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SUMMARY

Broadly effective antiviral therapiesmust be developed to be ready for clinical tri-
als, which should begin soon after the emergence of new life-threatening viruses.
Here, we pave the way towards this goal by reviewing conserved druggable vi-
rus-host interactions, mechanisms of action, immunomodulatory properties of
available broad-spectrum antivirals (BSAs), routes of BSA delivery, and interac-
tions of BSAs with other antivirals. Based on the review, we concluded that the
range of indications of BSAs can be expanded, and new pan- and cross-viral
mono- and combinational therapies can be developed. We have also developed
a new scoring algorithm that can help identify the most promising few of the
thousands of potential BSAs and BSA-containing drug cocktails (BCCs) to priori-
tize their development during the critical period between the identification of a
new virus and the development of virus-specific vaccines, drugs, and therapeutic
antibodies.

INTRODUCTION

Despite advances in modern medicine, viral diseases consistently pose a substantial economic and public

health burden throughout the world. In fact, both the World Health Organization and the United Nations

have highlighted the specific need for better management of viral diseases as priorities for future

development (World Health Organization, 2018). This burden is likely due to viruses’ ability to regularly

emerge and re-emerge into the human population from natural reservoirs such as wild and domesticated

animals, leading to unpredictable outbreaks and wildly destructive health consequences (Choi, 2021).

However, despite this constant threat of viral outbreaks, the landscape of antiviral targets is still

underdeveloped, with over 200 human viral diseases that lack approved antiviral treatments.

Because the development of novel antivirals is long, laborious, and often unprofitable, the current strategy

for the management of viral outbreaks is heavily reliant on the development of vaccines over antiviral

treatments (Monto, 2006). However, while vaccines are an effective public health measure to stop the

community spread of a well-characterized virus, it is impossible to develop vaccines against viral diseases

that may emerge in the future. Therefore, antiviral development remains a crucial aspect of viral disease

management to ensure timely and effective treatment of infected individuals and to reduce virus

transmission.

Antiviral drugs are approved medicines that stop viruses from multiplying. Currently, there are 179

approved antiviral drugs, which are derived from 88 unique drug structures. Antiviral drugs currently

represent 4.4% of 4,051 approved medicines. However, 10 of 88 have been withdrawn due to side effects

(Chaudhuri et al., 2018; Wishart et al., 2018). The most common side effects of many antiviral drugs are

nausea, vomiting, allergic reactions, drowsiness, insomnia, heart problems, and dependence (Morris,

1994). Side effects can also be associated with the capacity of the drugs to either enhance or suppress

intrinsic immune functions of infected cells or alter the activity of immune cells within the host (Holstein

and McCarthy, 2017). Antiviral drugs with immunostimulatory properties could lead to ‘‘cytokine storm,’’

which could be associated with an overwhelming systemic inflammation that leads to multiple

organ dysfunction and potentially death (Fajgenbaum and June, 2020). By contrast, antivirals with
iScience 25, 104112, April 15, 2022 ª 2022 The Author(s).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1

mailto:denis.kainov@ntnu.no
https://doi.org/10.1016/j.isci.2022.104112
https://doi.org/10.1016/j.isci.2022.104112
http://crossmark.crossref.org/dialog/?doi=10.1016/j.isci.2022.104112&domain=pdf
http://creativecommons.org/licenses/by/4.0/


ll
OPEN ACCESS

iScience
Perspective
immunosuppressive properties can be beneficial for the treatment of ‘‘cytokine storm’’ (D’Elia et al.,

2013). However, these drugs could prevent the development of adaptive immune responses allowing re-in-

fections with the same or similar virus strains. Thus, antivirals without immunomodulatory properties are

likely to be beneficial for the treatment of viral infections (Alijotas-Reig et al., 2020; Zusinaite et al., 2018).

Antiviral agents are molecules that have undergone pre-clinical development or clinical investigations

against certain viruses but have not been approved for pharmaceutical use. Currently, there are thousands

of antiviral agents in preclinical development and hundreds in clinical trials. It takes approximately 13–15

years and 2 billion USD to develop a new antiviral drug from an antiviral agent (Pizzorno et al., 2019).

Antiviral drugs and agents can be further divided into those that target the virus and those that target

the host. Virus-directed antivirals target viral proteins, viral nucleic acids, or lipid envelopes. An example

of a virus-directed antiviral is oseltamivir, an influenza drug that inhibits viral neuraminidase. Host-directed

antivirals target cellular factors that mediate virus replication. In contrast to virus-directed antivirals, host-

directed agents modulate the activity of host factors and pathways. An example of host-directed antiviral is

maraviroc, an HIV-1 drug that targets the cellular CCR5 receptor to prevent a critical step in HIV-1 entry.

