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Abstract: Schistosomiasis is a neglected tropical disease that continues to be a leading cause of
illness and mortality around the globe. The causing parasites are affixed to the skin through defiled
water and enter the human body. Failure to diagnose Schistosomiasis can result in various medical
complications, such as ascites, portal hypertension, esophageal varices, splenomegaly, and growth
retardation. Early prediction and identification of risk factors may aid in treating disease before it
becomes incurable. We aimed to create a framework by incorporating the most significant features to
predict Schistosomiasis using machine learning techniques. A dataset of advanced Schistosomiasis
has been employed containing recovery and death cases. A total data of 4316 individuals contain-
ing recovery and death cases were included in this research. The dataset contains demographics,
socioeconomic, and clinical factors with lab reports. Data preprocessing techniques (missing values
imputation, outlier removal, data normalisation, and data transformation) have also been employed
for better results. Feature selection techniques, including correlation-based feature selection, Informa-
tion gain, gain ratio, ReliefF, and OneR, have been utilised to minimise a large number of features.
Data resampling algorithms, including Random undersampling, Random oversampling, Cluster
Centroid, Near miss, and SMOTE, are applied to address the data imbalance problem. We applied
four machine learning algorithms to construct the model: Gradient Boosting, Light Gradient Boosting,
Extreme Gradient Boosting and CatBoost. The performance of the proposed framework has been
evaluated based on Accuracy, Precision, Recall and F1-Score. The results of our proposed framework
stated that the CatBoost model showed the best performance with the highest accuracy of (87.1%)
compared with Gradient Boosting (86%), Light Gradient Boosting (86.7%) and Extreme Gradient
Boosting (86.9%). Our proposed framework will assist doctors and healthcare professionals in the
early diagnosis of Schistosomiasis.

Keywords: machine learning; Schistosomiasis; healthcare data; data imbalance; feature selection;
data resampling; SMOTE; artificial intelligence

1. Introduction

Schistosomiasis, snail fever or bilharzia, is one of the most lethal and contagious
among several ignored tropical diseases of the world. This parasitic disease affixed
to the skin through defiled water enters the human body. It moves into human veins,
where parasites lay eggs which becomes the reason for two stages (chronic and acute) of
Schistosomiasis [1,2]. The most severe type of late-stage Schistosomiasis japonica in Asia is
advanced Schistosomiasis. Hepatosplenomegaly, portal hypertension, gastroesophageal
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varices, periportal and liver cirrhosis, and other significant liver parenchyma damage are
all caused by parasites trapped in eggs [3,4]. Advanced Schistosomiasis patients have a
high rate of fatality or disability. World health organisation (WHO) reported that millions of
people got infected [5]. There are over 30,000 advanced Schistosomiasis patients in China,
and the number of cases has grown in recent years [6].

The quantity and size of medical data are increasing continuously. Because of this
enormous volume of information, the prognosis of diseases, analysis based on statistics,
extraction of disguised information, and identification of symptoms causing the disease
are now possible in the digital era [7,8]. The significant data mining and machine learning
techniques can help in the early prediction of Schistosomiasis, which can be very helpful for
decision-makers and researchers [9]. However, dealing with a huge volume of data such as
images, historical data, and genes-related expressions has been the main problem in data
mining and machine learning applications which requires high computational time and
storage capability that leads to poor performances. Feature selection plays an important
role in solving the issue of huge data. It can be applied to reduce the dimension, irrelevance,
and redundant data features, shorten the training time and improve performance [10].

A comprehensive model is not only beneficial to health professionals, but it may also
assist people in diagnosing which factors may harm their health. The fundamental objective
for early prediction of Schistosomiasis is to use medical data to assist medical practition-
ers in disease diagnosis, reduce mortality, and improve recovery. Statistical approaches
are used in several risk prediction models, including K-nearest neighbour, discriminant
analysis, and logistic regression [11]. Classification and regression models were also used
to forecast risk variables with the progress of machine learning and artificial intelligence
technology [12]. Machine learning and pattern recognition algorithms have demonstrated
promising performance for high-dimensional and imbalanced clinical datasets. A dataset
can be imbalanced when one class is over-represented among others. This concern is espe-
cially fundamental in real-world datasets where it’s expensive to misclassify models from
the minority class, such as detection of fake calls, diagnosis of diseases like Schistosomiasis,
data recovery, and text categorisation. Machine learning algorithms are a collection of
approaches that automatically discover patterns from huge, complex data as an alternative
to traditional prediction methods [13–16].

Data mining approaches were integrated with various critical parameters, such as
clinical, socioeconomic and geographical factors, to diagnose Schistosomiasis. Various
computational approaches are commonly used to uncover the link between various ill-
nesses and patient clinical characteristics. Furthermore, machine learning techniques to
find significant features from complicated datasets demonstrate their value. On the other
hand, schistosomiasis pathogenesis is a complex process influenced by various factors
such as demography, socioeconomic situation, and healthcare infrastructure. Therefore,
an appropriate analytical framework has been required to combine this multidimensional,
unstructured, and collinear data. This study aims to create a framework based on machine
learning models for early Schistosomiasis prediction. We employed various computational
methods, machine learning models and feature selection techniques to predict Schistosomi-
asis. The main contributions of our work are:

• A latest and imbalanced dataset related to Schistosomiasis has been employed for
this research.

• Preprocessing like missing values imputation, data transformation, feature selection
techniques correlation. Information gain, gain ratio, ReliefF, and OneR minimise
the features for prediction and resampling techniques, Random undersampling and
oversampling, Cluster Centroid, Near miss, and SMOTE have been employed to carter
the problems in the dataset.

• Advanced machine learning techniques have been employed, which outperformed
state-of-the-art methods.

• Our proposed framework can aid medical and healthcare practitioners in the early
identification and improved treatment of Schistosomiasis.
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The remainder of this work is structured as follows. Section 2 reviews the literature,
including past work on Schistosomiasis and traditional statistical approaches applied
to high-dimensional medical data. Section 3 describes the methodology that contains
dataset description, data preprocessing, feature selection, resampling, data transformation
approaches, and modelling. Section 4 details the framework’s experimental setup and
outcomes. Section 5 discusses the ramifications of the results in terms of their relevance.
Section 6 finishes the report by highlighting future work in this field.

2. Literature Survey

Li et al. divided Schistosomiasis cases into two groups: favourable and poor
prognoses [1]. The cases in which improved patient health are referred to as favourable
prognoses, while cases of perishing and death are classified as poor prognoses. Various
machine learning models were employed for advanced Schistosomiasis prediction in which
ANN outperformed the other models. Holing et al. [17] proposed a method for predicting
1-year unfavourable prognosis for advanced Schistosomiasis. Demographics, clinical fac-
tors, medical exams, and test results were used to choose candidate predictors. To build
one-year prognostic model, five machine learning techniques were used: Logistic Regres-
sion (LR), Decision Tree (DT), Random Forest (RF), Artificial Neural Network (ANN),
and Extreme Gradient Boosting (XGBoost). The model’s performance was assessed us-
ing the area under the receiver operating characteristic curve (AUROC). XGBoost has
outperformed other Machine learning models based on performance.

