Na2CO3 (90 min)

6 80 g/L Na2CO3 (180 min) N/A N/A

2.2.2. Desilication Tests

The desilication method, adapted from [9], was conducted on the solutions from all
tests, except for test no 5. ICP-MS analysis showed the Al in solution in test no. 5 was
less than in the other tests. A sample of the solution was taken at the start and end of the
test and vacuum filtered with a 0.22 µm membrane for ICP-MS analysis of Si. It should
be noted that the volumes of the solutions in these tests were less than 1l. After filtration,
the grey mud from the leaching tests retained some solution, and hence the volume of
solution recovered from the experiments ranged from 800 mL to 870 mL. All the tests were
conducted by adding the leachate solution to powdered CaO in the glass reactor. A total
of 14 g of CaO was used for the solutions from tests no. 1 and 2, while 28 g was used
for the solutions from tests no. 3, 4, and 6. In each test, the mixture was heated to 70 ◦C
and agitated at 400 rpm for 60 min. At the end of each test, the solution was vacuum
filtered with general-purpose filter paper. The solution was allowed to cool overnight for
the precipitation tests. The solid residue was dried at 60 ◦C for 2 days and analyzed via
XRD and XRF.

2.2.3. Precipitation Tests

The precipitation tests were conducted on all the desilicated solutions as per Table 5.
Like the leaching tests, the filter cake from the desilication tests retained some solution, and
hence the volumes recovered were less than the starting amount. The solution volumes
for the precipitation tests ranged from 700 mL to 800 mL. In all the tests, the desilicated
solutions were sparged with a gas mixture equal parts Ar and CO2. The Pedersen process
used an off-gas from the smelter operation in the precipitation process [3]. The exact
composition of the gas is not known, but it has been established that CO2 was the only
active component and was present in a potentially low partial presence. As a first attempt
to replicate the process, the current conditions have been chosen as a starting point, absent
data on the exact conditions of the Pedersen process. For every test, the gas flow rate was
set to 1.5 slpm (standard liters per min), and the solution was agitated at a rate of 200 rpm.
The solutions were sparged for a certain interval, and the mixture (liquid and precipitate)
was allowed to age for different periods of time. At the end of the test, the mixture was
vacuum filtered with general-purpose filter paper to recover the precipitate. The precipitate
was washed with deionized water and dried at 60 ◦C for 2 days. Samples of the precipitate
were taken for XRD, XRF, and particle size distribution (PSD) analyses. Solution samples
were taken before and after the test and vacuum filtered with a 0.22 µm membrane for
ICP-MS analysis of the Al.
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Table 5. Schedule of precipitation experiments.

Test No. Solution from
Leach Test No.

Temp.
(◦C)

PCO2

(%)

Rate of
Agitation

(rpm)

Duration
(h)

Aging
(days)

1 1 25 50 200 0.5 3
2 2 25 50 200 0.5 3
3 3 50 50 200 1 1
4 4 75 50 200 2 1
5 6 25 50 200 2 1

All XRF analysis was conducted by Degerfors Laboratorium AB, Sweden, while all
XRD, ICP-MS, EMPA, and PSD analyses were conducted at NTNU and SINTEF labs.

XRD analysis was conducted using Bruker D8 A25 DaVinci™ X-ray Diffractometer
with CuKα radiation, 10 to 75 degrees. diffraction angle, and scanning speed 0.01 degrees.
EVA and TOPAS software were used to interpret data against the Crystallography
Open Database.

Samples for ICP-MS from leaching, desilication, and precipitation tests were diluted
in 15 mL Millipore water with 7 drops of 0.1 M nitric acid in preparation for analysis.

EMPA was conducted on samples in polished resin blocks using a JEOL JXA-8500F
Electron Probe Micro Analyzer (EPMA) with Wavelength Dispersive X-ray Spectrometer
with acceleration voltage 15.0 kV.

PSD analysis was conducted by Sintef laboratories using a Coulter LS 230 instrument
and solvent 0.05% Calgon.

