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Abstract

We show that the Hunter–Saxton equation ut + uux = 1
4

( ∫ x
−∞ dμ(t, z) − ∫ ∞

x dμ(t, z)
)

and μt + (uμ)x = 0 has a unique, global, weak, and conservative solution (u,μ) of the
Cauchy problem on the line.
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1 Introduction
The Hunter–Saxton (HS) equation [14] reads

ut + uux = 1
4

( ∫ x

−∞
dμ(t, z) −

∫ ∞

x
dμ(t, z)

)
,

μt + (uμ)x = 0.

Here u is an H1(R) function for each time t, and μ(t) is a nonnegative Radon measure.
Derived in the context of modeling liquid crystals, the HS equation has turned out to
have considerable interest mathematically. It has, for example, a geometric interpretation
[17–21], convergent numerical methods [9,12], and a stochastic version [11], in addition
to numerous extensions and generalizations [24,25], too many to mention here. The first
comprehensive study appeared in [15,16]. While the HS equation was originally derived
on differential form

(ut + uux)x = 1
2
u2x,

where, in the case of smooth functions, μ equal to u2x will automatically satisfy the second
equation, we prefer to work on the integrated version. Note that there are several ways to
integrate this equation, say

ut + uux = 1
2

∫ x

0
u2x(t, y)dy,

for which the uniqueness of conservative solutions on the half-line has been established in
[5], but we prefer the more symmetric form. For us, it is essential to introduce a measure
μ(t) on the line such that for almost all times dμ = dμac = u2xdx. The times t when
dμ �= u2xdx will precisely be the times when uniqueness can break down. Our task here is
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to analyze this situation in detail and restore uniqueness by carefully selecting particular
solutions called conservative solutions. The aim of this paper is to show the following
uniqueness result (Theorems 3.6 and 5.10):
For any initial data (u0,μ0) ∈ D the Hunter–Saxton equation has a unique global conser-
vative weak solution (u,μ) ∈ D. HereD is given in Definition 2.2.
In the case of the so-called dissipative solutions, where energy is removed exactly at the

times when the measure μ ceases to be absolutely continuous, the uniqueness question
has been addressed in [7] by showing the uniqueness of the characteristics.
The problem at hand can be illustrated by the following explicit example [6]. Consider

the trivial case u0 = 0, which clearly has u(t, x) = 0 as one solution. However, as can be
easily verified, also

u(t, x) = −α

4
t I(−∞,− α

8 t2)(x) + 2x
t
I(− α

8 t2 ,
α
8 t2)(x) + α

4
t I( α

8 t2 ,∞)(x) (1.1)

is a solution for any α ≥ 0, with μ(0) = αδ0 and dμ(t) = 4t−2
I(−αt2/8,αt2/8)(x)dx for

t �= 0. Here IA is the indicator (characteristic) function of the set A. Thus, the initial value
problem is not well-posed without further constraints.
Furthermore, it turnsout that the solutionuof theHSequationmaydevelop singularities

in finite time in the following sense: Unless the initial data are monotonously increasing,
we find

inf(ux) → −∞ as t ↑ t∗ = 2/ sup(−u′
0). (1.2)

Past wave breaking there are at least two different classes of solutions, denoted conser-
vative (energy is conserved) and dissipative (where energy is removed locally) solutions,
respectively, and this dichotomy is the source of the interesting behavior of solutions of
the equation (but see also [8,10]).Wewill in this paper consider the so-called conservative
case where the associated energy is preserved.
The natural approach to solve the HS equation is by the use of characteristics, i.e., to

solve the equation

y̌t (t, ξ ) = u(t, y̌(t, ξ )), y̌(0, ξ ) = y̌0(ξ ). (1.3)

However, in this case the function u = u(t, x) will in general only be Hölder and not
Lipschitz continuous. This is the crux of the problem. Thus, we cannot expect uniqueness
of solutions of this equation. Indeed, it is precisely in the case where uniqueness fails
that the HS equation encounters singularities. See [3,5,7,26–28]. We will reformulate the
HS equation in new variables, the aim being to identify variables where the singularities
disappear.
Rewriting the HS equation, using characteristics, yields a linear system of differential

equations [4],

y̌t (t, ξ ) = Ǔ (t, ξ ),

Ǔt (t, ξ ) = 1
2
(Ȟ (t, ξ ) − 1

2
C),

Ȟt (t, ξ ) = 0, (1.4)
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where C = μ(0,R) = μ(t,R). Here Ǔ (t, ξ ) = u(t, y̌(t, ξ )) and Ȟ (t, ξ ) = ∫ y̌(t,ξ )
−∞ u2x(t, x)dx.

This system describes weak, conservative solutions and can be integrated to yield

y̌(t, ξ ) = y̌(0, ξ ) + t
(
Ǔ (0, ξ ) + t

4
(Ȟ (0, ξ ) − 1

2
C)

)
,

Ǔ (t, ξ ) = Ǔ (0, ξ ) + t
2
(Ȟ (0, ξ ) − 1

2
C),

Ȟ (t, ξ ) = Ȟ (0, ξ ).

Here we may recover (u,μ) from u(t, x) = Ǔ (t, ξ ) for some ξ such that x = y̌(t, ξ ) and
μ = y̌#(Ȟξ )dξ . In particular, it has been shown in [4] that given any initial data (u0,μ0) ∈ D
there exists at least one conservative solution and this solution satisfies (1.4). On the other
hand, the question of uniqueness of conservative solutions has not been addressed. This
question can also be rephrased as: Do all conservative solutions satisfy (1.4)?
In [6], we introduced a new set of coordinates, which allowed us, in contrast to [4], to

construct a Lipschitz metric d, which is not based on equivalence classes. The underlying
system of differential equations, which has been derived using pseudo-inverses and the
system (1.4), is surprisingly simple, but forced us to impose an additional first moment
condition1,

∫
R
(1 + |x|)dμ0 < ∞, on the measure. To be more specific, d satisfies

d((u1,μ1)(t), (u2,μ2)(t)) ≤
(
1 + t + 1

8
t2

)
d((u1,μ1)(0), (u2,μ2)(0))

for any two weak, conservative solutions (ui,μi) ∈ D, which satisfy the additional con-
dition

∫
R
(1 + |x|)dμi,0 < ∞. The new coordinates are defined as follows. Let χ (t, η) =

sup{x | μ(t, (−∞, x)) < η} and U (t, η) = u(t,χ (t, η)) and introduce χ̂ (t, η) = χ (t, Cη) and
Û (t, η) = U (t, Cη) where C = μ(t,R). Then we define

d((u1,μ1)(t), (u2,μ2)(t)) =
∥
∥∥Û1(t) − Û2(t)

∥
∥∥
L∞ + ∥∥χ̂1(t) − χ̂2(t)

∥∥
L1 + |C1 − C2| .

However, a closer look reveals that one explicitly associates to any initial data the weak
conservative solution computed using (1.4). Thus, the question if all weak conservative
solutions satisfy (1.4) is never addressed.
Furthermore, to study stability questions for conservative solutions the coordinates from

[6] seem tobe favorable, but not for investigating theuniqueness. Themaindifficulty stems
from the fact that for each t ∈ R, the function F (t, x) = μ(t, (−∞, x)), where μ denotes
a positive, finite Radon measure, is increasing but not necessarily strictly increasing. This
means, in particular, that its spatial inverse χ (t, η) might have jumps. Time evolution of
increasing functionswithpossible jumps can lead to the sameproblems as for conservation
laws. What happens to jumps as time evolves? Do they satisfy some kind of Rankine–
Hugoniot condition or do they behave more like rarefaction waves? In [6] this issue
has been resolved by using the system (1.4) to show that any jump preserves position
and height. Thus, the associated system for (χ (t, η),U (t, η)) cannot be treated using the
classical ODE theory, but only in a weak sense with some additional constraints. Hence,
these new variables would not simplify the study of uniqueness questions.

1Condition (2.15) in [6], here stated in terms of the measure μ.
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Given a conservative solution (u,μ), define the quantities

y(t, ξ ) = sup{x | x + μ(t, (−∞, x)) < ξ},
U (t, ξ ) = u(t, y(t, ξ )),

H̃ (t, ξ ) = ξ − y(t, ξ ).

Then one can derive, see Theorem 3.4, that these quantities satisfy

yt (t, ξ ) + Uyξ (t, ξ ) = U (t, ξ ),

H̃t (t, ξ ) + UH̃ξ (t, ξ ) = 0,

Ut (t, ξ ) + UUξ (t, ξ ) = 1
2

(
H̃ (t, ξ ) − 1

2
C

)
.

In contrast to u(t, x), the function U (t, ξ ) is Lipschitz continuous, and hence, the above
system can be solved uniquely using the method of characteristics, which is sufficient to
ensure the uniqueness of conservative solutions. In particular, it can be shown that by
applying the method of characteristics the above system turns into (1.4), see Remark 3.5.
Although the uniqueness question is successfully addressed, the above system has one

main drawback: The definition of the function y(t, ξ ) is far from unique. On the other
hand, the above system can be used to find other equivalent formulations of the Hunter–
Saxton equation, which might be advantageous for addressing, e.g., stability questions.
As an illustration, we here introduce a novel set of coordinates, which can be studied
on its own, without relying on special properties of solutions to (1.4) and which avoids
the formation of jumps but requires to impose additional moment conditions. The main
idea is to introduce an auxiliary measure ν, such that G(t, x) = ν(t, (−∞, x)) is strictly
increasing for each t ∈ R. To that end, define the auxiliary function (the power n to be
fixed later)

p(t, x) =
∫

R

1
(1 + (x − y)2)n

dμ(t, y),

which will be a smooth function for all Radon measures μ and let

χ (t, η) = sup{x | ν(t, (−∞, x)) < η}
= sup{x |

∫ x

−∞
p(t, y)dy + μ(t, (−∞, x)) < η},

U (t, η) = u(t,χ (t, η)),

P(t, η) = p(t,χ (t, η)).

Provided (u,μ) is a weak, conservative solution of the HS equation, which satisfies
an additional moment condition, see (5.2), we show, cf. Theorem 5.9, that the triplet
(χ (t, η),U (t, η),P(t, η)) satisfies

χt + hχη = U , (1.5a)

Ut + hUη = 1
2

(
η −

∫ η

0
Pχη(t, η̃)dη̃

)
− 1

4
C, (1.5b)

Pt + hPη = R (1.5c)
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where

h(t, η) = UP(t, η) −
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))

(
1 − Pχη(t, η̃)

)
dη̃, (1.6)

R(t, η) = −
∫ B+C

0
U (t, η̃)K ′(χ (t, η) − χ (t, η̃))

(
1 − Pχη(t, η̃)

)
dη̃

+ U (t, η)
∫ B+C

0
K ′(χ (t, η) − χ (t, η̃))

(
1 − Pχη(t, η̃)

)
dη̃. (1.7)

In particular, h(t, η) is continuous w.r.t. time and Lipschitz continuous w.r.t. space, so
that the above system has a unique solution and can be solved by applying the method of
characteristics. This is sufficient to ensure the uniqueness of conservative solutions that
satisfy an additional moment condition, cf. Theorem 5.10.

2 Background
In this section, we introduce the concept of weak conservative solutions for the Hunter–
Saxton equation. Afterward, we show that there indeed exists at least one weak conserva-
tive solution to every admissible initial data. We use C∞

c to denote smooth functions with
compact support and C∞

0 to denote smooth functions that vanish at infinity.
As a starting point, we introduce the spaces we work in.

Definition 2.1 Let E be the vector space defined by

E = {f ∈ L∞(R) | f ′ ∈ L2(R)} (2.1)

equipped with the norm
∥∥f

∥∥
E = ∥∥f

∥∥
L∞ + ∥∥f ′∥∥

L2 .

Furthermore, let

H1
1 (R) = H1(R) × R and H1

2 (R) = H1(R) × R
2.

WriteR asR = (−∞, 1)∪ (−1,∞) and consider the corresponding partition of unity ψ+

and ψ−, i.e., ψ+ and ψ− belong to C∞(R), ψ− + ψ+ ≡ 1, 0 ≤ ψ± ≤ 1, supp(ψ−) ⊂
(−∞, 1), and supp(ψ+) ⊂ (−1,∞). Furthermore, introduce the linear mappingR1 from
H1
1 (R) to E defined as

(f̄ , a) �→ f = f̄ + aψ+,

and the linear mappingR2 from H1
2 (R) to E defined as

(f̄ , a, b) �→ f = f̄ + aψ+ + bψ−.

The mappingsR1 andR2 are linear, continuous, and injective. Accordingly introduce E1
and E2, the images of H1

1 (R) and H1
2 (R) byR1 andR2, respectively, i.e.,

E1 = R1(H1
1 (R)) and E2 = R2(H1

2 (R)). (2.2)

The corresponding norms are given by:
∥
∥f

∥
∥
E1 = ∥

∥f̄ + aψ+∥
∥
E1 =

( ∥
∥f̄

∥
∥2
L2 + ∥

∥f̄ ′∥∥2
L2 + a2

)1/2

and
∥∥f

∥∥
E2 = ∥∥f̄ + aψ+ + bψ−∥∥

E2 =
( ∥∥f̄

∥∥2
L2 + ∥∥f̄ ′∥∥2

L2 + a2 + b2
)1/2

.
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Note that themappingsR1 andR2 are also well-defined for all (f̄ , a) ∈ L21(R) = L2(R)×R

and (f̄ , a, b) ∈ L22(R) = L2(R) × R
2. Accordingly, let

E0
1 = R1(L21(R)) and E0

2 = R1(L22(R))

equipped with the norms
∥∥f

∥∥
E0
1

= ∥∥f̄ + aψ+∥∥
E0
1

= ( ∥∥f̄
∥∥2
L2 + a2

)1/2

and
∥
∥f

∥
∥
E0
2

= ∥
∥f̄ + aψ+ + bψ−∥

∥
E0
2

= ( ∥
∥f̄

∥
∥2
L2 + a2 + b2

)1/2,

respectively.
With these spaces in mind, we can define next the admissible set of initial data.

Definition 2.2 (Eulerian coordinates) The space D consists of all pairs (u,μ) such that

• u ∈ E2,
• μ ∈ M+(R),
• μ((−∞, · )) ∈ E0

1 ,
• dμac = u2xdx,

whereM+(R) denotes the set of positive, finite Radon measures on R.

Aweak conservative solution is not only aweak solution of theHunter–Saxton equation,
but has to satisfy several additional conditions, which make it possible to single out a
unique, energy-preserving solution.

Definition 2.3 We say that (u,μ) is a weak conservative solution of the Hunter–Saxton
equation with initial data (u(0, · ),μ(0, · )) ∈ D if

(i) At each fixed t, we have u(t, · ) ∈ E2.
(ii) At each fixed t, we have μ(t, (−∞, · )) ∈ E0

1 and dμac(t) = u2x(t, · )dx.
(iii) The pair (u,μ) satisfies for any φ ∈ C∞

c ([0,∞) × R)

∫ ∞

0

∫

R

[
uφt + 1

2
u2φx

+ 1
4

(∫ x

−∞
dμ(t) −

∫ ∞

x
dμ(t)

)
φ
]
dxdt = −

∫

R

uφ|t=0dx, (2.3a)
∫ ∞

0

∫

R

(φt + uφx)dμ(t)dt = −
∫

R

φ|t=0dμ(0). (2.3b)

(iv) The function u(t, x) defined on [0, T ] × R is Hölder continuous and the map t �→
u(t, · ) is Lipschitz continuous from [0, T ] into E0

2 .
(v) There exists a setN ⊂ R with meas(N ) = 0 such that for every t /∈ N the measure

μ(t) is absolutely continuous and has density u2x(t, · ) w.r.t. the Lebesgue measure.
(vi) The family of Radonmeasures {μ(t) | t ∈ R} depends continuously on timew.r.t. the

topology of weak convergence of measures.

Note that the family {μ(t) | t ∈ R} provides a measure-valued solution w to the linear
transport equation

wt + (uw)x = 0.
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Thus, one has that μ(t,R) = μ(0,R) for all t ∈ R.
In [4], weak conservative solutions in D have been constructed. A closer look at their

construction reveals that the following theorem holds.