Antiviral drugs and agents come in numerous molecular forms including small molecules, peptides,

neutralizing antibodies, interferons (IFNs), Crispr-Cas systems, si/shRNAs, and other nucleic acid polymers

(NAPs) (Andersen et al., 2020; de Buhr and Lebbink, 2018; Levanova and Poranen, 2018; Lin and Young,

2014; Salazar et al., 2017; Vaillant, 2016). Of these, neutralizing antibodies, peptides, NAPs, and Crispr/

Cas are mainly used as virus-directed interventions; IFNs are used as host-directed biologics, while small

molecules can be either virus- or host-directed drugs.

Broad-spectrum antivirals (BSAs) can inhibit the replication of multiple viruses from the same or

different viral families (Andersen et al., 2020). One efficient method of BSA development is drug repurpos-

ing/repositioning, a strategy for identifying new uses for approved or investigational antiviral drugs that are

outside the scope of the original medical indication (Pushpakom et al., 2019). BSAs are cost-effective

because the overall development cost can be distributed across many viral indications. Critically, robust

BSA development fosters future pandemic preparedness because BSA activity facilitates enhanced

coverage of newly emerged viruses.

Ongoing viral replication and prolonged exposure to certain drugs can lead to the selection of drug-resis-

tant viruses throughmutations in viral proteins. For example, mutations in HCV proteins confer resistance to

NS3-4A, NS5A, and NS5B inhibitors (Ahmed and Felmlee, 2015). To mitigate the development of antiviral

drug resistance, researchers developed antivirals that target protein-protein interactions rather than active

sites of viral or host enzymes (Massari et al., 2021; Schormann et al., 2011). Another alternative is to combine

antivirals (White et al., 2021). Additive, multiplicative, and synergistic drug combinations are more effective

than monotherapies, allowing for successful treatments at lower dosage and reduction of harmful side ef-

fects. Indeed, a combination of IFN-a and ribavirin was the ‘‘gold standard’’ for the treatment of chronic

HCV infection for more than a decade (Ilyas and Vierling, 2014). Furthermore, ribavirin- and IFN-a-contain-

ing combinations have been used against other viruses (Li et al., 2011; Tong et al., 2018) (NCT04412863),

suggesting that BSA-containing combinations (BCCs) can be used to target a broad range of viruses.

Care needs to be taken when finding the correct BCCs. Drugs with unique mechanisms of action (MoA) are

often paired together to minimize side effects and maximize efficacy. Drugs with the same MoA, such as

nucleoside/nucleotide analogs, cannot be taken together (Zoulim, 2005) because they compete, rather

than produce synergistic or additive effect. Such combinations could also have higher toxicity than

monotherapies. In addition, drug antagonism can reduce the effectiveness of treatment and lead to an

increased risk of virologic failure (failure to meet a specific drug target). Ideally, one wants the smallest

number of drugs in cocktail due to the potential for increased toxicity and additional side effects with

each additional drug (Radhakrishnan and Tidor, 2008).

Here we have reviewed the available scientific and clinical information and identified the basic principles

behind activities of BSAs and BCCs to predict novel drug cocktails for the treatment of emerging and

re-emerging viruses with pandemic potential. The approach described herein could facilitate the

development of cost-effective and lifesaving countermeasures to fight new viral outbreaks.
2 iScience 25, 104112, April 15, 2022
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Figure 1. Drug activity-virus phylogeny relationship analysis

(A) Phylogenetic tree of viruses constructed based on the amino acid sequences of viral pols and RTs.

(B) Bar chart showing the number of BSAs active against the viruses shown in panel (A).

(C) Venn diagrams showing the number of BSAs targeting closely related viruses.
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THE LANDSCAPE OF BROAD-SPECTRUM ANTIVIRAL ACTIVITIES CAN BE EXPANDED

To identify known BSAs we have extensively reviewed published antivirals using PubMed.gov,

ClinicalTrials.org and DrugBank.ca (Kim et al., 2021; Ursu et al., 2019; Wishart et al., 2018). Each of the

resulting antiviral drug terms in this initial list was queried in combination with the terms ‘‘virus,’’ ‘‘antiviral,’’

or one of the known human viruses obtained from Virus Pathogen Database and Analysis Resource (Pickett

et al., 2012). From this, we have compiled a list of antiviral drugs which we checked in the DrugBank. We

desalted the compounds. Metals, mixtures, illicit and exclusively veterinary drugs were excluded. The

returned results were examined to determine if antiviral activity has been demonstrated between the

drug and two or more viruses from two different viral families. If antiviral activity could be established in

more than 2 viral families, then all such drug-virus combinations would be recorded. Altogether, we

identified 255 approved, investigational and experimental BSAs that target 104 human viruses from 24

families (Figure S1; Data S1).