3. Results and Discussion
3.1. Leaching
3.1.1. Leaching Behaviour of the Slag

Table 6 shows the percentage extractions of Al achieved as calculated from ICP-MS
analysis of solution samples (Equation (1)) and from a material balance performed by using
XRF analysis on the slag and the resulting grey mud residue (Equation (2)). For all the
tests except test no. 5, the results determined by the 2 methods are comparable, with less
than a 10% difference between the figures. In the case of test no. 5, it was not possible to
re-run the analysis; thus, the discussion will focus on the other five tests. Despite varying
certain process conditions and using different approaches to leaching, the extractions of Al
were similar across the six tests. Going into the test program, it was not known to what
extent the gehlenite would limit the extent of Al leached, given that the amount of gehlenite
in the slag could not be quantified. The extractions achieved suggest that the gehlenite
housed about 30–35% of the Al, provided that the gehlenite does not leach. Further, the Al
extractions achieved are comparable to those achieved in lab-scale and pilot tests conducted
on slags that are mostly mayenitic with little or no gehlenite [31]. This study [31] used
agitated leaching with no intermediate grinding; therefore, the extractions in their studies
may be due to passivation brought on by factors such as high Na2CO3 concentration
(120 g/L). In this study, however, the extent of leaching is attributed to the presence of
gehlenite, as will be discussed later.

Al recovery (%) =
mass of Al in leachate

mass of Al in slag
× 100 (8)

Al recovery (%) =

(
1− mass of Al in grey mud

mass of Al in slag sample

)
× 100 (9)
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Table 6. Al percentage extraction determined by ICP-MS analysis of solution samples and material
balance via XRF analysis.

Test No. 1 2 3 4 5 6

ICP-MS 63.53 61.20 57.13 58.16 42.58 53.03
XRF 67.12 64.95 64.17 64.60 68.77 58.25

3.1.2. Solution Concentration

The leach curves for tests no. 1 and 4 can be seen in Figure 5. The two tests were
identical, except they used different solution concentrations for leaching. In test no. 1, the
intermediate grinding step and re-leaching with recycled solution did not result in more
Al being extracted. In comparison, the leach curves for test no. 4 show that the identical
treatment resulted in an increased amount of Al leached in the second stage leach. It is
noted that in the first stage leach of test no. 4, less Al was extracted, and the graph more
or less leveled off. This could be because passivation via the CaCO3 formation occurred
faster in this case due to a higher solution concentration used. However, the intermediate
mechanical treatment, resulting in the temporary removal of the passivation layer and
possible deagglomeration, and contacting again with the solution gives the maximum
recovery experienced by the two solutions. Comparing the highest recoveries after the
second stage leaching trials, we may conclude that the passivation that occurred for test
no. 4 was due to the higher solution concentration used.
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Figure 6 shows the Al recoveries achieved with respect to the solution concentration.
It indicates that, in general, the increase in solution concentration for a given leaching time
yields a lower Al recovery. It is worth mentioning that the trendlines are not showing
linear regression; however, they are added to indicate the average changes of Al recovery.
Moreover, this figure shows that the leaching recovery change with time is larger when
lower solution concentrations are used. For the highest applied solution concentration of
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100 g/L, it is seen that the Al recovery has been increased minimally, and this indicates that
the passivation by CaCO3 formation occurs faster.
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3.1.3. NaOH Addition

From Figure 7, it appears that the presence of NaOH periodically hindered Al ex-
traction, although ultimately, the final amount in 90 min leaching was comparable to the
amounts extracted in the tests without NaOH. Further ICP-MS analysis showed the amount
of Si dissolved in test no. 2 was 0.15 g/L which was comparable to tests no. 1 and 3,
which had concentrations of 0.2 and 0.15 g/L, respectively. Further still, tests no. 4 and 6,
which had the highest concentrations of Na2CO3, each had Si concentrations of 0.33 g/L.
Therefore, the presence of NaOH did not reduce Si dissolution, and Na2CO3 concentration
had more influence on Si dissolution than NaOH. As a result, the use of NaOH in further
tests was discontinued. The added NaOH is low compared to the stoichiometric amount of
NaOH that is produced according to reaction (1) and compared to the amounts added by
Azof et al. [21], which resulted in lower Al leached. Azof et al. [21] added NaOH, resulting
in a Na2O concentration of 60 g/L. Therefore, it is unlikely that the amount added had
any impact on the leaching. It is not known definitively why the curve for test no. 2 is
non-linear, as the samples were tested with two different labs and the pattern remained
consistent. The outlier points could be interference caused by the additional amount of
Na in the ICP-MS analysis. Further, it may have been precipitation of Al at those specific
times in the reaction, or it might have occurred in the sample bottles after the samples
were taken.
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3.1.4. Leaching Duration and Solution Concentration