Theorem 2.4 For any initial data (u0,μ0) ∈ D, the Hunter–Saxton equation has a global
conservative weak solution (u,μ) in the sense of Definition 2.3.

In otherwords, all the properties stated inDefinition 2.3 are satisfied for the conservative
solutions constructed in [4]. However, some of them are better hidden than others. This
is especially true for (iv) and (vi), which we show here.
We start by recalling the set of Lagrangian coordinates.

Definition 2.5 (Lagrangian coordinates) The set F consists of all triplets (y̌, Ǔ , Ȟ ) such
that

• (y̌ − Id, Ǔ , Ȟ ) ∈ E2 × E2 × E1,
• (y̌ − Id, Ǔ , Ȟ ) ∈ [W 1,∞(R)]3,
• lim

ξ→−∞Ȟ (ξ ) = 0,

• y̌ξ ≥ 0, Ȟξ ≥ 0 a.e.,
• there exists c > 0 such that y̌ξ + Ȟξ ≥ c > 0 a.e.,
• Ǔ2

ξ = y̌ξ Ȟξ a.e..

Note that there cannot be a one-to-one correspondence between Eulerian and
Lagrangian coordinates. Instead, one has that each element in Eulerian coordinates cor-
responds to an equivalence class in Lagrangian coordinates. Furthermore, all elements
belonging to one and the same equivalence class can be identified using so-called relabel-
ing functions.

Definition 2.6 (Relabeling functions) We denote by G the group of homeomorphisms f
from R to R such that

f − Id and f −1 − Id both belong toW 1,∞(R), (2.4)

fξ − 1 belongs to L2(R), (2.5)

where Id denotes the identity function.

Let X1 = (y̌1, Ǔ1, Ȟ1) and X2 = (y̌2, Ǔ2, Ȟ2) in F . Then, X1 and X2 belong to the same
equivalence class if there exists a relabeling function f ∈ G such that

X1 ◦ f = (y̌1 ◦ f, Ǔ1 ◦ f, Ȟ1 ◦ f ) = (y̌2, Ǔ2, Ȟ2) = X2.

Furthermore, let

F0 = {(y̌, Ǔ , Ȟ ) ∈ F | y̌ + Ȟ = Id}.
Then F0 contains exactly one representative of each equivalence class in F . Note that if
X = (y̌, Ǔ , Ȟ ) ∈ F0 and f ∈ G, then one has

y̌ ◦ f + Ȟ ◦ f = f.

This implies that for each X = (y̌, Ǔ , Ȟ ) ∈ F one has that y̌ + Ȟ ∈ G.
Whether or not a function is a relabeling function, can be checked using the following

lemma, which is taken from [13].
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Lemma 2.7 (Identifying relabeling functions) If f is absolutely continuous, f − Id ∈
W 1,∞(R), fξ − 1 ∈ L2(R), and there exists c ≥ 1 such that 1

c ≤ fξ ≤ c almost every-
where, then f ∈ G.
In [4], one rewrites the Hunter–Saxton equation, with the help of a generalized method

of characteristics as a linear system of differential equations, cf. (1.4),

y̌t (t, ξ ) = Ǔ (t, ξ ), (2.6a)

Ǔt (t, ξ ) = 1
2

(
Ȟ (t, ξ ) − 1

2
C

)
, (2.6b)

Ȟt (t, ξ ) = 0, (2.6c)

where C = μ(0,R) = μ(t,R). This system of differential equations does not preserve F0,
but respects equivalence classes. It can be integrated to yield

y̌(t, ξ ) = y̌(0, ξ ) + t
(
Ǔ (0, ξ ) + t

4

(
Ȟ (0, ξ ) − 1

2
C

))
, (2.7a)

Ǔ (t, ξ ) = Ǔ (0, ξ ) + t
2
(Ȟ (0, ξ ) − 1

2
C), (2.7b)

Ȟ (t, ξ ) = Ȟ (0, ξ ), (2.7c)

with initial data determined as introduced next in (2.8).
The connection between the pairs (u,μ) ∈ D and the triplet (y̌, Ǔ , Ȟ ) ∈ F is given by

the following definitions.

Definition 2.8 Let the mapping L : D → F0 be defined by L(u,μ) = (y̌, Ǔ , Ȟ ), where

y̌(ξ ) = sup{x | x + μ((−∞, x)) < ξ}, (2.8a)

Ȟ (ξ ) = ξ − y̌(ξ ), (2.8b)

Ǔ (ξ ) = u ◦ y̌(ξ ). (2.8c)

Definition 2.9 Let the mappingM : F → D be defined byM(y̌, Ǔ , Ȟ ) = (u,μ), where2

u(x) = Ǔ (ξ ) for some ξ such that x = y̌(ξ ), (2.9a)

μ = y̌#(Ȟξ )dξ . (2.9b)

Now we can finally focus on showing that the weak conservative solutions constructed in
[4] satisfy Definition 2.3 (iv) and (vi).

2.1 On the Hölder continuity in the definition of weak conservative solutions

In [4], a generalized method of characteristics was used to construct weak conservative
solutions as outlined above. This ansatz yields solutions u that are Hölder continuous
with respect to space and time, but not Lipschitz continuous. Indeed, assume we are given
a solution (u,μ) with corresponding Lagrangian coordinates (y̌, Ǔ , Ȟ ) satisfying (2.6).
Choose two points (t1, x1) and (t2, x2). Then, we can find ξ1 and ξ2 such that

y̌(t1, ξ1) = x1 and y̌(t2, ξ2) = x2. (2.10)

2The push-forward of a measure ν by a measurable function f is the measure f#ν defined by f#ν(B) = ν(f −1(B)) for all
Borel sets B.
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Thus, we have

|u(t1, x1) − u(t2, x2)| ≤ |u(t1, y̌(t1, ξ1)) − u(t2, y̌(t2, ξ1))|
+ |u(t2, y̌(t2, ξ1)) − u(t2, y̌(t1, ξ1))|
+ |u(t2, x1) − u(t2, x2)|. (2.11)

As far as the first term on the right-hand side is concerned, we have

|u(t1, y̌(t1, ξ1)) − u(t2, y̌(t2, ξ1))| = |Ǔ (t1, ξ1) − Ǔ (t2, ξ1)| ≤ 1
4
C|t2 − t1|, (2.12)

where we have used that − 1
4C ≤ 1

2 Ȟ (t, ξ ) − 1
4C ≤ 1

4C . For the second term observe that
the time variable is the same, but not the space variable. In particular, we have

|u(t2, y̌(t2, ξ1)) − u(t2, y̌(t1, ξ1))| ≤ C1/2(y̌(t2, ξ1) − y̌(t1, ξ1)
)1/2

≤ C1/2
(
|Ǔ (t1, ξ1)||t2 − t1| + 1

8
C(t2 − t1)2

)1/2

≤ C1/2
(
|Ǔ (0, ξ1)| + 3

8
CT

)1/2|t2 − t1|1/2. (2.13)

Here we used that ux ∈ L2(R) and dμac = u2xdx combined with the Cauchy–Schwarz
inequality. Similar considerations yield

|u(t2, x1) − u(t2, x2)| ≤ C1/2|x2 − x1|1/2, (2.14)

thus one ends up with Hölder continuity with Hölder exponent 1
2 .

An important consequence of the above observation is the following. The solution to
the ODE

y̌t (t, ξ ) = u(t, y̌(t, ξ ))

would be unique if the function u(t, · ) were Lipschitz continuous. According to (2.14),
this function is Hölder continuous with exponent 1

2 , which leads to the possibility that
there might exist several weak conservative solutions to one and the same initial data.
Moreover, one has, in general, that

|u(t, x) − u(t, y)| ≤ ∥∥ux(t, · )∥∥L∞ |y − x|,
and hence every time wave breaking occurs, the Lipschitz continuity is lost.

2.2 On the Lipschitz continuity in the definition of weak conservative solutions

In [4], a generalized method of characteristics was used to construct weak conservative
solutions. The same approach has been used in [23], see also [6], in the case of the two-
component Hunter–Saxton system, which generalizes the HS equation. However, there
is a slight, but important difference in the solution spaces.
The one used in [23] is bigger, since one only assumes u(t, · ) ∈ L∞(R) and F (t, · ) ∈

L∞(R) instead of u(t, · ) ∈ E0
2 and F (t, · ) ∈ E0

1 . Thus, one would expect that the mapping
t �→ u(t, · ) is Lipschitz continuous from [0, T ] into L∞(R). Yet, a closer look at

ut = −uux + 1
2
(F − 1

2
C), (2.15)

where

F (t, x) = μ(t, (−∞, x)), (2.16)
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reveals that ut (t, · ) cannot be uniformly bounded in L∞(R), since ux(t, · ) does not belong
to L∞(R) and hence t �→ u(t, · ) is not Lipschitz continuous from [0, T ] into L∞(R).
The smaller solution space used in [4] and here, on the other hand, is the correct choice,

since the right-hand side of (2.15) belongs to E0
2 and hence the mapping t �→ u(t, · ) is

Lipschitz continuous from [0, T ] into E0
2 .

2.3 On the continuity in the topology of weak convergence of measures in the definition of

weak conservative solutions

In [4], a generalized method of characteristics was used to construct weak conservative
solutions as outlined above. This ansatz yields measures μ, such that the mapping t �→
μ(t, · ) is locally Lipschitz continuous if we equip the set of positive Radon measures with
the Kantorovich–Rubinstein norm, which generates the weak topology [1].
Denote by BL(R) the space of all bounded and Lipschitz continuous functions equipped

with the norm

‖φ‖ = max
{

‖φ‖L∞ , sup
x �=y

|φ(x) − φ(y)|
|x − y|

}

.

Then, the Kantorovich–Rubinstein norm of μ ∈ M+(R) is given by

‖μ‖0 = sup
{∫

R

φdμ | φ ∈ BL(R), ‖φ‖ ≤ 1
}
. (2.17)

Given a solution (u,μ) with corresponding Lagrangian coordinates (y̌, Ǔ , Ȟ ), which
satisfy (2.6). Let φ ∈ BL(R) such that ‖φ‖ ≤ 1. Then, we have

∣
∣∣∣

∫

R

φ(x)d(μ(t) − μ(s))
∣
∣∣∣ =

∣
∣∣∣

∫

R

(
φ(y̌(t, ξ ))Ȟξ (t, ξ ) − φ(y̌(s, ξ ))Ȟξ (s, ξ )

)
dξ

∣
∣∣∣

=
∣∣∣
∣

∫

R

(φ(y̌(t, ξ )) − φ(y̌(s, ξ )))Ȟξ (s, ξ )dξ
∣∣∣
∣

≤ ∥
∥y̌(t, · ) − y̌(s, · )∥∥L∞ C. (2.18)

Recalling (2.6), we have
∥∥y̌(t, · ) − y̌(s, · )∥∥L∞ ≤ |t − s|

(∥
∥∥Ǔ (s, · )

∥
∥∥
L∞ + 1

8
|t − s|C

)
.

Thus,∣∣
∣∣

∫

R

φ(x)d(μ(t) − μ(s))
∣∣
∣∣ ≤ |t − s|(

∥∥∥Ǔ (s, · )
∥∥∥
L∞ + 1

8
|t − s|C)C

for all φ ∈ BL(R) such that ‖φ‖ ≤ 1, and, in particular,
∥
∥μ(t) − μ(s)

∥
∥
0 ≤ |t − s|(

∥∥∥Ǔ (s, · )
∥∥∥
L∞ + 1

8
|t − s|C)C,

which proves the local Lipschitz continuity, since
∥∥
∥Ǔ (s, · )

∥∥
∥
L∞ can be uniformly bounded

on any bounded time interval.
Note that we cannot expect global Lipschitz continuity in time due to the last term in

the above inequality.

3 Uniqueness of weak conservative solutions via Lagrangian coordinates
The main goal of this section is to present the proof of Theorem 3.6. To be a bit more
precise, we will show that the characteristic equation

y̌t (t, ξ ) = u(t, y̌(t, ξ ))
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has aunique solution and thereby establish rigorously that eachweak conservative solution
satisfies the system of ordinary differential equations (2.6) in Lagrangian coordinates. The
pair (u,μ) will be a solution in the sense of Definition 2.3. In particular, this means that
the function u(t, x) is Hölder continuous in (t, x), and the map t �→ u(t, · ) is Lipschitz
continuous from [0, T ] into E0

2 , the set of locally square integrable functions with possible
non-vanishing asymptotics at ±∞. The measure μ(t) is finite, μ(t,R) = C , absolutely
continuous and has density u2x(t, · ) w.r.t. the Lebesgue measure, except on a setN of zero
measure. Furthermore, no moment condition is assumed on the measure here.
Given a weak conservative solution (u,μ) ∈ D, let

y(t, ξ ) = sup{x | x + F (t, x) < ξ}, (3.1)

where F (t, x) is given by (2.16). Then, y(t, · ) : R → R is non-decreasing, y(t, · ) ≤ Id, and
Lipschitz continuous with Lipschitz constant at most one [13, Thm. 3.8]. Furthermore,
define

H̃ (t, ξ ) = ξ − y(t, ξ ). (3.2)

Note that H̃ (t, · ) : R → [0, C] is non-decreasing (since y(t, · ) has Lipschitz constant at
most one) and continuous. For completeness, we introduce for later use

U (t, ξ ) = u(t, y(t, ξ )). (3.3)

For each time t, we have that

y(t, ξ ) = sup{x | x + F (t, x) < y(t, ξ ) + H̃ (t, ξ )},
which implies that

y(t, ξ ) + F (t, y(t, ξ )−) ≤ y(t, ξ ) + H̃ (t, ξ ) ≤ y(t, ξ ) + F (t, y(t, ξ )+). (3.4)

Subtracting y(t, ξ ) in the above inequality, we end up with

F (t, y(t, ξ )−) ≤ H̃ (t, ξ ) ≤ F (t, y(t, ξ )+) for all ξ ∈ R. (3.5)

Remark 3.1 Note that we made a particular choice in the above calculations,

y(t, ξ ) + H̃ (t, ξ ) = ξ for all (t, ξ ),

i.e., X(t, · ) = (y(t, · ), U (t, · ), H̃ (t, · )) ∈ F0 for all t. However, we could have chosen
any representative of the corresponding equivalence class. Indeed, pick f (t, x) such that
f (t, · ) ∈ G for all t and replace y(t, ξ ), U (t, ξ ), and H̃ (t, ξ ) by

y1(t, ξ ) = sup{x | x + F (t, x) < f (t, ξ )},
H̃1(t, ξ ) = f (t, ξ ) − y1(t, ξ ), and U1(t, ξ ) = u(t, y1(t, ξ )), respectively. Then

y1(t, ξ ) + H̃1(t, ξ ) = f (t, ξ ) for all (t, ξ ),

i.e., X1(t, · ) = (y1(t, · ), U1(t, · ), H̃1(t, · )) ∈ F for all t. In particular, one has

X1(t, ξ ) = X(t, f (t, ξ )) for all (t, ξ ).

3.1 The differential equation satisfied by the characteristics y(t, ξ)

Recall that u(t, x) is a weak solution to

ut + uux = 1
2
(F − 1

2
C),
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and hence we obtain, by computing u(t, · ) along characteristics, that
∥
∥u(t, · )∥∥L∞ ≤ ∥

∥u(0, · )∥∥L∞ + 1
4
CT for all t ∈ [0, T ]. (3.6)

Thus, for every characteristic x(s) given by

ẋ(t) = u(t, x(t)), (3.7)

we have

|x(t) − x(s)| ≤ ( ∥∥u(0, · )∥∥L∞ + 1
4
CT

)|t − s|. (3.8)

Recall that due to the Hölder continuity of u the equation (3.7) will in general not have a
unique solution. This estimate, together with the Hölder continuity of the weak conser-
vative solution, helps us to refine the estimate for |x(t) − x(s)|. Indeed, by assumption we
know that there exists a constant D such that

|u(t, x) − u(s, y)| ≤ D
(|t − s| + |x − y|)1/2 for all (t, x), (s, y) ∈ [0, T ] × R. (3.9)

Thus, every characteristic x(t) given through (3.7), satisfies

|ẋ(t) − u(s, x(s))| ≤ D
(|t − s| + |x(t) − x(s)|)1/2.

