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ABSTRACT ARTICLE HISTORY
This paper provides an asymptotic description of a solution to the Received 12 April 2022
Burgers-Hilbert equation in a neighborhood of a point where two Accepted 14 May 2022
shocks interact. The solution is obtained as the sum of a function
with H? regularity away from the shocks plus a corrector term having
an asymptotic bghavior like |x| In' x| cIose'to eqch shock. A key step weak solution; piecewise
in the analysis is the construction of piecewise smooth solutions regular solution; shock
with a single shock for a general class of initial data. interaction
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1. Introduction

Consider the balance law obtained from Burgers’ equation by adding the Hilbert trans-
form as a source term

us + <%2>x:H[u] ) (1.1)

This equation was derived in [1] as a model for nonlinear waves with constant fre-
quency. Here the nonlocal source term
1 —
Hf|(x) = lim —J fe=2) 4,
SO Y
denotes the Hilbert transform of a function f € L*(R). It is well known [2] that H is a
linear isometry from L?(RR) onto itself. Given any initial data

u(0,-) = u(-) (1.2)

with # € H*(R), the local existence and uniqueness of solutions to (1.1) was proved in
[3], together with a sharp estimate on the time interval where this solution remains
smooth. For a general initial data # € L?(R), the global existence of entropy weak solu-
tions to (1.1) was proved in [4], together with a partial uniqueness result. We remark that
the well-posedness of the Cauchy problem for (1.1) remains a largely open question.

More recently, piecewise continuous solutions with a single shock have been con-
structed in [5]. As shown in Figure 1, these solutions have the form
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Figure 1. Decomposing a solution in the form (1.3).

u(t,x) = w(t,x — y(t)) + @(x — y(t)), (1.3)

where y(t) denotes the location of the shock at time ¢, and w(t,-) € H*(] — oo, 0[U]0,
+o0[) for all t > 0. Moreover, ¢ is a fixed function with compact support, describing
the asymptotic behavior of the solution near the shock. It is smooth outside the origin
and satisfies

2
@(x) = =|x|1In |x]| for |x|<1. (1.4)
T

Remarkably, this “corrector term” ¢ is universal, i.e., it does not depend on the par-
ticular solution of (1.1). The same analysis applies to solutions with finitely many, non-
interacting shocks. In addition, the local asymptotic behavior of a solution up to the
time when a new shock is formed was investigated in [6].

The aim of the present note is to describe the asymptotic behavior of a solution in a
neighborhood of a point where two shocks interact. Calling T>0 the time when the
interaction takes place, our analysis splits into two parts. We first describe the behavior
of the solution as t — T —, i.., as the two shocks approach each other. In a second
step, to construct the solution for ¢t > T, we solve a Cauchy problem with initial data
given at t=T.

As it turns out, the profile u(T,-) is not “well prepared,” in the sense that it cannot
be written in the form (1.3). To explain the difficulty, we recall that the solutions con-
structed in [5] had initial data of the form

u(0,x) = w(x — yo) + @(x — y), (1.5)

for some w € H?(R\{0}) and y, € R. These data are “well prepared,” in the sense that
they already contain the corrector term ¢. A natural class of initial data, not considered
in [5], is

u(0,x) =w(x—y)  with  we H*(R\{0}), yo € R. (1.6)

By assumption, at time ¢ =0 the derivative u,(0,x) = w.(x — yo) is piecewise continu-
ous and uniformly bounded. However, in the solution to (1.1), (1.6), at each time >0
we expect that u,(t,x) — *oo as x — y(t)+. For this reason, the local construction of
this solution requires a careful analysis. A more general class of initial data, containing
both (1.5) and (1.6), as well as all profiles u(T,-) emerging from our shock interactions,
will be studied in Section 2.

We recall here the definition of entropy weak solutions used in [4].

Definition 1.1. By an entropy weak solution of (1.1)-(1.2) we mean a function u €
L .([0,00[ xR) with the following properties.
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(i) The map t— u(t,-) is continuous with values in L*(R) and satisfies the initial
condition (1.2).
(ii) For any k € R and every nonnegative test function ¢ € C.(]0,0[ xR) one has

JJ['“_k|¢t+(uz;k2>Sign(“—k)¢x+H[”(f)](x)Sign(u—k)d) dxdt > o.
(1.7)

The present paper will be concerned with a more regular class of solutions, which are
piecewise continuous and can be determined by integrating along characteristics. These
correspond to the “broad solutions” considered in [7,8]. Throughout the sequel, the
upper dot denotes a derivative w.r.t. time.

Definition 1.2. An entropy weak solution u = u(t,x) of (1.1)-(1.2), defined on the
interval t € [0, T], will be called a piecewise regular solution if there exist finitely many
shock curves y;(t), ..., y,(t) such that the following holds.

(i) For each t € [0, T], one has u(t,) € H*(R\{y1(t), ... yu(£)}).
(i) For each i =1,...,n, the Rankine-Hugoniot conditions hold:

W () = u(bp()-) > ulbn(d) = w0, 19
j( = O 19)

(iii) Along every characteristic curve ¢+ x(f) such that
x(t) = u(t, x(t)), (1.10)

one has

d

Eu(t,x(t)) = Hu](x(1)). (1.11)
In the above setting, the Hilbert transform of the piecewise regular function u(t,-)

can be computed using an integration by parts:

n

() =1 | ) Inlx =] dy+ D [ () = (0] nfx =)

- i=1

(1.12)

The remainder of the paper is organized as follows. In Section 2 we state a local
existence and uniqueness theorem for solutions to (1.1), valid for a class of initial data
containing one single shock, but more general than in [5]. Toward the proof of
Theorem 2.1, Section 3 develops various a priori estimates, while in Section 4 the local
solution is constructed as a limit of a convergent sequence of approximations. As in [5],
these are obtained by iteratively solving a sequence of linearized problems.

In the second part of the paper we study solutions of (1.1) with two shocks, up to
the time of interaction. In Section 5 we perform some preliminary computations, moti-
vating a particular form of the corrector term. In Section 6 we state and prove the
second main result of the paper, Theorem 6.1, providing a detailed description of
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solutions up to the interaction time. This is achieved by a change of both time and
space coordinates, so that the two shocks are located at the two points

x(t) =t < 0=umx(t),

and interact at time t=0. Our analysis shows that, at the interaction time, the solution
profile contains a single shock and lies within the class of initial data covered by
Theorem 2.1. Combining our two theorems, one thus obtains a complete description of
the solution to (1.1) in a neighborhood of the interaction time.

2, Solutions with one shock and general initial data

Consider a piecewise regular solution of the Burgers-Hilbert equation (1.1), with one
single shock. By the Rankine-Hugoniot condition, the location y(#) of the shock at time
t satisfies

M, u (t) = lim u(tx). (2.1)

.
y(t) 5 im

As in [5], we shift the space coordinate, replacing x with x — y(¢), so that in the new
coordinate system the shock is always located at the origin. In these new coordinates,
(1.1) takes the form

up + (u - M) u, = Hu). (2.2)

In [5], given a “well prepared” initial data (1.5), a unique piecewise smooth entropy
solution to (2.2) of the form

2
u(tx) = wit,x) + 21 in ] | t>0
T

was constructed. Here w(t,-) € H*(R\{0}), while # € C*(R) is an even cutoff func-
tion, satisfying

nx) =1 if x| <1,
n(x)=0 if x| >2, (2.3)
H(x) < 0 if x>0.

For future use, it will be convenient to introduce the function
. 2n(x)
d(x,b) = =

Observe that

[(|x] + &) In (]x| + b) — bln b], xeR, b>0. (2.4)

$(0,b) =0 forall b>0. (2.5)
Our main goal in this section is to solve the Cauchy problem for (2.2) with initial data
u(0,x) = w(x) + ¢(x), (2.6)

where
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w € H*(R\{0}), P(x) = (c1 L—oe0[ + €2 * Lo, +00]) - D(%,0), (2.7)

for some constants c;, ¢c; € R. Note that this reduces to (1.5) in the case ¢; = ¢; = 1.
To handle the more general initial data (2.6)-(2.7), we write the solution of (2.2) in
the form

u(t, x) = w(t,x) + o™ (t,x), (2.8)

where the corrector term ¢ (t,x) now depends explicitly on time ¢t and on the
strength of the jump

d™(t) = w(t) —wh (1), wr(t) = w(t,0x). (2.9)

To make an appropriate guess for the function @), we observe that, by (1.12), (2.2)
can be approximated by the simpler equation

w+ (u _ M) = %(Lﬁ(t) —u (1) Inlx| (2.10)

Indeed, we expect that the solutions of (2.2) and (2.10) with the same initial data will
have the same asymptotic structure near the origin. Their difference will lie in the more
regular space H*(R\{0}). With this in mind, we thus make the ansatz

©
(63 = Gx0)+ (6= 1) Lo 62 = 1) o) "f’<x’ = z(t)t).
(2.11)

Inserting (2.8) into (2.2), we obtain an equation for the remaining component w(t, -).
Namely

we + a(t,x, w) - wy = F(t, x,w), (2.12)
where a and F are given by

a(t,x,w) = w(t,x) + o™ (t,x) — M (2.13)

F(t,x,w) = H[p™] (t, x) — o™ (") (¢, x)

+ (Bl - [(pgw(t, 9+ (it - OED) o x)] )

2
(2.14)

We observe that, in the present case of a solution with a single shock, by (2.5) the
entropy admissibility condition (1.8) reduces to

w(t) > wh(t). (2.15)

Moreover, Definition 1.2 is satisfied provided that, along every characteristic curve
t+— x(t; o, x0) 7 0 obtained by solving
x(t) = a(t,x, w), x(ty) = xo, (2.16)

one has
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to

w(to, x0) = w(x(0; to, x0)) + L F(t,x(t; to, x0), w(t, x(t; to, x0))) dt. (2.17)

The first main result of this paper provides the existence and uniqueness of an
entropic solution, locally in time.

Theorem 2.1. For every w € H*(R\{0}) satisfying w(0—) — w(0+) > 0 and every c,,
c; € R, the Cauchy problem for the Burgers-Hilbert equation (1.1), with initial condition
as in (2.6)-(2.7), admits a unique piecewise regular solution defined for t € [0, T], for
some T > 0 sufficiently small, depending only on My, 0, ¢;, and c..

The solution to the equivalent (2.12) will be obtained as a limit of a sequence of
approximations. Namely, consider a sequence of linear approximations constructed as
follows. As a first step, define

wi(t,x) = w(x) forall t>0, xeR. (2.18)

By induction, let w,, be given. We define w,; to be the solution of the linear, non-
homogeneous Cauchy problem

wy + a(t,x, w,) - wye = F(t,x,w), w(0,-) = w(x). (2.19)

The induction argument requires three steps:

(i)  Existence and uniqueness of solutions to each linear problem (2.19).
(i) A priori bounds on the strong norm ||y (t)||p2(r foy)> uniformly valid for t €
[0, T] and all n > 1.
(iii) Convergence in a weak norm. This will follow from the bound

Z ||Wn(t>_Wn—1<t)||H1(R\{0}) < o0. (220)

n>2

These steps will be worked out in the next two sections.