Recently, we have tested several experimental, investigational, and approved BSAs against different

viruses. We identified novel activities for saliphenylhalamide, gemcitabine, obatoclax, SNS-032,

flavopiridol, nelfinavir, salinomycin, amodiaquine, obatoclax, emetine, homoharringtonine, atovaquone

and ciclesonide, dalbavancin, vemurafenib, MK-2206, ezetimibe, azacitidine, cyclosporine, minocycline,

ritonavir, oritavancin, cidofovir, dibucaine, azithromycin, gefitinib, minocycline, pirlindole ivermectin,

brequinar, homoharringtonine, azacytidine, itraconazole, lopinavir, nitazoxanide, umifenovir, sertraline,

amodiaquine and aripiprazole (Andersen et al., 2019; Bosl et al., 2019; Chen et al., 2020; Denisova et al.,

2012, 2014; Herring et al., 2021; Ianevski et al., 2018, 2020c; Kakkola et al., 2013; Ko et al., 2021; Kuivanen

et al., 2017; Li et al., 2020, 2021; Soderholm et al., 2016; Yang et al., 2021). These results suggest that the

landscape of BSA activities is vast and that it can be further interrogated and expanded.

To expand the activity spectrum of BSAs, we analyzed relationships between drug activity and virus

phylogeny. For this, we first build a phylogenetic tree using the CLUSTALW2 algorithm and amino acid

sequences of viral polymerases (pols) and reverse transcriptases (RTs) extracted from GenBank (Aiewsakun

and Simmonds, 2018; Larkin et al., 2007) (Figure 1A). Notably, some viruses are represented by only small

portions of pol and RT sequences (Data S1). Next, we identified the number of BSAs found to have

activity against each corresponding virus (Figure 1B). Although the phylogenetically similar viruses will

likely be responsive to the same drug, Figure 1C indicates that most BSAs are only tested against a small

subpopulation of related viruses.

From this information, we can identify a wide range of previously untested BSA-virus interactions,

which could demonstrate novel antiviral activities. For example, 54 BSAs have been proven effective for

SARS-CoV-2, but not other coronaviruses indicating higher likelihood of antiviral activity between those

54 BSAs and several other coronavirus species. Due to the high probability of coronavirus emergence,

this inference could further be applied to coronaviruses that may arise in the future. However, it is important

to note that our analysis is limited to viruses that encode their own pols or RTs and for which full- or near

full-length sequences of these enzymes are available. For viruses that do not encode their own pols and RTs

or are thus far poorly characterized, an analysis of virus taxonomy and BSA activity may be required to make

similar inferences (Kuhn, 2021).

STRUCTURE-ACTIVITY RELATIONSHIP ANALYSIS IDENTIFIES NOVEL BROAD-SPECTRUM

ANTIVIRAL CANDIDATES

To expand the list of potential BSAs, we performed a drug structure–activity relationship (SAR) analysis of

11,834 compounds from DrugBank (Wishart et al., 2018), including 255 BSAs. The compound structures

were obtained in the form of SMILES from the PubChem database (Kim et al., 2021). We used the most

popular method, extended connectivity fingerprints of diameter 4 (ECFP4), to calculate the structural

similarity of compounds (Rogers and Hahn, 2010). We clustered compounds based on their structural

similarities and extracted the compound sub-clusters that include two or more BSAs (Data S1). Three

such sub-clusters are shown in Figure 2. From this analysis, we can propose several new candidates for
4 iScience 25, 104112, April 15, 2022
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Figure 2. Structure-activity relationship analysis identifies compounds structurally similar to known BSAs

The circular dendrogram shows the SAR of BSAs from our database. We also used SAR analysis to identify BSA candidates

from the list of 11,834 compounds from DrugBank. Three compound sub-clusters that include two or more know BSAs are

shown.
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investigation as BSAs based on their structural similarities to existing BSAs. For example, the drugs

domiphen, bephenium, pranlukast, afimoxifene, ospemifene, and fispemifene share structural similarities

with tamoxifen and toremifene, known BSAs with activity against filoviruses and coronaviruses (Martin and

Cheng, 2020; Montoya and Krysan, 2018; Tummino et al., 2021; Zhao et al., 2016). Based on structural

similarity alone, we can identify these drugs as likely candidates for BSA activity. Similarly, pyronaridine,

naphthoquine, meclinertant, and piperaquine are clustered together with BSAs quinacrine, amodiaquine,

chloroquine, and hydroxychloroquine (Kaur and Kumar, 2021); melarsomine, melarsoprol, and FF-10101-01

are clustered together with BSAs etravirine, dapivirine, and rilpivirine (De Clercq, 2005); and CUDC-101,

lapatinib, varlitinib, tucatinib, PD-168393, CP-724714, AZD-0424, tarloxotinib, canertinib, afatinib,

dacomitinib, AV-412, falnidamol, enasidenib, LY-3200882, HM-43239, PD173955, PD-166326, abivertinib,

olmutinib, poseltinib, spebrutinib, rociletinib, lazertinib, mobocertinib, osimertinib, alflutinib, and

TOP-1288 are clustered with BSAs erlotinib, saracatinib, and gefitinib (Schor and Einav, 2018). Thus, we

demonstrate that this type of SAR analysis could identify critical BSA scaffolds and predict novel BSAs.