Test no. 3 was carried out regarding the result from the first stage leach of test no. 1.
The curve for test no. 1 has not leveled off in 90 min leaching and suggests that perhaps
more Al would be extracted. Therefore, test no. 3 was conducted under identical conditions
with the exception that the leaching time was extended to 180 min. However, this did not
result in higher Al extraction, as seen from the leach curve in Figure 8. After 90 min, the
curve begins to level off, but the final extraction is comparable to all the other tests. The
difference in Al recovery may be due to the sample leached in test no. 3 possibly having
had less mayenite and more gehlenite than the sample leached in test no. 1. Further, larger
particle sizes and possible agglomeration in the sample for test no. 3 could be another
cause, as this is a phenomenon that is corroborated by literature [32]. The final test to be
discussed, test no. 6 (Figure 9), was also motivated by the result of the first stage leach
from test no. 1. In this case, it was allowed to run for an extended time, similar to test no. 3
except a higher concentration (80 g/L) of Na2CO3 was used. The leach curve shows that at
the 90 min mark, the Al extraction dips, but further than that, it increases, and finally, at the
180 min, it dips slightly, but again, the final extraction is comparable to all the other tests.
This point, however, could be an outlier, and if removed, the curve appears smoother. In all
experiments, the rate of leaching is initially fast and then slows down when 40–50% of Al
is leached. Then, the Al recovery is at a slow rate and almost leveled off after 90 min and
longer times.
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3.1.5. Grey Mud Analysis

Table 7 shows the mineral phase analysis of the grey mud determined by quantitative
XRD analysis. This quantification was deemed reliable when compared to the peaks in the
XRD spectrum (Figure 10). The analysis shows that the mayenite was mostly or completely
leached out in all samples, and there is a considerable amount of calcite that has formed.
The weight% of calcite formed, considering reaction (1), would suggest that mayenite in
the slag was probably 60% by mass. The remaining Al sits in the gehlenite phase and
is un-leachable. It is also interesting to note the presence of Na-Zeolite and Bayerite as
minor phases in the grey mud. The former, a sodalite-type material, is a typical desilication
product in aluminate solutions, and it is also observed in the pre-desilication of bauxite
in the Bayer Process [33]. The latter is an aluminum trihydrate phase which is suggestive
of saturation conditions in the aluminate solution, leading to its precipitation. Both these
phases highlight the complexity of the chemical actions taking place in parallel to the main
hydrometallurgical process of leaching.

Table 7. XRD semi-quantitative analysis of the grey mud samples (wt%).

Test No. 1 2 3 4 5 6

Mineral Phase
Calcite (CaCO3) 56 46 54 66 59 56

Gehlenite 20 24 21 7 16 17
Perovskite 15 17 14 14 17 16

Larnite 7 12 10 5 8 9
Mayenite 1 1 0 0 0 0
Zeolite A

(NaAlSiO4) 0.5 0 0.5 8 0 2

Bayerite 0.5 0 0 0 0 0
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Figure 10. A typical XRD spectrum from grey mud sample from leaching test no. 1.