Recalling (3.8), we end up with

|ẋ(t) − u(s, x(s))| ≤ D|t − s|1/2(1 + ∥∥u(0, · )∥∥L∞ + 1
4
CT

)1/2.

Integration then yields for all s and t in [0, T ] that
∣∣x(t) − x(s) − u(s, x(s))(t − s)

∣∣ ≤ M|t − s|3/2. (3.10)

Here M denotes some positive constant, which is independent of s and t. Furthermore,
using (3.8), there exists a positive constant N such that

∣∣x(t) − x(s)
∣∣ ≤ N |t − s| for all s, t ∈ [0, T ].

We are now ready to turn our attention toward the equation

μt + (uμ)x = 0. (3.11)

In the case of a classical solution, one has that F (t, x(t)) = F (s, x(s)). In our more general
case, one has

F (t, x(s) − N |t − s|) ≤ F (s, x(s)±) ≤ F (t, x(s) + N |t − s|+). (3.12)

We will show this estimate in the next lemma. For simplicity, we let s = 0 and only
consider the right inequality.

Lemma 3.2 In the above notation, we have the following result

F (0, x(0)+) ≤ F (t, x(0) + Nt+) for all t ∈ [0, T ].

Proof We have that μ(t,R) = C for all t. We will first show that for a given ε > 0, we can
find anM > 0 such that

μ(t, (−M,M)) ≥ C − ε for all t ∈ [0, T ]. (3.13)

To that end, we first observe that for t = 0 we can find an M̃0 > 0 such that

F (0, M̃0) − F (0,−M̃0+) = μ(0, (−M̃0, M̃0)) ≥ C − 1
2
ε.



Grunert, Holden Res Math Sci (2022) 9:19 Page 13 of 54 19

Let δ be a small positive number to be decided later. Since u(t, · ) ∈ E2 for all t ∈ [0, T ],
we can find u±∞(t), xδ , and x̃δ such that

∣
∣u−∞(t) − u(t, x)

∣
∣ ≤ δ for all (t, x) ∈ [0, T ] × (−∞, xδ], (3.14a)

∣
∣u∞(t) − u(t, x)

∣
∣ ≤ δ for all (t, x) ∈ [0, T ] × [x̃δ ,∞). (3.14b)

Next choose x1 < x2 < x3 < x4 such that

x2 +
∫ t

0
u−∞(s)ds ≤ xδ for all t ∈ [0, T ],

x3 +
∫ t

0
u∞(s)ds ≥ x̃δ for all t ∈ [0, T ],

and pick functions ψ1,ψ2 ∈ C∞(R) with

ψ ′
1 ≥ 0, ψ1|(−∞,x1] = −1

2
, ψ1|[x2 ,∞) = 1

2
,

ψ ′
2 ≤ 0, ψ2|(−∞,x3] = 1

2
, ψ2|[x4 ,∞) = −1

2
.

Define

ψ(t, x) = ψ1

(
x −

∫ t

0
u−∞(s)ds

)
+ ψ2

(
x −

∫ t

0
u∞(s)ds

)
,

which clearly satisfies ψ(t, · ) ∈ C∞
c (R) for t ∈ [0, T ]. We then find

F
(
t, x3 +

∫ t

0
u∞(s)ds

)
− F

(
t, x2 +

∫ t

0
u−∞(s)ds+

)

≤
∫

R

ψ(t, x)dμ(t)

≤ F
(
t, x4 +

∫ t

0
u∞(s)ds

)
− F

(
t, x1 +

∫ t

0
u−∞(s)ds+

)
.

Furthermore, using that (u,μ) is a weak solution and ψ is a test function, we get

F
(
t, x4 +

∫ t

0
u∞(s)ds

)
− F

(
t, x1 +

∫ t

0
u−∞(s)ds+

)

≥
∫

R

ψ(t, x)dμ(t) =
∫

R

ψ(0, x)dμ(0) +
∫ t

0

∫

R

(ψt + uψx)dμ(s) ds

≥ F (0, x3) − F (0, x2+) +
∫ t

0

∫

R

(ψt + uψx)dμ(s) ds.

Direct computations yield

(ψt + uψx)(t, x) = ψ ′
1
(
x −

∫ t

0
u−∞(s)ds

)
(−u−∞(t) + u(t, x))IA1(t)(x)

+ ψ ′
2
(
x −

∫ t

0
u∞(s)ds

)
(−u∞(t) + u(t, x))IA2(t)(x)
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with

A1(t) = {x | x1 +
∫ t

0
u−∞(s)ds < x < x2 +

∫ t

0
u−∞(s)ds},

A2(t) = {x | x3 +
∫ t

0
u∞(s)ds < x < x4 +

∫ t

0
u∞(s)ds}.

This implies for all t ∈ [0, T ], using (3.14),
∣∣∣
∣

∫ t

0

∫

R

(ψt + uψx)dμ(s) ds
∣∣∣
∣ ≤ ∥∥ψ ′

1
∥∥
L∞

∫ t

0

∫

R

∣∣−u−∞(s) + u(s, x)
∣∣ IA1(s)(x)dμ(s) ds

+ ∥∥ψ ′
2
∥∥
L∞

∫ t

0

∫

R

∣∣−u∞(s) + u(s, x)
∣∣ IA2(s)(x)dμ(s) ds

≤ δTC
( ∥
∥ψ ′

1
∥
∥
L∞ + ∥

∥ψ ′
2
∥
∥
L∞

)
.

Choosing δ ≤ ε/(2TC(
∥∥ψ ′

1
∥∥
L∞ + ∥∥ψ ′

2
∥∥
L∞ )) and M = max{M̃0, |xε| , |x̃ε| , |x2| , |x3|}, we

see that

μ(t, (−M,M)) ≥ C − ε for all t ∈ [0, T ].

Let φ ∈ C∞(R) with supp(φx) ⊆ [−M̃, M̃] and φx ≥ 0, such that φ(x) = φ(−∞) for x ≤
−M̃ with φ(−∞) = − ∫

R
φx(z)dz, and φ(x) = 0 for x ≥ M̃. Introduce φ̄ ∈ C∞([0, T ]×R)

such that

φ̄|[0,T ]×[−M,M] = 0, φ̄x ≥ 0, φ̄(t, x) =
⎧
⎨

⎩
φ(−∞), for x ≤ −1 − M,

0, for x ≥ 1 + M.

Fix a constant b. Then we find, since φ(x − bt) − φ̄(t, x) ∈ C∞
c ([0, T ] × R), that

∫

R

φ(x − bt)dμ(t) =
∫

R

φ̄(t, x)dμ(t) +
∫

R

(φ(x − bt) − φ̄(t, x))dμ(t)

=
∫

R

φ̄(t, x)dμ(t) +
∫

R

(φ(x) − φ̄(0, x))dμ(0)

+
∫ t

0

∫

R

(
(φ(x − bs) − φ̄(s, x))t

+ u(s, x)(φ(x − bs) − φ̄(s, x))x
)
dμ(s)ds

=
∫

R

φ̄(t, x)dμ(t) −
∫

R

φ̄(0, x)dμ(0)

−
∫ t

0

∫

R

(
φ̄t + uφ̄x

)
(s, x)dμ(s)ds

+
∫

R

φ(x)dμ(0) +
∫ t

0

∫

R

(u(s, x) − b)φ′(x − bs)dμ(s)ds.

By (3.13), the terms in the next to last line can be made arbitrarily small by increasingM,
so that

∫

R

φ(x − bt)dμ(t) =
∫

R

φ(x)dμ(0) +
∫ t

0

∫

R

(u(s, x) − b)φ′(x − bs)dμ(s)ds.

If we choose b ≥ u a.e., then
∫ t
0

∫
(u − b)φxdμ(s)ds ≤ 0, which together with

∫

R

φ(x − bt)dμ(t) = −
∫

R

φ′(x − bt)F (t, x±)dx = −
∫

R

φ′(x)F (t, x + bt±)dx
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yields
∫

R

φ′(x)
(
F (t, x + bt±) − F (0, x±)

)
dx ≥ 0,

from which we conclude

F (0, x+) ≤ F (t, x + bt+).

��

For any t ∈ R, introduce the strictly increasing function L(t, · ) : R → R given by

L(t, x) = x + F (t, x), (3.15)

which satisfies, cf. (3.2) and (3.4),

L(t, y(t, ξ )−) ≤ ξ ≤ L(t, y(t, ξ )+), t ∈ [0, T ]. (3.16)

Then,

L(t, x(s) − N |t − s|) ≤ L(s, x(s)±) ≤ L(t, x(s) + N |t − s|+),

and choosing x(s) = y(s, ξ ), we get

L(t, y(s, ξ ) − N |t − s|) ≤ L(t, y(t, ξ )) ≤ L(t, y(s, ξ ) + N |t − s|+).

Recalling that L(t, · ) is strictly increasing we end up with
∣∣y(t, ξ ) − y(s, ξ )

∣∣ ≤ N |t − s|. (3.17)

Since ξ �→ y(t, ξ ) is Lipschitz with Lipschitz constant at most one, it follows that y(t, ξ ) is
Lipschitz and hence differentiable almost everywhere in [0, T ] × R.
Next we aim at computing yt (t, ξ ), using (3.10), and deriving the differential equation

for y(t, ξ ). One has, combining (3.10) and the analysis used to derive (3.12),

F (t, x(s) + u(s, x(s))(t − s) − M|t − s|3/2)
≤ F (s, x(s)±) ≤ F (t, x(s) + u(s, x(s))(t − s) + M|t − s|3/2+).

We can derive this estimate as follows. For simplicity, let s = 0 and consider only the right
estimate.

Lemma 3.3 In the above notation, we have the following result

F (0, x(0)+) ≤ F (t, x(0) + u0(x(0))t + Mt3/2+) for all t ∈ [0, T ].

Proof Given an ε > 0, we can find, as in the proof of Lemma 3.2, anM > 0 such that

μ(t,R\(−M,M)) < ε for all t ∈ [0, T ]. (3.18)

Letψ ∈ C∞(R)with supp(ψx) ⊆ [−M̃, M̃] andψx ≥ 0. Letφ = φ(t, x) satisfyφt+gφx = 0,
with initial data φ|t=0 = ψ for some given continuous function g = g(t, x). Introduce
φ̄ ∈ C∞([0, T ] × R) such that

φ̄|[0,T ]×[−M,M] = 0, φ̄x ≥ 0, φ̄(t, x) =
⎧
⎨

⎩
− ∫

R
φx(t, z)dz, for x ≤ −1 − M,

0, for x ≥ 1 + M.
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Then we find, since φ − φ̄ ∈ C∞
c ([0, T ] × R), that

∫

R

φ(t, x)dμ(t) =
∫

R

φ̄(t, x)dμ(t) +
∫

R

(φ − φ̄)(t, x)dμ(t)

=
∫

R

φ̄(t, x)dμ(t) +
∫

R

(φ − φ̄)(0, x)dμ(0)

+
∫ t

0

∫

R

(
(φ − φ̄)t + u(φ − φ̄)x

)
(s, x)dμ(s)ds

=
∫

R

φ̄(t, x)dμ(t) −
∫

R

φ̄(0, x)dμ(0) −
∫ t

0

∫

R

(
φ̄t + uφ̄x

)
(s, x)dμ(s)ds

+
∫

R

φ(0, x)dμ(0) +
∫ t

0

∫

R

(
φt + uφx

)
(s, x)dμ(s)ds.

By (3.18), the terms in the next to last line can be made arbitrarily small by increasingM,
so that

∫

R

φ(t, x)dμ(t) =
∫

R

φ(0, x)dμ(0) +
∫ t

0

∫

R

(
φt + uφx

)
(s, x)dμ(s)ds

=
∫

R

φ(0, x)dμ(0) +
∫ t

0

∫

R

(
u − g

)
φx(s, x)dμ(s)ds.

Let x̄ ∈ R and consider theHölder continuous function g(t, x) = u(0, x̄)+D(t+|x− x̄|)1/2,
which satisfies g ≥ u a.e. by (3.9). Furthermore, let ξ = ξ (t, z) solve ξt = g(t, ξ ) with
initial condition ξ (0, z) = z. Then φ(t, ξ (t, z)) = φ(0, ξ (0, z)) = ψ(z) if ξ (t, · ) is a strictly
increasing function. To see this, observe that one has if ξ (t, z2) > ξ (t, z1) for z2 > z1,

ξt (t, z2) − ξt (t, z1) = g(t, ξ (t, z2)) − g(t, ξ (t, z1))

= D
|ξ (t, z2) − x̄| − |ξ (t, z1) − x̄|

(t + |ξ (t, z2) − x̄|)1/2 + (t + |ξ (t, z1) − x̄|)1/2
≥ − D

2t1/2
(ξ (t, z2) − ξ (t, z1)),

which implies

ξ (t, z2) − ξ (t, z1) ≥ e−Dt1/2 (ξ (0, z2) − ξ (0, z1)) = e−Dt1/2 (z2 − z1),

and thus ξ (t, · ) and φ(t, · ) are strictly increasing functions.
Since g ≥ u a.e., we have

∫ t
0

∫
(u − g)φxdμ(s)ds ≤ 0, which together with

∫

R

φ(t, x)dμ(t) = −
∫

R

φx(t, x)F (t, x±)dx

= −
∫

R

φx(t, ξ (t, z))F (t, ξ (t, z)±)ξz(t, z)dz

= −
∫

R

d
dz

φ(t, ξ (t, z))F (t, ξ (t, z)±)dz

= −
∫

R

d
dz

φ(0, ξ (0, z))F (t, ξ (t, z)±)dz

= −
∫

ψ ′(z)F (t, ξ (t, z)±)dz,
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implies
∫

R

ψ ′(x)
(
F (t, ξ (t, x)±) − F (0, x±)

)
dx ≥ 0,

from which we conclude

F (0, x+) ≤ F (t, ξ (t, x)+). (3.19)

It remains to estimate ξ (t, z)− ξ (0, z). Integrating the differential equation for ξ (t, z), we
find

|ξ (t, z) − ξ (0, z)| ≤ |u(0, x̄)|t + D
∫ t

0
(τ + |ξ (τ , z) − x̄|)1/2dτ

≤ |u(0, x̄)|t + Dt1/2
(∫ t

0
(τ + |ξ (τ , z) − x̄|)dτ

)1/2

≤ |u(0, x̄)|t + D2

4
t +

∫ t

0
(τ + |ξ (τ , z) − ξ (0, z)| + |ξ (0, z) − x̄|)dτ

≤ Lt +
∫ t

0
|ξ (τ , z) − ξ (0, z)|dτ

where L = |u(0, x̄)| + |ξ (0, z) − x̄| + D2

4 + T
2 . Thus,

L + |ξ (t, z) − ξ (0, z)| ≤ L +
∫ t

0
(L + |ξ (τ , z) − ξ (0, z)|)dτ ,

which by the Gronwall inequality implies

L + |ξ (t, z) − ξ (0, z)| ≤ Let

or

|ξ (t, z) − ξ (0, z)| ≤ LteT , for all t ∈ [0, T ].

Plugging this estimate into the integral representation of the solution, we find

ξ (t, z) − ξ (0, z) ≤
∫ t

0
(u(0, x̄) + D(τ + |ξ (τ , z) − ξ (0, z)| + |ξ (0, z) − x̄|)1/2)dτ

≤ u(0, x̄)t + D|ξ (0, z) − x̄|1/2t + D(1 + LeT )t3/2.

Introducing M̃ = D(1 + LeT ), (3.19) reads

F (0, ξ (0, z)+) ≤ F (t, ξ (0, z) + u(0, x̄)t + D|ξ (0, z) − x̄|1/2t + M̃t3/2+).