Computational techniques to estimate the amount of Schistosomiasis susceptibility
and vulnerability, the researchers Olanloye et al. [18] compared support vector machine
(SVM) models, i.e., Linear, Quadratic, Cubic, Fine Gaussian, and Medium Gaussian and
Coarse Gaussian. Receiver Operating Character (ROC) and Parallel Coordinate Plots
(PCP) were used to evaluate the experiments in terms of accuracy, processing speed, and
execution time. Finally, it was determined that Medium Gaussian is the best among the
six models. Asarnow et al. [19] applied the Asarnow-Singh algorithm to a set of images and
extracted features by defining a threshold to identify Schistosomiasis mansoni on images
with infected foreground and parasitic background areas. Effective results were obtained
by using SVM for training and testing images. Data was gathered through a network of
wireless sensors, and Kasse et al. [20] developed a system based on IoT monitoring that
can help control and predict disease. For disease detection and transmission, multiple data
mining algorithms were applied. The SVM detects irregularity better than other models.
Chicco et al. [21] collected a dataset of 324 patients, of which 96 were mesothelioma patients.
The imbalanced class problem arises because of the ratio between the positive and negative
instances. The perceptron-based neural network was used to check the effectiveness of
ANN. RF feature selection (RFFS) was used to investigate the most relevant features due to
the best diagnosis predictive results.

According to the previous literature, the problem of class imbalance with medical
datasets exists, and there are a couple of articles regarding this matter. Subsequently, signif-
icant writing looked at clinical science and different fields of science. Different methods
to solve class imbalance were described [22]. Various techniques to solve this problem are
categorised into different levels: data, algorithmic, cost-sensitive, feature selection and
ensemble level. Understanding which preprocessing strategy should be chosen according
to the problem is challenging. The dataset is considered to be an imbalanced dataset in
which instances between both classes are not equal. Therefore, the class imbalance is mostly
removed at the data level, and multiple under and oversampling-based approaches can
be used.

Under-sampling was not preferred to deal with class imbalance by some scholars [23,24],
while others do not prefer oversampling [25]. On the other hand, other studies [26] show
that undersampling, especially multiple undersampling, performs better. In the dataset,
data preprocessing techniques could remove missing values, redundancy, and high scarcity.
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Hyper-parameters can be optimised to increase the performance of classifiers, or they can
be improved by categorising and expelling less related features [27].

3. Methodology

The detail of the proposed framework has been discussed in this section. Firstly, a
dataset was obtained and then standardised to remove any biases among the various
features. Then, several feature selection approaches are used to extract significant features
from high-dimensional data [28,29]. In addition, several resampling approaches have
been employed to address the data imbalance problem. After data preprocessing, various
machine learning models were used, and the results were compared, as shown in Figure 1.
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3.1. Dataset

A health record of Schistosomiasis has been analysed from the disease database com-
piled by the (HISPC) Hubei Institute of Schistosomiasis Prevention and Control, China.
The patients with advanced Schistosomiasis gave information by surveying sociodemo-
graphic and epidemiological factors in Hubei. The (WS261–2006) National diagnostic
criteria were used to assess Schistosomiasis. Advanced Schistosomiasis treatment varies
from patient to patient depending upon disease conditions. If the patient’s condition is
stable for six months, then praziquantel (PZD) treatment can be utilised. The dataset has
been categorised into two groups containing 4136 individuals, both males and females.
The 1232 cases in which improved patient health are referred to as favourable prognoses,
coded as 0, while 2904 death cases are classified as poor prognoses, coded as 1. 18 features
are recorded for each participant, as shown in Table 1 [1]. Data was gathered on socioe-
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conomic, demographic, hospitalisation expenditures, clinical characteristics, and surgical
procedures [30]. It was found that the area more exposed to water or lake containing
marshy lands has a prevalence of Schistosomiasis, as the data also provides evidence.

Table 1. Data Transformation.

Name Description Range

Occupation
- Farmer
- Other Categorical

Annual Income
- Less than 10,000 = 0
- Equal or greater than 10,000 = 1 Boolean

Height
Weight BMI

>18.5—Underweight 0

Categorical18.5–24.5 Normal 1
25.0–29.5 overweight 2
≤30.0 Obese 3

Viability/Development
(disease)

- Normal = 1
- Poor = 2
- Supernormal =3

Categorical

Nourishment
(nutrient level inside the body)

- Well =1
- Medium = 2
- Bad = 3
- Cachexia/severe = 4

Categorical

Diagnostic Evidence 1

- Blood Test = 1
- Stool test = 2
- Blood + stool = 3
- Proctoscopy = 4

Categorical

Diagnostic Evidence 2
- Ascites (Grade 1, 2, 3) = 1–3
- Non-Ascites = 4 Categorical

Prior Treatment
- Yes =1
- No = 0 Boolean

History of Splenectomy
- Yes = 1
- No = 0 Boolean

History of ascites
- Yes = 1
- No = 0 Boolean

Other Disease

- No = 0
- Cardiovascular = 1
- Digestive = 2
- Neuropsychiatric = 3
- Respiratory = 4
- Urinary = 5
- Other = 6
- Cardiovascular + Digestive = 12
- Digestive + Urinary = 25
- Digestive + other = 26
- Urinary + other = 56

Categorical

Extent of Ascites
- Mild to moderate = 0
- Severe = 1 Boolean

Clinical Classification

- Ascites = 1
- Megalosplenia = 2
- Colonic tumoroid proliferation = 3
- Dwarfism and others = 4

Categorical



Diagnostics 2022, 12, 3138 6 of 25

Table 1. Cont.

Name Description Range

Type of treatment the patient

- New patient (Schistosomiasis newly diagnosed)
- Retreated patient (Improved after treatment and will be treated again next

year)
- Relapsed patient (clinically cured but need further treatment for disease

recurrence)

Categorical

Means of Treatment
- Medical
- Surgical
- Medical + Surgical

Categorical

Cost of Treatment
- Less than 5876.9 yuan
- Greater or equal to 5876.9 yuan Categorical

3.2. Missing Data Imputation

An incomplete dataset for classification and prediction can reduce its effectiveness.
The dataset containing large training data was more desirable for prediction because models
would train better as more data was given to the model for training. The removal of missing
values may increase the model’s performance. A dataset contains a high percentage of
empty or blank cells, and it was unclear whether they should be replaced with zeros or
remain as missing values. The methods for dealing with the imputation problem use mean
attribute values from the original set [31]. The missing values in the dataset are replaced by
the class’s median, as presented in Equations (1) and (2).

For odd data elements =
n + 1

2
th term (1)

For even data elements =
n
2 th term+

(n
2+1

)
th term

2
(2)

3.3. Data Normalization

Data normalisation is a technique in which values are scaled and shifted to make new
values [32]. We scaled the data ranging between 0 and 1, known as Z-score normalisation.
Data normalisation is useful because all the features are in different forms or units. To
normalise attributes in our dataset, Z-score normalisation has been used. It uses mean and
standard deviation to normalise, as shown in Equation (3).