3. Preliminary estimates

To achieve the above steps (i)-(iii), we establish in this section some key estimates on
the right hand side of (2.19), by splitting it into three parts:

F(t,x,w) = A™(t,x) + B (t,x) — C™(t,x), (3.1)
where
- +
AW H[(p(w)} _ (P(W)QD,(CW)> BW) — H[w] — < _¥> - ,(x,0), (3.2)
v (w w4+ wh aW(t) t
c = g )+<W— > ) '¢x<x> 2() ) '((Cl_l)'x]foo,o[—i_(CZ_1)'X]0,+oo[)'

(3.3)

Consider the function
8(%) = %o, 0((%) - P(x, ), x€R,b>0, (3.4)
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where ¢(x,b) is given by (2.4). For every b € [0, ;] one checks that the function g, €
C*(R\{0}) NC(R) is negative and decreasing on the open interval ]0, 3-[. Moreover, it
satisfies

1
supp(gr) < [0,2], lgr(2)] < |zlnlz|| for all z € [O, Z] (3.5)

The next lemma provides some bounds on the Hilbert transform of g,. As usual, by
the Landau symbol O(1) we shall denote a uniformly bounded quantity.
Lemma 3.1. For every 0 < b < 3 and |x| < 5, one has

d

HgW < o), SHE@| < 00 I,
2 In |x| a In |x| (36)
Eongge| < o[ L mg | < o) |22

Moreover, for every 6 > 0 sufficiently small one has

IH[g6) () |y 5,0) < o) -5, IH[g,] Ol ss) < o(1)-577%

(3.7)
Proof. Fix b € [0, 5;]. By (1.12), one has
1 P
Hg)o) = 1 | &/0)- Inle =1 dy.
Two cases are considered:
Case 1: If — < x < 0 then we have the estimates
1 2 , 1 2+ x| ,
i) (9] = 3+ [ 60 =) & = || it ins
2+ %
:%. J @ dz‘ < O1)- (J |1nzdz+l> < o),
|l Il
_ L& R ACR )
)| = |[ B2 g 1] Tal
2+ (x| 5
=2 gb(sz) dz| = O(1) - f Mzl < 0(1) - In*[x|
T < W %
and similarly
da? In |x| a In |x|
‘EH[gb](x) < 0()-|——| e Hg ()| < 01)-|—3
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Case 2: If 0 < x < -, then we split H[g](x) into three parts as follows:

1 x/2 3x/2
Higy|(x) = »- (J 4()In(x—y) dy+p.v.j G0l —x dy)

4 x/

R o1
+EJ gb()/)ln(y—x) dy = (Il+12+13)

3x/2 n

We first estimate

x/2 x/2

nl = [ g0t @] < o |[ g0 df- sl < 0w
0 0
x/2 1

Loy &) 1 ,/x A\ 2

neol=| |8 gy gb(2>ln(2>’ < 0() - In’x,

and similarly

Inx

W< o= W) < o)

By a similar argument, one obtains

< O(1) - In’x,

and
// > &) Inx Inx
B(x)| < L’“/Z(y_x)z dy| +0(1)-|=~| < 0(1)- |- =,
> &) Inx Inx
B < B b 0w ] < o5
Finally, using the fact that g, is concave, we obtain
X—& 3x/2
)= lim | g0yt | (0
x x+e
x/2 x/2
= lir&J g (x—2)+g,(x+2)] - Inz dz| < 2|g,(x)| J Inzdz| < O(1),
x/2 1
I (x)| = glirg1+J gy (x—2) + g, (x+2)] lnzdz—l-i g (x/2) + g,(3x/2)] - In (x/2)

x/2
J Inzdz

&

<O(1)- <|gg(x/2)| : + ln2x> < O(1) - In’x,
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and
x | 1
1) < [limeos [P (g7 — 2) + g1 (v + 2)] Inzdz| + O(1) - | 25| < 0(1) - |22
x | 1
") (x)| < ‘limHM J; /2 [gl’,”’(x —2)+g"(x+ z)} lnzdz‘ +0(1) - 7n2x < 0(1) —ilzx

We thus achieve the same estimates as in Case 1, and this yields (3.6).

Finally, the function g, is continuous with compact support and smooth outside the
origin. Therefore, the Hilbert transform H]g,] is smooth outside the origin. As |x| —
00, one has

dk

Higs(x) =O(1) [, - (Hlgi])(x) = 0(1) -+, k=1,2,3.

Thus, (3.6) yields (3.7). O

Remark 3.1. For every 0 < b < i, one has

igb(x) _ ) [In(x+b) — In(b)] for all x > 0.
db T
Since
In(x+b)— In(b)] < 7,
the same arguments as used in the proof of Lemma 3.1 yield that, for 0 < |x| < 5,
d 1 d d [1n (x)]

H|— =0(1) -, “H|(= = 0(1) - —2,
Lo w|=om Dul(La)| ] =00 ¢
& _[(d In (x)
@H_(%gbﬂ(x) =0(1)- x|

Moreover, for 6 > 0 sufficiently small,

(e
db®

The next lemma provides some a priori estimates on the function F = F(t,x,w)
introduced in (2.14).

1
< O(1) =673
H2(R\[-9,0]) b

o ol

H'(R\[-0,])

Lemma 3.2. Let w: [0, T] x R — R such that w(t,-) € H*(R\{0}) for all t € [0, T},
Wt M@y < Mo d"(t) = w(t,0=) —w(t,0+) > 0.

Moreover, assume that 0 < T < m and that ¢™)(-) is locally Lipschitz on ]0, T).
Then there exists a constant C, > 0, depending on My, d¢, c;, and c, such that, for a.e.
t €[0,T] and |x| < 5, one has
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'(W)t
F(tx,w)| < G- (1+M0)-|1nt|+|" ()|-|x|)>

o) (t
s |&<»E><)t>| .
|Fe(t,x,w)| < Cp- ((1 + M) - x|+ (1) )
Furthermore, for every 6 > 0 sufficiently small
LaGIR ey
[F(tx W)@ s < Ci- (1 + Mo + |a(W>(t)|> 207+ (1+ M) - [In (t)|]-
(3.9)

Proof. According to (3.1), the function F can be decomposed as the sum of three terms,
which will be estimated separately.

1. By the analysis in [5, Section 3], for every (t,x) € [0, T] X [—5, ] one has

B®)(t,x)] < O(1) - My, ]B§W>(t,x)) < O(1) M- |Inx|]%

(3.10)
1B ()i s,y < O(1) - Mg - 672,

2. Next, we estimate C™")(t,x). For every 0 < x < 5=, we have

.0 = B0 + -1+ | Z 10 i) - w0 (5 1),

(3.11)

where we define

(3.12)

and

w |6 (1)]
IC™(t,x)] < 0(1)<(1+M0)~|1nt|+ S (0) .|x|>.

Moreover, observing that
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tx) = <cz—1>-i[(“W“t)tﬂwa,x)—w(t,o+>>) .(x “(W;(”tﬂ,

dx 2
2 (6™ (w)
Wtx) = (@10 l(“ O (i) — it o+>)) -, <x, d 2“”)1,
(3.13)
we estimate
=~ (w)
C,(CW)(I‘,X>’ < 0(1)- | My - |x‘71/4 +w>,
a™(t)
| . (W>(t)| (3.14)
(w) (2 -1
Cix (l‘,x)) < O@1)- l(MO + |0<W)(t)|> x|+ [wa(t,x)| - [ In |x||1
Similarly, for every — i < x < 0, we have
= (w) (w)
C(t,x) = B (1) = (1 — 1) - [6 2(t)t — (w(t,x) — w(t,O—))} ¢, <x, g 2(t)t>’

EM (1) = 1—2c1 b, <‘7(W)(t)t,o) : (é'(w)(t)t—l—a(w)(t)).

This yields the same bounds as in (3.11)-(3.14). We thus conclude

[T W=
<Mo + |a(W)(t)|> -0 + M- [In(t)]|. (3.15)

3. Finally, to obtain a bound on A™ we observe that, by (3.5),

”C(W)(t")HHZ(R\[fé,&]) < 0@1)-

1 1
(w) < ) = =
](p (t,x)| <O(1) - |xIn|x|], (t,x) € [0, T] x { %’ Ze}

This leads to the estimates

0o < 0)- W2 |(0™ef),| < 0() - In?ld,  [(9™g),,]

In|x
o=
Thus,
lo™ ()0 (¢ g,y < O1) -7,
On the other hand, if 0 < T < K}%, then sup, (o 7 6(W>2<t)t < 5-and Lemma 3.1 implies

for all t € [0, T] and |x| < -, that

1| )] @] < o),

< 0(1) - In?|x|, (3.16)
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d2
dx?

In |x|

H[p" (1] 0] < o). < 0Q1)- 5

x | HH[(p(W)U’ .)} H2(R\ [0, 3)])

(3.17)

Therefore, combining (3.10)-(3.17), we obtain (3.8)-(3.9). This completes the
proof. O

Our third lemma estimates the change in the function F = F(t,x,w) as w(-) takes dif-
ferent values. These estimates will play a key role in the proof of convergence of the
approximations considered at (2.20).

Lemma 3.3. Let w;: [0,T] xR — R, i=1, 2 such that for all t€[0,T], w(t,-) €
H?(R\{0}) and

[wilt, Meewygop < Mos s ()] = .

Moreover, assume that ¢™) is locally Lipschitz on |0, T] and that there exists a func-
tion K(t) such that

g™ < K(t)  ae te(0,T).
Set
z=wy—wi, 0D =0 — g™ My (1) = 2(t, Men ®joy)
M (t) = llz(6 )l 2w o) -

Then there exists a constant C, > 0, depending on My, 0y, ¢;, and c, such that, for

every x € [—%, L] and a.e. t € [0, T, one has

E(txows) — E(bxw)] < Co- (6@ )] - Jd + Mi(1) - (It +K(1))].  (3.18)
Moreover, for every 6 > 0 sufficiently small, it holds

w. w w w M1<t)
I [0 (£,) = @ ()] [l @ s, 57y + B2 = B || g, 01 R

14 K(t @ (1)
IF(e o) = FC )by < Co (0)- (e + ) B0

(3.19)

IN

G-

Proof.
1. For notational convenience, we set

A = A(Wz)_A(WI)) B® = B(W2>_B(Wl)’ cl@d = cm) _ cwm)

From [5, Section 3], for every (t,x) € [0, T] X [—ﬁ, ﬁ], it holds
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M (t
BO(0| = 0)-Mi(1), (B ey oy < O -,
My(8) o (3.20)
IBE (&)l 5,07y < O1) - 525

2. We now provide bounds on C(Z>(t, x). By (3.11)-(3.13), for every 0 < x < ﬁ one
has

5(2) K Mox + M2 +1
CO(t,x)] < 0<1>{ww+wt>.< f;)& SEMEL | e+ 1 i ]|,
0

0 0

(3.21)

5 ZI) |+M+‘Z"(t’x”'(|ln(t)\+5i0+Mo>

0

( 2 ) 0+ 2 ) - (1 0]+ 5+ )|

IC(1,%)] < 01

(3.22)

cQal=om- | 50 (69 169 = 2(00)

oy (] KO s o) 01

+ zec(t,)] - (|10 (1) +§O+Mo> +

50 (S(Z)x (30x 50)(2
So(l).{<|¢<zo(t)| +K(t)61\241(t> +M1(5 ())Mo . Mz(t)> 1
+ (0] (I (1) + +Mo>+|wlxx (6,%)] }

(3.23)

For every —5 < x <0, by a similar argument, we obtain the same bounds as in
(3.21)-(3.23). Therefore

. My+1 K a9 (¢
Ict )(t>')||H1(R\{O}) < 0Q1)- (Ml( ) <|1 nt| + 05 +§> +—‘ 5( )l),
0 o 0

g ¢ (Mol B) L Lal]
do 53 \/5 50\/5 .

(3.24)

ICD () p-sey < O1)- (Mz(t)~

3. To achieve bound on A®@, for 0 < x < i we compute

", ' a9t M (t
ool = gt < o I e < o). 10“ eIn]x[|,
w O'(Z) t
(o6l = o) | < o) 2 sl < 00 5. i,
@) |In|x| M() In |x|
(w2) p(W2) _ (w1) o (W1) < 1 .&. il | B 1 1 Bl
'(m ox — "y )xx < 0 —5 x| < o0 -—5 < |
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This yields

(w2) J(CWZ) _ ) )(CWI) ) o) - l(t)
Hq) ¢ ¢ H'(R\{0}) ) 6% )

(w2) p2) _ (p(m1) (o) DMl eags
H(p ¢ e HX(R\[-3,8]) W) 0o

On the other hand, for 0 < x < i we observe that

o) (t,x) — ) (1) = (c2 — 1) [¢ <x, “(WZ)(t)f> _ ¢<x’ G(W"(t)t>]
== 2_ - (J; by (x, G(le)(t)t+ T "(z;(t)t> dr) 6@ ()t (3.25)

-1 La
- sz ' (L 258 df) @ (),

with b, = "(le)(t)t +7- ”(Z)z(t)t. Thus, by Remark 3.1 it follows

[\

o) - ot lw| < o M,
ZH[o0) = (6] 0] < o) L2
and
H @) () = 0" () ey ssy < O(1) - Mi(2) 5%
[H oM (1) — p™)(t,)] le®\se) < O() Mé—st) 07
Similarly, one gets the same estimate for — - < x < 0. Therefore (3.2) yields
A9x| < om MU a) < o AL
A6 o-am < 00200 626)
A mag) < O0) A 52
Finally, combining the estimates (3.20)-(3.26), we obtain (3.18)-(3.19). O

4, Proof of Theorem 2.1

In this section we give a proof of Theorem 2.1 by constructing a solution to the Cauchy
problem (2.2) with general initial data of the form (2.6)-(2.7), locally in time. This solu-
tion will be obtained as limit of a Cauchy sequence of approximate solutions w,/(t, x),
following the steps (i)-(iii) outlined at the end of Section 2.
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Step 1. Consider any initial profile w € H*(R\{0}). Let o, My > 0 be the constants
defined by the identities
My

Given two constants ¢, ¢; € R, the corresponding initial data of the form (2.6)-(2.7)
is
u(0,x) = w(x) + (Cl “A)—oc,0] T €2 X]O,+oo[> “$(x,0).