VIRUS AND HOST TARGETS FOR BROAD-SPECTRUM ANTIVIRALS

We next reviewed the known or suspected primary BSA targets (Data S1). We were able to identify primary

targets for a fraction of BSAs. Most virus-directed BSAs work by inhibiting viral nucleic acid synthesis or pro-

tein processing (Figure 3A). Among host-directed BSAs, mechanisms appeared to be more varied and

included the inhibition of protein translation, trafficking, modification, or degradation, receptor-mediated

signaling, lipid metabolism, etc. (Figure 3B). However, in contrast to most host-directed BSAs that work
iScience 25, 104112, April 15, 2022 5



Figure 3. Virus and host targets for BSAs

(A) Eye diagram showing virus-directed BSAs linked to viruses through potential targets.

(B) Eye diagram showing host-directed BSAs linked to viruses through potential targets.

(C) Common targets of 58 BSAs, which possess immunomodulatory properties. Targets with interaction group scores <0.05 as well as unique targets were

omitted. Clustering was performed to show highlight targets for BSAs.
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through the inhibition of host factors, several host-directed BSAs also work to activate innate immune

responses against viruses. For example, IFNs are natural host-directed activators that bind their receptors

to trigger cellular antiviral responses, which attenuate viral replication (Park and Iwasaki, 2020), and

ABT-263 (navitoclax) targets the Bcl-xL protein to initiate apoptosis of infected cells without affecting

non-infected cells (Ianevski et al., 2020a). Some BSAs, such as suramin, can simultaneously target host

and viral factors (Langendries et al., 2021; Yin et al., 2021). Lastly, some BSAs are given in the form of

prodrugs such as ganciclovir and gemcitabine which are activated by virus or host factors to achieve their

antiviral effect (Walther et al., 2017).

By interrogating the Drug-Gene Interaction database (Fajgenbaum and June, 2020), we found that several

host-directed BSAs can target multiple cellular factors involved at several stages of viral replication. These

extra drug targets are generally unexplored and are most likely associated with side effects, although they
6 iScience 25, 104112, April 15, 2022



Figure 4. Drug-target interactions in BSA-containing combinations

(A) Developmental statuses and targets of BCCs.

(B) Examples of BCCs targeting virus, host, or both factors. A random walks algorithm was used to group the drug combinations based on their targets

(Wang et al., 2020).
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may also affect viral replication. Perhaps, the most important of these targets are immunomodulatory. We

compiled the BSAs with secondary immunomodulatory targets and showed those in Figure 3C. From this,

we found that many BSAs target similar clusters of immunomodulatory genes, indicating some structural

and functional similarities between the targets, but no overarching immunomodulatory targets that may

suggest a contribution to antiviral activity. Further analysis is needed to elucidate the exact role that these

immunomodulatory targets play in host pharmacodynamics or their contribution to antiviral activity.

Notably, the potential immunomodulatory side effects of BSAs can be mitigated by lower dosage of drugs

in synergistic combinations.
BROAD-SPECTRUM ANTIVIRAL-CONTAINING DRUG COMBINATIONS FOR THE

TREATMENT OF VIRAL INFECTIONS

Despite demonstrated efficacy at the early stages of drug development, many antiviral monotherapies are

often found to be ineffective in clinical settings (Consortium et al., 2021). Because of this, antiviral cocktails

have increasingly become the focus of drug developers. Antiviral combinations have several benefits over

monotherapies. Namely, they can prevent the development of drug-resistant strains by completely halting

viral replication, an advantage rarely achieved with monotherapies. Further, drugs administered together

as cocktails may achieve an expanded antiviral activity, allowing for the treatment of multiple types of viral

infections at once (Shyr et al., 2021). Because of this, BCCs are favorable candidates for front-line

therapy against poorly characterized emerging viruses, re-emerging drug-resistant viral variants, and viral

co-infections.

Indeed, BCCs have become a standard treatment of rapidly evolving viruses, such as HIV and HCV (www.

drugs.com/drug-class/antiviral-combinations.html). These include triple and quadruple drug combina-

tions such as abacavir/dolutegravir/lamivudine (Triumeq), darunavir/cobicistat/emtricitabine/tenofovir

(Symtuza), ledipasvir/sofosbuvir (Harvoni), sofosbuvir/velpatasvir (Epclusa), and lopinavir/ritonavir

(Kaletra). Furthermore, many dual drug combinations are now in clinical trials against SARS-CoV-2, HCV,

HBV, HSV-1, and other viral infections (Ianevski et al., 2020b). In addition, many BCCs have been tested

in vitro and in animal models (Dyall et al., 2018; Finch et al., 2021; Herring et al., 2021; Ianevski et al.,

2020c, 2021a, 2021b) (Li et al.). These and other studies further demonstrate the potential for antiviral

combinations for the treatment of emerging and re-emerging viral infections.