X′i =
Xi − E
std(E)

(3)

where X′i Z-score is a normalised value and Xi is the row E value of ith column or mean
value. The std(E) and E are calculated using Equations (4) and (5).

std(E) =

√
1

(n− 1)∑
n
i=1(X i−E

)2 (4)

E =
1
n∑n

i=1Xi (5)

3.4. Data Transformation

A process to convert or change data format to another format, structure, or value [33].
Our dataset contains the numerical features which have been converted into categorical
values. After the literature survey, continuous features are converted to Boolean and
continuous values [34,35], as shown in Table 1.
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3.5. Feature Selection

An n-dimensional vector x is commonly used to represent data, with each element
xi of x representing a feature. The dataset has multiple features, but not all of them will
likely have a favourable effect on the target class [36]. Based on the input x and output y,
the features using a scoring function s(f) calculate filter scores where the feature is denoted
by f. The filters are faster in processing and resistant to overfitting as compared to wrapper
methods. Information gain [37], correlation-based technique [38], ReliefF [39], OneR [40],
and gain ratio are the filters used in the scope of our study.

3.5.1. Information Gain

The Information Gain (IG) approach is based on the information theory notion of
entropy. This method ranks features (or input variables) according to the rate at which a
variable reduces the target class’s uncertainty (entropy). Shannon’s entropy E(s) measures
how much uncertainty there is in a distribution and is calculated using Equation (6).

E(s) = −
m

∑
j=1

P(j) log2 P (6)

P(j) is the probability for outcome j, and m is the number of alternative outcomes. To
retrieve the information for all data with c number of classes, we employed Shannon’s
entropy, as shown in Equation (7).

Infogain(C) = −
c

∑
j=1

Pc(b i) log2Pc(bi) (7)

Pc(bi) denotes the observed probability for each Pc class. Data C has now been
divided into L pieces {C1, C2, . . ., CL} by feature y. Equation (8) denoted the information
for a portion Ck.

Info
(
Cy

k

)
= −

c

∑
j=1

PCy
k
(bi) log2 PCy

k
(bi) (8)

Info
(
Cy

k

)
= 0 if Pj is zero then lim

Pj→0
log2 Pj = 0. Due to feature y, the value of the

information gain is calculated using Equation (9).

InfoGain(Y) = Infogain(C)−
m

∑
j=1

|CK|
|C| Info

(
Cy

k

)
(9)

where |C| and |CK| represent the number of instances in C and Ck. Features with more distinct
values are favoured by information gain. Considering Equation (9), more distinct character-
istics do not affect the Infogain(C), but they do have an impact on −∑c

j=1 Pc(b i) log2Pc(b i).
For example, patient identification is a feature where each class has exactly one instance,
with Cid = 0 for each patientId, maximising the amount of information gained. To put
it another way, patientId is a good feature for the class but ineffective for generalisation.
Quinlan et al. [41] proposed that information gain may be normalised using the information
split technique, as presented in Equation (10).

SplitInfogain(Y)= −
m

∑
j=1

∣∣Fj
∣∣
|F|

* log2

∣∣Fj
∣∣
|F| (10)
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F is the dataset, which is divided into Fj datasets by feature Y. The information gain
ratio is the normalised information gain measure, as shown in Equation (11).

Gainratio =
InfoGain(Y)

SplitInfogain(Y)
(11)

3.5.2. Correlation-Based Feature Selection (CFS)

The link between predictive factors and target variables, often called class, is the
foundation of CFS. CFS identifies a selection of traits more correlated with the class than
one another. As a result, CFS finds and removes redundant, irrelevant, and noisy features,
leaving us with a subset of useful features. The single evaluation function is defined as in
Equation (12).

EvalAf =
fbcf√

f + f(f− 1)bff

(12)

where EvalAf is the merit of a feature subset A with f features, bcf is the average value of all
feature-class correlations defined in Equation (13).

bcf =
∑f

j=1 bcfj

F
(13)

bcfj indicates the correlation between feature j and the class, and bff is the average of
feature correlations, with bfjfk

indicating the correlation degree between features j and k as
defined in Equations (14) and (15).

bff =
∑f

j=1 ∑
j−1
k=1 bfjfk

fp
(14)

fp =
f(f− 1)

2
(15)

fp is the amount of feature pairs in subset A, and an information-theoretic measure
can be used to calculate the correlation matrix.

byz =
∑ yz

mσyσz
(16)

Here, m in Equation (16) shows instances of dataset whereas σxσz shows the standard
deviation of x and z, respectively. A weighted Pearson’s Correlation is calculated when
one characteristic is linear, and the other is categorically shown in Equations (17) and (18).

byz =

w

∑
j=1

p
(

Y = yj

)
bYcjZ (17)

bYZ =

w

∑
j=1

t

∑
k=1

p(Y = y j, Z = zj))bYcjZcj
(18)

The likelihood that Y takes the jth value in the full training set is weighted in each of
the estimated correlations.

3.5.3. ReliefF

When dealing with real-time and noisy data, the reliefF algorithm is favourable. The
reliefF algorithm selects the instances sj at random and then determines the k nearest
neighbours in the similar and dissimilar classes [42]. These instances are referred to as
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Ti, Ri for nearest hit and miss. The Manhattan distance is commonly used to distinguish
between Ti and Ri occurrences. Using Ti, sj and Ri for the updating, the quality estimation,
Q[E]. of all the attributes E is updated. If the values of the instances Ti and sj are the same,
the attribute E is divided into two instances with the same classes, which is necessary to
reduce the Q[E] and if values of both instances are different with E is divided into different
classes of two instances then Q[E] maximises. The entire procedure is performed n times,
with n being a user-defined value. The Q[E] is updated in this procedure by applying
Equations (19)–(21).

Q[E] = Q[E]+
(
T + R

)
/n (19)

T = −
l

∑
i=1

A(E, s j, Ti)/l (20)

R = ∑
B 6=bl(sj)

[(
P(B)

1− P(bl
(
sj
)) ) l

∑
i=1

A(E, s j, Ri(B))]/l (21)

P(B) stands for the previous class, and A stands for the distance between the examples
sj, B stands for classes and bl

(
sj
)

stands for a class of jth sample. The eight most significant
features that have been selected through various feature selection techniques are presented
in Table 2, and the score values of all features are shown in Table 3.

Table 2. Selected features from multiple feature selection techniques.

OneR Information Gain ReliefF Gain Ratio Correlation

Viability Cost of treatment Diagnostic Evidence 1 The extent of ascites Cost of treatment
Means of treatment Annual Income BMI Viability Annual Income
The extent of ascites Clinical classification Clinical classification Clinical classification Clinical classification

BMI History of splenectomy Type of treating patients Means of treatment History of splenectomy
Diagnostic Evidence 2 Viability History of ascites Cost of treatment Viability
Diagnostic Evidence 1 The extent of ascites Diagnostic Evidence 2 Annual Income Means of treatment

Nourishment Means of treatment Cost of treatment History of splenectomy The extent of ascites
Annual Income Diagnostic Evidence 1 History of splenectomy Occupation Diagnostic Evidence 2

Table 3. Features Score.