Moreover, let w, : [0, T] x R — R be a function such that

|‘Wn(t, Oi) — W(Ot)‘ S 50, Hwﬂ(t’.)HHz(R\{O}) S M(), t e [0, T] (42)

Set a,(t) =w,(t,0—) — w,(t,0+). As in (2.11), the correction term associated to w,
is denoted by

@u(t:%) = $(x,0) + (61— 1)+ 7o + (€2 = 1)~ 70, o0]) ¢(x, “"gt)t). (4.3)

In this step, we will establish the existence and uniqueness of solutions to the linear
problem (2.19).

We begin by observing that the speed of all characteristics for (2.19) is

2

where @, (t,x) = @™ (t,x), the correction term associated to w,. From (4.3) and (4.2)
it follows that ¢,(#,0) = 0 and
aa(t)

2

a,(t,x) = a(t,x,w,) = @,(t,x) + w,(t,x) —

>

aa(t)

—409 < au(t,04) = — < 40,.

< =200, 200 < a,(t,0-) =

Furthermore, for any given (t,x) € [0, T]x ]0, 5], we estimate, using (3.5),

22+ |e])|xInx|  (*
2P | ()l

an(t,2) — a,(£,04)] <

IN

2(2 1 x 1/2
( + |C72-E|>|x nxl +X1/2 . (J |Wn,x<t,)/)|2dy> S (2 n |(;2| +M0) . \/E
0

Similarly, we also have
1
lan(t,x) — a,(t,0—=)] < (24 |e1| + Mo) - /|x], (t,x) €10, T] x {— Z’O{

In particular, setting

1 B 2 1
5 = --< s ) < -, (4.4)
4 4+|C1|+|C2|+M0 16

we have
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{ —58) < an(t,x) < —dp, (t,x) €[0,T]x ]0,28,], (45)
0o < au(t,x) < 50, (t,x) €0, T] x [—28,,0] .
Next, choose
0 < T < min{%, zie}, (4.6)
and denote by t+— x(t; tp, x9) the solution to the Cauchy problem
x(t) = a,(t, x(¢)), x(ty) = xo- (4.7)
By (4.5) it follows
do(to —t) < |x(t;t0,x0) — x| < 5d0(to — t), IXo| <61, 0<t <ty <T. (48)

The next lemma provides the Lipschitz continuous dependence of the characteristic
curves considered at (4.7).

Lemma 4.1. Let w,, @, be as in (4.2)-(4.3). Then there exists a constant K; > 0, depending
on My, dg, ¢, and cy, such that, for any x5, x, € [—01,0[ orx;, x, € |0,0,], one has

lx(t;7, %) — x(t; T, x%1)| < Ki-|x — x1)s forall 0<t<t<T. (4.9)

Proof. We shall prove (4.9) for x;,x, € [-01,0[ , the other case being entirely similar.
For any —0; < z; <z, <0, it holds
|an(t:22) = an(t,21)| < |wa(t22) = walt, 20)| + [0 (6 22) = @u(t,21))]

4—|—2|C1| '
T

S |:M()+ (1+|ln|z2||)} '|ZZ—ZI|.

Therefore, from (4.8), it follows

d 44 2|c
B e A P e I R e
— x(t;7,x1)),
and this yields (4.9). 0O

From (4.5), by the same arguments as in [5, Lemma 4.1], one obtains:

Lemma 4.2. Let w,, ¢, be as in (4.2)-(4.3). There exists T > 0 sufficiently small, depending
only on My, d¢, ¢1, ¢, such that, for every t € [0, T| and any solution v of the linear equation

v+ an(t,x) vy =0, v(0,-) =v € H*(R\[-o1, bo1]),

one has

W

||V(T>')||H2(R\{o}) < E'||T)HH2(R\[7501,(30$])'

Step 2. Consider a sequence of approximate solutions w¥) to (2.19), inductively
defined as follows.
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wl)(t,.) = w() for all t > 0.
For every k > 1, wk*1)(t,-) solves the linear equation

w + an(t,x) - wy = F(k)(t,x), w(0,-) = w(-)

with F<k>(t, x) =F(t,x, w(k)). Equivalently, wk+1) satisfies the integral identities
to
W(k+l)(t(),X()) = W(X(O, to, X())) + J F(k>(t,X(t, to,Xo))dt. (410)
0
The following lemma provides a priori estimates on w(¥), uniformly valid for
all k> 1.

Lemma 4.3. Let w,, ¢, be as in (4.2)-(4.3). Then there exists T> 0 sufficiently small,
depending only on My, d¢, ¢, ¢ and satisfying (4.6) so that the following holds. For every
k> 1 and a.e. v € [0, T, one has

[w¥ (z,0%) —w(0x)| < &, (4.11)
|6®(x)] < 4Ci(1+ M) - |In7], (4.12)
IO @ eggoy < Mo (4.13)

for some constant C; > 0.

Proof.
1. It is clear that (4.11)-(4.13) hold for k=1. By induction, assume that (4.11)
holds for a given k > 1. By the assumptions (4.1) and (4.11), for all 7 € [0, T]
one obtains

¥ (1) > w(0-) — w(0+) — |wH (r,04) — w(0+)| — [w® (z,0-) — w(0-)]
> 49.

For a fixed 7 € [0, T], let x* : [0,7] — R be the characteristics which reach the ori-
gin at time 7, from the left and the right, respectively. Recalling (4.10), (3.8), (4.1),
and (4.8), we estimate

lwk(g,02) —w(0=)| < |w(x™(0)) — w(0=)| + J;|F<k>(t,xf(t))\dt
T &k .
< 3M050‘L' + Cl . JO ((1 +M()) . |ln t| +% . |x‘(t)|>dt
< 3MySot + Cu(1+ Mo) - j (145Ci(c — 1) - |In () |dt

< O(1)- (14 M) -|In(t)]-1 < O1)-(1+M)-|In(T)|- T

and this shows that wk*1) satisfies (4.11), provided that T> 0 is chosen sufficiently
small, depending only on My, dp, 1, and c,.
2. Forany 7€ [0,T] and —0; < X, < X; < 0, consider the characteristics

t — Xl(t) :x(t;r,fcl), t — X2<t) :X(t;T,J_Cz).
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Using (4.10), (4.9), (3.8), (4.11), and (4.8), we estimate

|W (k+1) (T,J?z) _ W(k+1)(r)x1)|

< [w(x:(0)) — w(x1(0))] + L [FW (t,25(t)) — FO (1,20(1))|dt

a®(t)

1 t\* |tlnt|
< : : ). (= A%y — X1
< MoK, <1+0(1) <1+M0) [(50) +g % — &

Therefore, choosing T > 0 sufficiently small, we obtain

|w§ck+1>(‘c,x)| < 3MyK; for all T € [0,T],x € [—51,0[ ) (4.14)

<MK, - Xy — %1+ Cy - J ((1 + M) - [ (1) + |d<k)(t>|) xa(£) — x1(£)|dt

An entirely similar estimate holds for = € [0, T],x € ]0,d,].
3. Next, given any 0 < 11 < 17, < T, denote by t+— x; () =x(t;7;,0*) the charac-
teristic which reaches the origin at time 7;, from the positive or negative side,
respectively. Recalling (4.9)-(4.11), (3.8), and (4.14), we estimate

‘w“‘“)(rz,Oi) — w(k“)(rl,Oi)‘
< W (2, x5 (11)) — w21, 0%)| +[ |F® £,y (t)) |dt
(k
((1 +My) - [Int| + ||“ >8|| . x;(t)>dt

< 15MoKi00(t2 — 1) + Ci(1 + MO)J [Int|(1 4+ 5C (1, — t))dt

T

T2

< 3MoKi|x; (11)| + Ci J

T1

< (15MoK; 8o + Ci(1+ Mo)|In ()]) - (t2 — 1) < 2Ci(1+Mo)|In (11)] - (12 — 1),

provided that T > 0 is sufficiently small. In particular, we have
|a (k+1) (12) — a<k+1)(11)| <4C (1 + My)|Inzy| - (12 — 71).

This shows that 6*t1 satisfies (4.12).
4. Finally, from Lemma 4.2, Lemma 3.2, (4.12), and Duhamel’s formula, for all = €
[0, T] we obtain

W (2 ) e oy

< 5 Il o o) +

3
2
3M, 3 t C
T°+ - Cy(1 4 My) - J <1+—1 |lnt|) 5o (t =)™ 4 |Int|dt

3Mpy 3

C _
<=t G+ M) 6(1—1——1 |lnr|>502/3rl/3+|rlnr| < M,
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provided that T>0 is sufficiently small, depending only on My, d¢,c;, and c,. This
shows that (4.13) is satisfied by w1 as well. O

Thanks to the above estimates, we can now prove that the sequence of approximations
wlk) is Cauchy and converges to a solution w of the linear problem (2.19). This is a key
step toward the proof of Theorem 2.1.

Lemma 4.4. Let w,, ¢, be as in (4.2)-(4.3). Then, for some T >0 sufficiently small,
depending only on My, d¢, ¢, ¢ the sequence of approximations (w(k>)k21 converges to a
limit function w in L>([0, T], H*(R\{0})), i.e.,

Jlim sup [w® (t-) = w(t )i (o)) = O-
0 te[0, T]

The function w provides a solution to the Cauchy problem (2.19) and satisfies

[w(z,0%) —w(0x)[ < do, Wt )@y < Mo t €0, 7] (4.15)
Moreover, a(t) =w(t,0—) — w(t,0+) is locally Lipschitz in (0, T) and
l6(t)] < 4Ci(1+ M) - |Int], ae te€(0,T). (4.16)
Proof.
1. For any k > 1, we set
Z(k) = w<k+1) — W<k)’ O'gk>(t) = Z<k>(t, 0_) — Z(k)(t, 0+)’
MO ()= 1120 oy Bil®) = supiepy,q MEI(0), k(1) = supyep [0 (1)].

(4.17)

Recalling Lemma 3.3, Lemma 4.2, and Lemma 4.3, and using Duhamel’s formula,
we estimate

3 T
ME (z) 3 JO IF*D (8, ) — F9(e, M er (=6 (r—1), 80 (1)) B

IN

< G- J; Bi(t) - [In (2)] (1 + (c _lt)2/3> + a:(i)t dt
< G (B + (o)),
and this implies
B < G- (B + (@), celoT] k21, (4.18)

for some constant C3, Cy > 0 depending only on My, dp, 1, and c¢,.