To underscore the potential benefits and provide an organized summary of known dual antiviral drug

combinations, we manually reviewed scientific literature and patent applications and constructed a BCC

database (Data S1). The database comprises 538 drug cocktails. It includes 612 unique drugs and covers

68 viruses. We were able to identify primary targets for 415 drugs (Figure 4). Of these, we found that 211
iScience 25, 104112, April 15, 2022 7
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BCCs have components that both primarily target viral factors, 74 have components that both primarily

target host factors, and 130 BCCs in which one drug primarily targets the virus while the other primarily

targets the host. We were not able to identify specific targets for 160 BCCs due to one or more BSA in

the BCC having an unknown mechanism of action. We suspect that the overrepresentation of virus-virus

and virus-host targeting BCCs is as drugs that were developed to specifically target virus factors may be

more successful in achieving a direct antiviral effect while minimizing severe side effects. Thus, virus-virus

and virus-host targeting BCCs are superior to host-host BCCs in many ways, including the leveraging of

antiviral synergism, reduction of toxicity. However, host-host targeting BCCs have lower risk of drug

resistance and an expanded spectrum of antiviral activity.

ASSOCIATION BETWEEN INFECTED ORGAN SYSTEMS AND ROUTES OF BROAD-

SPECTRUM ANTIVIRALS/BCCS ADMINISTRATION

Viruses often preferentially infect hosts in one or more specific organ systems of the human body

(Figure 5A). In theory, BSAs and BCCs must be rapidly delivered to the infected organs using an amenable

route of administration (RoA) to preserve the drug structure, maximize antiviral effect, and reduce drug

toxicity or other adverse events. For example, if a virus infects and replicates in the respiratory system,

medications administered by inhalation may be preferable. Likewise, if the virus infects the cardiovascular

system, intravenous drug administration could be considered, etc. However, intravenous administration

prevents widespread use of the BCCs because use is restricted to specialized care centers such as

hospitals. In cases of advanced or systemic virus infections that affect multiple organ systems, antivirals

intravenous administration may be preferable. However, most of the BSAs and BCCs reviewed here are

delivered orally, most likely due to the preferential development of orally bioavailable drugs by

pharmaceutical companies because of their increased marketability and potential for global distribution

(Figures 5B and 5C).

BROAD-SPECTRUM ANTIVIRAL AND BCC SCORING SYSTEMS

To identify the most promising monotherapies we developed a six-component BSA scoring system:

1) SAR component (CSAR):
8

� if the BSA is identical to a drug that has been developed or is currently under development for the

virus of interest (voi), CSAR = 1;

� if the BSA is structurally similar to a drug that was developed or under development against the

voi, CSAR = 0.5;

� if the BSA has a distinct structure, CSAR = 0;

2) Drug developmental status component (CDDS; only applies to BSAs for which CSAR = 1):

� if the BSA is approved or is in phase 4 clinical trials against the Voi, CDDS = 1;

� If the BSA is in phase 1-3 clinical trials, CDDS = 0.75;

� if the BSA has been tested in vivo, CDDS = 0.5;

� if the BSA has been tested in vitro, CDDS = 0.25;

- if the BSA has not been tested, CDDS = 0;

3) Drug target relevance component (CTR):

� if the confirmed primary target of the BSA in question is associated with Voi replication (the drug

target is essential for Voi replication), CTR = 1;

� if not, CTR = 0;

4) Drug immunomodulatory component (CIC):

� if the BSA does not interfere with host immune response, CIC = 1;

� if the BSA is immunomodulatory, CIC = 0;

5) Drug RoA component (CRoA):

� if the RoA of the BSA is well-suited for the diseased system (e.g., inhalation of drug for the treat-

ment of respiratory viruses), CRoA = 1;
iScience 25, 104112, April 15, 2022



Figure 5. Routes of administration (RoA) of BSAs and BCCs

(A) Organ systems that are preferentially affected by different viruses.

(B) RoA of BSAs. Sizes of the colored bubbles reflect the number of BSAs developed against a certain virus.

(C) RoA of BCCs. Colored squares indicate the combined RoA of drugs in BCCs. Gray shading indicates that antiviral activity has either not been studied or

reported for the drug combination in question. Data S1. Broad-spectrum antivirals (BSAs), their targets, mechanisms of action, immunomodulatory

properties, routes of delivery, BSA-containing drug combinations (BCCs), and BSA and BCC scores.
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� if not, CRoA = 0;

6) Phylogeny component (CPhyl):

� if the Voi is in the same genus as the virus for which the BSA has been developed, CPhyl = 1;

� if the Voi is in the same family, CPhyl = 0.5;

� if the Voi is in a closely related family, CPhyl = 0.25;

� if the Voi is distantly related, CPhyl = 0.
iScience 25, 104112, April 15, 2022 9
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To calculate the final BSA score, we sum the points across all six components using the following formula:

BSA score = CSAR + CDDS + CTR + CIC + CRoA + CPhyl (Equation 1)

For example, the BSA score of favipiravir in relation to its activity against Ebola virus (EBOV) is 5.57.