Features Score

Cost of treatment 0.07295
Annual Income 0.04749

Clinical classification 0.00604
History of splenectomy −0.05814

Viability −0.05815
Means of treatment −0.06133
The extent of ascites −0.07251

Diagnostic Evidence 2 −0.07253
Diagnostic Evidence 1 −0.07254

Type of treating patients −0.07434
Occupation −0.11227

BMI −0.11531
Nourishment −0.16426

History of ascites −0.17023
Prior treatment −0.20311
Other diseases −0.27979

3.6. Data Resampling

A dataset is imbalanced when the number of instances in one class does not equal
other classes. The resampling methods are widely used to balance the dataset. Usually, the
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model trained on a balanced dataset achieves high results. Most medical-related datasets
are imbalanced, which needs resampling approaches to balance the dataset, so multiple
undersampling and oversampling techniques have been used in this study.

3.6.1. Random Undersampling

In this approach, most class instances are randomly removed from the training set, so
the ratio between both classes would be the same. The problem with this technique is that
one would not know which information has been eliminated. The information which was
very important for the study may be removed using Equation (22) [43].

R(i) =
Si

S
∀i ∈ {0, 1} (22)

where Si represents the total number of values with the label i. Undersampling is denoted
by S′0 and 0 means from class 0. R(0)′′R(1) Show that one class has more values than the
other, and by combining both, we get Equation (23).

R′(0)
R′(1)

=

S′0
S′
S1
S′

= 1′′
R(0)
R(1)

(23)

When the dataset is rebalanced properly, this case can be applied
((

S′0 = S1
)
S1
)

but
when we have a scenario where the classes are balanced to a certain factor, inequality
remains valid. On the contrary, when random points were selected for removal, the
conditional data distribution between the classes was assumed to be unchanged, as shown
in Equation (24).

R′(0) = R(0) (24)

3.6.2. Near Miss

Zhang and Mani [44] proposed a method to prevent information loss while utilising
the undersampling technique. Instead of resampling the minority class, this strategy
undersampling the majority class and making it equal to the minority class. This method
uses the average distance between two points, a particular point, and the furthest points
in the other class. NearMiss-1, 2, and 3 are the distinct versions. In NearMiss-1, we must
choose a proportion of the major class size, and close to minor class points implies choosing
the shortest average distance between the three minor class points. We chose the least
average distance to the three farthest points from the minority class in NearMiss-2, which
implies we chose the percentage of the majority class size closest to all points of the minority
class. Select the nearest majority class points for each minor class in NearMiss-3. In this
study, the NearMiss-1 method has been used.

3.6.3. Cluster Centroid

Cluster Centroids were proposed to minimise the loss of information in the majority
class [45]. By calculating the ratio between both classes, Cluster Centroids substitutes
the majority of samples with clusters of centroids using the K-means method. The loss
of information has been minimised by making groups based on similarity. The K-means
algorithm was used to get the clusters when applied to the data based on the level of
undersampling. Then, the majority of samples from the clusters were replaced by the
cluster centroids, which contain a different representation of the majority class at the centre
from K-Means.

3.6.4. Synthetic Minority Oversampling Technique

Chawla et al. [46] introduced the SMOTE as it is one of the easier and most successful to
address the problem of class imbalance. It creates new minority class instances synthetically
rather than repeating duplicates of minority class instances [47]. Class overlapping is a
critical aspect that makes learning a good classifier hypothesis for an unbalanced dataset
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difficult. It over-samples by using k nearest neighbours from minority samples, calculating
the difference, multiplying the difference by a random number, and adding it to the feature
vector, as shown in Equation (25).

ynew = yi +
(
y′i − yi

)*α (25)

y′i is K-nearest neighbour of yi and α € [0; 1] is a random number. Borderline-SMOTE
is a further variant of SMOTE that solves its limitation. The cases closer to the borderline
(i.e., majority class examples) are more difficult to categorise correctly. This approach
prioritises these examples to increase oversampling performance. It is similar to SMOTE
in that it calculates synthetic examples based on the class with minimum samples on the
borderline. For example, borderline-SMOTE [48] prioritises locating samples on the class
boundaries, i.e., borderline samples, and then oversampling them to improve prediction
classification techniques are predicated on learning these boundaries during training. The
algorithm is largely based on SMOTE.

1. For each sample in the minority class yiεSmin. Get the collection of k-nearest neigh-
bours, SKnn.

2. Determine the number of nearest neighbours who are members of the majority class∣∣SKnn ∩ Smaj
∣∣ for each yi. Select observations such that in Equation (26):

n
2
≤ | SKnn ∩ Smaj | < n (26)

3. After that, the observations are run through the standard SMOTE method to generate
synthetic points that solely include the minority and majority classes.

Clustering, filtering, and oversampling are the three steps in K mean SMOTE [49]
proposed by Douzas et al. [50]. The input samples are grouped into k groups using k-
means clustering, then choosing clusters for oversampling at the filtering stage, keeping the
high proportion of samples from minority classes. The amount of synthetic samples to be
generated is then dispersed, with more samples being assigned to clusters where minority
samples are sparsely distributed then, to achieve the required ratio of samples SMOTE
is used.

Each cluster’s proportion of minority and majority instances is used to identify clusters
for oversampling. Oversampling is selected by default for any cluster containing at least
50% minority samples; by changing the imbalance ratio threshold, we can change the
behaviour, a k-means SMOTE hyperparameter that defaults to 1. The ratio is defined as
majoritycount+1
minoritycount+1 of imbalanced instances. Cluster selection becomes more selective, requiring
a higher ratio of minority samples to be selected when there is a criterion for an imbalance
ratio. Lowering the barrier, on the other hand, loosens the selection criteria, making it
possible to choose clusters with a bigger majority share and assigned sample weights
between 0 and 1. They are calculated as follows:

1. Euclidean distance was calculated for selected clusters (s), ignoring the majority class.
The mean distance of each cluster is obtained by adding all non-diagonal entries of
the distance matrix and dividing them with non-diagonal elements.

2. Divide the number of minority instances in each cluster by the average minority dis-
tance raised to the power of the number of features n to get density,
i.e., density(s) = minoritycount(s)

averageMinorityDistance(s)n .

3. To acquire a measure of sparsity, invert the density measure: sparsity(s) = 1
density(s) .

4. We can calculate the cluster’s sampling weight by dividing the cluster’s sparsity factor
by the sum of all cluster’s sparsity factors.

Resulting totalsamplingWeights = 1, i.e.,
∣∣samplingWeights(s)*x

∣∣ X is the total num-
ber of samples generated in that cluster that was oversampled using SMOTE. The hyper-
parameter k nearest neighbours, or KNN, in SMOTE, determines how many surrounding
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minority samples of
→
a the point

→
b are randomly chosen. When a cluster includes fewer

than knn + 1 minority samples, the value of KNN may need to be modified downward,
depending on the SMOTE implementation. After SMOTE has been employed, both classes,
minority and majority ones are the same. Figure 2 depicts the dataset before and after
resampling. Table 4 presents the distribution of the dataset before and after resampling.
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Figure 2. Visualisation of data before and after resampling: (a) Imbalanced dataset; (b) Balanced Dataset.

Table 4. Dataset Resampling.

Total Instances Status Imbalanced Dataset Instance After Undersampling After Oversampling

4136
Recovery 1232 1232 2904

Death 2904 1232 2904

3.7. Gradient Boosting

Gradient Boosting (GB) is an iterative machine learning-based approach for solving
classification problems. This method is based on an ensemble learning model trained
using the previous iteration’s mistakes as input. By fitting new learners, GB corrects
misclassified data to the ensemble residual, which is the gap between the goal outputs and
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the ensemble’s current predictions. GB aims to maximise the ensemble’s prediction power
while minimising bias. The benefit of Boosting is that it significantly impacts accuracy, but
it comes at the expense of being slower to train because each learner is trained linearly.