2. We now establish a bound on ||6(k+1)||Lw([o,T]). Given any 0 <1, <17, < T,
denote by t— x;"(t) =x(t;7;,0*) the characteristics, which reach the origin at
time t;, from the positive or negative side, respectively. Using (3.18), (4.12), and
(4.8) we obtain
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125D (15,0%) — 257D (71, 0%)]

< 28 (11, x5 (1)) — 25 (21,0%) | + r IF&D (1,5 (1) — FO (8, x5 (t))|dt
< B I (1) + G - r o (t) - x5 (t)] + Bi(t) - [Int| dt
< (5Bks1(12)00 + Cs - [Bi(t2) - [In 1| + o (12) (72 — T)]) - (72 — 1),

for some constants Cs > 0 and Cg > 0 depending only on My, dy,c;, and ¢,. Thus, for
0 < T < J sufficiently small, we obtain

a1(t) < 10B4i1(7)00 + 2Cs B (7)|Int|  t€]0, T,k > 1, (4.19)
and (4.18) yields
Brin(®) < Cr- (Be(®) + Bra () - 717

for some C; > 0 depending only on My, dg,c;, and c¢,. In particular, for T >0 suffi-
ciently small, one has

B @435 < 3+ (8380 ).

which implies
Z sup Hz(k>(r")HH2(R\{O}) < o0
k=1 1€(0, T
We thus conclude that (w®)),., is a Cauchy sequence in L*([0, T], H*(R\{0})) and
converges to a limit function w € L>([0, T], H*(R\{0})), which provides the solution
to the linear problem (2.19), and satisfies (4.15). Moreover, since limy_. w(k>(r,0t) =
w(1,0%), one has that lim;_, ¢¥) (1) = a(1) for all 7 € [0, T]. Thus, from (4.12), o(-)
is locally Lipscthitz in (0, T) and satisfies (4.16). O

We are now ready to complete the proof of our first main result.

Proof of Theorem 2.1. As outlined at the end of Section 2, we construct, by induction, a
sequence of approximate solutions (w,),., where each w, is the solution to the linear
problem (2.19). For some T >0 small en(;ugh, depending only on My, J¢, ¢1, and c¢,, we
claim that

Z [wa(t) = wna1 (Dl rygoy) < 0 for all t € [0,T] . (4.20)

n>2
For a fixed n > 2, we define
Wy = Wy —wa1,  an(t,x) = a(t,x,wn), An(t,x) = au(t,x) — an_1(t, %),
v =@M —$(-0), Vy =vy =1, Bu(H)=su [ Wl :
n =@ B Y =V T Vel P Psefo, i 1 Wnlla R\ {o})
(4.21)
Set Z, = W, + V,,. From the above definitions, by (2.19) it follows
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Zn+1,t +ay, - Zn+1,x = _(Anwn,x + An+lvn+1,x) + GnJrl (422)
with
Gror = B — B ) — o] — (o) — ) 4,(,0)

Recalling the first inequality in (3.19) and (4.15), we estimate

HAn( ) Wh, x( )”Hl (R\[-4,6]) < G 'Mn(t) < G- ﬁn(t)’
M,1(t) B (t)
Ans1(t-) - Vagrx(t )| ®[s) = G- 5?/12 = G 5+141/2

My1(t) Brir (1)
Gt (6 ) mys0) < Cr- SU2 < G- 5+11/2 :

for some constant C; > 0 depending only on M, &, ¢;, and ¢,. Hence, choosing T>0
sufficiently small, we have, using Duhamel’s formula,

3
1 Zn1 (%) e o o) 2 JO 1Grrt = AnWn,x — Ane Vit xl [ i w0\ (oo (e—t), o0 (c—e))) 9E

IA

< %@J;ﬂn(f)"‘% dt = 3C8 (ﬁn(f) T+ 28,14 (7)1 1/2>

(4.23)
for some constant Cg > 0. On the other hand, (2.11), (4.21), and (3.25) imply

Vit (&) oy < o IWost (5 ) lan ey gopy 775

and (4.23) yields

3Cs
IWars (@ gy < 52 (Ba(0) - 7+ 280 (07?)
+ Co - [[Wort1 (T )l 1n w0 01 -t/

for some constant Cy > 0 depending only on M,, dy, ¢;, and ¢,. In particular, for T>0
sufficiently small, one has that

() < S.p(x)  forall Teo,T].

l\)

Thus, (4.20) holds and for every t € [0, T| the sequence of approximations w,(t,) is
Cauchy in the space H'(R\{0}), and hence it converges to a unique limit w(t,-).

It remains to check that this limit function w is an entropic solution, i.e., it satisfies,
cf. (2.2), (2.8), and (2.6),

to

(w+ ™) (to,x0) = (W + @) (x(0: to, o)) + L H w4+ o™] (1, x(t; to, x0))dt,

where t+— x(t; ty, o) is the characteristics curve, obtained by solving (2.16). This follows
from slightly rewriting (2.19), which yields
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to
(W1 + @) (t0,x0) = (W + @) (% (0 t0, x0)) +J H Wit + 0™ 0] (1, x4t to, x0) )t
0
_ J <Z W () + W ()
n+ 2

)q’fcw”“)(t, xn (L3 o, %) )dit,
0

where t — x,(t; ty, xo) denotes the characteristic curve, obtained by solving (4.7).
Finally, to prove uniqueness, assume that w,w are two entropic solutions. We then
define

W = w—w, B(x) = sup [[W(s, )|l o))

5€[0, 1]

The arguments used in the previous steps now yield the inequality
1
B(x) < Eﬁ(r) for all 7 € [0, T],

which implies f(7) = 0 for all = € [0, T] and completes the proof. O

5. Two interacting shocks

In this section, denote by u(t, x) the solution to Burgers’ equation
U + uu, = 0, u(0,x) = u(x), (5.1)
and by v(¢t, x) the solution to the perturbed linearized equation
ve + uvy, = Hlu(t, )] (x), v(0,x) = v(x). (5.2)

By the method of characteristics, at all points where u is continuous, one has

T

v(ny) =7y —wu(ny)) + J Hlu(t,))](y = (t = 1) u(z.y)) dt. (5.3)
0
We expect that v can provide a leading order correction term, in an ansatz describing
the solution with two interacting shocks to the Burgers-Hilbert equation (1.1).
To fix the ideas, consider a piecewise constant solution to Burgers’ equation contain-
ing two interacting shocks with initial data

u' if  x<x,
u(0,x) = u(x) = { u™ if X <x<Xx, (5.4)
u" if X, <ux.
with u’ > u™ > u’. Setting
_ ul +um
o1 — uf _ um, a; = T 5
o, = u"—u, u™ +u"
a = >
2
Xl(t) :.97(71 + at, XZ(t) :5c2—|—a2t,

we thus have
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u if  x<x(t),
u(t,x) =< u™ if  x(f) < x < x(t), (5.5)
u’ if  x(f) < x.

We now compute the corresponding solution v = v(t,y) of (5.2). For this purpose,
consider the characteristic through the point (7, y), namely

x(t) =y+ (t — t)u(z,p). (5.6)

Recalling (1.12), we compute the integral

I(t,y) = J;H[u(t,~)](x(t)) dt = —(;IL In |x (£) — x(t))| dt—(:J; In x> (£) — x(t)| dt
= ﬁ(wﬂxl(r) — ) = @(lx1(0) — x(0)]))
ﬁ(@(lm(f) =) = @(]x2(0) — x(0)[)) + e(t, x).

(5.7)

Here ¢ is given by (1.4), while e = e(t,x) is an additional smooth correction term.
Neglecting smooth terms, we thus consider three cases, depending on the location of
the characteristic x(¢) w.r.t. the two shocks:

Case 1: y < x;(7). We then have

169) ~ 2[ea() =) () =) 452 (o) - @ -] 69
Case 2: x1(17) < y < x(1). We then have
I(v.y) ~ % [ = x1()) In (y = x1(2)) + (x2(7) = y) In (x2(7) = )] (5.9)

Case 3: x,(1) < y. We then have

I(t,y) = 2[ % (y—x1(0)In(y —x1(7)) + (y = x2(7)) In (y — x2(7)) |- (5.10)

n o1+ 20,

Next, consider a more general piecewise smooth solution u of the Burgers-Hilbert
equation (1.1) with two interacting shocks located at points x1(7) < x,(t) with strengths

a1(7) = u(t,x (1))
a2(7) -
respectively. As the interaction time T is approached, we expect that the two limits

> (T xl(f)—'—))
(1, %2(1)—)
will coincide

— u(t, %2(7)+),

u
(5.11)
u

lir}l u(t, x(1)+) = lil}q u(t, %(7)—).

Furthermore, as shown in Figure 2, all characteristics located in the triangular region
between the two shocks will hit one of them within time T.
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Figure 2. The characteristics for a solution to Burgers’ equation with two shocks at x; () < x(t).

To construct such solutions, we should thus try with an ansatz of the form

u(t,y) = w(ny) + d(v.y), (5.12)

where
w(t,-) € H*(]—00,x1(7)[ U Jx1 (1), x2(7)[ U Ja(7), + 00|). (5.13)

Moreover, in view of (5.8)-(5.10), the correction ¢ should be defined as

2|0 =m0 )+ 5o B -yt )| iy <o)
$9) =3 2y - m@) G- 5(@) + (@) - )hle@ )] @ <y <n),
%[#%@_xl(f))m(y—xl(r))+(y—x2(f))1n(y—x2(f))} it () <.

(5.14)

Note that, for each fixed time 7 < T, since x;(7) < x2(7), for y < x1(1), the term
In (x2(t) — y) remains smooth. The same is true for the term In (y — x;(7)) in the region
where y > x,(1). As a consequence, the asymptotic profile of the function ¢(z,-) near
both points x;(7) and x,(t) has the same “xIn|x|” singularity that we encountered
before. However, these two additional terms cannot be removed from the definition of
¢, because they are not uniformly smooth as 1 — T —.

6. Constructing a solution with two interacting shocks

We consider here a solution of the Burgers-Hilbert equation (1.1), which is piecewise
continuous and which has two shocks located at the points y;(f) < y,(¢). By the
Rankine-Hugoniot conditions, the time derivatives satisfy

7:(8) :M i=12. (6.1)

Here u; (t) = u;(t,y;(t)*=) denote the left and the right limits of u(t, x) as x — y;(¢).
Throughout the following, we assume that
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uy (£) 4wy (1)

2 =y, > y’z(t):M.

2

The function 7=y, — y, is negative and monotone increasing. It will be useful to
change the space and the time variables, so that in the new variables t,% the location of
one shock is fixed, while the other moves with constant speed 1. For this purpose, we
set

X = x—yt), t=1(t) < 0.

As a consequence, the two shocks, in the new coordinate system, are located at

n(t) =t y(t) =0,
and interact at the point (£,%) = (0,0). Introducing the function
v(e(t), x) = u(t,x + 3, (1)), (6.2)

we define the left and right values
v (1(0) = v 1)) =u(t (), vy (et) = v(z(t),0%) = u(t,ya(6)*).
(6.3)
The change of variables (6.2) yields

=u,(t,x v (T, x :ut(t’x+y2<t))+j’2(f)'Mx(f,X—l—)Q(t))
HEm ), ey AOESAC |

Therefore, (1.1) implies
[r(e(), %) = 3, ()] - ve(x(), %) _ H[v(x(1), )] (x)
).’1(t>_).’2(t) j’l(t)_j’z(t)
Thus, by (6.1), (6.3), and (6.4), we can recast the original (1.1) in the following
equivalent form

v (t(),x) + (6.4)

L S SR DO . C) N
u + o ®) =) [u—ax(t)] u, = O -a (6.5)
Given 1y < 0, for t € [19,0] the two functions
al(t) = M’ az(t) = M) (6_6)

2

yield the speeds of the two shocks in the original coordinates, as shown in Figure 3.
We shall construct the solution of (6.5) in the form

u(t,x) = w(t,x) + o(t, x) for all (t,x) € [1,0] xR . (6.7)

Here ¢ is a continuous function, which satisfies ¢(t,t) = ¢(t,0) = 0, while
w(t,-) € H*(]—oo,t[ U Jt,0[ U 0, + oo]) for all ¢ € [10,0]. (6.8)
According to (6.8), the function w(t,-) is continuously differentiable outside the two
points x =t and x = 0. Moreover, the distributional derivative D,w(t,-) is an L? function

restricted to each interval | — oo, [ , ]t,0[ and ]0, + oo[ . However, both w(t,-) and
wy(t,-) can have a jump at x=1¢ and at x=0. At the points (¢, £) and (,0), the
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NN

Figure 3. Positions of the two shocks in the original variables (left), and in the adapted varia-
bles (right).