Favipiravir is an orally available nucleoside analog, which blocks viral RNA synthesis by inhibiting viral

RdRP activity. Its immunomodulatory properties were not reported, and it is in phase 3 clinical trials against

EBOV (NCT02329054). Therefore, the component values are as follows: CSAR = 1, CDDS = 0.75, CDTR = 1,

CIC = 1, CRoA = 1, and CPhyl = 1 (Data S1).

Another example is merimepodib. Its BSA score in relation to its EBOV activity is 4.25. Merimepodib is an

orally available inhibitor of host inosine monophosphate dehydrogenase (IMPDH), which controls the

intracellular guanine nucleotide levels that are required for viral RNA synthesis. It possesses anti-

EBOV activity in vitro and suppresses host immunity (Jain et al., 2001; Tong et al., 2018). Therefore,

the component values are as follows: CSAR = 1, CDDS = 0.25, CDTR = 1, CIC = 0, CRoA = 1, and CPhyl = 1

(Data S1).

To identify the most promising combinational therapies, we invented a four-coefficient BCC scoring

system. It utilizes the following BCC coefficients:

1) Drug interaction coefficient (kDI):
� if the MoAs for each component of the combination are different, kDI = 1;

� if the MoAs are the same (for example, if both components are nucleoside analogs), kDI = 0.5;

2) Drug-target interaction coefficient (kDTI):

� if both BSA components target viral factors (the combination for which minimum side effects are

expected), kDTI = 1.2;

� if one BSA targets a viral factor and one BSA targets a host factor, kDTI = 1.1;

� if both BSA components target host factors (the combination for which maximum side effects are

expected, kDTI = 1;

3) Drug-targeted stage of replication cycle coefficient (kDRS):

� if both BSA components target the same stage of the virus life cycle (entry, viral replication, or

exit), kDRS = 1.2;

� if the BSA components target different stages of the viral life cycle, kDRS = 1;

4) Drug RoA coefficient (kRoA):

� if both BSA components can be administrated by the same route and if the RoA can be used for

targeted delivery to the diseased system, kRoA = 1.2;

� if both BSA components can be administrated by the same route, but the RoA cannot be used for

targeted delivery to the diseased system, kRoA = 1;

� if the two BSA components cannot be administrated via the same route, kRoA = 0.8;

From these we calculate a BCC score using the following formula:

BCC score = kDI � kDTI � kDRS � kRoA � ðBSA score drug 1 + BSA score drug 2Þ (Equation 2)

If the BCC score exceeds the sum of the individual BSA scores by 5, we consider this combination to be

effective (Data S1). For example, for favipiravir-merimepodib targeting EBOV, the kDI is 1.0 because the

MoAs of the drugs are different; the kDTI is 1.1, because the drugs target viral RdRP and host IMPDH;

the kDRS is 1.2, because both drugs reduce the synthesis of viral RNA, and kRoA 1.2, because both drugs

can be taken orally, which allows delivery of the combination to multiple infected organs. Therefore, the

BCC score of favipiravir-merimepodib is 15.8, whereas the combined BSA score of the combination is 10

(Table 1). Because the BCC score is greater than the combined BSA score by over 5 points, this combination

would be considered to have high potential based on our scoring system. Indeed, by reviewing the

literature, we found that this combination has been independently tested against EBOV in vitro and was

shown to be effective (Tong et al., 2018).
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Table 1. Examples of published and predicted BCCs, for which BCC scores exceed the sum of the individual BSA scores by 5

Virus Family

Case fat.

rate, %

Infected

system

Drug 1

Drug 2

Sum of

BSA scores

BCC

score Reference

Published BCCs

EBOV Filoviridae 66 Multiple Favipiravir

Merimepodib

10.0 15.8 (Tong et al., 2018)

LASV Arenaviridae 13 Multiple Ribavirin

Merimepodib

9.0 14.3 (Tong et al., 2018)

HIV-1 Retroviridae 47 Multiple Amprenavir

Efavirenz

12 17.3 (Falloon et al., 2000)

Efavirenz

Indinavir

12 17.3 NCT00002387

FLUAV Orthomyxoviridae 0.003 Respiratory system Favipiravir

Pimodivir

11.8 16.9 (Byrn et al., 2015)

IFN-a

Ribavirin

9.5 15.1 NCT01146535

HBV Hepadnaviridae 40 Multiple Telbivudine

Alisporivir

9.3 14.7 (Phillips et al., 2015)

HCV Flaviviridae 6.3 Multiple Daclatasvir

Sofosbuvir

12 17.3 NCT03200184

Daclatasvir

Simeprevir

12 17.3 NCT01628692

Mericitabine

IFN-a

10.8 17.0 (Wedemeyer et al., 2013)