A close look reveals that M̃ = D(1+ (|u(0, x̄)| + |ξ (0, z)− x̄| + D2

4 + T
2 )e

T ), which means
that M̃ depends linearly on |ξ (0, z) − x̄|. On the other hand, one has for z = ξ (0, z) = x̄,

F (0, x̄+) ≤ F (t, ξ (0, x̄) + u(0, x̄)t + M̃t3/2+) ≤ F (t, x̄ + u(0, x̄)t + Mt3/2+),

where M = D(1 + (
∥∥u(0, · )∥∥L∞ + D2

4 + T
2 )e

T ). Since the above argument holds for any
choice of x̄ ∈ R, we end up with

F (0, x+) ≤ F (t, x + u(0, x)t + Mt3/2+) for all x ∈ R.

��
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Recalling (3.15), (3.16), and choosing x(s) = y(s, ξ ), we get

L(t, y(s, ξ ) + u(s, y(s, ξ ))(t − s) − M|t − s|3/2)
≤ ξ + u(s, y(s, ξ ))(t − s)

≤ L(t, y(s, ξ ) + u(s, y(s, ξ ))(t − s) + M|t − s|3/2+),

and, applying (3.16) once more,

L(t, y(s, ξ ) + u(s, y(s, ξ ))(t − s) − M|t − s|3/2)
≤ L(t, y(t, ξ + u(s, y(s, ξ ))(t − s)))

≤ L(t, y(s, ξ ) + u(s, y(s, ξ ))(t − s) + M|t − s|3/2+).

Since L(t, · ) is strictly increasing, we end up with
∣∣y(t, ξ + u(s, y(s, ξ ))(t − s)) − y(s, ξ ) − u(s, y(s, ξ ))(t − s)

∣∣ ≤ M|t − s|3/2. (3.20)
Note that the above inequality implies that

lim
s→t

y(t, ξ + u(s, y(s, ξ ))(t − s)) − y(s, ξ )
t − s

= u(t, y(t, ξ )),

since combining (3.9) and (3.17) yields
|u(s, y(s, ξ )) − u(t, y(t, ξ ))| ≤ D

(
1 + N

)1/2|t − s|1/2. (3.21)
Thus, one has

yt (t, ξ ) = lim
s→t

y(t, ξ ) − y(s, ξ )
t − s

= lim
s→t

(y(t, ξ ) − y(t, ξ + u(s, y(s, ξ ))(t − s))
t − s

+ y(t, ξ + u(s, y(s, ξ ))(t − s)) − y(s, ξ ))
t − s

)

= lim
s→t

y(t, ξ ) − y(t, ξ + u(s, y(s, ξ ))(t − s))
t − s

+ u(t, y(t, ξ )),

and it is left to compute

lim
s→t

y(t, ξ ) − y(t, ξ + u(s, y(s, ξ ))(t − s))
t − s

= lim
s→t

y(t, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s))
t − s

. (3.22)

Recalling (3.21), the above equality (3.22) holds since y(t, · ) is Lipschitz continuous with
Lipschitz constant at most one. Moreover, note that for u(t, y(t, ξ )) �= 0, one has

lim
s→t

y(t, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s))
t − s

= u(t, y(t, ξ )) lim
s→t

y(t, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s))
u(t, y(t, ξ ))(t − s)

= −u(t, y(t, ξ ))yξ (t, ξ ).

This result also remains valid in the case u(t, y(t, ξ )) = 0. Hence, we conclude that y(t, ξ )
satisfies

yt (t, ξ ) + u(t, y(t, ξ ))yξ (t, ξ ) = u(t, y(t, ξ )). (3.23)
Furthermore, recalling (3.2), direct computations yield

H̃t (t, ξ ) + u(t, y(t, ξ ))H̃ξ (t, ξ ) = 0. (3.24)
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3.2 The differential equation satisfied by U(t, ξ)

To begin with, we have a closer look at the system of differential equations, given by (3.23)
and (3.24), which reads, using (3.3)

yt (t, ξ ) + Uyξ (t, ξ ) = U (t, ξ ), (3.25a)

H̃t (t, ξ ) + UH̃ξ (t, ξ ) = 0. (3.25b)

This systems of equations can be solved (uniquely) by the method of characteristics, if the
differential equation

kt (t, ζ ) = U (t, k(t, ζ )) (3.26)

has a unique solution and kζ (t, · ) is strictly positive for all t ∈ [0, T ]. According to
the classical ODE theory, (3.26) has for each fixed ζ a unique solution if the function
U (t, ξ ) = u(t, y(t, ξ )) is continuous with respect to time and Lipschitz with respect to
space. The continuity with respect to time is an immediate consequence of (3.21). To
establish the Lipschitz continuity with respect to space is a bit more involved. A closer
look at (3.2) and (3.4) reveals that one has

y(t, ξ ) + σF (t, y(t, ξ )−) + (1 − σ )F (t, y(t, ξ )+) = ξ for some σ ∈ [0, 1],

and

H̃ (t, ξ ) = σF (t, y(t, ξ )−) + (1 − σ )F (t, y(t, ξ )+).

This means especially, given ξ ∈ R, there exist ξ− ≤ ξ ≤ ξ+ such that

y(t, ξ−) = y(t, ξ ) = y(t, ξ+)

and

H̃ (t, ξ−) = F (t, y(t, ξ )−) and H̃ (t, ξ+) = F (t, y(t, ξ )+).

In view of Definition 2.3 (v), we then have for ξ1 < ξ2 such y(t, ξ1) �= y(t, ξ2) that

|u(t, y(t, ξ2)) − u(t, y(t, ξ1))|
= |u(t, y(t, ξ−

2 )) − u(t, y(t, ξ+
1 ))|

≤ (
y(t, ξ−

2 ) − y(t, ξ+
1 )

)1/2(F (t, y(t, ξ2)−) − F (t, y(t, ξ1)+)
)1/2

= (
y(t, ξ−

2 ) − y(t, ξ+
1 )

)1/2(H̃ (t, ξ−
2 ) − H̃ (t, ξ+

1 )
)1/2

≤ |ξ−
2 − ξ+

1 | ≤ |ξ2 − ξ1|,

since both y(t, · ) and H̃ (t, · ) are Lipschitz continuous in space with Lipschitz constant at
most one. Thus, (3.26) has a unique solution. Furthermore, if k(0, ζ ) = ζ for all ζ ∈ R and
ζ1 < ζ2, we have, as long as the function k(t, · ) remains non-decreasing that

−(k(t, ζ2) − k(t, ζ1)) ≤ (k(t, ζ2) − k(t, ζ1))t ≤ k(t, ζ2) − k(t, ζ1),

which yields

(k(0, ζ2) − k(0, ζ1))e−t ≤ k(t, ζ2) − k(t, ζ1) ≤ (k(0, ζ2) − k(0, ζ1))et .

Thus, k(t, · ) not only remains strictly increasing, it is also Lipschitz continuous with
Lipschitz constant et and hence according to Rademacher’s theorem differentiable almost
everywhere. In particular, one has that

e−t ≤ kζ (t, ζ ) ≤ et . (3.27)
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Introducing

ȳ(t, ζ ) = y(t, k(t, ζ )) and H̄ (t, ζ ) = H̃ (t, k(t, ζ )),

we have from (3.25)

ȳt (t, ζ ) = u(t, ȳ(t, ζ )), (3.28a)

H̄t (t, ζ ) = 0. (3.28b)

In particular, one has

H̄ (t, ζ ) = H̄ (s, ζ )

and (3.2) turns into

ȳ(t, ζ ) + H̄ (t, ζ ) = k(t, ζ ). (3.29)

Furthermore, note that ȳ(t, ζ ) is a characteristic due to (3.28a). Introducing

Ū (t, ζ ) = u(t, ȳ(t, ζ )) = u(t, y(t, k(t, ζ ))) = U (t, k(t, ζ )),

the system (3.28) reads

ȳt (t, ζ ) = Ū (t, ζ ),

H̄t (t, ζ ) = 0.

The above system can be extended to the system (2.6), which has been introduced in [4]
and which describes conservative solutions in the sense of Definition 2.3, if we can show
that

Ūt (t, ζ ) = 1
2

(
H̄ (t, ζ ) − 1

2
C

)
. (3.30)

As an immediate consequence, one then obtains the uniqueness of global weak conserva-
tive solutions.
The proof of (3.30) is based on an idea that has been used in [2]. According to the

definition of a weak solution, one has for all φ ∈ C∞
c ([0,∞) × R) that

∫ t

s

∫

R

(
uφt + 1

2
u2φx + 1

2

(
F − 1

2
C

)
φ

)
(τ , x)dxdτ

=
∫

R

uφ(t, x)dx −
∫

R

uφ(s, x)dx, s < t.

Note that in the above equality, one can replace φ ∈ C∞
c ([0,∞) × R) by φ(t, x) such that

φ(t, · ) ∈ C∞
c (R) for all t and φ( · , x) ∈ C1(R) for all x.

To prove that Ū (t, ζ ) is Lipschitz, we have to make a special choice of φ(t, x). Let

φε(t, x) = 1
ε
ψ

( ȳ(t, ζ ) − x
ε

)

where ψ is a standard Friedrichs mollifier. Our choice is motivated by the following
observation,

lim
ε→0

∫

R

uφε(t, x)dx = u(t, ȳ(t, ζ )),

and hence

u(t, ȳ(t, ζ )) − u(s, ȳ(s, ζ )) = lim
ε→0

∫

R

(uφε(t, x) − uφε(s, x))dx.
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Direct calculations then yield
∫

R

(
uφε,t + 1

2
u2φε,x + 1

2
(F − 1

2
C)φε

)
(τ , x)dx

= 1
2
u(τ , ȳ(τ , ζ ))2

∫

R

1
ε2

ψ ′( ȳ(τ , ζ ) − x
ε

)
dx

− 1
2

∫

R

(
u(τ , x) − u(τ , ȳ(τ , ζ ))

)2 1
ε2

ψ ′( ȳ(τ , ζ ) − x
ε

)
dx

+ 1
2

∫

R

(
F (τ , x) − F (τ , ȳ(τ , ζ ))

)1
ε
ψ

( ȳ(τ , ζ ) − x
ε

)
dx

+ 1
2
F (τ , ȳ(τ , ζ )) − 1

4
C

= −1
2

∫

R

(
u(τ , x) − u(τ , ȳ(τ , ζ ))

)2 1
ε2

ψ ′( ȳ(τ , ζ ) − x
ε

)
dx

+ 1
2

∫

R

(
F (τ , x) − F (τ , ȳ(τ , ζ ))

)1
ε
ψ

( ȳ(τ , ζ ) − x
ε

)
dx

+ 1
2
F (τ , ȳ(τ , ζ )) − 1

4
C.

Introduce the function

Fac(τ , x) =
∫ x

−∞
u2x(τ , y)dy

and note that Fac(τ , · ) is absolutely continuous. Moreover, one has

|u(τ , x) − u(τ , y)| ≤ |x − y|1/2|Fac(τ , x) − Fac(τ , y)|1/2

and

|
∫

R

(
u(τ , x) − u(τ , ȳ(τ , ζ ))

)2 1
ε2

ψ ′( ȳ(τ , ζ ) − x
ε

)
dx|

= 1
ε
|
∫ 1

−1

(
u(τ , ȳ(τ , ζ ) − εη) − u(τ , ȳ(τ , ζ ))

)2
ψ ′(η)dη|

≤ |Fac(τ , ȳ(τ , ζ ) + ε) − Fac(τ , ȳ(τ , ζ ) − ε)|,

which implies

lim
ε→0

|
∫

R

(
u(τ , x) − u(τ , ȳ(τ , ζ ))

)2 1
ε2

ψ ′( ȳ(τ , ζ ) − x
ε

)
dx| = 0.

For the last two terms, observe that for every τ /∈ N , i.e., for almost every τ ∈ [0, T ] one
has

F (τ , ȳ(τ , ζ )) = Fac(τ , ȳ(τ , ζ )) = H̄ (τ , ζ )

and
∣∣
∣∣

∫

R

(
F (τ , x) − F (τ , ȳ(τ , ζ ))

)1
ε
ψ

( ȳ(τ , ζ ) − x
ε

)
dx

∣∣
∣∣

=
∣
∣∣∣

∫ 1

−1

(
F (τ , ȳ(τ , ζ ) − εη) − F (τ , ȳ(τ , ζ ))

)
ψ(η)dη

∣
∣∣∣

=
∣∣∣
∣

∫ 1

−1

(
Fac(τ , ȳ(τ , ζ ) − εη) − Fac(τ , ȳ(τ , ζ ))

)
ψ(η)dη

∣∣∣
∣

≤ ∣
∣Fac(τ , ȳ(τ , ζ ) − ε) − Fac(τ , ȳ(τ , ζ ))

∣
∣ → 0, as ε → 0.
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Thus, the dominated convergence theorem yields

Ū (t, ζ ) − Ū (s, ζ ) =
∫ t

s

1
2
H̄ (τ , ζ )dτ − 1

4
C(t − s)

= 1
2
H̄ (t, ζ )(t − s) − 1

4
C(t − s) = 1

2
H̄ (s, ζ )(t − s) − 1

4
C(t − s).

In particular,

|Ū (t, ζ ) − Ū (s, ζ )| ≤ 1
2
C |t − s| ,

i.e., Ū (t, ζ ) is Lipschitz continuous with respect to time, and

Ūt (t, ζ ) = 1
2
H̄ (t, ζ ) − 1

4
C (3.31)

for all (t, ζ ) in [0, T ] × R. Moreover, one has, using (3.27) and (3.29)

|Ū (t, ζ1) − Ū (t, ζ2)| = |u(t, ȳ(t, ζ1)) − u(t, ȳ(t, ζ2))|
≤ |ȳ(t, ζ1) − ȳ(t, ζ2)|1/2|Fac(t, ȳ(t, ζ1)) − Fac(t, ȳ(t, ζ2))|1/2
≤ ∣

∣ȳ(t, ζ1) + Fac(t, ȳ(t, ζ1)) − ȳ(t, ζ2) − Fac(t, ȳ(t, ζ2))
∣
∣

= |k(t, ζ1) − k(t, ζ2)|
≤ ∥∥kζ (t, · )∥∥L∞ |ζ1 − ζ2|
≤ et |ζ1 − ζ2|, (3.32)

i.e., Ū (t, ζ ) is Lipschitz continuous with respect to space.
The final step is to derive the differential equation forU (t, ξ ) from (3.31). Recall that we

have the relation

Ū (t, ζ ) = U (t, k(t, ζ )). (3.33)

Since k(t, · ) is continuous and strictly increasing, there exists a continuous and strictly
increasing function o(t, · ) such that

o(t, k(t, ζ )) = ζ for all (t, ζ ) ∈ [0, T ] × R. (3.34)

Now, given ξ ∈ R, there exists a unique ζ ∈ R such that k(t, ζ ) = ξ , and thus,

o(t, ξ ) − o(s, ξ ) = o(t, k(t, ζ )) − o(s, k(t, ζ )) = o(s, k(s, ζ )) − o(s, k(t, ζ )).

By definition, we have that o(t, · ) is continuous and strictly increasing and hence differ-
entiable almost everywhere. Furthermore, one has that o(t, · ) satisfies

e−t ≤ oξ (t, ξ ) = 1
kζ (t, o(t, ξ ))

≤ et , (3.35)

by (3.27), which yields

|o(t, ξ ) − o(s, ξ )| ≤ eT |k(s, ζ ) − k(t, ζ )| ≤ eT
∫ max(s,t)

min(s,t)
|u(τ , y(τ , k(τ , ζ )))|dτ .

Since u(t, x) can be uniformly bounded on [0, T ]×R, it follows that o(t, ξ ) is Lipschitz with
respect to both space and time on [0, T ]×R and by Rademacher’s theorem differentiable
almost everywhere. Moreover, direct calculations yield

ot (t, ξ ) + Uoξ (t, ξ ) = 0 almost everywhere. (3.36)
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For every t ∈ [0, T ], o(t, · ) is strictly increasing and continuous, and combining (3.33)
and (3.34), one has

U (t, ξ ) = Ū (t, o(t, ξ )) for all (t, ξ ) ∈ [0, T ] × R.