It is a Boosting-like algorithm [51] and has a dataset Dt = {ai, bi}M
1 for training, the

goal of GB is to find an approximation, Â, of the function A∗(a), which maps instances
a to their output values b, by minimising the expected value of a given loss function,
Lf(b, A(a)). GB builds an additive approximation of A∗(a) as a weighted sum of functions
calculated via Equation (27).

An(a) = An−1(a)+wngn(a) (27)

where wn is the weight of nth function and gn( a) are the parts of ensemble models. First,
we obtain a constant approximation of A∗(a) as shown in Equation (28).

A0(a) = arg minβ
M

∑
i=1

Lf(b i ,β) (28)

Models are minimised as in Equation (29). However, instead of solving the opti-
misation problem directly, each gn can be seen as a greedy step in a gradient descent
optimisation for A∗. For that, each model, A∗ is trained on a new dataset Dt = {ai, prni}

M
i=1,

where the pseudo-residuals prni, are calculated via Equation (29).

(wn, gn(a)) = arg minw,g

M

∑
i=1

Lf(b i, An−1(ai)+wg(a i)) (29)

After that, a line search optimisation problem is used to calculate the value of wn.
If the iterative procedure is not adequately regularised, this approach may suffer from
over-fitting. If the model gn fully matches the pseudo-residuals for some loss functions
(e.g., quadratic loss), the pseudo-residuals become zero in the following iteration, and the
process finishes prematurely. Several regularisation hyper-parameters are examined to
govern the additive process of GB. The natural way to regularise GB is to apply shrinkage to
reduce each gradient descent step An(a) = An−1(a) + wngn(a) with u = (0, 1.0). Typically,
the value of u is set to 0.1. Furthermore, more regularisation may be obtained by reducing
the complexity of the trained models. We can restrict the depth of decision trees or the
minimum number of occurrences required to divide a node in the case of decision trees.

In contrast to a random forest, the default settings for these hyper-parameters in GB
are designed to severely limit the expressive potential of the trees (for example, the depth
is often limited to 3 to 5). Finally, various versions of GB incorporate hyper-parameters
that randomise the base learners, such as random subsampling without substitution. These
hyper-parameters can increase the generalisation of the ensemble [52]—Algorithm 1 lists
all the steps of gradient boosting.
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Algorithms 1 Gradient Boosting

1. Initialising the constant

A0(a)=arg minβ

M

∑
i=1

Lf(bi,β)

2. A For-Do loop (i=1→M)
3. At the training point, calculate the gradient. The new base learner was fitted to the target

value to find the best gradient step. Then, update the estimate function

(wn, gn(a)) = argminw,g

M

∑
i=1

Lf(b i, An−1(ai)+wg(a i))

4. i← i + 1
5. Loop end
6. Return

XGBoost [53] is a highly scalable DT ensemble method based on GB. XGBoost, like
GB, minimises a loss function because it is only interested in DT as a base classifier shown
in Equation (30).

Lfxgb =

M

∑
i=1

Lf(b i, A(ai))+

N

∑
n=1

Ω(g n) (30)

Ω(g) = γLt +
1
2
π||v||2 (31)

With the leaves of tree Lt in Equation (31), and the output scores v, the split criterion
can be incorporated into decision trees’ loss function, resulting in a pre-pruning approach.
In XGBoost, shrinkage is an additional regularisation hyper-parameter that reduces the
step size in the additive expansion. Finally, other tactics, such as tree depth, limit tree
complexity, reduce storage space and increase training speed. To train individual trees,
random subsamples and column subsampling at the tree and tree node levels are among
the randomisation approaches used in XGBoost. Furthermore, first and second-order
gradients were obtained by constructing a function and sending it through the “objective”
hyper-parameter.

XGBoost, in particular, focuses on minimising computation cost by determining the
optimal split of DT building algorithms. In most split discovery algorithms, all feasible
candidate splits are enumerated, and the One with the biggest gain has been chosen. A
regular scan of each ranked attribute is required to discover the optimal split for each
node. XGBoost employs a compressed column-based structure containing data in a pre-
sorted form to prevent sorting the data in each node. XGBoost uses an approach based
on data percentiles, in which just a sample of candidate splits is examined, and their
gain is calculated using aggregated statistics. This study uses the parameters used to
tune XGBoost: learning rate, minimum loss (gamma), max_dep, sample at each split,
and subsampling rate.

Light Gradient Boosting (LGBoost) [54] executes GB and suggests several variations
focusing on a computationally efficient approach, similar to XGBoost, based on histogram
features and also provides hyper-parameters that allow being used in a range of scenarios:
This works on both GPU and CPU, as simple GB, and has several options. Gradient-based
One-Side Sampling (GOSS) and Exclusive Feature Bundling are two new features proposed
by LGBoost. GOSS is a subsampling strategy for creating the training sets for the ensemble’s
base trees. This strategy, like AdaBoost, tries to increase the relevance of cases, referred to
as instances with a higher gradient.

The training consist of gradients (x) and a sample fraction (y) when the GOSS option is
enabled, when computing the information gain, the instances are weighted by (1− x)/y for
the change in distribution. Many sparse features were combined with the Exclusive Feature
Bundling (EFB) method into a single feature. GOSS and EFB both improve training speed.
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The parameters tuned for LGBoost are learning rate, max_num_leaves, highest_gradient,
lowest_gradient, and feature_fraction_node.

CatBoost

CatBoost [55] is a GB library that reduces prediction shifts during training. This
distribution shift is the difference between A(a)|a with ai being a training instance and
A(a)|a for a test instance a. GB minimises gradients during training using the same
instances for both estimates and models. CatBoost proposes that the gradients be estimated
in their training set by a series of models which do not contain that occurrence. CatBoost
does this by introducing a random permutation into the training cases. CatBoost’s logic is
to create i = 1, . . . , N base models for each of the M Boosting iterations. The gradient of the
i + 1 instance for the (m + 1)th Boosting iteration is estimated using the ith model of the
mth iteration, trained on permutation first i instance. This method is repeated with j other
random permutations in order to be independent of the first random permutation [56–58].

CatBoost is implemented so that a single model per iteration handles all permutations
and models. Symmetric trees are formed by extending all leaf nodes level-wise with the
same split condition to serve as the foundation models. The catBoost algorithm handles
categorical features by replacing them with the numeric feature, which assesses the pre-
dicted goal value for each category. This numeric feature should preferably be generated
using a different dataset to minimise overfitting the training data. This, however, is not
always achievable. CatBoost proposes a strategy for computing this additional feature
identical to the One used to generate the models. That is the information of instances < i
is utilised to determine the feature value of instance i for a given random permutation of
the instances. The feature value acquired for each instance is then averaged after many
variations. Computing target statistics for categorical features, like EFB in the LGBoost
model, is a preprocessing approach. CatBoost is a large library with many features like
GPU training, different parameters according to scenarios, and Boosting standards.