T
0

following traces are well defined:

W) = witt—) = u (¢), b (1) = wiltit-),
(6.9)
wi(t) = w(tt+) = uf (t), bi(t) = wy(t,t+),
Wi () = w(t,0—) = uy (t), by (1) = wil(t0-),
(6.10)
wy(t) = w(t,0+4) = uj (¢), by (t) = wy(t,04).
For the shocks to be entropy admissible, the inequalities
wi(t) > wi(t), w, (1) > wy (1), (6.11)
will always be assumed. Writing
- + - +
(6.5) reads
we + a(t,x, w) - wy = F(t, x, w), (6.13)

where a and F are given by

alt ) = VDT o™ (t,x) — a}”)(t) 6.14)
T M — e ’ ’

CHEW = w=a0) 0 ] | He™] — o)l
Ftxw) = ) ) g N R P
ap (t) —ay (1) ap () —ay (1)
respectively. Here the function @*)(t,x) is chosen in such a way that a cancelation
between leading order terms near to the location of the two shocks at x=¢ and at x=0
is achieved. More precisely, in view of (5.14) and recalling (2.3) and (2.4), we set

Bo(x) = . 0) = 1

(6.15)

- x| In |x], (6.16)

and define
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bole=0+——0 gy i x<s
0 20§W>(t) + G(ZW)(t) 0 0
o™ (t.x) = Bolx — 1) + Bo(x) — o (1) if t<x<0, (617)
(w)
o () .
S0 1 2000(0) (Po(x —1) — do(t)) + o(x) if 0<x.

The following theorem provides the existence of solutions to the Cauchy problem for
(1.1) where the initial datum contains two shocks. In particular, the solution to (6.5) is
constructed up to the time where the two shocks interact. Furthermore, the solution is
of the form (6.7), where ¢ = @), the corrector function defined in (6.17).

Theorem 6.1. For any given constants b, My, 6;, 0, > 0, there exists &y > 0 small enough
and a constant K such that the following holds.
Consider any 1y € [—&y,0[ and any initial condition w € H*(R\{t9,0}) such that

_ < Mo _ < b
||W||H2(R\{ro,0}) = 4 HWxHL"‘(]ro)OD - (6.18)
Then the Cauchy problem (6.13) with initial data
w(tp,:) =w € H*(R\{10,0}) (6.19)
admits a unique entropic solution, defined for t € [tg,0]. Moreover, this solution satisfies
{ Wt M@ oy < Mo W ()l epop < K (6.20)
w(t,t—) —w(t,t+) > 4y, w(t,0—) — w(t,04+) > &, '

for all t € [19,0].

Remark 6.1. By (6.20), at the interaction time t=0 the solution u = w + q)<w) is the
sum of a corrector term plus a function in H*(R\{0}). This function lies within the
class of initial data covered by our earlier Theorem 2.1. Thus, combining Theorems 6.1
and 2.1 yields the behavior of a solution to (1.1) across the interaction of two shocks.

Toward a proof of Theorem 6.1, solutions to (6.13) will be constructed by an iter-
ation procedure. The main difference between this and the earlier case with a single
shock is that the correction term ¢ now depends on time through the variable strengths
01,0, of the two shocks. Define

(1) _ fw(x) if x €]t,0[U]0, oo,
wi(6x) = { watt—1)  if x€— ool (621)

By induction, let w(") be given and satisfy (6.8) for every t € [ty,0] . Moreover, call
agn)(t) and agn)(t) the strengths of the two shocks at x=t and x=0 of w™), respect-

ively. We construct the next iterate w = w("*1(t,x) by solving the linear equation
wy + a(t, X, w(”>) wy = F(t,x, w), (6.22)

with initial data (6.19) and a as introduced in (6.14).
The induction argument requires the following steps:
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(i) Given w, (6.22) with the initial data w admits a unique solution w with
w(t,-) € Hz(R\{t 0}) for all ¢ € [10,0[.
(i) A priori bounds on the strong norm [|w(")(t, Mme®ynopy for
all t € [1,0, n > 1.
(iii) Convergence in a weak norm. This will follow from the bound
Z||W("+1)(f>') _W<n)(t">||HZ(R\{t,O}) < too.

n>1

6.1. Some preliminary estimates

To achieve the above steps (i)-(iii), we first establish some key estimates on the right
hand side of (6.13). For any w : [15,0] X R — R such that w(t,-) € H*(R\{t,0}) for all
t € [10,0], we write

w(t,-) = vi(t,) + at,-) (6.23)
with

vt x) = { (w(t,0—) +x - wy(t,0—)) - n(x) if x<0, (6.24)

(w(t,04) + x - wy(£,0+)) - n(x) if x>0.
Recalling (6.9)-(6.12) and (6.15), we split F into the four parts:
1

Ft,x,w) = —————
a™ (1) — al” (1)

: [A(m(t, x) + B (t,x) + C™)(t,x) + D™(t, x)] (6.25)

Here we take

. . . o a2 va(t,0—) + 2 (£, 0+
AW = H[(p( )] _(p( )goiw), B! >:B< ) = H[v,] — (Vz— 2 )2 2 )) ¢E)(x) >

(6.26)

C(W) _ é(vl) - H[Vl] _ <V1 _ V](t, t—) ;’ 141 (t, t+)) . (M)(x . t), (627)

D™ = Hw]— (w—al" (1) - 90" — (a (1) = (1)) - o) = B — C. (6.28)

Lemma 6.1. Let w: [19,0] X R — R be such that w(t,-) € H*(R\{,0}) for all t € [10,0],
and

1wt M@ oy < Mor Iwe(t,0-)| + [we(t,04)] < b, o) > 9 > o.

Moreover, assume that —; mm{l, M2} <19 <0 and G () is locally Lipschitz on
[t0,0[ for j=1, 2. Then there is a constant C; > 0, dependzng only on My, b, oy such

that, for a.e. t € [19,0] and |x| < 5, one has
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1+My+b
[F(t,xw)] < Cr | ————+|In]|
0
- (w) = ()
gy (t)|+ oy (¢
b o OO (g P/zﬂ
1+ Mo+ b+ zeyor - (1607 (0] + 657 (¢
Futxw)| <G - 0 /{IR\]t,O[é (lo1 (O] + a2 ()]) ) (|x|71/2 Flx— t|71/2).
0
(6.29)
Furthermore, for every 6 > 0 sufficiently small one has for all t € [1,, 0]
1+ Mo+ b+ ’d(lw)(t)‘ + ’dgw)(t)‘ L
IF(t % W)@ 2o, suit-0,040) < C1- 5 6+ [In(@)]|.
(6.30)

Proof. We observe that, for all ¢ € [19,0], it holds

(1) —al (1) > 8o+ w(t,t4+) — w(t,0—) > 5o — M- [t|/> > @, (6.31)
2 2

0 < o)1) < A" (1) + o1(6) = wit,t=) — wlt. ) + w(t,0—) — w(t,0+) < (24 /[d]) Mo,
V16 @ ey V26 M @ygoy < O1) - (Mo +b).

According to (6.25), the function F can be decomposed as the sum of four terms,
which will be estimated separately.

1. Recalling (3.2) and (3.10), (6.26) and (6.27) imply that for every (t,x) €
[70,0] x [—zie, zie] one has

B < O()- (My+b), B (6] < 0(1)- (My+b) - [1nx?,
HBM(K')||H2(R\[75,5}) < O(1)- (Mo +b) -5,

(6.32)

and, for every (t,x) € [t9,0] x [t — ﬁ, t 2_16}

IC)(t,x)| < OQ1)- (Mo +b), £W>(t,x)‘ < O(1)- (Mo +b) - |In|x — |5
I () s, ey < O) - (Mo +b) - 672,

(6.33)

2. Next, we estimate A™). Recalling (3.4), i.e.,
8() = Zowf® - B(nb),  xERD>0,

(2.4), and (6.16), we can rewrite, for (t,x) € [tp,0] X [—i, i]

™ (1,x) = do(x — £) + Po(x) — do(t) + EL (8,x) + ES” (1, ), (6.34)
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oy oy 2 a0 (1) Zﬂm() .
E)"(tx) 20(1 )( )+a§w 0 “[po(x) — do(t)] = 201 (t) e ( ) -8y (t — x),
(w) /{[0 oo * 0’2 (t) B 20(2 )(t)
B 0) = =~ e 0 = (0] =~ )
(6.35)
Thus, for (t,x) € [,0] X [~ %, 5|, Lemma 3.1 and [5, Section 3] imply,
Hlot @) < o, [afoe)]w] < o (nh+ 1),

[0 (& )] ®R\(=5 ul—s,1+0) = O )~5_2/3.
(6.36)

On the other hand, given ¢ € [19,0], for every |x| <5, (6.34) combined with (3.5)
yields

‘(p(w)(t,x)‘ < min(|xIn |x||, [(x — ¢) In|x — ¢]]).
Furthermore, we compute for every x € R\{¢,0}

) (4 5) — 2 Fjo,oel - 05" (1) _Z-X]foo,t]-ﬂw)(t) B (x
7 6) (1 <)()+za§>())¢°( 0 (1 zagw)(t)+agw>(t)) #ut):

(6.37)
which together with [5, Section 3] implies for |x| < L that

" 1 1
ol00] < O0)- (Il + ke~ ). [ 0] < O (T )
ol 0] < O (4 ).
2 (x—1)
A direct computation yields, for [x| <3,
ool (,5)] < 0(1)- (|x"2 + - 1'2),

% oMol (6.x)

& oWt 6.0

< 0(1) (In?x| + In2[x — t]),
< O(l)o< n ln|x—t|>.
x—t

”(P(W)qoy(cW)(t")||H2(R\[t75,t+5]u[75,5]) < 0(1)-67%,

In |x]|

X

and thus

Recalling (6.36), we get
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),

AW (,x)] < 0O(1),

A)((W)(t,x)) < O(1) (In?x| + In?x —t

» = o (6.38)
AL ) i@y e—s, erolu-s.0y = O(1) 67
3. Finally, to estimate D), we shall consider three cases:
Case 1: Assume that —1 <t —3 < x <t. We have
D™ (t,x) = D" (t,x) + D) (t, x) + D{") (£, x) (6.39)

with
D™ (£, x) = wi(£,0-) - (t — x) - gy (x — 1),
(w)
w oy () - [w(t,0—) — wi(t, t-+) + w(t, t=) — w(t, x)] ,
) = ( 26" (1) + 03" (1) +xWX(t’0_)> e

(w) ! (w) /
w W w oy (1) oy (t) - Po(t)
D00 = [ (0) ~ (1) - [(261W)(t) ¥ aé’“)(t)) )+ aé’“)(t)] |

Recalling (6.16), we estimate

D" (63| < 0)-blx—tnlx—1] < 0(1)-b,

d ) & o b
il < b, _ el < L
‘del (t,x)‘ < 00 beinpe—tl, |nlen)| < o) o
(6.40)
w d w
DY (6| < O)- (o +) s, [£D8 00| = O 0+ [l
a4’ (W) , My+b
D] < gl + 0 2L,
(6.41)
and
() )y _ ) o]+ o)
D] < 00)- a0 - a0)- i~ ] + [ ]
= (w) = (w)
d iy | 0] #8870
00| < o a0 - o] B g,
- (w) = (w)
& iy | SO0
SD )| < o [af o —ao] B
(6.42)

Combining (6.39)-(6.42), we obtain
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(W) - (w)
D™ (t,x) Mo+b a1 (1)] + |65 (1)

(W‘) (W)’ < 0Q1)- 05 + |In ()|+. ’5 ‘|x \1/2
a, (t) —a, (t) 0 0

—D"(t,x) M - (w) . (w)

’ o+ b+ 6, (8)|+ 165 (t)

(j)x (w) < o) ‘ 15 ‘ ‘ : ‘ |n|x — ], (6.43)
a, ' (t) —ay; (t) 0

&2 (w)

550 ool e,

< 0(1)- |In |x — ]|

a," (1) — al" (1) S - [x — 1] 3o

Case 2: Assume that t < x < 0. We have

D (t0) = we(6,0-) - (£ =) - dylox — 1) + (1 (6,0) — m(6:2) - o) + [ (1) — aS(0)] - (1), (6.44)
and this yields