Furthermore, both Ū and o are Lipschitz with respect to both space and time on [0, T ]×R,
and hence, both U and Ū are Lipschitz and hence differentiable almost everywhere on
[0, T ] × R. Using (3.31) and (3.36), we finally end up with

Ut (t, ξ ) = Ūt (t, o(t, ξ )) + Ūζ (t, o(t, ξ ))ot (t, ξ )

= 1
2

(
H̃ (t, ξ ) − 1

2
C

)
− UUξ (t, ξ ). (3.37)

Following closely [4] one can show that for each time t the triplet (y, U, H̃ ) belongs to
F0. Furthermore, the system given by (3.25) and (3.37) can be uniquely solved in F0 with
the help of the method of characteristics. Thus, we have shown the following result.

Theorem 3.4 Given a weak conservative solution (u,μ) to the Hunter–Saxton equation.
Then, the functions y(t, ξ ), U (t, ξ ), and H̃ (t, ξ ) defined in (3.1), (3.2), and (3.3), respectively,
satisfy the following system of differential equations

yt (t, ξ ) + Uyξ (t, ξ ) = U (t, ξ ), (3.38a)

H̃t (t, ξ ) + UH̃ξ (t, ξ ) = 0, (3.38b)

Ut (t, ξ ) + UUξ (t, ξ ) = 1
2

(
H̃ (t, ξ ) − 1

2
C

)
, (3.38c)

which can be solved uniquely in F0 with the help of the method of characteristics. In
particular, applying the method of characteristics yields the system of ordinary differential
equations (2.6), which describes the weak conservative solutions constructed in [4].

Remark 3.5 Note that the above system of differential equations (3.38) is related to the
system (1.4) by relabeling. Indeed, denote by (y̌, Ǔ , Ȟ ) the classical Lagrangian solution
with initial data in F0, which solves (1.4), as introduced in [4].
Applying the method of characteristics to (3.38), will yield a unique solution, since the

characteristic equation

kt (t, ζ ) = U (t, k(t, ζ )) with k(0, ζ ) = ζ

canbe solveduniquely and k(t, · ) is strictly increasing, see the beginning of this subsection.
Thus, we are led to investigating the system

kt (t, ζ ) = Û (t, ζ ), (3.39a)

ŷt (t, ζ ) = Û (t, ζ ), (3.39b)

Ût (t, ζ ) = 1
2

(
Ĥ (t, ζ ) − 1

2
C

)
, (3.39c)

Ĥt (t, ζ ) = 0, (3.39d)

where (ŷ, Û , Ĥ )(t, ζ ) = (y, U, H̃ )(t, k(t, ζ )) with initial data

(ŷ, Û , Ĥ )(0, ζ ) = (y, U, H̃ )(0, ζ ) = (y̌, Ǔ , Ȟ )(0, ζ ).
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While the last three equations coincide with the ones in (1.4), which suggests

(ŷ(t, ζ ), Û (t, ζ ), Ĥ (t, ζ )) = (y̌(t, ζ ), Ǔ (t, ζ ), Ȟ (t, ζ )), (3.40)

the role of the first equation has to be clarified to prove (3.40). By construction, one has
that

(y + H̃ )(t, ξ ) = ξ for all (t, ξ ),

which implies that

k(t, ζ ) = (y + H̃ )(t, k(t, ζ )) = (ŷ + Ĥ )(t, ζ )

and in particular, k(t, · ) is the relabeling function connecting (y, U, H̃ )(t, · ) ∈ F0 with
(ŷ, Û , Ĥ )(t, · ) ∈ F for every t ∈ R. Furthermore, since k(t, ζ ) can be recovered using
ŷ(t, ζ ) and Ĥ (t, ζ ), system (3.39) can be reduced to (1.4) and hence one obtains the weak
conservative solutions constructed in [4].

We have proved the following theorem.

Theorem 3.6 For any initial data (u0,μ0) ∈ D, theHunter–Saxton equationhas aunique
global conservative weak solution (u,μ) ∈ D in the sense of Definition 2.3.

4 Introduction of an auxiliary function
As a preparation for rewriting the Hunter–Saxton equation in a set of coordinates, which
shares the essential features with the Lagrangian coordinates, while at the same time
avoiding equivalence classes, we introduce an, at the moment, auxiliary function p(t, x).
According to the definition of a weak solution, one has for all φ ∈ C∞

c ([0,∞) × R) that
∫ t

s

∫

R

(φt + uφx)(τ , x)dμ(τ , x)dτ =
∫

R

φ(t, x)dμ(t, x) −
∫

R

φ(s, x)dμ(s, x). (4.1)

Furthermore, recall that F (t, x) = μ(t, (−∞, x)). If we would use the change of variables
from [6], which is based on the pseudo-inverse of F , one difficulty turns up immediately.
The function F (t, · ) might have intervals, where it is constant and that would especially
mean that its inverse would have jumps. The classical method of characteristics implies
that these intervals, where F (t, · ) is constant, will change their position (i.e., they move to
the right or to the left), but their length remains unchanged. This would imply that one
has to deal with jumps in the inverse, and hence, the involved change of variables does not
simplify the problem we are interested in. Therefore, a change of variables, for proving
the existence and uniqueness of conservative solutions of the HS equation, while at the
same time avoiding equivalence classes, should not be based on the inverse of F , but the
inverse of a strictly increasing and bounded function. This is where p(t, x) will come into
the play.
Let n ∈ N. Introduce the nonnegative function

pn(t, x) = (
Kn � μ(t)

)
(x) =

∫

R

1
(1 + (x − y)2)n

dμ(t, y), (4.2)

with

Kn(x) = 1
(1 + x2)n

. (4.3)

We note the following elementary result.
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Lemma 4.1 Let n ∈ N and Kn be given by (4.3). Then Kn ∈ Lp(R) ∩ C∞
0 (R) for all

1 ≤ p ≤ ∞. Note that
∣∣K ′

n
∣∣ ≤ nKn, 0 < Kn ≤ K1, ‖K1‖L1(R) = π .

The jth derivative K (j)
n satisfies

K (j)
n (x) = qn,j(x)

(1 + x2)2jn
,

where qn,j(x) denotes a polynomial with degree not exceeding 2j+1n − 2n − j.
Thus, pn(t, · ) = Kn � μ(t) ∈ C∞

0 (R) ∩ Hs(R) for any integer s ≥ 1.

Proof Clearly K (j)
n = qn,jr−2jn for some polynomial qn,j where r = 1 + x2. It remains to

estimate the degree of qn,j . We prove this by induction. Observe first that deg(qn,0) = 0
and deg(rn) = 2n. We find in general

qn,j+1 = q′
n,jr

2jn − 2jnqn,jr2
jn−1r′, j ∈ N ∪ {0}.

Assume that deg(qn,j) ≤ 2j+1n − 2n − j for some j. Then, we note

deg(qn,j+1) ≤ max(deg(q′
n,jr

2jn), deg(qn,jr2
jn−1r′))

≤ max(2j+1n − 2n − j − 1 + 2j+1n, 2j+1n − 2n − j + 2(2jn − 1) + 1)

= 2j+2n − 2n − j − 1.

Furthermore, one has

deg(qn,j) ≤ deg(r2
jn) − j,

and therefore pn(t, x) not only belongs to C∞
0 (R), but pn(t, · ) in Hs(R) for any integer

s ≥ 1. ��
Remark 4.2 We will drop the subscript n in the notation, and the value of n will only be
fixed later. Thus, we write

K (x) = 1
(1 + x2)n

, p(t, x) = (
K � μ(t)

)
(x).

What can we say about the time evolution of the function p(t, x)? We have two main
ingredients: On the one hand the definition of p(t, x). Consider ψ ∈ C∞

c (R) such that
supp(ψ) ⊂ (−1, T + 1), ψ ≡ 1 on [0, T ], and 0 ≤ ψ ≤ 1. If we define φ(t, x) = ψ(t)K (x),
then φ(t, x) ∈ C∞([0,∞) × R), and it can be approximated by admissible test functions.
On the other hand, we have the definition of a weak solution (4.1), which implies

p(s, x) − p(t, x) =
∫

R

φ(s, x − y)dμ(s, y) −
∫

R

φ(t, x − y)dμ(t, y)

= −
∫ s

t

∫

R

u(τ , y)φx(τ , x − y)dμ(τ , y)dτ

= −
∫ s

t

∫

R

u(τ , y)K ′(x − y)dμ(τ , y)dτ , 0 ≤ t < s ≤ T. (4.4)

Note that the above equation implies that the function p(t, x) is locally Lipschitz continu-
ous with respect to time, if

∫

R

u(τ , y)K ′(x − y)dμ(τ , y)
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can be uniformly bounded. Therefore, observe that

|
∫

R

u(τ , y)K ′(x − y)dμ(τ , y)| ≤ n
∥∥u(τ , · )∥∥L∞ p(τ , x) ≤ n

∥∥u(τ , · )∥∥L∞ C.

Furthermore, since u(t, x) is a weak solution to

ut + uux = 1
2
(F − 1

2
C),

we have that
∥∥u(t, · )∥∥L∞ ≤ ∥∥u(0, · )∥∥L∞ + 1

4
Ct for all t ≥ 0.

Thus, Rademacher’s theorem yields that the function

t �→ p(t, x) =
∫

R

K (x − y)dμ(t, y)

from [0, T ] to R is Lipschitz continuous (or locally Lipschitz continuous on [0,∞) × R)
and hence differentiable almost everywhere on the finite interval [0, T ]. In fact, one has
from (4.4) and Definition 2.3 that

pt (t, x) = −
∫

R

u(t, y)K ′(x − y)dμ(t, y) (4.5)

for all (t, x) ∈ [0, T ] × R. Indeed, use (4.4) as a starting point, which reads in Lagrangian
coordinates (y̌, Ǔ , Ȟ ),

p(s, x) − p(t, x) = −
∫ s

t

∫

R

Ǔ (τ , ξ )K ′(x − y̌(τ , ξ ))Ȟξ (τ , ξ )dξdτ . (4.6)

Recalling (2.6), direct calculations yield

p(s, x) − p(t, x) = −
∫ s

t

∫

R

Ǔ (t, ξ )K ′(x − y̌(t, ξ ))Ȟξ (t, ξ )dξdτ + O((t − s)2)

= −
∫

R

u(t, y)K ′(x − y)dμ(t, y)(s − t) + O((t − s)2)

which implies

lim
s→t

p(s, x) − p(t, x)
s − t

= −
∫

R

u(t, y)K ′(x − y)dμ(t, y) (4.7)

for all (t, x) ∈ [0, T ] × R.
Note that combining (4.5), (3.6), and Lemma 4.1, one has

|pt (t, x)| ≤ ∥∥u(t, · )∥∥L∞ n
∥∥p(t, · )∥∥L∞ ≤ (

∥∥u(0, · )∥∥L∞ + 1
4
CT )nC (4.8)

For later use, note that, we have

0 ≤ p(t, x) ≤
∫

R

dμ(t, y) = C (4.9)

and
∫

R

p(t, x)dx =
∫

R

∫

R

K (x − y)dμ(t, y)dx =
∫

R

∫

R

K (x − y)dx dμ(t, y) = B, (4.10)

where B is independent of time. A closer look reveals that
∫

R

p(t, x)dx ≤
∫

R

∫

R

1
1 + (x − y)2

dμ(t, y)dx = πC.

Furthermore, Lemma 4.1 implies that px(t, ·) ∈ C∞
0 (R) and

|px(t, x)| ≤ np(t, x). (4.11)
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Finally, note the following useful expression
∫ x

−∞
pt (t, z)dz = −

∫ x

−∞

∫

R

u(t, y)K ′(z − y)dμ(t, y)dz

= −
∫

R

∫ x

−∞
u(t, y)K ′(z − y)dz dμ(t, y)

= −
∫

R

u(t, y)K (x − y)dμ(t, y). (4.12)

Thus, the function

g(t, ξ ) =
∫ y(t,ξ )

−∞
p(t, z)dz (4.13)

is differentiable almost everywhere on [0, T ] × R and satisfies

gξ (t, ξ ) = p(t, y(t, ξ ))yξ (t, ξ ), (4.14)

gt (t, ξ ) =
∫ y(t,ξ )

−∞
pt (t, z)dz + p(t, y(t, ξ ))yt (t, ξ )

= pu(t, y(t, ξ ))H̃ξ (t, ξ ) −
∫

R

u(t, z)K (y(t, ξ ) − z)dμ(t, z). (4.15)

Here we used, in the last step, (3.2) and (3.23). Note that g(t, ξ ) is not only differentiable
on [0, T ] × R, but even Lipschitz continuous.

5 Uniqueness in a new set of coordinates
In this section, we will rewrite the Hunter–Saxton equation in a set of coordinates, which
shares the essential featureswith theLagrangian coordinates,while at the same time avoids
equivalence classes. However, there is a price to pay: we have to impose an additional
moment condition.
Given γ > 2 and a weak conservative solution (u,μ) in the sense of Definition 2.3, such

that
∫

R

(1 + |x|γ )dμ(0, x) < ∞. (5.1)

Using the reformulation of theHunter–Saxton equation in Lagrangian coordinates, whose
time evolution is given by (2.6) and that fγ (x) = |x|γ is convex for γ > 2, it follows that

∫

R

(1 + |x|γ )dμ(t, x) < ∞ for all t ∈ R. (5.2)

We can see this as follows.
∫

R

(1 + |x|γ )dμ(t, x) =
∫

R

(1 + |y̌(t, ξ )|γ )Ȟξ (t, ξ )dξ

=
∫

R

(1 + |y̌(t, ξ )|γ )Ȟξ (0, ξ )dξ

≤ 2γ−1
∫

R

(1 + |y̌(0, ξ )|γ )Ȟξ (0, ξ )dξ

+ 2γ−1(‖u0‖∞ + CT
4

)γ tγ
∫

R

Ȟξ (0, ξ )dξ

≤ C̃
( ∫

R

(1 + |x|γ )dμ(0, x) + tγ
)
,
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for a constant C̃ , using (2.7c), (2.9b) and the estimate
∣
∣y̌(t, ξ )

∣
∣ ≤ ∣

∣y̌(0, ξ )
∣
∣ +

∫ t

0

∣
∣y̌t (s, ξ )

∣
∣ ds ≤ ∣

∣y̌(0, ξ )
∣
∣ +

(
‖u0‖∞ + CT

4

)
t.

Moreover, recalling the definition of p(t, x), cf. (4.2) and introducing the nonnegative
measure

dν(t, x) = p(t, x)dx + dμ(t, x), (5.3)

we have that (5.2) implies for any n ≥ γ ,
∫

R

(1 + |x|γ )dν(t, x) < ∞ for all t ∈ R. (5.4)

For details, we refer to Lemma A.3.
Furthermore, let

G(t, x) = ν(t, (−∞, x)) =
∫ x

−∞
p(t, y)dy + F (t, x), (5.5)

where F (t, x) is given by (2.16). Then for all t ∈ R the functionG(t, · ) is strictly increasing
and satisfies

lim
x→−∞G(t, x) = 0 and lim

x→∞G(t, x) = B + C. (5.6)

Last but not least introduce χ (t, · ) the (pseudo) inverse of G(t, · ), i.e.,
χ (t, η) = sup{x | G(t, x) < η}. (5.7)

Then χ (t, · ) : [0, B + C] → R is strictly increasing for every t /∈ N . Furthermore, since
the function G(t, · ) is of bounded variation, it can have at most countably many jumps,
which implies that χ (t, · ) can have at most countably many intervals where it is constant.
On the other hand, the function χ (t, · ) has no jumps since the functionG(t, · ), in contrast
to F (t, · ), is strictly increasing.
Our first goal is to show that

χ (t, η) = y(t, �(t, η)), (5.8)

where y(t, ξ ) is given by (3.1) and �(t, · ) : [0, B + C] → R is a strictly increasing function
to be determined next. Note that combining (4.13) and (5.5) one has

G(t, y(t, ξ )±) = g(t, ξ ) + F (t, y(t, ξ )±),

and therefore (3.5) can be rewritten as

G(t, y(t, ξ )−) ≤ g(t, ξ ) + H̃ (t, ξ ) ≤ G(t, y(t, ξ )+).