EMPA identical to the one conducted on the slag sample was conducted on grey
mud samples from tests no. 1 and 3. Figure 11 shows that, while the sample is still Ca-
rich, the Al has reduced somewhat in comparison to the slag (Figure 3). Obviously, Al
concentration at the surface and close to the surface of particles is lower than the core,
while Ca concentration at the surface is higher. Comparing the image of the grey mud in
Figure 12 with that of the slag (Figure 4), the slag particles have smooth edges around them,



Processes 2022, 10, 1370 15 of 21

while the edges of leached samples are irregular and porous. The layers around the leached
particles (from both tests) are visible, and the quantification analysis suggests they are
mostly composed of calcium carbonate with some larnite. However, this layer is possibly
the reason why there are minimal amounts of un-leached mayenite in tests no. 1 and 2. The
circled points of the particle in Figure 12A are the gehlenite phase which is not passivated
but remains un-leached. The color of this area is identical to the one identified as gehlenite
from Figure 12B. The quantification analysis at the marked points in Figure 12B gives an
idea of the mineral deportment in a particle that appears to be mostly calcite (CaCO3). The
high amounts of Ca and Si in areas 1 and 2 suggest they are mostly calcite with some larnite.
Higher amounts of Al and Ca with less Si suggest 3 and 4 are gehlenite with possibly some
of the un-leached mayenite, while the high amounts of Ti suggest that areas 5 and 6 have
the highest concentration of perovskite.
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Regarding the size of the slag particles, mostly below 75 µm (as seen in Figure 4),
most of the particles have a size close to or smaller than the completely leached particles
in Figure 12B. Therefore, we may conclude that most of the particles have been leached
regarding the digestion of mayenite. This may be the reason that we obtained the highest
Al recovery in leaching at 68%, and significantly higher Al recovery is not expected, as
gehlenite is not leachable. In other words, if the Al recovery is defined as the Al extraction
from the leachable phase mayenite, we have obtained more than 90% Al recovery from
mayenite in tests no. 1, 2, and 5.
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3.2. Desilication

The results (Table 8) show that, overall, the desilication step does reduce the concen-
tration of Si in solutions. However, there is some inconsistency in the results. The use of an
increased amount of CaO (28 g) results in a much higher Si removal for tests no. 3 and 6
than when 14 g was used in tests no. 1 and 2 but not 4. Test no. 4 had the highest amount
of Na, and although the chemistry cannot be explained, this may have caused the low Si
removal despite using a high amount of CaO. Additionally, there was co-precipitation of
Al in all the experiments, as seen from the mineral phases present (Table 9). A sample of
the XRD spectrum from test no. 6 can be seen in Figure 13. The existence of hydrogarnite in
the desilication residue (tests no. 3, 4, 5) indicates the simultaneous precipitation of both Si
and Al is taking place, yielding the removal of two moles of Al and three moles of Si from
the solution. Higher Al loss from the solution is, however, related to the crystallization of
calcium monocarboaluminate.

Table 8. Concentration of Si and Al in solution measured by ICP-MS and precentage removal of Si
and Al from solution.

Test No. 1 * 2 * 3 ** 4 ** 6 **

Start (g/L) 0.2 0.15 0.15 0.31 0.32
End (g/L) 0.15 0.11 0.02 0.23 0.04

Silicon removal (%) 25 27 87 28 88
Start (g/L) 15.07 13.17 10.04 23.10 22.23
End (g/L) 12.04 9.88 5.38 20.90 18.30

Aluminum removal (%) 26.64 30.09 55.08 18.46 26.43
* 14 g CaO added, ** 28 g CaO added.
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Table 9. XRD semi-quantitative analysis of phases in the desilication filter cake (wt%).

Test No. 1 2 3 4 6

Mineral Phase
Calcium monocarboaluminate

[Ca4Al2(OH)12CO2.5H2O] 70 58 67 56 44

Calcite (CaCO3) 21 33 11 36 31
Portlandite [Ca(OH)2] 9 9 10 6 8

Hydrogarnite Ca3Al2(SiO4)3−x(OH)4x [x = 1.5–3] 0 0 12 1 18
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The Eh-pH diagram for the Si-water system was evaluated by HSC Chemistry software,
and it was found that at high pH and different concentrations of silica, the Si-containing
ions were H2SiO4