DW) (¢, My+b

A < o (Mol s ).
a, (t)_al (t)

d

.—D(W)(t,x)

dx My+b

= = < 0(1)- 05 (I fx][ + [ In |x — ¢[]), (6.45)
a, (t) —ay (1) 0

d2

—DW(t,x)

dx? My+b /1 1 ol

x < 0@) L-(—+ )+|W GO ).
a(w)(t) a(lw)(t) o |x| * |x—1] o

Case 3: Assume that 0 < x < 1/2. As in Case 1, writing
D™(t,x) = D" (t,x) + D§" (t,x) + D{") (£, x) (6.46)
with
DM (t,x) = [ (t,%) = it 14)] - b (x — 1)
{% (w(t, t-+) — w(t,0—) + w(t, 04) — w(nx))]  pylx— 1),
DY (t,x) = (w(t, 0+) — w(t,x) + xwe(£,0+)) - (),

(w) !
W) = 2™y — 2™ (n)] . o (t) e HMORA0)
D (t,x) = [af)(6) — (1) Kagwwzaw(t)) 800~ (t)],

we estimate
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. (w) . (w)

D, ARCIRIERY

(W|> (2)' < 0(1)- M°5+b+|1 (®)] + )1 ‘5 : ‘~|x|1/2 ,
‘az (t) —a (t)’ 0 "

d

4w (v 5w

& p(t,x) My + b+ 60| + |30

) o S 0 s o
‘“2 (t) —a (t)’ ’

d2

4w 5w 5

D" (6x) M0+b+‘aﬁ >(t)\+\a§)(t)\ |wxx|
") - a” (1) :

(6.47)

In summary, from (6.43), (6.45), and (6.47), given ft € [10,0], for every x €&
(=1/2,1/2)\{t,0}, it holds that

DY) (1, )
al" (1) - al" (1)

My+b

< ou»( T In(8)

6" ()] + 165" (1)]
+ IR\, — 5% 2 (x4 x = 1)) ),

d
ZpWi,
‘dx (t,x)

a0 (1) = a" (1)

HD(W)(t, ')||H2(R\[t—6,t+6]u(—6,5)) < o)- Mo+ b+ |(’;§W)(t)| + |(7§W)(t)|

Mo+ b+ 1z 016" (0] + 1657 (1))

5 (o ]+ [In fx — ¢]]),
0

<0(1):

+ |1n|t||}.

b (8) — o} (1) 300*"*
(6.48)
To complete the proof, combining (6.32), (6.33), (6.38) and (6.48), we obtain
(6.29)—(6.30). 0

The next lemma estimates the change in the function F = F(t,x,w) as w(-) takes dif-
ferent values. These estimates will play a key role in the proof of convergence of the
approximations inductively defined by (6.22).

Lemma 6.2. Let wi,w; : [19,0] X R — R be such that, for i € {1,2} and t € [10,0], one
has wi(t,-) € H*(R\{t,0}) and

It Moy S Mo Wia(t0-) + Iwe(t00)] < b [of ()] = .

() s locally Lipschitz on

Moreover, assume that _Z mln{l, M <19 <0 and g

[t0,0[ and there exists a function K(t) such that

max{

Set z=w, — wy, O'EZ =¢" — ", and YA (t) = max{

& (1)

>

dgw")(t)’} < K(t)  ae t€ |10

&t

>

}. Furthermore,
let
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My(t) = lz(t ke 0p) + 12:(60=)] + |22(£,0-0) [ + [2(8 0-)[ + [2(#,0+)].

Then there exists a constant C, > 0, depending only on My, b, d, such that, for every

x € [—%, 4] and a.e. t € [19,0], one has

G
Pt we) = Fltmown)| < =2 (Mo + ) 99(0) - (" + b = 17 )

0
C My+b K(t
2 o) (] + 20 Bz
d, do
(6.49)
and for every x € (t,0)
C _ .
|Fo(t,x,wa) — Ex(t,x,wy)| < 5—22 - My(t) - <1 + 804 Moy + b)(|x] /2 + |x — ¢ 1/2).
0
(6.50)
Moreover, for every 6 > 0 sufficiently small, it holds
C _
[E(t - w2) = F(t - wi) e [os, oult—s, e40) = 5—22 (Mo +b) - y(t) - 6723
(6.51)

0

C K(t)+My+b+1 _

+—2'M2(t)'|:<(> 50 + +Mo+b—|—1>-52/3+|ln|t|}
0

Proof.
1. For notational convenience, we set

A® = A(W2>—A(Wl), B® — B(WZ)_B(W1>’ c® = C(WZ)_C(WI), D@ = pm) _ pm)
(6.52)

Furthermore, let zj = v ; — v, j for j=1, 2, then

lz1(t )@y < O) - Ma(t) |22t ) gy goy) < O1) - Ma(2).
Comparing (3.2) and (6.26) and recalling (3.20), then vyields, for every
(t,x) € [10,0] X [—%, %],

BE(t,x)| = O(1) - My(t), |BP(t,x)| = O(1) - My(t) - |In |x]]?,
. M) (6.53)
||B >(t")||H2(]R\[—5,5]) <0()- P

Similarly, for every (t,x) € [to,0] X [t — Lt ﬂ, it holds

|ICO(t,x)| = O1) - My(t), |CO(t,x)] = O(1) - My () - |In |x — ¢,
z M,(t) (6.54)
(e} )(t")”HZ(R\[tfé,Hé]) <0(1)- 52/3 :
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2. We now provide bounds on A(Z>(t, x). From (6.34) and (6.35), it follows that

(w1) (w2)
@(Wz)(t, x) _ qD("Vl)(t, x) — (W )20-1 (tgw ) . (W )261 (t2W ) . g‘tl(t — x)
207 V() + 0y (t) 207 P (t) + 0y (1)
26" (1) 200" (1)
o) o ) | 8-
(1) +2037(t) 0y (t) + 205 7 (2)
(6.55)
Since
20§W1)(t) B 26" (1) o) My(1)
(w1) (w2) (w2) S >
20" (1) + 0y (1) 207" (1) + 03" (1) 0
20 | o M
(w1) (w2) (w2) 5 >
(t) +20;, U (t) 0y (1) + 20, 7 (2) 0

Lemma 3.1 implies for x ¢ {t,0} and |x| < &,

M, (t
Lo 07 — gt (6] | < 0022,
d M,(t)
- (w2) —_ o) < L2\ 2 2, _
“H [0 (1) — 0 (t,x)H < 0(1)- =22 (Il + I~ 1),
H[p™) (1) — o) (1, )] < om). M) sop
[H{o™(t) = @™ (&) 2w\ -5, rraju(—0,0)) < O(1) - o0

and from (3.5), we obtain for x ¢ {t,0} and |x| < L,

w w M, (t

el — ™| < 0(1) ;_(f) (12 + 1 — 12),
d M
E(w(wﬂw,&“)—qo<wl><p,£w1>)‘ < 0Q1)- §() (In2]x] + In?jx — t]),
d? My(t) (|In]x|| |In|x—¢|
2 pm) pm2) _ p(m) (W1)> < O) - 222,
dx? ((p Px O ‘ < O@) So |x]| + lx—t )’

() (%) () (w1) < o _Mz(l‘)'é—z/s
’go bx s H2(R\[t—0, t+0]U(=0,8)) o) o '

Thus, (6.26) yields
M,(t)

A (0| < 0()- AGe0)] < 0)- P2 (2l 0~ ),

S
IAD g 51000y S
(6.56)

3. Finally, to achieve bound on D@, we consider three cases as in the proof of
Lemma 6.1. As before, we define D,( J = DEWZ) — ( ) for i = 1,2,3.



1830 (&) A.BRESSAN ET AL.

Case 1: Assume that —1/2 < t — - < x < t. Note, that we can write

D@ (t,x) = D'V (t,x) + D (t,x) + DY (t,x)
P(tx) =17 () -y — 1), DP(tx) =17 (1,x) - pi(x)
DY (t,x) = 15 (1) - gy (t — x) + 153 (£) - i (8).

o

which implies

(60| < 0(1) - Ma(t) - |t - =],

o1 (6x)| < 0(1) - Mi(t),
Mo+
do

8xI§Z)(t,x)’ < (9(1)-( 5 -Mz(t)+|zx(t,x)|>,

I (%) =0,

>

1§Z>(t,x)‘ < O(1)-My(t) -

x| < o (22209 a4 zen)),

do
. K(8)(1 4 80)My(t)  Myy@ (¢ . MoM,(t
B0 < o). ( UL | MIZO) i) < o). okl
o 0 0
Thus, for > 0 sufficiently small such that |t| < e™~?, it holds
|D(Z)(t,x)| < 01)- |:M0(S:'b_n/(z)(t) . ‘x7t|1/2+M;7§t), (Ka(ot)_ xft\1/2+(1+Mo) . |1n|t|\)},

and

d
Z DOy,
I (t,x)

< 0Q1)- [Mgst) . (Ké(:) + My +b+ 1) e =72 4 |ze(t,%)] - | In |x\|}

M0+b (2)

o) (MEL 500 -] )

K(t) 1
—— + M 1) —F a(t %) 1
(50 + o+b+) ot (rx>|n|x|}

My+b 1
+ 001+ (Jeut ) -l + 2552500 L)

a1

Case 2: Assuming t < x < 0, we have

DE)(t,%) = 2,(6,0-) - (= x) - $h(x — 1) + (@ (1,0) — z1(6.3)) - $h() + [l (1) = ' (8)] - (),

with
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which yields
IDE(tx)| < O(1) - My(t) - [Int]],

‘dixD(Z)(t,x) < 01)- [Ma(t) - (]2 + Jx = 772) 4 [z a(t0)] - [ In o],
dd—;D(z)(t,x) < 0O(1)- {Mz(t)-<| T 1 |)+|lex(t x)| - |ln|x||]

Case 3: Assume that 0 < x < 1/2 and |t| < e ™. As in Case 1, we estimate

]D(Z)(t,x)\ < 0Q1)- le(t) ] (K(t)(MO +do) - %'/ + (1 + My)|In |t||>

and

d
—D(Z)(t,x)

[Ma(t) (K(t)(Mo + dy)

: +M0+b+1)'|x‘71/2:|
0o

Mo +b
+0(1) - <|zx(t,x)| (b)) + 5 y(z)(t)) |Inx,

d2
dx?

< 00 ol )] + et )] - o] + 225250 ]

(K(t) (Mo + &)
do

D(z)(t, x)

1
+My+b+ 1) c—+ Wy (£, %)]| In |x — t||}.

[
In summary, given t € [10,0] sufficiently small, for every x € (—1/2,1/2)\{¢,0}, it
holds that

D) < O(1)- [Mg“ (1+My) - [1n]]

My+b .
(P o)+ 22500 ) (1 = )|

My+b _ _
< 0(1) =5 1) - (B e e )

d
Z D@y,
‘ T (t,x)

S

+

(1).[(M;§t)<%t)+zw +b+1) + |zt )] .(|x|*1/2+|x_t|*1/2)}

. M K(1) -
IDE (& @y jes, sy < OQ)- ;s ) Ké—(()*‘Mo +b+ > 67 4+ |In \tH}
My+b

do

+0(1) @() - 673
(6.57)

Finally, combining (6.25)-(6.28), Lemma 6.1, and (6.52)-(6.57), we obtain (6.49)-(6.51) O
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6.2. Proof of Theorem 6.1

We are now ready to give a proof of Theorem 6.1. Given 1y € [—&9,0[ sufficiently small
and some initial data w(to,) = w satisfying (6.18), we construct a solution to the
Cauchy problem (6.13). This solution will be obtained as the limit of a Cauchy sequence
of approximate solutions w™(t,x), following the steps (i)-(iii) outlined in the begin-
ning of Section 6.

Step 1. Let b, My, ,, 9, > 0 and w € H*(R\{1¢,0}) such that

) M, _
11| 2 R0\ 20, 03) 2 Wlleegey = b (6.58)

w(to—) — w(to+) = 861, w(0—) — w(0+) = 80,.

We first establish the existence and uniqueness of solutions to the linear problem
(6.22) with initial data # and a given function w™ with w()(¢,-) € H?(R\{t,0}) for all
t € [10,0[ and such that for all t € [70,0],

{IIW(”(t,-)IIHz(R\{t,o}) < Mo W (13 llegay < Kb

(6.59)
W (1) —w(tex)| < 6y, W (t,0%) —w(0%)] < oy,

for some constant K> 0 depending only on b, My, d;, J,. Note that w), defined in
(6.21), satisfies all of these assumptions.