Introducing (cf. (3.2) and (4.13))

H (t, ξ ) = g(t, ξ ) + H̃ (t, ξ ), (5.9)

we end up with

G(t, y(t, ξ )−) ≤ H (t, ξ ) ≤ G(t, y(t, ξ )+) for all ξ ∈ R. (5.10)

SinceH (t, · ) : R → [0, B+C] is strictly increasing (as H̃ is non-decreasing and g is strictly
increasing) and continuous, it is invertible with inverse �(t, · ), i.e.,

H (t, �(t, η)) = η for all (t, η). (5.11)

This is the function sought in (5.8). Furthermore,

G(t, y(t, �(t, η))−) ≤ H (t, �(t, η)) = η ≤ G(t, y(t, �(t, η))+). (5.12)

Since y(t, · ) is surjective and non-decreasing, we end up with

χ (t, η) = sup{x | G(t, x) < η} = y(t, �(t, η)).
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Remark 5.1 Recall Remark 3.1 and the notation therein. Assume

X1(t, ξ ) = X(t, f (t, ξ )) for all (t, ξ ),

whereX(t, · ) ∈ F0 and f (t, · ) ∈ G, i.e.,X(t, · ) andX1(t, · ) belong to the same equivalence
class. Then, following the same lines as above and denoting the inverse of f (t, · ) by
f −1(t, · ), we would have ended up with

χ (t, η) = y1(t, �1(t, η)) = y(t, f (t, f −1(t, �(t, η)))) = y(t, �(t, η))

and

�1(t, η) = f −1(t, �(t, η)).

Thus, we obtain the same function χ (t, η) independent of which representative in the
corresponding equivalence class we choose. This is in contrast to some of the following
steps, where relabeling will play a crucial role. In particular, it is then of great importance,
which representative we choose from the equivalence class.

5.1 Differentiability of χ(t, η) with respect to time

Next, we want to study the time evolution of χ (t, η). On the one hand, we will see that
χ (t, η) behaves like a characteristic. On the other hand, we expect χt (t, · ) ∈ Lγ ([0, B+C]),
since one has

∫

R

|x|γ dν(t, x) =
∫ B+C

0
|χ (t, η)|γ dη,

by (5.4) and (5.7).
To begin with, we aim at showing that χ (t, η) is differentiable with respect to time in

the following sense: We establish that χ ( · , η) is Lipschitz continuous and show that for
each t ∈ [0, T ] one has that

χt (t, η) = lim
s→t

χ (t, η) − χ (s, η)
t − s

exists for almost every η ∈ [0, B + C]. The dominated convergence theorem then implies
that χt (t, · ) ∈ Lγ ([0, B + C]).
To establish that χ (t, η) is Lipschitz with respect to time, a relabeling argument will be

the key. We will show that (y + H )(t, · ) is a relabeling function denoted v(t, · ). To that
end, observe that combining (3.2) and (5.9) yields

y(t, ξ ) + H (t, ξ ) = ξ + g(t, ξ ). (5.13)

Introducing the function

v(t, ξ ) = ξ + g(t, ξ ), (5.14)

where g(t, ξ ) is given by (4.13), we end up with

y(t, ξ ) + H (t, ξ ) = v(t, ξ ). (5.15)

Combining (4.9), (4.10), and 0 ≤ yξ (t, ξ ) ≤ 1, we have that v(t, · ) satisfies all assumptions
of Lemma 2.7, and hence, v(t, · ) : R → R is a relabeling function. Thus, v(t, · ) : R → R

is strictly increasing and continuous, which implies that there exists a unique, strictly
increasing and continuous function w(t, · ) : R → R such that

v(t, w(t, ξ )) = ξ = w(t, v(t, ξ )) for all (t, ξ ) ∈ [0, T ] × R. (5.16)



19 Page 30 of 54 Grunert, Holden ResMath Sci (2022) 9:19

In particular, one has

y(t, w(t, ξ )) + H (t, w(t, ξ )) = ξ for all (t, ξ ) ∈ [0, T ] × R.

Introducing

ŷ(t, ξ ) = y(t, w(t, ξ )) and Ĥ (t, ξ ) = H (t, w(t, ξ )), (5.17)

the relation (5.15) rewrites as

ŷ(t, ξ ) + Ĥ (t, ξ ) = ξ . (5.18)

Since both H (t, · ) and w(t, · ), and hence Ĥ (t, · ), are strictly increasing and continuous,
there exists a unique, strictly increasing and continuous function �̂(t, · ) : [0, B + C] → R

such that

Ĥ (t, �̂(t, η)) = η for all (t, η) ∈ [0, T ] × [0, B + C]. (5.19)

Recalling (5.16) and (5.17), we have that

H
(
t, w(t, v(t, �(t, η)))

) = H (t, �(t, η)) = η = Ĥ (t, �̂(t, η)) = H
(
t, w(t, �̂(t, η))

)
.

Thus, cf. Remark 5.1,

�̂(t, η) = v(t, �(t, η)) for all (t, η) ∈ [0, T ] × [0, B + C].

and

χ (t, η) = y(t, �(t, η)) = ŷ(t, �̂(t, η)), (5.20)

which, together with (5.18), implies

χ (t, η) + η = ŷ(t, �̂(t, η)) + Ĥ (t, �̂(t, η)) = �̂(t, η) = �(t, η) + g(t, �(t, η)). (5.21)

An important consequence of the above equality is that we can choose whether we want
to study the differentiability of χ (t, η) = �̂(t, η)− η or of �̂(t, η) with respect to time. Since
�̂(t, · ) is the inverse to Ĥ (t, · ), it seems advantageous to study �̂(t, η) in detail. The basis
will be a good understanding of the relabeling function v(t, η) and its inverse w(t, η).

The Lipschitz continuity of w(t, ξ)

We proceed by showing that the function w(t, ξ ) is Lipschitz continuous, which then
implies that both ŷ(t, ξ ) and Ĥ (t, ξ ) are differentiable almost everywhere. A closer look at
(5.14) reveals that v(t, ξ ) is Lipschitz continuous and hence differentiable almost every-
where on [0, T ] × R. In particular, (4.14), (4.9), and 0 ≤ yξ (t, ξ ) ≤ 1 yield

1 ≤ vξ (t, ξ ) = 1 + p(t, y(t, ξ ))yξ (t, ξ ) ≤ 1 + C, (5.22)

and, using (5.14) and (4.15),

vt (t, ξ ) = gt (t, ξ ) = pu(t, y(t, ξ ))H̃ξ (t, ξ ) −
∫

R

u(t, z)K (y(t, ξ ) − z)dμ(t, z), (5.23)

which satisfies

|vt (t, ξ )| ≤ 2
( ∥∥u(0, · )∥∥L∞ + 1

4
Ct

)
C,

by applying in addition (3.6) and (3.2). Now, given ξ ∈ R, there exists a unique η ∈ R by
(5.16), such that

w(t, ξ ) = w(t, v(t, η)) = η = w(s, v(s, η)).
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Thus, we can write

w(t, ξ ) − w(s, ξ ) = w(t, v(t, η)) − w(s, v(t, η)) = w(s, v(s, η)) − w(s, v(t, η)). (5.24)

By definition, we have that w(t, · ) is continuous and strictly increasing. In particular, one
has that w(t, · ) is differentiable almost everywhere and

wξ (t, ξ ) = 1
vξ (t, w(t, ξ ))

= 1
1 + p(t, y(t, w(t, ξ )))yξ (t, w(t, ξ ))

= 1
1 + p(t, ŷ(t, ξ ))yξ (t, w(t, ξ ))

≤ 1.

Combined, with (5.24), this yields

|w(t, ξ ) − w(s, ξ )| ≤ |v(s, η) − v(t, η)| ≤ 2(
∥∥u(0, · )∥∥L∞ + 1

4
CT )C|t − s|.

Furthermore, one has

|w(t, ξ1) − w(t, ξ2)| ≤ |ξ1 − ξ2|.
Thisfinishes theproof of theLipschitz continuity ofw(t, ξ ),which implies byRademacher’s
theorem that w(t, ξ ) is differentiable almost everywhere on [0, T ] × R. Since also y, H̃ ,
and g are Lipschitz continuous on [0, T ] × R, (5.9) and (5.17) imply that Ĥ and ŷ are
differentiable almost everywhere on [0, T ] × R.

The Lipschitz continuity of �̂( · , η)
We are now ready to show the Lipschitz continuity of �̂( · , η), which immediately implies
that χ ( · , η) is Lipschitz continuous by (5.21). In view of (5.19), we start by having a closer
look at Ĥ (t, ξ ). By (5.16), we have that

wt (t, ξ ) = −vt (t, w(t, ξ ))wξ (t, ξ ) = −gt (t, w(t, ξ ))wξ (t, ξ ), (5.25)

and, using (5.9), (3.24), and (4.14) that

Ht (t, ξ ) + u(t, y(t, ξ ))Hξ (t, ξ )

= H̃t (t, ξ ) + u(t, y(t, ξ ))H̃ξ (t, ξ ) + gt (t, ξ ) + u(t, y(t, ξ ))gξ (t, ξ )

= gt (t, ξ ) + u(t, y(t, ξ ))gξ (t, ξ )

= gt (t, ξ ) + up(t, y(t, ξ ))yξ (t, ξ ). (5.26)

Combing the above equations and recalling (4.15), (5.17), (5.18), and (5.22), we get

Ĥt (t, ξ ) + u(t, ŷ(t, ξ ))Ĥξ (t, ξ )

= (
Ht (t, w(t, ξ )) + u(t, ŷ(t, ξ ))Hξ (t, w(t, ξ ))

) − u(t, ŷ(t, ξ ))Hξ (t, w(t, ξ ))

+ Hξ (t, w(t, ξ ))wt (t, ξ ) + u(t, ŷ(t, ξ ))Ĥξ (t, ξ )

= gt (t, w(t, ξ )) + up(t, ŷ(t, ξ ))yξ (t, w(t, ξ )) − u(t, ŷ(t, ξ ))Ĥξ (t, ξ )vξ (t, w(t, ξ ))

− gt (t, w(t, ξ ))Ĥξ (t, ξ ) + u(t, ŷ(t, ξ ))Ĥξ (t, ξ )

= gt (t, w(t, ξ ))ŷξ (t, ξ ) + up(t, ŷ(t, ξ ))yξ (t, w(t, ξ ))

− up(t, ŷ(t, ξ ))Ĥξ (t, ξ )yξ (t, w(t, ξ ))

= (gt (t, w(t, ξ )) + up(t, ŷ(t, ξ ))yξ (t, w(t, ξ )))ŷξ (t, ξ )

=
(
up(t, ŷ(t, ξ )) −

∫

R

u(t, z)K (ŷ(t, ξ ) − z)dμ(t, z)
)
ŷξ (t, ξ ).
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If we can show that the term on the right-hand side can be bounded by a multiple of Ĥξ ,
then we are led to sub- and supersolutions, which solve a transport equation. Recalling
(5.9), (4.13), and (3.6), we have that

|
(
up(t, ŷ(t, ξ )) −

∫

R

u(t, z)K (ŷ(t, ξ ) − z)dμ(t, z)
)
ŷξ (t, ξ )|

≤ 2
∥∥u(t, · )∥∥L∞ p(t, ŷ(t, ξ ))ŷξ (t, ξ )

≤ 2
( ∥∥u(0, · )∥∥L∞ + 1

4
CT

)
Ĥξ (t, ξ ).

Here we have used that

Ĥξ (t, ξ ) = Hξ (t, w(t, ξ ))wξ (t, ξ )

= (
H̃ξ (t, w(t, ξ )) + p(t, y(t, w(t, ξ )))yξ (t, w(t, ξ ))

)
wξ (t, ξ )

≥ p(t, ŷ(t, ξ ))ŷξ (t, ξ ),

which combines (4.13), (5.9), (5.17), 0 ≤ H̃ξ (t, ξ ) ≤ 1, and wξ (t, ξ ) ≥ 0. In particular, one
obtains that

Ĥt (t, ξ ) − AĤξ (t, ξ ) ≤ 0 ≤ Ĥt (t, ξ ) + AĤξ (t, ξ ),

where A = 3(
∥∥u(0, · )∥∥L∞ + 1

4CT ). Applying the method of characteristics, we end up
with the following estimate

Ĥ (s, x − A|t − s|) ≤ Ĥ (t, x) ≤ Ĥ (s, x + A|t − s|).
Now, following the same lines as before, we have: Given η ∈ [0, B + C], there exists a
unique η̂ ∈ R such that

�̂(t, η) = �̂(t, Ĥ (t, η̂)) = η̂ = �̂(s, Ĥ (s, η̂)).

Furthermore, we have

|�̂(t, η) − �̂(s, η)| = |�̂(t, Ĥ (t, η̂)) − �̂(s, Ĥ (t, η̂))|
= |�̂(s, Ĥ (s, η̂)) − �̂(s, Ĥ (t, η̂))|
≤ �̂(s, Ĥ (s, η̂ + A|t − s|)) − �̂(s, Ĥ (s, η̂ − A|t − s|)) = 2A|t − s|,

since �̂(t, · ) is strictly increasing, and (cf. (5.21))
∣∣
∣∣
χ (t, η) − χ (s, η)

t − s

∣∣
∣∣ =

∣
∣∣∣
∣
�̂(t, η) − �̂(s, η)

t − s

∣
∣∣∣
∣
≤ 2A. (5.27)

This finishes the proof of the Lipschitz continuity of �̂( · , η). Note thatχ (t, · ) : [0, B+C] →
R and hence 2A can be seen as a dominating function. This observation is essential since
the differential equation for χ has to be considered in Lγ ([0, B + C]).

The time derivative of χt (t, η)

It is left to compute, cf. (5.21),

χt (t, η) = lim
s→t

χ (t, η) − χ (s, η)
t − s

= lim
s→t

�(t, η) − �(s, η)
t − s

+ lim
s→t

g(t, �(t, η)) − g(s, �(s, η))
t − s

(5.28)

for almost every η ∈ [0, B + C].
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The time derivative of �(t, η)

To begin with, we will show that

lim
s→t

�(t, η) − �(s, η)
t − s

exists for almost every η ∈ [0, B + C] and compute its value. Since �(t, · ) is the inverse of
H (t, · ), cf. (5.11), we start by having a closer look at H (t, ξ ). Recall (3.21), which implies
that

|y(t, ξ + u(s, y(s, ξ ))(t − s)
) − y(t, ξ + u(t, y(t, ξ ))(t − s))| ≤ D(1 + N )1/2|t − s|3/2,

and, combined with (3.20), that there exists a positive constant M̃ such that
∣
∣y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(s, ξ ) − u(t, y(t, ξ ))(t − s)

∣
∣ ≤ M̃|t − s|3/2. (5.29)

Applying (3.2), the above inequality reads
∣∣H̃ (s, ξ ) − H̃

(
t, ξ + u(t, y(t, ξ ))(t − s)

)∣∣ ≤ M̃|t − s|3/2. (5.30)

As the following lemma shows a similar estimate holds for H (t, ξ ). The proof relies on
a detailed investigation of the function g(t, ξ ) and can be found in Lemma A.1.