4. Results

The model has been trained on training data and then uses the test set to assess the
model’s generalisation with a 70:30 split approach. When evaluating the performance of
classifiers, performance assessment is crucial. A confusion matrix has been used to evaluate
the performance of a classifier. The confusion matrix is a multidimensional table that
depicts successfully or incorrectly predicted times for each class in real and projected costs
for all times. Any predictive modelling assignment necessitates the evaluation of models.
It is considerably more important in predictive modelling, whereas the performance and
variety of classifiers must be assessed comprehensively. Each of the assessment measures is
based on one of four classes: true positive (TP), true negative (TN), false positive (FP), and
false negative (FN). The experiments and results show that our model achieved state-of-
the-art performance. We evaluate our model by comparing it with other machine-learning
models. The results are compared in terms of accuracy, precision, recall, and F1-Score,
which can be calculated using parameters which are defined as [59–62]:

• True Positive (TP): It identifies how much the data instances are identified as recovery
cases.

• True Negative (TN): It identifies how many data instances are categorised as death
cases.

• False Positive (FP): It identifies how much the data instances are incorrectly cate-
gorised as recovery cases.

• False Negative (FN): It Identifies how many data instances are incorrectly categorised
as death cases;
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Accuracy is the ratio of all correctly predicted samples to the summation of total
predictions, as shown in Equation (32).

Accuracy =
TP + TN

TP + TN + FP + FN
(32)

Precision: It identifies if the positive predictions are correctly determined and is the
ratio of TP to the summation of TP and FP, as shown in Equation (33).

Precision =
TP

TP + FP
(33)

Recall: It identifies total relevant results correctly predicted by the model and is the
ratio of TP to the summation of TP and FN, as shown in Equation (34).

Recall =
TP

TP + FN
(34)

F1-Score: It is characterised as the harmonic mean of the model’s precision and recall
and is a way to integrate the model’s precision and recall. It is stated in Equation (35).

F1-Score = 2× Precision× Recall
Precision + Recall

(35)

Before resampling, different feature selection techniques have also been used to reduce
the data dimensionality. We have applied the five feature selection techniques: Correlation,
Information gain, Gain ratio, ReliefF and OneR. We have selected eight features by using
these feature selection techniques. Each feature selection approach scores all features; hence
each technique ranks the features. Which enables the selection of the most important
characteristics k using a feature selection approach. ∀j ∈ J where J be a set contain integers
and (j ∈ [1, 2, . . . , n− 1, n]. Each j specifies the amount of the experiment’s best features that
must be assessed. In the best-case scenario, J includes all numbers in the range. Because
feature selection strives to choose the best features with respect to scorer. The feature
selection technique’s assessment depends on the score of the underlying feature selection
approach, and for each method, an experiment was run numerous times. Furthermore, we
utilised undersampling and oversampling techniques to balance the dataset.

The GB algorithm we used with the combination of hyperparameter tuning, which are
learning-rate = 0.1, the number of tress (n-estimators = 100), max-depth = 3, min-samples-
split = 2, min-sample-leaf = 1 and subsample = 1. The combination of the parameter used
by LGBoost is max-depth = 20, num-of–iterations or estimator = 100, num-leaves = 31,
and sub-sample = 1. The other parameter, like L1, and L2 regularisation or the alpha
value, was 0. For XGBoost, we have set the parameter’s value as learning rate = 0.1,
n-estimator = 100, subsample = 1 and max-depth = 3. When tuning XGBoost, we have
to take care of mostly 3 parameters: number-of-tree, trees-depth and stepsize to achieve
better results. The parameters used for the CatBoost algorithm are: iteration = 1000, leaf-
estimation-iterations = 100, depth = 7, L2 regularisation = 5, learning-rate = 0.03, and
other parameters like bagging-temperature, random-strength, leaf-estimation, eval-metric,
bootstrap-type and loss-function are optional. As our model was a binary class, parameters
like loss-function and eval-metric were not mentioned, but in the case of multiclass need
to mention it. Table 5 shows the result of the random undersampling technique with
multiple feature selection techniques. The GB model performed poorly, with an accuracy of
68.1% in the case of ReliefF and 68.6% with the OneR feature selections technique [63–65].
The XGBOOST model performed very well for correlation and information gain feature
selection techniques with an accuracy of 82.8%. In contrast, the CatBoost model performed
very well for the Gain ratio feature selection technique leading in the case of recall with a
value of 82.7%.
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Tables 6 and 7 show the results of Cluster Centroid and Near Miss techniques. The GB
model performed well in the case of the Gain ratio with an accuracy of 78.9%, shown in
Table 6, and the CatBoost model performed well overall in both tables with an accuracy
of 80% and 78.9%. Still, the results obtained from both undersampling techniques were
less than the previous study done by Li G et al. [1]. The CatBoost performed very well
classifying both classes when undersampling techniques were used. However, in the case
of the undersampling, the accuracy decreased to 78.9% when clustering centroid techniques
were used and 79.2 for Near miss, which was poor because, on an imbalanced dataset, Li
G et al. [1] achieved an accuracy of 80%. Even though the accuracy achieved by CatBoost
using random undersampling techniques was 82.7%, greater than Li G et al. [1], we cannot
neglect oversampling techniques. As in Figure 3, a graph plot shows the highest result to
feature selection and resampling techniques.

Table 5. Random undersampling to each feature selection technique.

Performance Classifier Correlation Info Gain ReliefF OneR Gain Ratio

Accuracy (%)

GB 82.2 82.7 68.1 68.6 82.2
LGBoost 82.2 82.2 67.4 64.8 81.8
XGBoost 82.8 82.8 67 66.4 82.4
CatBoost 82.7 82.7 67.7 66.4 82.8

Precision (%)

GB 82.5 82.5 67.7 68.6 82.1
LGBoost 82.1 82.1 67.1 66.3 81.1
XGBoost 82.6 82.6 66.6 67.4 82.2
CatBoost 82.5 82.5 67.4 67.1 82.6

Recall (%)

GB 82.5 82.5 67.4 68.8 82.1
LGBoost 82.1 82.1 66.6 65.9 81.8
XGBoost 82.6 82.6 66.3 67.2 82.3
CatBoost 82.5 82.5 66.7 67.1 82.7

F1-Score (%)

GB 82.5 82.5 67.5 68.5 82.1
LGBoost 82.1 82.1 66.8 64.7 81.7
XGBoost 82.6 82.6 66.4 66.4 82.2
CatBoost 82.5 82.4 66.8 66.4 82.6

Table 6. Results of Cluster Centroid to each feature selection technique.

Performance Classifier Correlation Info gain ReliefF OneR Gain Ratio

Accuracy (%)

GB 76.4 74.8 68.5 64.1 78.9
LGBoost 78.1 77.9 68.7 63.6 78.6
XGBoost 78.5 77.9 67.9 63.9 79.4
CatBoost 78.7 78.1 69 64.7 80

Precision (%)

GB 76.3 74.6 68.2 63.7 78.7
LGBoost 77.9 77.7 68.5 63.9 78.4
XGBoost 78.4 77.7 67.6 64.2 79.3
CatBoost 78.7 77.9 68.7 65 79.9

Recall (%)

GB 76.4 74.4 68.3 63.4 78.4
LGBoost 77.7 77.9 68.6 64 78.3
XGBoost 78 77.9 67.6 64.3 79.1
CatBoost 78.3 78 68.8 65.1 79.5

F1-Score (%)

GB 76.3 74.5 68.3 63.4 78.7
LGBoost 77.8 77.8 68.5 63.6 78.4
XGBoost 78.1 77.8 67.7 63.9 79.1
CatBoost 78.4 77.9. 68.8 64.7 79.7
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Table 7. Results of Near Miss with respect to each feature selection technique.