Note that if such a sequence exist, then the constant J, in Lemma 6.1 and Lemma
6.2 can be chosen as min(J;, d,). Accordingly, we define

0o = min(Jy, Jy).

Assume
1 min{é?, 05}
i 2 g < 0, (6.60)
and denote by t+ x(t; o, x9) the solution to the Cauchy problem
x(t) = au(t, x(t)), x(to) = xo, (6.61)
where
(n) (n) —a"
. owlLx) + t,x) —a, (t
) = )+ 00 ) 662
a; (1) —ay (1)
Here,
n C () n ) n i) ,
o (tx) = ¢ (tx), a”(t)=a"" (1), o"(t)=0""(t) forj=1.

(6.63)

To begin with we study the travel direction of x(#), which depends on the sign of g,
Therefore, observe that (6.58) and (6.59) imply
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65 < o"(t) < 108  t€ [ty,0]i € {1,2}. (6.64)
Furthermore,
70) = a0 = 3 (10 + 0 0) | = ) w00 < Mo/
and
301 +02) = Moyl < [al”() = ol (6)] < 501+ 82) + Mo/
Recalling (6.60) we end up with
200, +6,) < a§">(t)—ag"><t)] < 6(0) + ). (6.65)

For every (£,x) € [t,0[x]0, [, one has, using (6.17), (6.35), and (3.5),

2
" (1) W) (,x) — w) (1,04) + ) (1,x)
2" (t) — a3 (1)) al” (1) — al" (1)

a,(t,x) +

1
< . (n) t, _ t,0 (n) t,
<rrsy (W) = w04+ o (60)
1
<——  (Mox"? + 2|xInx]).
=206, + 07 ( 0X |x nx|)
(6.66)
Similarly, for every (t,x) € [to,0[x] — 1/2,1],
ol (1) _ O (x) — W (1) + 0 (1,x)
an(tx) =1 = (n) (n) a (n) (n)
2(al” (1) ol (1)) a"(t) — a3 (¢)
< (Mo fx =t 42 el Infx —1]]). 6.67)
~ 2(61 +6,)

and for any (t,x) € [10,0[x]t,0],

wl (t,x) — w (£, t4) + o (2, x)

a,(t,x) — 1+
(9 a" (t) — a}" (1)

2(a"(6) — (1)) ‘

< 12 _ _
< 51+52 (Mo e =2 42 (Jbe— ] In je — ]| + JxIn |x]]) ).
(6.68)
Since
a" (1) - a" (1) - 0" (1)
o\ (1) + 108, + 2Mo /T~ 2@ (6) —al" (1) T o\ (1) + 66, — 2Mo /1|
oy (1) - oy (1) oy (1)

—_— S n - b
oS () +108, + 2Mo\/Jt] — 2(a(t) —al (1)) T (1) + 68, — 2Mo /1]
by (6.64), we conclude, using (6.64) and (6.60) once more, that
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51 (28] (t) 251
01+ 20 () _ ) = 20,+0;
' ? 2(a, (t()n) a, (1)) LT for all t € [10,0].
52 < 0, (t) 2(52
2040 7 2@ () - d(r) T di+20
Therefore, by (6.66)-(6.68) there exists 6 > 0 such that
552 52 S
7 < < 7z
28 1 45, = an(t,x) < 0,1 20, for all (¢,x) € [10,0[x]0,0],
46, + d 201 — < <
_ < 1= 7 _
1 #7125, S an(t,x) <1 28, 1 43, for all t € [70,0],x € [t,0[N([t, t + o[U] — 9, 0]),
p— (tx) < 14—0 forall t€ [to,0Lx € [t — 5, 1]
20, +45, = "OY = T 08, ° % ot

(6.69)

The next lemma provides the Lipschitz continuous dependence of the characteristic

curves (6.61).

Lemma 6.3. Let w'") and ¢ be as in (6.59) and (6.63). Given T € [10,0], let x1,x, €
R\{z,0} with X, < X, such that both X, and X, belong to | — 5,7, |1,0[ or |0, 5 [. Then

(6.70)

|x(t;7,%1) — x(;7,%)| < Kj-|x2 — &4 Jor all t € [z, 7]

for some Ky > 0 depending only on My, 6,, 05, K, and b.

Proof. We shall prove (6.70) for X;, X, €]t,0[. The other cases follow the same lines as

the proof of (4.9).
For any t < x, < x; < 0, (6.67) and (6.65) imply

}w(”)(t, x) — w<”)(t, xl)] + |(p(”)(t, x) — (p(")(t, x1)|
lay" (1) — a3" (1)]

(Kb + [In fx, — t]] + [ |]) - (v, — x2):

lan(t,x2) — an(t,x1)] <

1
2(01 + 02)

Setting 0 < z(t) =x(t;7,X1) — x(£;7,X,), we obtain

z(t) > — (Kb + |In|x(t;7,X2) — ]| + |In |x(t; T, X1)||) - 2(¢).

1
2(61 + 02)
Since (6.69) implies for any x € (0,¢) that

451 + (30 _ _ 251 - 50
— o )T ) <x(1;0,x) —x(605,x) < |1 -~ | (T — 1),
<1 2<251+52)>(r t) < x(1;7,%) — x(t; 7, X) ( 2<51+252)>(r )

one ends ups with

z(t) 1
mz—m- (Kb+2~

which yields (6.70).

tn <mm <z(25150+ 5 200, (1)252)) (e t>> D
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Next, consider the constants

. o o . 5max(d;,0,) 5max(dy, d;)
Yo = mm{z(él +28,) 2(20, +52)}’ = max{ 205, +28) * 2(201 + 6) }
(6.71)
and define
I; = [t =vo(t =), t 4+ 79(r = )] U [=p0(x — 1), 90(7 — 1)]. (6.72)
From (6.69), one has
x(t;1,x) & If for all 7o <t <1<0,x € [-1/2,1/2]\{0,7}. (6.73)

Furthermore, for all 7o <t < t <0, one has
_ _ _ 1
(7)== G- Al <nle- 1 xe |- 3.0\sh
X (6.74)
|x(t;7,%) — x| < 9(7 — 1), )_ce] —r,z]\{o}.

By the same arguments used in [5, Lemma 4.1], we now obtain

Lemma 6.4. Let w and (p(”> be as in (6.59) and (6.63). There exists gy > 0 small
enough, so that for any —ey <t < 1 < 0 and any solution v of the linear equation

v+ an(t,x) - vy =0, v(tp,-) =¥ € H*(R\I}),

one has

w

vt M@ oy < E'HT/HHZ(R\I})‘

Step 2. Let us now consider a sequence of approximate solutions w) to (6.22)
inductively defined as follows.

e w:[1y,0[xR — R such that for all t € [1o,0],

1 [ w(x) if x€(t0)U(0,00),
W (tx) = {w(x—l—ro —t) if xe€(—o0,t),

where w satisfies (6.58).

e For every k > 1, wk1(t,.) solves the linear equation

wr + a,(t, x) - wy = F(k)(t,x), w(tg, ) = w(+)

with F (¢, x) = F(t,x,w¥)) and # as in (6.58). This can be rephrased as
to

W (t0x0) = W(a(raito, )+ | FO(0x(s o ). (6.75)

To

The following lemma provides a priori estimates on w(¥), uniformly valid for all k > 1.
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Lemma 6.5. Let w\") and @ be as in (6.59) and (6.63). Then there exists &y > 0 suffi-
ciently small so that the following holds. If to € [—&y,0[ , then for every k > 0 and a.e.
T € [19,0[ , one has

lwh (1, 1£) —w(rx)| < 6, lwh (z,0x) —w(0=)| < 0, (6.76)
max{ &0 (1), dg’%)‘} < 4Cy|In |7, (6.77)
WO @)y < 2K WY @) noy < Mo (6.78)

for some positive constants C; and K.

Proof. It is clear that (6.76)-(6.78) hold for k=1. By induction, assume that
(6.76)-(6.78) hold for a given k > 1.

1. We shall establish the first inequality in (6.78). Given t € [10,0[ and 7 < X, <
X1 <0, consider the characteristics t +— x;(t) = x(¢;7,%;) for i € {1,2}, which
satisty, cf. (6.73),

min{ |x;(t)], |xi(£) = |} > - (t—1) for all t € [to,7),i € {1,2}.  (6.79)
Recalling (6.75), (6.70), and (6.29), we estimate

|W(k+1)(’[,)_€2> _ W(k+1)(’L’ X )|

< |w(xa(t0)) — w(x1(70) |—|—J |F (t,x2(t)) — F(k)(t,xl(t))|dt

To

14+ 2M, +2Kb) [ 1 I
< b+ © 7 = J i) P —xl
’})0 50 T (T—t)
2C (1 4 2My + 2K, b) (1 — 19)"/?
< <b+ 1t O—i;/zéz)(T ) X =X
0

2
byo %80
Thus, if 0 < —1p < peyEsmsTan i I then

(k+1

|W T Xz) (k+1)(f,3_€1)} S 2K2b . |)_C2 — J_Cll

and (6.78) is satisfied by w(k+1).

2. We shall establish (6.77) for i=2 and the second inequality in (6.76). The other
ones are quite similar. Given any 79 < 11 <1, <0, let t x5 () =x(f;72,0%)
be the characteristics, which reach the origin at time 7, from the positive and
negative side, respectively. From (6.74), it follows that

|X2t(t)| S '))1 . |"L'2 — t| fOr all t e [TI)TZ}'

Furthermore, recalling (6.77), (6.78), and (6.29), we have
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(W& (15,0%) — wF ) (z1,02)] < Wk (21, x5 (11)) — Wk (11,0%))

+J IFO (x5 (1)|dt < 2(Kyb + Mo)y, - (t2 — 1)

14 2M, + 2K,b
*CVJ L+2M, + 256
Ty 50
8C
+ (1 (] 2 - t)1/2>)|1n || dt
0

Ci(1 + 2Mo + 2Kzb)
+ 5
0

8C; (1 4+ 29%) ||
+C1<1+ 1( Y1 )‘TO| >|1n|12|:| '(‘52_‘51)-

< o

do
Thus, for |7o| is sufficiently small, we then obtain (6.77) for (k + 1) and i=2 by

oV (@)~ o V(@)| < sCillnfnll- (- ).

Moreover, for the second inequality in (6.76), choose t; = 7 in the above estimate, i.e.,

Ci(1 4 2M, + 2K;b)
do

8C
+c1(1 +5- 1) : |ln|ro||} Jol-
0

|w<k+1)(rz,01) _ W(Oi)’ < [Z(bi + Mo)y; +

and this yields (6.76).
3. Finally, from Duhamel’ formula, Lemma 6.4, (6.58), Lemma 6.1, (6.77), and
(6.72), we obtain, for all T € [10,0],

3 3 (7
(k+1) ‘ < 3 +_.J Fo (. ‘
w Wl 2 z >
H (=) H(R\{x,0}) — 2H HH(R\%) 2 ), (&) H2(R\I)
3M 3 T142M 2K,b + 8Cy|In |t
< B 2o | LRSIy g a
8 2 T 5(%
3M0 9C1(25+2MQ+2K2b+8C1 . |1n|‘50||)
<5t 2 J70]'" 4 3C1 - [0 In o .
2007,

Identifying an upper bound on 7y such that the right hand side is less or equal than
M, shows that the second bound in (6.78) is satisfied by w1 as well. O

Thanks to the above estimates, we can now prove that the sequence of approxima-
tions w*) is Cauchy, and converges to a solution w of the linear problem (6.22). This
will accomplish the inductive step, toward the proof of Theorem 6.1.