Lemma 5.2 (i) Let g(t, ξ ) be given by (4.13). Then, there exists a positive constant M̄ such
that

− M̄|t − s|3/2 − p
(
t, y(t, ξ + u(t, y(t, ξ ))(t − s)))u(t, y(t, ξ )

)
(t − s)

−
∫

R

u(t, y(t, η))K
(
y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)

)
H̃ξ (t, η)dη (s − t)

≤ g(s, ξ ) − g
(
t, ξ + u(t, y(t, ξ ))(t − s)

)

≤ M̄|t − s|3/2 − p
(
t, y(t, ξ + u(t, y(t, ξ ))(t − s))

)
u(t, y(t, ξ ))(t − s)

−
∫

R

u(t, y(t, η))K
(
y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)

)
H̃ξ (t, η)dη (s − t). (5.31)

(ii) Let H (t, ξ ) be defined by (5.9). Then

− (M̃ + M̄)|t − s|3/2 − p
(
t, y(t, ξ + u(t, y(t, ξ ))(t − s))

)
u(t, y(t, ξ ))(t − s)

−
∫

R

u(t, y(t, η))K
(
y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)

)
H̃ξ (t, η)dη (s − t)

≤ H (s, ξ ) − H
(
t, ξ + u(t, y(t, ξ ))(t − s)

)

≤ (M̃ + M̄)|t − s|3/2 − p
(
t, y(t, ξ + u(t, y(t, ξ ))(t − s))

)
u(t, y(t, ξ ))(t − s)

−
∫

R

u(t, y(t, η))K
(
y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)

)
H̃ξ (t, η)dη (s − t).

Since both H (t, · ) and its inverse �(t, · ) are strictly increasing and continuous, we have
that there exists a unique η(s) such that

�(s, η) + u
(
t, y(t, �(s, η))

)
(t − s) = �(t, η(s)), (5.32)
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and replacing ξ by �(s, η) in Lemma 5.2 (ii), we have

− (M̃ + M̄)|t − s|3/2
− p

(
t, y(t, �(s, η) + u(t, y(t, �(s, η)))(t − s))

)
u
(
t, y(t, �(s, η))

)
(t − s)

−
∫

R

u(t, y(t, η̃))

× K
(
y(t, �(s, η) + u(t, y(t, �(s, η)))(t − s)) − y(t, η̃)

)
H̃ξ (t, η̃)dη̃ (s − t)

≤ η − η(s)

≤ (M̃ + M̄)|t − s|3/2
− p

(
t, y(t, �(s, η) + u(t, y(t, �(s, η)))(t − s))

)
u
(
t, y(t, �(s, η))

)
(t − s)

−
∫

R

u(t, y(t, η̃))

× K
(
y(t, �(s, η) + u(t, y(t, �(s, η)))(t − s)) − y(t, η̃)

)
H̃ξ (t, η̃)dη̃ (s − t). (5.33)

Furthermore, note that the above inequality implies that η(s) → η as s → t and hence
�(s, η) → �(t, η) as s → t by (5.32).
Thus, we have

�t (t, η) = lim
s→t

�(s, η) − �(t, η)
s − t

= lim
s→t

(
�(t, η(s)) − �(t, η)

η(s) − η

η(s) − η

s − t
+ u(t, y(t, �(s, η)))

)

= lim
s→t

�(t, η(s)) − �(t, η)
η(s) − η

lim
s→t

η(s) − η

s − t
+ lim

s→t
u(t, y(t, �(s, η))), (5.34)

if all the above limits exist.
The first limit is of the form

lim
η̃→η

�(t, η̃) − �(t, η)
η̃ − η

since η(s) → η as s → t. Moreover, �(t, · ) is strictly increasing and continuous and hence
differentiable almost everywhere. Thus, the above limit exists for almost every η ∈ R and
equals �η(t, η).
For the second limit, keep in mind that both u(t, · ) and p(t, · ) are continuous and that

�(s, η) → �(t, η) as s → t. The estimate (5.33) then implies that

lim
s→t

η(s) − η

s − t
= −p(t, y(t, �(t, η)))u(t, y(t, �(t, η)))

+
∫

R

u(t, y(t, ξ ))K (y(t, �(t, η)) − y(t, ξ ))H̃ξ (t, ξ )dξ

= −p(t,χ (t, η))u(t,χ (t, η))

+
∫ B+C

0
u(t,χ (t, ξ ))K (χ (t, η) − χ (t, ξ ))

(
1 − p(t,χ (t, ξ ))χη(t, ξ )

)
dξ .

(5.35)

Here we used (5.8), (4.13), (5.9). Introducing

U (t, η) = u(t,χ (t, η)) and P(t, η) = p(t,χ (t, η)), (5.36)
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we end up with

lim
s→t

η(s) − η

s − t
= −h(t, η), (5.37)

where

h(t, η) = UP(t, η) −
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃. (5.38)

Using once more that u(t, · ) is continuous and that �(s, η) → �(t, η) as s → t, we get

lim
s→t

u(t, y(t, �(s, η))) = u(t, y(t, �(t, η))) = U (t, η). (5.39)

Combining (5.34)–(5.39), we have shown that for a given t, one has for almost every
η ∈ [0, B + C] that

�t (t, η) + h(t, η)�η(t, η) = U (t, η), (5.40)

where h(t, η) is given by (5.38). This completes the computation of �t (t, η).
It is left to show, cf. (5.28), that

lim
s→t

g(t, �(t, η)) − g(s, �(s, η))
t − s

exists for almost every η ∈ [0, B + C] and to compute its value. Recall (5.31) and (5.32),
which imply

g(t, �(t, η)) − g(s, �(s, η))

= g(t, �(t, η)) − g(t, �(t, η(s)))

+ g
(
t, �(s, η) + u(t, y(t, �(s, η)))(t − s)

) − g(s, �(s, η))

= g(t, �(t, η)) − g(t, �(t, η(s)))
η − η(s)

(η − η(s))

+ p
(
t, y(t, �(t, η(s)))

)
u
(
t, y(t, �(s, η))

)
(t − s)

−
∫

R

u(t, y(t, η̃))K
(
y(t, �(t, η(s))) − y(t, η̃)

)
H̃ξ (t, η̃)dη̃ (t − s)

+ O(|t − s|3/2).

Using (5.37) and (5.38), we thus end up with

lim
s→t

g(t, �(t, η)) − g(s, �(s, η))
t − s

= (
1 − gξ (t, �(t, η))�η(t, η)

)
h(t, η)

= (1 − P(t, η)χη(t, η))h(t, η). (5.41)

Combining (5.28), (5.40), (5.41), and (5.21) finally yields that for each t ∈ [0, T ]

χt (t, η) + h(t, η)χη(t, η) = U (t, η) (5.42)

for almost every η ∈ [0, B + C] and the function h(t, η) is given by (5.38). This completes
the computation of χt (t, η).
To summarize, we showed with the help of the dominated convergence theorem that

∫ B+C

0
χ

γ
t (t, η)dη = lim

s→t

∫ B+C

0

(
χ (t, η) − χ (s, η)

t − s

)γ

dη

=
∫ B+C

0

( − h(t, η)χη(t, η) + U (t, η))γ dη.
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Actually we showed that

lim
s→t

∫ B+C

0

∣
∣∣∣
χ (t, η) − χ (s, η)

t − s
+ h(t, η)χη(t, η) + U (t, η)

∣
∣∣∣

γ

dη = 0,

which is a limiting process in Lγ ([0, B + C]). Thus, the correct Banach space to work
in is Lγ ([0, B + C]). This might be surprising at first sight since only χt (t, · ) belongs to
Lγ ([0, B+C]) but not χη(t, · ). On the other hand, one has that the function g(t, �(t, · )) is
non-decreasing and hence differentiable almost everywhere. Furthermore, (5.9) and (5.11)
imply that g(t, �(t, · )) is Lipschitz continuous with Lipschitz constant at most one and for
almost every η ∈ [0, B + C] it follows that

0 ≤ d
dη

g(t, �(t, η)) = Pχη(t, η) ≤ 1. (5.43)

Thus,
∫ B+C

0
(Pχη)γ (t, η)dη ≤

∫ B+C

0
Pχη(t, η)dη =

∫

R

p(t, x)dx,

using (5.43), which is finite, cf. (4.10) and which implies that hχη(t, · ) ∈ Lγ ([0, B + C]).
Thus, we will not study (5.42) pointwise, but as a differential equation in Lγ ([0, B + C]).

Theorem 5.3 The function χ (t, · ) satisfies for almost all t the following differential equa-
tion in Lγ ([0, B + C])

χt (t, η) + h(t, η)χη(t, η) = U (t, η), (5.44)

where

h(t, η) = UP(t, η) −
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃. (5.45)

Furthermore, the mapping t �→ χ (t, · ) is continuous from [0, T ] into Lγ ([0, B + C]).

Remark 5.4 The above computations are based on error estimates. This idea is also used
when proving the chain rule in the classical setting for functions of several variables.
However, one cannot use the chain rule here. Namely, writing

χ (t, η) = �̂(t, η) − η = v(t, �(t, η)) − η,

one is tempted to look at χ (t, η) as a composition of two functions, since v(t, ξ ) is dif-
ferentiable almost everywhere with respect to both time and space. However, vt (t, ξ ) and
vξ (t, ξ ) are not continuous with respect to time and space, and this fact prevents us from
using the following splitting

v(t, �(t, η)) − v(s, �(s, η))
t − s

= v(t, �(t, η)) − v(s, �(t, η))
t − s

+ v(s, �(t, η)) − v(s, �(s, η))
�(t, η) − �(s, η)

�(t, η) − �(s, η)
t − s

,

together with a limiting process based on the existence of the partial derivatives of v.
Furthermore, �(t, η) is not differentiable almost everywhere, we only know that for fixed
t, the derivatives �t (t, η) and �η(t, η) exist for almost every η.
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Remark 5.5 An alternative derivation of the differential equation for χ (t, η): By the weak
formulation, we have cf. (2.3b), (4.5), and (5.3), that

∫ T

0

∫

R

(φt + uφx)(t, x)dν(t, x)dt

−
∫ T

0

∫

R

∫

R

u(t, y)K ′(x − y)dν(t, y)φ(t, x)dxdt

−
∫ T

0

∫

R

(
upφx(t, x) −

∫

R

u(t, y)K ′(x − y)p(t, y)dyφ(t, x)
)
dxdt

=
∫

R

φ(T, x)dν(T, x) −
∫

R

φ(0, x)dν(0, x)

for any test function φ ∈ C∞
c ([0,∞) × R). Using (5.5) and changing the coordinates

according to (5.7) and (5.36), we end up with

∫ T

0

∫ B+C

0

(
φt (t,χ (t, η)) + U (t, η)φx(t,χ (t, η))

)
dηdt

−
∫ T

0

∫ B+C

0

∫ B+C

0
U (t, η̃)

× K ′(χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃ φ(t,χ (t, η))χη(t, η)dηdt

−
∫ T

0

∫ B+C

0
UP(t, η)φx(t,χ (t, η))χη(t, η)dηdt

=
∫ B+C

0
φ(T,χ (T, η))dη −

∫ B+C

0
φ(0,χ (0, η))dη. (5.46)

First of all note that using integration by parts (for the integral with respect to η) in the
triple integral, we obtain

∫ T

0

∫ B+C

0

∫ B+C

0
U (t, η̃)

× K ′(χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃ φ(t,χ (t, η))χη(t, η)dηdt

= −
∫ T

0

∫ B+C

0

∫ B+C

0
U (t, η̃)

× K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃ φx(t,χ (t, η))χη(t, η)dηdt.

Furthermore, the right-hand side of (5.46) can be rewritten as

∫ B+C

0
φ(T,χ (T, η))dη −

∫ B+C

0
φ(0,χ (0, η))dη

=
∫ T

0

∫ B+C

0

(
φt (t,χ (t, η)) + φx(t,χ (t, η))χt (t, η)

)
dηdt.
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Combining the last two equation with (5.46), we have

∫ T

0

∫ B+C

0
U (t, η)φx(t,χ (t, η))dηdt

+
∫ T

0

∫ B+C

0

∫ B+C

0
U (t, η̃)

× K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃ φx(t,χ (t, η))χη(t, η)dηdt

−
∫ T

0

∫ B+C

0
UP(t, η)φx(t,χ (t, η))χη(t, η)dηdt

=
∫ T

0

∫ B+C

0
φx(t,χ (t, η))χt (t, η)dηdt.

Now we are ready to read off the differential equation for χ (t, η), since the above equality
is equivalent to

∫ T

0

∫ B+C

0

(
χt (t, η) + h(t, η)χη(t, η)

)
φx(t,χ (t, η))dηdt

=
∫ T

0

∫ B+C

0
U (t, η)φx(t,χ (t, η))dηdt,

where h(t, η) is given by (5.38). Since the above equality must hold for any test function φ,
we end up with

χt (t, η) + h(t, η)χη(t, η) = U (t, η).

5.2 Differentiability ofU (t, η) with respect to time

To begin with, we have a closer look at the differential equation (5.44), which reads

χt (t, η) + h(t, η)χη(t, η) = U (t, η),
where h(t, η) is given by (5.45). This equation can be solved (uniquely) by the method of
characteristics, if the differential equation

mt (t, θ ) = h(t, m(t, θ )) (5.47)

has a unique solution and mθ (t, · ) is strictly positive for all t ∈ [0, T ]. According to the
classical ODE theory, (5.47) has for each fixed θ a unique solution, if the function h(t, η)
is continuous with respect to time and Lipschitz with respect to space. This is the result
of the next lemma, whose proof can be found in Lemma A.2. Hence (5.47) has a unique
solution.

Lemma 5.6 Consider the function h defined by (5.45). Then

(i) t �→ h(t, η) is continuous;
(ii) η �→ h(t, η) is Lipschitz and satisfies

|h(t, η2) − h(t, η1)| ≤ (
1 + 2n

∥
∥u(0, · )∥∥L∞ + C + n

2
Ct

)|η2 − η1|. (5.48)

For the method of characteristics to be well-defined, we must check that solutions to
(5.47) are strictly increasing. If m(0, θ ) = θ for all θ ∈ [0, B + C] and θ1 < θ2, we have,
using (5.48), as long as the functionm(t, · ) remains non-decreasing, that

∣
∣(m(t, θ2) − m(t, θ1))t

∣
∣ ≤ B(t)(m(t, θ2) − m(t, θ1)),
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where B(t) = 1 + 2n
∥∥u(0, · )∥∥L∞ + C + n

2Ct, which yields

(m(0, θ2) − m(0, θ1))e− ∫ t
0 B(s)ds ≤ m(t, θ2) − m(t, θ1) ≤ (m(0, θ2) − m(0, θ1))e

∫ t
0 B(s)ds.

Thus m(t, · ) not only remains strictly increasing, it is also Lipschitz continuous with
Lipschitz constant e

∫ t
0 B(s)ds and hence according to Rademacher’s theorem differentiable

almost everywhere. In particular, one has that

e− ∫ t
0 B(s)ds ≤ mθ (t, θ ) ≤ e

∫ t
0 B(s)ds. (5.49)

Thusm(t, · ) is strictly increasing.
Introducing

χ̄ (t, θ ) = χ (t, m(t, θ )), (5.50)

we have from (5.44)

χ̄t (t, θ ) = u(t, χ̄ (t, θ )), (5.51)

and hence χ̄ (t, η) is a characteristic. Introducing

Ū (t, θ ) = u(t, χ̄ (t, θ )) = U (t, m(t, θ )), (5.52)

equation (5.51) reads

χ̄t (t, θ ) = Ū (t, θ ).
To take a next step toward deriving the differential equation for U (t, η), we want to show
that Ū (t, θ ) satisfies

Ūt (t, θ ) = 1
2

(
m(t, θ ) − 1

2
C −

∫ θ

0
P̄(t,α)χ̄θ (t,α)dα

)
, (5.53)

where

P̄(t, θ ) = p(t, χ̄ (t, θ )) = P(t, m(t, θ )). (5.54)

The proof of (5.53) is again based on an idea that has been used in [2]. According to the
definition of a weak solution, one has, see (2.3a) and (5.5), for all φ ∈ C∞

c ([0,∞)×R) that

∫ t

s

∫

R

(
u(τ , x)(φt + 1

2
uφx)(τ , x) + 1

2
(
G(τ , x) −

∫ x

−∞
p(τ , y)dy − 1

2
C

)
φ(τ , x)

)
dxdτ

=
∫

R

uφ(t, x)dx −
∫

R

uφ(s, x)dx. (5.55)

In the above equality, one can replace φ ∈ C∞
c ([0,∞) × R) by φ(t, x) such that φ(t, · ) ∈

C∞
c (R) for all t and φ( · , x) ∈ C1(R).