Performance Classifier Correlation Info Gain ReliefF OneR Gain Ratio

Accuracy (%)

GB 78.6 78.6 64.5 71.8 78.6
LGBoost 78.1 78.1 68.3 72.1 77.5
XGBoost 78.7 78.7 68.2 72.4 78.1
CatBoost 78.9 78.9 68.6 71.8 78.1

Precision (%)

GB 78.9 78.9 66.7 71.7 78.9
LGBoost 78.1 78.1 68.3 72.1 77.7
XGBoost 79.1 79.1 68.1 72.4 78.3
CatBoost 79.2 79.2 68.5 71.7 78.3

Recall (%)

GB 77.8 77.8 65.9 71.9 77.8
LGBoost 77.4 77.4 68.4 72.4 76.8
XGBoost 77.8 77.9 68.3 72.6 77.3
CatBoost 78.1 78.1 68.7 71.9 77.3

F1-Score (%)

GB 78.1 78.1 64.4 71.7 78.1
LGBoost 77.6 77.6 68.2 72.1 77
XGBoost 78.2 78.2 68.1 72.3 77.5
CatBoost 78.3 78.3 68.5 71.7 77.5Diagnostics 2022, 12, x FOR PEER REVIEW 18 of 26 
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Figure 3. Result of CatBoost models to feature selection undersampling technique.

Table 8 contains the result of oversampling techniques to feature selection techniques.
Table 8 shows the result of the random oversampling technique for multiple feature selec-
tion techniques. All OneR and ReliefF models performed very poorly, with the highest
accuracy of 68.3% and 73.3%, whereas they performed well in the Gain ratio with an
accuracy of 82.9%. Both XGBoost and CatBoost models obtained the highest result of 82.9%
concerning correlation and Information gain feature selection techniques.
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Table 8. Results of models with respect to Random Oversampling and feature selection technique.

Performance Classifier Correlation Info Gain ReliefF OneR Gain Ratio

Accuracy (%)

GB 82.6 82.6 71.6 68 82
LGBoost 83.4 83.4 73.3 67.6 82.9
XGBoost 83.4 83.4 73 68.3 82.9
CatBoost 83.7 83.7 72.9 67.8 82.9

Precision (%)

GB 82.6 82.6 72.1 68 82
LGBoost 83.4 83.4 74.1 67.9 82.9
XGBoost 83.5 83.5 73.6 68.4 82.9
CatBoost 83.7 83.7 73.1 67.9 82.9

Recall (%)

GB 82.6 82.6 71.5 68 82
LGBoost 83.4 83.4 73.2 67.7 82.9
XGBoost 83.4 83.4 73 68.3 82.8
CatBoost 83.7 83.7 72.9 67.8 82.9

F1-Score (%)

GB 82.6 82.6 71.4 68 82
LGBoost 83.4 83.4 73 67.5 82.9
XGBoost 83.4 83.4 72.8 68.2 82.8
CatBoost 83.6 83.6 72.8 67.8 82.9

Table 9 shows the outcome of the SMOTE oversampling approach in comparison to
numerous feature selection strategies. In terms of multiple feature selection strategies, the
results produced using these resampling techniques have been less than those obtained
using random oversampling techniques. In the OneR and ReliefF tests, models concerning
those parameters underperformed with values of 75.9% and 71.0% but well in the Gain
Ratio test with a value of 82.9 by LGBoost. Regarding correlation and information gain
feature selection strategies, both the XGBoost and CatBoost models came on top, but
XGBoost took the lead with a value of 83.3%.

Table 9. Results of the models with respect to SMOTE and feature selection techniques.

Performance Classifier Correlation Info Gain ReliefF OneR Gain Ratio

Accuracy (%)

GB 82.4 82.4 74.8 69.7 82.2
LGBoost 83.1 83.1 76.1 70.9 82..9
XGBoost 83.3 83.3 75.8 70.7 82.8
CatBoost 82.9 82.9 75.9 71.0 82.7

Precision (%)

GB 82.4 82.4 75.0 69.7 82.2
LGBoost 83.2 83.2 76.4 71.5 82.9
XGBoost 83.3 83.3 76.1 71.3 82.4
CatBoost 82.9 82.9 76.2 71.8 82.7

Recall (%)

GB 82.4 82.4 74.7 69.7 82.2
LGBoost 83.1 83.1 76.1 70.9 82.9
XGBoost 83.3 83.3 75.8 70.8 82.8
CatBoost 82.9 82.9 75.8 71.1 82.7

F1-Score (%)

GB 82.4 82.4 74.7 69.7 82.2
LGBoost 83.1 83.1 76.0 70.7 82.9
XGBoost 83.3 83.3 75.7 70.6 82.8
CatBoost 82.9 82.9 75.8 70.8 82.7

Table 10 presents the results of an oversampling strategy K-means SMOTE and various
feature selection procedures. The result obtained using this resampling approach was the
best of all the resampling techniques in terms of multiple feature selection strategies.
Utilising this resampling method, the results obtained from models employing feature
selection techniques, Information gain, ReliefF, and OneR were unsatisfactory; however,
models using Gain ratio and Correlation feature selection strategies did extremely well
with a value of 87.1%. In addition, the CatBoost model outperformed other models.
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Table 10. Results of the models with respect to K means SMOTE and feature selection techniques.

Performance Classifier Correlation Info Gain ReliefF OneR Gain Ratio

Accuracy (%)

GB 86.0 76.9 74.8 77.6 86.2
LGBoost 86.7 79.2 76.1 77.9 86.4
XGBoost 86.9 79.1 76.0 78.0 86.6
CatBoost 87.1 79.1 77.0 78.4 86.8

Precision (%)

GB 86.0 77.0 74.8 78.0 86.4
LGBoost 87.0 79.3 76.8 77.9 86.6
XGBoost 87.2 79.1 76.6 78.0 86.9
CatBoost 87.1 79.3 77.7 78.4 87.0

Recall (%)

GB 85.9 77.0 74.8 77.6 86.2
LGBoost 86.7 79.2 76.1 77.9 86.3
XGBoost 86.9 79.1 76.0 78.0 86.6
CatBoost 87.1 79.1 77.0 78.4 86.7

F1-Score (%)

GB 85.9 76.9 74.8 77.5 86.2
LGBoost 86.7 79.2 75.9 77.9 86.3
XGBoost 86.9 79.1 75.9 78.0 86.6
CatBoost 87.1 79.1 76.8 78.4 86.7

Summarising the K means SMOTE approach when utilised, the results were more
efficient when using the correlation-based feature selection technique. The table, as shown
above, summarises the performance evaluation of several classifiers using a selected feature
subset from each feature selection approach and method. The CatBoost approach’s perfor-
mance was also compared to that of typical machine learning models, and it was found that
the CatBoost method outperformed traditional machine learning models. Table 5 shows
the findings, which show that the CatBoost model produced the greatest results, with an
accuracy of 87.1 percent, also shown in Figure 4.
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5. Discussion