Lemma 6.6. There exists &y > 0 sufficiently small so that, for all Ty € [—&y,0[ the follow-
ing holds: Let w", ™ as in (6.59) and (6.63). Then the sequence of approximations
(WO (t,-))~, converges uniformly for all t€ [1,,0[ to a limit function w(t,-) in
H?(R\{t,0}). Namely,
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lim sup [[w®(z.) - w(t, )l gr0p) = 0-

k—o0 t€[70, 0]

The function w provides a solution to the Cauchy problem (6.22) and satisfies for all
T € [70, 0]

lw(t,7x) —w(tox)| < dy, |w(t,0x) —w(0x)| < (6.80)
||WX(T’x)||L°°(]‘c,O[) < 2K, [w(z, )”H2 ®\(n0p = Mo (6.81)

Moreover, a,(t)=w(t,t—) — w(t,t+) and o (t)=w(t,0—) — w(t,04) are locally
Lipschitz in (10,0) and

max{|d1()], |62(7)]} < 4Ci|lnt|| a.e. 7€ [10,0]. (6.82)

Proof.
1. For any k > 1, we set

. k
20 = (1) (k) B(r) = 1290 g geopy

olb? (1) =20 (1,7—) — £ >(m+) ag’“)(r) = 20(1,0-) — 20 (1,0+),
2

z§k>(t,o—)’

ak( )* Supte[rg r]

Bi(t) = SUP e[z, 7] (Mz >( t)

2 (t,04) ‘+ |20 (t,0-)| + ]z<’<>(t,o+)|>.

(6.83)
Recalling Duhamel’s formula, Lemma 6.4, Lemma 6.2, (6.72), and Lemma 6.5, for
all T € [19, 0] we estimate

FE () — FR (1)

3 T
MFD(7) < > J
To

H2(R\I)
3C2 JT 4C1| In |t|| (2M0 + 2K2b + 1)(1 + 50) —-2/3
Bi(t) - + (t=1t)""" +|In|t|||dt
252 o k 50}%/3 S5 /2/3
3C, ([F 2My + 2Kyb _
+_22J %wck(t)-(r—t) 23 gy
205 J %

T

<GCs- <|T0 - T|1/3 “|nfte =[] - Be(T) +J

T

o (£)(t — t)2/3dt>

(6.84)
for some constant C; depending only on M,, b, K;, 6, and ..
2. We now establish a bound on z(k+l)(r,0i). Since
25 (1,00)] < 11250 ) g o) < MV (), (6.85)

it suffices to have a closer look at z(kH)(r, —). Given 1 € [19,0[ and 7 < X, < X; <

0, consider the characteristics t — x;(t) = x(¢;7,%;) for i€ {1,2}. Recalling
(6.75), (6.50), (6.79), and (6.70), we estimate
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|Z(k+1) (‘c, 3_62) _ z(kﬂ)(r,)_cl)‘

JT [ (8, 2,(1) — FE (1,0(6)| — [E (6, 0(0) — B9 (1,3,(1)] dt‘

< [[ [ (e = R0 1 = )+ 00| ) — o) s
26K, [f

Be(t) - (1 + 8o + 2My + 2Ksb) - (t — &) /2 dt - |z, — x4
0/0 To

for some constant C, depending only on M,, b, K;, ;, and 0,. This implies
|25 (1,0-)| < Cu Bile) - |t — 1o 2. (6.86)

3. Finally, we establish a bound on a(7) for 7 € [19,0]. We only present here the
details for é'ng’Z)(t), since é(lkﬂ’z)(t) can estimated in the same way. Given any
79 <11 < 1 <0, denote by t+x; (t) =x(t;72,0%) the characteristics which
reach the origin at time 7, from the positive and negative side, respectively.

Using (6.75), (6.49), (6.74), and (6.79), we estimate

|z(k“)(12,0i) — z<k+1)(1:1,0t)|

< |z(k+1)(tl,x2t (t1)) — z<k+1)(11,01)} +J |F(k+1>(t, x5 (1) — F® (t.xy (1)) |dt
+ C 2
< 2B (1) - x5 (1) +5—§ : J (2Mo + 2Kyb) - o (t) - 9y [er — o] 2dt
0

T

C (2 4C /Tt + 6 M, +2K;b 8Cp?
+ S [ty (FOLEE 4 22D SR, — 2 )
N do do do

T

< (Zﬁk+1(fz)”/1 +Gs - [ﬁk(TZ) |n|zo|| + ox(t2) - |11 — T2|1/2D (12— 1)

for some constant Cs depending only on My, b, K}, d;, and d,. Thus, for 7 € [1o, 0],
%s1(T) < 2B (D91 + Cs - Bi(T) - [In ] (6.87)
Moreover, by choosing 71 = 79 and 7, = 1 € [19, 0], we also get

T

To

|2 (,0%)| < G- (ﬁk(r)~||r—ro|~ln|r—ro||+J ock(t)-|t—r|1/2dt>,

and (6.84)-(6.87) imply that

T

mﬂwscr<h—m”wmv—mwmw+j

To

o (t) - |t — t|-2/3dt>

< Gy [t =10/ [In |t — 1o]| - (Be(7) + Bry (7))
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In particular, for 7y < 0 sufficiently close to 0, we get

Bis1(7) +%'ﬁk < Z (ﬁk(T) +%'ﬁk—1>’

which implies

> sup 29 ) p@oy < D B(T) < oo
k=1 T€[7050] k=1

We thus conclude that (w®¥(z,-)),., converges uniformly for all T € [7o,0[ to a limit
function w(z,-) in H?>(R\{t,0}), which provides the solution to the linear problem
(6.22). Moreover, since limg ., w¥(7,0%) = w(r,0=) and limg_, w®(7,1%) =
w(t,7%), one has that limg_ aik (t) =0i(r) for all 7€][0,7]. Furthermore,
limy_ wik)(f,Ot) = wy(7,0%) and limg_, W (t,7%) = wy(1,7%) and hence Lemma
6.5 implies that w satisfies (6.80)-(6.82). O

We are now ready to complete the proof of our second main theorem, describing the
asymptotic behavior of solutions up to the time when two shocks interact.

Proof of Theorem 6.1.
1. By induction, we construct a sequence of approximate solutions (w(”))n>1 where
each w"*D is the solution to the linear problem (6.22). Assuming that 7, €
[—&0,0[ is sufficiently close to 0, we claim that

Z ||W<n+l>(t,') — W(n)(t,')||H1(R\{t)0}) < o0 for all t € [‘L'(),O}. (688)

n>1

() ™) (¢, x)—a'
For a fixed n > 2, recalling that a,(t,x) ="~ (t’x():;(p (t(’@x) QO
al (t)_az (t)

W = ) =D AW (7 x) = a,(1,x) — ap_1(1,X),
ol(1) = W (r,1=) — W (g,14), o\ (1) = W (1,0—) — W (1,0+),

B (x) = SUPre(ry, 1 [HW(")(Ta Wen g0y + [WO(20-)| + ‘W<")(f,0+)”-

, we define

Set ZW =W 4 v with V) =) — =D and v = o) — ¢ (x — 1) —
¢o(x). From the above definitions, by (6.22), we deduce

720 1 g, Z) = _(A(n)w)(cn) +A(H+I)V)(Cn+1)) LG g (6.89)
with
H[W (6, + (6] ()

G(n)(t’ X) = agﬂ)(ﬁ _ agn) (t) - a”<t’ x) : [¢)6(X - t) + q%(x)} :

We split

(n) _ _ [ w(t,0-) - n(x), x <0,
W =i v Vaa(tX) {W(t, 0+) - n(x), 0<x.

Recalling the definition of B and C in (6.26)-(6.27), we write
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G (1,x) + ¢p(x — 1)
_ an(t,%) = van(t,8)] - G — &) + [va(tx) — vi(10)] - (x)
al” (1) — ay" (1)
+ B (1) + € (1,2) + H[p" (1, )] (x) — 0 (%) - [y (x — 1) + by ()]’
ay" (1) — " (t) '

Here it is important to note that W( ) = J(n) — v}"fl)

||W] (t")HHl(R\{t,O}) <O0(1)- ( () + (W (5 0-)] + W, 0+)|)
<0(1) - g7 (1),

satisfies

while, (6.31) implies,

1l geopy < OO g0y < O(1)Mo
Recalling (6.31), (3.10), (3.20), (6.34), (3.6), (3.5), and (6.36), we get

(G0 — GM)(,x)| < Ty - (), t<x<0,

B (1) (6.90)

(G = G () |l (6, e, v 8]) < FI'T)

for some positive constant I';. Furthermore, we have for all x[—1, 3]\ {7,0} that

AW @] < T (), 1AM ()] < T - (1 4 - ),

0 . ) (n 58" (x)
[N )W:(cn>(f")\|H1(R\{z,o}) < T (z), Al )VSC)(T")”Hl(]R\[—(S,zi]u[rfé,ﬂ»é]) < TS

(6.91)

for some constant I', > 0, dependent on My, b, d;, and J,. Hence, if 79 < 0 is suffi-
ciently close to 0, we have, using Duhamel’s formula and (6.71), for all t € [o,0]
that

T
70 (2 < [G<n+1> _ G — Ay _ pr) <n+1>} . H dt
| (T )y (R\{r,0}) = . Wy Yy (t.) HR\L)

T

(N +T5)- J BOE) + B () -9y P (e — 1) .

To

N|W N W

<

Thus, there exists a constant I'; > 0 dependent on My, b, J,, and J, such that

12" @) gy ropy < Tse <ﬁ<")(f) o — 7|+ BV (x) - 1o — T|1/2)' (6.92)

2. We establish a bound on |Z"'V(f,0%)|. Given any 10 <7<0, let
t—x,(t) =x(t;7,0—) be the characteristic, which reaches the origin at time t
from the negative side. Since

ZM ) (70,x) = 0, |2 (2,04) | < 1259 (%) s g, 00 (6.93)

we have
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|20 (z,0-))| < J [(—AM W) — AU G G (1, x, (1)) | dt

< (T +T) J B () + B (p) - ( 142572 —t)fl/z)dt
)

< Ty (B9() - fe = ol + B () - e — o' 2),
(6.94)

where we used (6.74) and I'y denotes a positive constant dependent on My, b, ;,
and 0,. Combining (6.92) -(6.94), we end up with

1Z0) (2 ) g o e, 0p) + 120 =)| + |20 (7, 04)|
< 15 (g (f)-lr—ro|+ﬁ”“() e —10"2),

where I's > 0 denotes a constant dependent on My, b, é;, and 0,.
3. From (6.34), it holds that W (g, tx) =z (g, 02), WD (¢, 0%) =
Z ) (£,0+), and

| V(Hl)(f’ Mm@\ fz,0p)
< (‘W”Jrl (t, 71— !—I—!W"“ T, T+ ’—l—’W”“ 7,0 ‘—I—‘W”“ r,O—F)D
= (‘Z”+1 (1,7 ‘—i—’Z"H 7,7+ ’—l—’Z”H 7,0— ’—|—|Z (n+1) (7:,0+)|>

< 3T (120l oy + 120770 (5,0-)] + 20740 (z,04)])

for some positive constant I'¢ on My, b, 61, and J,. Thus, we end up with
B < (14370 (1207 () ey o + 1207 (0-)| + 204 w04 )

< (") - |t — ol + BT () - e — 7o 2).
Provided that 7y < 0 is sufficiently close to 0, we obtain that
gty < p(r)/2 for all © € [10,0[.

Thus, (6.88) holds for all t € [1,0], and the sequence of approximations w("(t,-) is
Cauchy in the space H'(R\{z,0}), and hence it converges to a unique limit w(z, ).

It remains to check that this limit function w is an entropic solution, i.e., it satisfies,
cf. (6.5), (6.7), and (6.13),

fo w (w) X
(-4 0) (0, 30) = (3 + 9)x(m0) + | Hw + o] (6x(1)

o @i(t) —a(t)

where t+— x(t; ty, xo) denotes the characteristics curve, obtained by solving % = a(t, x, w)
with x(#y) = xo. This follows from slightly rewriting (2.19), which yields
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. . ~ ~ t H W(n+1) + qD(thl) tx, (¢
() 4 g7 05) = (54 9) () + [ P00
%o a; () —ay (1)

O ey WO+ WA ol (15 (1))
— yA — ( dt
a

To 2 1n+1)(t) . agn+1)(t)

o ex(t) ol (B x(t)
"V (t) —al" V(1) al" (1) — ad (1)

_ <W(n) W) —;w(n>,+(t) n (p(n)>dt

where t+x,(t) denotes the characteristic curve, obtained by solving (6.61)
with Xn(t()> = Xp.

Finally, to prove uniqueness, assume that w and w are two entropic solutions. We
define

W= w—w ) = sup (W) e oy + W0+ W04

t€(0, 7]

The arguments used in the previous steps now yield the inequality
p(x) < B(x)/2,

and this implies Z(t) = 0 for all = € [1¢, 0], completing the proof. O
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