2− and H3SiO4
−. The change in silica concentration and temperature

changes were studied, and it was found that the H2SiO4
2− is more stable than H3SiO4

−

at lower concentrations and lower pH. Moreover, temperature change between 25 and
90 ◦C does not affect their stabilities significantly. Proposed chemical reactions that yield
hydrogarnite in the system via the interaction of H2SiO4

2− and H3SiO4
− with CaO or Ca2+

could not be balanced. However, Nikolaychuk [34] proposed equilibria information about
the Si-water system, similar to conditions in this study, which had more species than the
HSC database. From the revised pourbaix diagrams [34], the species of Si that is most likely
present in the study’s conditions was H7SiO6

−. Hence, reaction (8) can be proposed as a
possible mechanism for the desilication process.

3Ca2+ + 2AlO2
− + (3 − x)H7SiO6

− + (x + 1)OH− = Ca3Al2(SiO4)3−x(OH)4x + (11 − 5x)H2O (10)

It is possible that H7SiO6
− is not the only component that yields hydrogarnite in the

system. Another possible reaction is its formation via the chemical reaction (9), where
the Si species is HSiO3

− [35]. However, HSiO3
− is not a stable component in the Eh-pH

diagram compared to H7SiO6
−, but it is present in the HSC Chemistry database and was

also considered by Nikolaychuk [34] in studying the Si-water system thermochemistry.

3Ca2+ + 2AlO2
− + (3 − x)HSiO3

− + (x + 1)OH− + (2x − 1)H2O = Ca3Al2(SiO4)3−x(OH)4x (11)

A third explanation proposed is that the causticisation of the sodium aluminate solu-
tion by the addition of CaO results in the formation of calcium monocarboaluminate [36].
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This, in turn, reacts with the Si in solution, forming hydrogarnite, thus acting as the actual
desilicating agent [37].

It should also be noted that although tests no. 1 and 2 had no hydrogarnite as a
product, they both still had some Si removal. The presence of Si in the solid residue from
tests no. 1 and 2 was confirmed with XRF, but the phase could not be identified by XRD.
This can be explained by the fact that hydroxides such as calcium monocarboaluminate are
layered double hydroxides (LDHs) and can adsorb Si ions from solution and store them in
their layered structure [38].

Lastly, the presence of CaCO3 is likely due to the reaction between CaO and
unreacted NaCO3.

3.3. Precipitation of Aluminum Tri-Hydroxide

Only tests no. 1 and 2 produced the desired product, with the preferred Al tri-
hydroxides being bayerite, gibbsite, and nordstrandite, and no traces of dawsonite
(Table 10). Figure 14 is a sample XRD spectrum from test no. 1. The other three tests
produced a product with a significant presence of dawsonite. In the cases of tests no. 3
and 4, this can perhaps be attributed to the precipitation and aging being conducted at
elevated temperatures. A study [23] has shown that temperatures over 40 ◦C do favor
dawsonite formation. In the case of test no. 5, this perhaps can be attributed to the use of
a solution with a Na2CO3 concentration of 80 g/L. This has also been reported to favor
dawsonite formation [24]. Regardless, going forward, it is recommended that all tests (car-
bonation and aging) be conducted with 60 g/L Na2CO3 concentration at temperatures less
than 30 ◦C.

Table 10. Quantitative XRD analysis of phases in the precipitation filter cake (wt%).

Solution Leach Test No. 1 2 3 4 6

Mineral Phase
Bayerite [α-Al(OH)3] 85 96 33 45 37
Gibbsite [γ-Al(OH)3] 12 0 0 0 0

Nordstrandite [Al(OH)3] 3 3 2 3 0
Dawsonite [NaAlCO3(OH)2] 0 0 65 52 67

Natrite (Na2CO3) 0 2 0 0 0
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The precipitation of Al(OH)3 occurs through the chemical reaction (3). The precipita-
tion of dawsonite occurred at higher concentrations of Na2CO3, and this may be due to the
presence of excess Na+ ions according to reaction (10).