Ribavirin

IFN-a

10 15.8 (Bellobuono et al., 1997)

ZIKV Flaviviridae n.a Multiple Favipiravir

IFN-a

9.5 15.05 (Pires de Mello et al., 2018)

Predicted BCCs

EBOV Filoviridae 66 Multiple IFN-b

N4-hydroxycytidine

10.3 16.2

Favipiravir

Tilorone

10.8 17.0

MARV Filoviridae 50 Multiple Favipiravir

Tilorone

10.5 16.6

LUJV Arenaviridae 80 Multiple Favipiravir

AVN-944

10.5 16.6

Favipiravir

Brequinar

9.5 15.1

Ribavirin

Merimepodib

8.5 13.5

Ribavirin

AVN-944

10.0 15.8

JUNV Arenaviridae 25 Multiple Favipiravir

Merimepodib

9.8 15.4

Favipiravir

Caffeine

10.8 17.0

LASV Arenaviridae 13 Multiple Favipiravir

Merimepodib

9.8 15.4

(Continued on next page)
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Table 1. Continued

Virus Family

Case fat.

rate, %

Infected

system

Drug 1

Drug 2

Sum of

BSA scores

BCC

score Reference

HTNV Hantaviridae 7 Multiple Baloxavir

Zidovudine

10.5 16.6

Baloxavir

Favipiravir

10.5 16.6

ANDV Hantaviridae 23 Multiple Baloxavir

Favipiravir

9.0 14.3

SNV Hantaviridae 50 Multiple Baloxavir

Favipiravir

9.3 16.0

LACV Peribunyaviridae 1 Multiple Baloxavir

Favipiravir

8.5 14.7

PTV Phenuiviridae n.a Multiple Baloxavir

Favipiravir

8 13.8

SFTSV Phenuiviridae 21 Multiple Baloxavir

Favipiravir

11.0 17.4

CCHFV Nairoviridae 25 Multiple Favipiravir

Baloxavir

9.0 15.6

FLUAV Orthomyxoviridae 0.003 Respiratory system Baloxavir

Pimodivir

11.8 16.9

VZV Herpesviridae 0.1 Multiple Foscarnet

Favipiravir

8.5 16.2

Foscarnet

Remdesivir

8.5 14.7

Foscarnet

Sofosbuvir

8.5 14.7

Foscarnet

Taribavirin

8.5 14.7

Foscarnet

Ribavirin

7.5 13.0

HTLV-1 Retroviridae N/A Multiple Etravirine

Emtricitabine

7.0 12.1

Didanosine

Etravirine

7.0 12.1

Zalcitabine

Etravirine

7.0 12.1

HIV-1 Retroviridae 47 Multiple Didanosine

Rilpivirine

12.0 20.7

Etravirine

Emtricitabine

12.0 20.7

Atazanavir

Rilpivirine

12.0 17.3

Etravirine

Adefovir

10.8 18.6

Rilpivirine

Racivir

10.8 18.6

HBV Hepadnaviridae 40 Multiple Nitazoxanide Valacyclovir 9.0 14.3

Nitazoxanide

Zalcitabine

8.3 13.1

(Continued on next page)
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Table 1. Continued

Virus Family

Case fat.

rate, %

Infected

system

Drug 1

Drug 2

Sum of

BSA scores

BCC

score Reference

NoV Caliciviridae n.a Digest. system Beclabuvir

Mycophenolic acid

9.5 15.1

DENV Flaviviridae 0.37 Multiple Brequinar

GS-441524

9.5 15.05

Brequinar

Azauridine

9.5 15.05

GS-441524

IFN-a

9.5 15.05

Azauridine

IFN-a

9.5 15.05

HCV Flaviviridae 6.3 Multiple Sofosbuvir

IFN-a

11 17.4

INX-08189

IFN-a

10.3 16.2

Mericitabine Mycophenolic acid 10 15.8

RibavirinMycophenolic acid 9.3 14.7

Sofosbuvir Mycophenolic acid 10.3 16.2

INX-08189

Mycophenolic acid

9.5 15.1

Boceprevir Mericitabine 12 17.3

Sofosbuvir Boceprevir 12 17.3

Simeprevir Boceprevir 12 17.3

Simeprevir Mericitabine 12 17.3

Simeprevir Sofosbuvir 12 17.3

Daclatasvir Mericitabine 11.8 16.9

Daclatasvir Boceprevir 12 17.3

ZIKV Flaviviridae n.a Multiple Clofazimine

IFN-a

9.5 15.1

Rilpivirine Teriflunomide 9.8 15.4

Rilpivirine Mycophenolic acid 9.8 15.4

Rilpivirine

IFN-a

9.8 15.4

Rilpivirine Brequinar 9.8 15.4

Rilpivirine Merimepodib 9.8 15.4

Clofazimine Mycophenolic acid 9.5 15.1

Clofazimine Teriflunomide 9.5 15.1

Clofazimine Brequinar 9.5 15.1

Clofazimine Merimepodib 9.5 15.1

Favipiravir

Mycophenolic acid

9.5 15.1

Favipiravir Teriflunomide 9.5 15.1

Favipiravir Brequinar 9.5 15.1

Favipiravir Merimepodib 9.5 15.1

Azaribine

IFN-a

9.5 15.1

Azaribine

Mycophenolic acid

9.5 15.1

(Continued on next page)
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Table 1. Continued