Machine learning and data mining approaches can automatically discover complex
patterns in the healthcare domain, such as COVID-19 [66,67], Skin Cancer [59], Breast
Cancer [16], Malignant Mesothelioma [68–70], and Cervical Cancer [7], researchers are
motivated to use these techniques in the early prediction of Schistosomiasis. In recent
years, many machine learning methods, including LR, DT, RF, and ANN, have been widely
applied in disease detection and prediction [59]. Before resampling, different feature
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selection techniques have also been used to reduce the data dimensionality. We have
applied the five feature selection techniques: Correlation, Information gain, Gain ratio,
ReliefF and OneR. We have selected eight features by performing multiple experiments, as
explained above. Furthermore, we utilised undersampling and oversampling techniques
to balance the dataset. We have used four algorithms, GB, LGBoost, XGBoost and CatBoost,
with a combination of various hyperparameters discussed in the result section.

The results of the random undersampling approach with several feature selection
strategies are shown in Table 5. The GB model fared badly, with an accuracy of 68.1% for
ReliefF and 68.6% for OneR feature choices. The XGBOOST model fared extremely well for
correlation and information gain feature selection approaches, with an accuracy of 82.8%,
while the CatBoost model did very well for the Gain ratio feature selection technique, with
an accuracy of 82.7%. The outcomes of the Cluster Centroid and Near Miss approaches
are shown in Tables 6 and 7. The GB model fared well in the Gain ratio instance, with an
accuracy of 78.9% in Table 6, while the CatBoost model did well overall in both tables, with
an accuracy of 80% and 78.9%.

Nonetheless, the findings from both undersampling strategies were lower than the
prior study by Li G et al. [1]. When undersampling techniques were utilised, the CatBoost
performed admirably in categorising both groups. However, when undersampling was
utilised, the accuracy dropped to 78.9% when clustering centroid approaches were applied,
and 79.2% for Near miss, which was disappointing considering Li G et al. [1] obtained
an accuracy of 80% on an unbalanced dataset. Even though CatBoost’s accuracy utilising
random undersampling strategies was 82.7%, which was higher than Li G et al. [1] as
shown in a graph plot, Figure 3, displays the best outcome for feature selection and
resampling procedures.

The results of the random oversampling approach for different feature selection
strategies are shown in Table 8. All models fared badly with OneR and ReliefF techniques,
with the greatest accuracy of 68.3% and 73.3%, respectively. However, they did well
in the Gain ratio, with an accuracy of 82.9%. In terms of correlation and information
gain feature selection strategies, both the XGBoost and CatBoost models achieved 82.9%.
Table 9 compares the SMOTE oversampling strategy to various feature selection algorithms.
The results achieved via these resampling procedures were lower than those acquired by
random oversampling techniques. Models considering such parameters underperformed at
71.0% in the OneR and ReliefF tests. XGBoost takes the lead in correlation and information
gain feature selection algorithms, with a value of 83.3%. Table 10 shows the outcomes of
a K-means SMOTE oversampling technique and several feature selection procedures. In
terms of various feature selection strategies, the result of this resampling methodology
was the best of all resampling procedures. Using this resampling strategy, the results from
models utilising feature selection procedures, Information gain, ReliefF, and OneR were
poor; however, models adopting Gain ratio and Correlation feature selection strategies
performed very well, with a value of 87.1%. Other models were outperformed by the
CatBoost model. When the K-means SMOTE strategy was applied, the results were more
efficient with the correlation-based feature selection technique. Table 10 summarises the
performance evaluation of classifiers. The performance of the CatBoost technique was also
compared to that of standard machine learning models, and it was discovered that the
CatBoost method beat traditional machine learning models. The outcomes are provided in
Table 10, which reveals that the CatBoost model gave the best results, with an accuracy of
87.1 %, as shown in Figure 4.

CatBoost was more accurate than other methods in our research on different medical
conditions. In the CatBoost model, we discovered that ascitic fluid volume was the most
useful predictor. The most prevalent sign of advanced hepatic illness is ascites. The ascitic
subtype of advanced Schistosomiasis is the most dangerous, accounting for 65–90 percent
of cases [60]. Granulomatous inflammation can be caused by venous blockage and por-
tal hypertension and leads to continuous fibrosis and a drop in plasma colloid osmotic
pressure [61]. Ascites are the most common consequence of liver injury, and their sever-
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ity directly influences the overall prognosis. In advanced Schistosomiasis patients, the
occurrence of severe ascites is one of the best indicators of a high level of impairment [62].
This study has demonstrated that CatBoost is a novel and promising modelling framework
for the unfavourable prognosis of advanced Schistosomiasis. A comparison between our
model and the previous studies is shown in Table 11.

Table 11. Comparison of previous studies.

Reference Year Objective Approach Undersampling
Technique

Oversampling
Technique Outcome

[27] 2017
To check the pattern

analysis of
Schistosomiasisdisease

K-mean algorithm,
clustering 8 8 N.A

[1] 2018
To detect advanced

Schistosomiasis in the
people of Hubei province

ANN, DT, LR 8 8 80%

[21] 2019
To detect and predict the

diagnosis of disease on an
imbalanced dataset

PNN, RF, one rule,
and DT 8 8 82%

[28] 2019 Detection of disease factor Association Rule
Mining 8 8 N.A

[29] 2019
Relationship between

climate change and
disease factor

K- means clustering 8 8 N.A

[18] 2020
Comparison to check the
level of susceptibility of

Schistosomiasis

SVM, Gaussian
Methods 8 8 76.6–94%

[17] 2021 1 year prognosis for
advanced Schistosomiasis

LR, RF, DT, ANN,
XGBoost 8 8 79%

[30] 2021 Identify the high-risk areas
of Schistosomiasis LR, RF, GB 8 8 73–87%

Our study 2022 Early prediction of
Schistosomiasis

GB, LGBoost,
XGBoost, CatBoost 4 4 87.1%

6. Conclusions

Machine learning methods have been used in various fields in combination with unbal-
anced approaches. This study aims to use supervised learning algorithms to train multiple
Schistosomiasis disease prediction systems. Because an unbalanced dataset is important
for improving the model’s performance in classification challenges, several resampling
strategies were utilised to balance the dataset. We began by employing exploratory data
analysis approaches, such as data standardisation, to analyse the dataset. Then, we con-
ducted several tests to validate the performance of feature selection strategies against one
another and narrow down the characteristics that may properly diagnose the disease. These
variables can be addressed early in the disease to the point where it threatens human life.
We began by comparing the outcomes of several GB models, such as LGBoost, XGBoost,
and CatBoost, against each other and earlier studies. The CatBoost model has a greater
prediction accuracy rate than typical machine learning-based models. Using the K-means
SMOTE resampling approach, the CatBoost method had the greatest accuracy of 87.1%.
We will utilise more datasets linked to this disease in the future to include the features
categorised as important by the dataset collector but not included in this dataset. Finally,
we will release this framework on the web so medical professionals can take benefit from it.
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