Al(OH)4
−

(aq) + Na+
(aq) + CO2(g) = NaAlCO3(OH)2(s) + H2O(l) (12)

XRF analysis of the precipitates (Table 11) shows that the presence of critical contam-
inants, specifically Si, Na, and Ca, was higher than typical industrial specifications [6].
Although the amount of SiO2 in experiment 3 was 0.09% and an improvement from the
other tests, where it was 0.55%, it was still higher than the required limit of 0.015%. The
particle size distribution (PSD) analysis was only done for precipitates from experiments
1 and 2 as the others did not produce the desired products. Both products were far too
fine to meet the specification of 92% > 44 µm [6]. Test no. 1 produced a product that was
90% < 35 µm, and test no. 2 a product that was 75% < 41 µm.

Table 11. XRF analysis of major contaminants in precipitation filter cake (wt%).

Industrial Test No.

Contaminant Specification 1 2 3 4 6

CaO <0.04 0.09 0.20 0.27 0.13 0.20
SiO2 <0.015 0.55 0.55 0.09 0.59 0.59
TiO2 <0.004 0 0 0 0 0

Fe2O3 <0.015 0.01 0.03 0 0 0.02
Na2O <0.4 0.57 3.01 19.30 21.60 13.30

ICP analysis (Table 12) on the concentration of Al at the start and end of carbonation
was conducted to determine the required time for precipitating all the Al in solution.
Excluding test no. 3, because of the low concentration of Al at the start, a comparison
was done by grouping tests no. 1 and 2 and comparing them with tests no. 4 and 6. The
starting concentration of Al in tests 4 and 6 is nearly double that in 1 and 2. The carbonation
time in 4 and 6 was 4 times that of 1 and 2, but the percentage of Al precipitated is
similar for both groups. Regardless of starting concentration, the determining factor is the
Na2CO3 concentration of the leaching solution. The higher the concentration, the longer
the carbonation time required to precipitate all the Al.

Table 12. Amounts of Al in solution at the start and end of precipitation tests.

Test No. 1 2 3 4 6

Start (g/L) 12.04 9.88 5.38 20.9 18.30
End (g/L) 3.83 4.57 0.03 8.11 6.08

Amount precipitated (%) 68.19 53.74 99.44 61.20 66.78
Carbonation time (h) 0.5 0.5 1 2 2

Na2CO3 leaching solution
concentration (g/L) 60 60 60 100 80

The process has shown promise and has a few areas that need to be further explored.
The chemistry of the desilication process is yet to be understood and defined. Future work
can also evaluate the use of CO2 with higher partial pressure or possibly pure CO2 to reduce
the carbonation time. Alternatively, the use of a gas mixture like that of the furnace off-gas
can be investigated in the precipitation stage. Due to the lower CO2 component, the process
will take longer, but it will be cheaper than using pure CO2 gas that is purchased. Finally,
seeding the solution with Al tri-hydroxide product in subsequent runs of the process may
result in a product with the desired larger particle size.
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4. Conclusions

This initial test program to evaluate the Pedersen process as an alternative route to
producing alumina from bauxite residue has shown there is potential in the process, although
several aspects must be improved and further understood. The study has shown that:

• Al occurred in the form of mayenite and gehlenite in the slag produced from bauxite
residue. Moreover, in the leaching step, mayenite was almost completely leached.

• Although leaching resulted in Al extractions, no higher than 68% regardless of the slag
mineralogy, it must be noted that this may not be a prohibiting factor when processing
secondary and waste materials.

• The benefit of an intermediate mechanical step before re-leaching the material was
minimal, while a solution concentration of 60 g/L of Na2CO3 appears to be ideal.
Higher concentrations appear to cause passivation to occur faster.

• Desilication with CaO resulted in up to 88% of silica being removed with higher
CaO additions. A mechanism for the desilication by CaO was proposed in which
hydrogarnite is formed and deposited.

• The precipitation process was the most successful among the three processes, produc-
ing a product with the desired Al tri-hydroxides. The tests have shown that this is
achieved by a combination of carbonation and aging done at temperatures lower than
30 ◦C on a leach solution with no more than 60 g/L Na2CO3 concentration.
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