Virus Family

Case fat.

rate, %

Infected

system

Drug 1

Drug 2

Sum of

BSA scores

BCC

score Reference

Azaribine Teriflunomide 9.5 15.1

Azaribine Brequinar 9.5 15.1

Azaribine Merimepodib 9.5 15.1

Efavirenz

IFN-a

9.5 15.1

Efavirenz

Mycophenolic acid

9.5 15.1

Efavirenz

Teriflunomide

9.5 15.1

Efavirenz

Brequinar

9.5 15.1

Efavirenz

Merimepodib

9.5 15.1

Gemcitabine IFN-a 8.5 13.5

Ribavirin

IFN-a

8.5 13.5

Ribavirin

Mycophenolic acid

8.5 13.5

Ribavirin Teriflunomide 8.5 13.5

Ribavirin Brequinar 8.5 13.5

Ribavirin Merimepodib 8.5 13.5

Sofosbuvir

IFN-a

10.8 17.0

Sofosbuvir Mycophenolic acid 10.8 17.0

Sofosbuvir

Teriflunomide

10.8 17.0

Sofosbuvir

Brequinar

10.8 17.0

Sofosbuvir Merimepodib 10.8 17.0

ll
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In contrast, the BCC score for favipiravir-ribavirin against EBOV is 7.3. This is lower than the sum of

individual BSA scores of favipiravir and ribavirin, which is 8.5, which predicts suboptimal performance for

this combination (Table 1). Literature review shows that this prediction is consistent with efficacy studies

in monkeys (Madelain et al., 2020). Thus, we demonstrated that the results from our scoring system are

consistent with real-life experimental evidence.

Next, we used our scoring system for the identification of novel potential BCCs (Data S1). As mentioned

above, we focused on novel combinations for which BCC scores exceed the sum of the individual BSA

scores by > 5. In this way, we have identified several unexplored drug combinations that may be prioritized

for development in preparation for future resurgent outbreaks or the appearance of newly emerging

viruses (Table 1).

Interestingly, many predicted BCCs contain nucleotide/nucleoside analogs along with inhibitors of pyrim-

idine/purine biosynthesis, cap analogs, or IFNs, which also target viral RNA synthesis via IFN-induced

RNases. Indeed, such combinations showed synergy in experiments performed in our and other labora-

tories (Bellobuono et al., 1997; Byrn et al., 2015; Falloon et al., 2000; Herring et al., 2021; Ianevski et al.,

2021a, 2021b; Li et al., 2020, 2022; Phillips et al., 2015; Pires de Mello et al., 2018; Schultz et al., 2022;

Tong et al., 2018; Wedemeyer et al., 2013). Thus, our preliminary results suggest that scores could correlate

with the antiviral efficacy of BCCs and that some of these combinations could be used as pan- and even

cross-virus family .
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Limitations of the study

The MoA of many BSAs remains elusive. In addition, many BSAs have been tested only in vitro. These

lowered the final scores of BSAs and BCCs and thus affected the prediction capacity of our approach.

Therefore, the MoAs of BSAs and BCCs should be studied in vitro and their efficacy and toxicity should

be evaluated in vivo. In addition, immunological properties and RoA of mono- and combinational

therapies should be evaluated. Finally, the prospects for clinical trials of the most effective and least toxic

drug combinations should be assessed.

CONCLUSIONS AND FUTURE PERSPECTIVES

New life-threatening viruses emerge and pose a serious threat to public health. Thereby, broadly effective

antiviral therapies must be developed to be ready for clinical trials, which should begin soon after a new

virus started to spread from human to human (Andersen et al., 2020). To identify novel pan- and cross-vi-

rus family treatments, we established a scoring system, which is based on analysis of conserved druggable

virus-host interactions, MoAs, immunomodulatory properties of BSAs, RoAs, and BSA interactions with

other antivirals. The system prioritizes the development of the most promising few of the thousands of

potentially viable BSAs and BCCs. However, the effectiveness of the predicted BSAs and BCCs needs

to be confirmed in vitro and in vivo to prepare them for clinical trials (White et al., 2021). Therefore, we

will invite researchers to validate our proposed BSAs and BCCs and optimize our approach further using

mathematical modeling, machine-learning, and other tools. If handled correctly, the development of the

right BSAs and BCCs can have a global impact by enhancing preparedness for future viral outbreaks,

filling the void between virus identification and vaccine development with life-saving countermeasures

and improving the protection of the general population against emerging viral threats.
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