The Lipschitz continuity of Ū (t, · )
To prove that Ū (t, θ ) is Lipschitz with respect to time, we have to make a special choice
of φ(t, x). Let

φε(t, x) = 1
ε
ψ

( χ̄ (t, θ ) − x
ε

)
,

where ψ is a standard Friedrichs mollifier. Our choice is motivated by the following
observation,

lim
ε→0

∫

R

uφε(t, x)dx = u(t, χ̄ (t, θ )),
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and hence

u(t, χ̄ (t, θ )) − u(s, χ̄ (s, θ )) = lim
ε→0

∫

R

(
uφε(t, x) − uφε(s, x)

)
dx.

Direct calculations then yield, using (5.51)

∫

R

(
uφε,t + 1

2
u2φε,x + 1

2
(G −

∫ x

−∞
p(τ , y)dy − 1

2
C)φε(τ , x)

)
dx

= 1
2
u(τ , χ̄ (τ , θ ))2

∫

R

1
ε2

ψ ′
(

χ̄ (τ , θ ) − x
ε

)
dx

− 1
2

∫

R

(u(τ , x) − u(τ , χ̄ (τ , θ )))2
1
ε2

ψ ′
(

χ̄ (τ , θ ) − x
ε

)
dx

+ 1
2

∫

R

(G(τ , x) − G(τ , χ̄ (τ , θ )))
1
ε
ψ

(
χ̄ (τ , θ ) − x

ε

)
dx

− 1
2

∫

R

∫ x

χ̄ (τ ,θ )
p(τ , y)dy

1
ε
ψ

(
χ̄ (τ , θ ) − x

ε

)
dx

+ 1
2

(

G(τ , χ̄ (τ , θ )) −
∫ χ̄ (τ ,θ )

−∞
p(τ , y)dy

)

− 1
4
C

= −1
2

∫

R

(u(τ , x) − u(τ , χ̄ (τ , θ )))2
1
ε2

ψ ′
(

χ̄ (τ , θ ) − x
ε

)
dx

− 1
2

∫

R

∫ x

χ̄ (τ ,θ )
p(τ , y)dy

1
ε
ψ

(
χ̄ (τ , θ ) − x

ε

)
dx

+ 1
2

∫

R

(G(τ , x) − G(τ , χ̄ (τ , θ )))
1
ε
ψ

(
χ̄ (τ , θ ) − x

ε

)
dx

+ 1
2

(

G(τ , χ̄ (τ , θ )) −
∫ χ̄ (τ ,θ )

−∞
p(τ , y)dy

)

− 1
4
C. (5.56)

Introduce the function

Gac(τ , x) =
∫ x

−∞
(u2x + p)(τ , y)dy

and note that Gac(τ , · ) is absolutely continuous. Moreover, one has

|u(τ , x) − u(τ , y)| ≤ |x − y|1/2|Gac(τ , x) − Gac(τ , y)|1/2,

and

|
∫

R

(u(τ , x) − u(τ , χ̄ (τ , θ )))2
1
ε2

ψ ′
(

χ̄ (τ , θ ) − x
ε

)
dx|

= 1
ε
|
∫ 1

−1
(u(τ , χ̄ (τ , θ ) − εη) − u(τ , χ̄ (τ , θ )))2ψ ′(η)dη|

≤ |Gac(τ , χ̄ (τ , θ ) + ε) − Gac(τ , χ̄ (τ , θ ) − ε)|,

which implies

lim
ε→0

|
∫

R

(u(τ , x) − u(τ , χ̄ (τ , θ )))2
1
ε2

ψ ′
(

χ̄ (τ , θ ) − x
ε

)
dx| = 0.
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For the next term, observe

|
∫

R

∫ x

χ̄ (τ ,θ )
p(τ , y)dy

1
ε
ψ

(
χ̄ (τ , θ ) − x

ε

)
dx|

≤ 1
ε

∫

R

|Gac(τ , x) − Gac(τ , χ̄ (τ , θ ))|ψ
(

χ̄ (τ , θ ) − x
ε

)
dx

≤ |Gac(τ , χ̄ (τ , θ ) + ε) − Gac(τ , χ̄ (τ , θ ) − ε)|,

which implies

lim
ε→0

|
∫

R

∫ x

χ̄ (τ ,θ )
p(τ , y)dy

1
ε
ψ

(
χ̄ (τ , θ ) − x

ε

)
dx| = 0.

For the last two terms, observe that for every τ /∈ N , i.e., for almost every τ ∈ [0, T ] one
has, using (5.7), that

G(τ , χ̄ (τ , θ )) = Gac(τ , χ̄ (τ , θ )) = Gac(τ ,χ (τ , m(t, θ ))) = m(τ , θ )

and

lim
ε→0

1
2

∫

R

(
G(τ , x) − G(τ , χ̄ (τ , θ ))

)1
ε
ψ

(
χ̄ (τ , θ ) − x

ε

)
dx = 0.

Thus, the dominated convergence theorem, using (5.56) and (5.55), yields that

Ū (t, θ ) − Ū (s, θ ) =
∫ t

s

1
2

(
m(τ , θ ) −

∫ χ̄ (τ ,θ )

−∞
p(τ , y)dy

)
dτ − 1

4
C(t − s).

Furthermore, the continuity ofm(t, θ ), χ̄ (t, θ ), and p(t, y) with respect to time, implies that

Ūt (t, θ ) = 1
2

(
m(t, θ ) −

∫ χ̄ (t,θ )

−∞
p(t, y)dy

)
− 1

4
C (5.57)

for all (t, θ ) ∈ [0, T ]×[0, B+C]. Thus, Ū ( · , η)will be Lipschitz on [0, T ], if we can show that
the right-hand side of (5.57) can be uniformly bounded on [0, T ]. Since p(t, · ) ∈ L1(R),
cf. (4.10), the claim follows ifm(t, · ) can be bounded. Therefore, recall thatm(t, θ ) satisfies
(5.47) with the initial condition m(0, θ ) = θ , which implies that it suffices to show that∥∥h(t, · )∥∥L∞ can be bounded by a function, which is at most growing linearly. Using (5.45),
(5.36), (3.6), Lemma 4.1, and (4.2), we have

∥
∥h(t, · )∥∥L∞ ≤ ∥

∥u(t, · )∥∥L∞
∥
∥p(t, · )∥∥L∞

+ (B + C)
∥∥u(t, · )∥∥L∞ + ∥∥u(t, · )∥∥L∞

∥∥p(t, · )∥∥L∞ ‖K‖L1
≤ (B + (2 + π )C)

∥∥u(t, · )∥∥L∞

≤ (B + (2 + π )C)(
∥
∥u(0, · )∥∥L∞ + 1

4
Ct), (5.58)

and thus
∥∥h(t, · )∥∥L∞ grows at most linearly. This finishes the proof of the uniform Lips-

chitz continuity in time of Ū (t, θ ).
As a closer look reveals the differential equation (5.57) holds pointwise. Thus, one can

either look at Ū (t, · ) as a function in Lγ ([0, B+C]) or in L∞([0, B+C]). Furthermore, the
mapping t �→ Ū (t, · ) is continuous from [0, T ] into Lγ ([0, B + C]).
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The differential equation forU (t, η)

In view of (5.44), it remains to derive the differential equation for U (t, η) from (5.57).
Recall that we have by (5.52) the relation

Ū (t, θ ) = U (t, m(t, θ )).

Sincem(t, · ) is continuous and strictly increasing, cf. (5.49), there exists a unique, contin-
uous and strictly increasing function n(t, · ) such that

n(t, m(t, θ )) = θ for all (t, θ ) ∈ [0, T ] × [0, B + C]. (5.59)

Now, given η ∈ [0, B + C], there exists a unique θ ∈ [0, B + C], such that

n(t, η) − n(s, η) = n(t, m(t, θ )) − n(s,m(t, θ )) = n(s,m(s, θ )) − n(s,m(t, θ )).

By definition, we have that n(t, · ) is continuous, strictly increasing, and hence differen-
tiable almost everywhere. Furthermore, one has that n(t, · ) satisfies

e− ∫ t
0 B(τ )dτ ≤ nη(t, η) = 1

mθ (t, n(t, η))
≤ e

∫ t
0 B(τ )dτ ,

by (5.49), which yields

|n(t, η) − n(s, η)| ≤ e
∫ T
0 B(τ )dτ |m(s, θ ) − m(t, θ )|

≤ e
∫ T
0 B(τ )dτ

∫ max(s,t)

min(s,t)
|h(τ , m(τ , θ ))|dτ .

Since h(t, η) can be uniformly bounded on [0, T ] × [0, B + C], see (5.58), it follows that
n(t, η) is Lipschitz with respect to both space and time on [0, T ] × [0, B + C] and by
Rademacher’s theorem differentiable almost everywhere. Moreover, direct calculations
yield

nt (t, η) + hnη(t, η) = 0 almost everywhere.

Since n(t, · ) is strictly increasing for every t ∈ [0, T ], combining (5.52) and (5.59) yields

U (t, η) = Ū (t, n(t, η)) for all (t, η) ∈ [0, T ] × [0, B + C].

Furthermore, using (5.36), (5.20), (3.3), and (5.52), one has

U (t, η) = U (t, �(t, η)) and Ū (t, θ ) = U (t, �(t, m(t, θ ))).

In Sect. 3.2, we showed that for every t ∈ [0, T ], the function U (t, · ) is Lipschitz. Since
�(t, · ) andm(t, · ) are strictly increasing, it follows that both U (t, · ) and Ū (t, · ) are differ-
entiable almost everywhere on [0, B + C]. Thus, for any t ∈ [0, T ] one ends up with

Ut (t, η) = Ūt (t, n(t, η)) + Ūθ (t, n(t, η))nt (t, η)

= 1
2

(
η −

∫ χ (t,η)

−∞
p(t, y)dy

)
− 1

4
C − h(t, η)Uη(t, η)

= 1
2

(
η −

∫ η

0
Pχη(t, η̃)dη̃

)
− 1

4
C − h(t, η)Uη(t, η)

for almost every η ∈ [0, B + C]. This is the sought differential equation for U (t, η).
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The correct Banach space to work in is Lγ ([0, B + C]) ∩ L∞([0, B + C]). To see this,
introduce the function

g2(t, η) =
∫ χ (t,η)

−∞
pux(t, y)dy =

∫ η

0
PUη(t, η̃)dη̃.

Observe that (5.5) and (5.12) imply that g2(t, · ) is Lipschitz continuous with Lipschitz
constant at most 1 + C , since

|g2(t, η2) − g2(t, η1)| ≤ |
∫ χ (t,η2)

χ (t,η1)
pux(t, y)dy|

≤ |
∫ χ (t,η2)

χ (t,η1)
(u2x + p2)(t, y)dy|

≤ (1 + C)|
∫ χ (t,η2)

χ (t,η1)
(u2x + p)(t, y)dy|

≤ (1 + C)|Gac(t,χ (t, η2)) − Gac(t,χ (t, η1))|
≤ (1 + C)|η2 − η1|.

Thus, it follows that for any fixed t ∈ [0, T ]

g2,η(t, η) = PUη(t, η) for almost every η ∈ [0, B + C].

In particular, one has

|PUη(t, η)| ≤ (1 + C)

and
∫ B+C

0
|PUη|γ (t, η)dη ≤ (1 + C)γ−1

∫ B+C

0
|PUη|(t, η)dη

= (1 + C)γ−1
∫

R

|pux|(t, x)dxdx,
which is finite, cf. (4.9) and (5.6), and which implies that hUη(t, · ) ∈ Lγ ([0, B + C]) ∩
L∞([0, B + C]).
To summarize, we showed the following theorem.

Theorem 5.7 The functionU (t, · ) satisfies the following differential equation in Lγ ([0, B+
C]) ∩ L∞([0, B + C])

Ut (t, η) + h(t, η)Uη(t, η) = 1
2

(
η −

∫ η

0
Pχη(t, η̃)dη̃

)
− 1

4
C, (5.60)

where

h(t, η) = UP(t, η) −
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃.

Furthermore, the mapping t �→ U (t, · ) is continuous from [0, T ] into Lγ ([0, B + C]).

5.3 Differentiability ofP(t, η) with respect to time

To close the system of differential equations (5.44) and (5.60), i.e.,

χt (t, η) + h(t, η)χη(t, η) = U (t, η),

Ut (t, η) + h(t, η)Uη(t, η) = 1
2

(
η −

∫ η

0
Pχη(t, η̃)dη̃

)
− 1

4
C,
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where

h(t, η) = UP(t, η) −
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃,

it remains to derive the differential equation satisfied by P(t, η), given by (5.36).

The Lipschitz continuity ofP(t, η)

To begin with, we show that P(t, η) is Lipschitz continuous on [0, T ] × [0, B + C] and
hence differentiable almost everywhere on [0, T ] × [0, B + C]. Direct calculations yield

P(t, η) − P(s, θ ) = p(t,χ (t, η)) − p(s,χ (s, θ ))

= p(t,χ (t, η)) − p(s,χ (t, η))

+ p(s,χ (t, η)) − p(s,χ (s, η)) + p(s,χ (s, η)) − p(s,χ (s, θ ))

=
∫ t

s
pt (τ ,χ (t, η))dτ

+
∫ 1

0
px

(
s,χ (s, η) + k(χ (t, η) − χ (s, η))

)
(χ (t, η) − χ (s, η))dk

+
∫ η

θ

px(t,χ (t, η̃))χη(t, η̃)dη̃, (5.61)

where we used that p(t, · ) ∈ C∞
0 (R) and p( · , x) is differentiable almost every on the finite

interval [0, T ]. Furthermore, we took advantage ofχ (t, · ) being continuous and increasing
and hence differentiable almost everywhere on [0, B + C].
Combining (5.61) with (5.27) and (5.43) as well as (4.8) and (4.11), we end up with

|P(t, η) − P(s, θ )| ≤ max((
∥
∥u(0, · )∥∥L∞ + 2A + 1

4
CT )nC, n)(|t − s| + |η − θ |),

i.e., P(t, η) is Lipschitz continuous on [0, T ] × [0, B + C].
We are now ready to derive the differential equation satisfied byP(t, η). Therefore, note

that (5.42) implies that for each t ∈ [0, T ] one has

Pη(t, η) = px(t,χ (t, η))χη(t, η)

for almost every η ∈ [0, B + C], since p(t, · ) ∈ C∞
0 (R). Furthermore, one has for almost

every (t, η) ∈ [0, T ] × [0, B + C] that

Pt (t, η) = lim
s→t

P(t, η) − P(s, η)
t − s

= lim
s→t

p(t,χ (t, η)) − p(s,χ (t, η))
t − s

+ lim
s→t

p(s,χ (t, η)) − p(s,χ (s, η))
t − s

,

if the two limits on the right-hand side exist. The first one exists and is given by (4.7). The
second one, on the other hand, requires a closer look. Write

p(s,χ (t, η)) − p(s,χ (s, η))

=
∫ χ (t,η)

χ (s,η)
(px(s, y) − px(t, y))dy

+
∫ 1

0
px

(
t,χ (t, η) + k(χ (s, η) − χ (t, η))

)
dk (χ (t, η) − χ (s, η)).
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Following once more the argument leading to (4.4), recalling (3.6), (5.27), Lemma 4.1, and
that px(t, · ) ∈ C∞

0 (R), we have
∫ χ (t,η)

χ (s,η)
(px(s, y) − px(t, y))dy = O((t − s)2)

and

lim
s→t

p(s,χ (t, η)) − p(s,χ (s, η))
t − s

= px(t,χ (t, η)) lims→t

χ (t, η) − χ (s, η)
t − s

,

if the limit on the right-hand side exists. In view of (5.42), one has that for each t ∈ [0, T ]

Pt (t, η) = pt (t,χ (t, η)) + px(t,χ (t, η))χt (t, η)

for almost every η ∈ [0, B + C]. We find, using (5.44), (cf. (2.9b)), (4.5), (5.8), (5.9), (5.11),
(4.14), that

Pt (t, η) + h(t, η)Pη(t, η) (5.62)

= pt (t,χ (t, η)) + px(t,χ (t, η))U (t, η)
= −

∫

R

u(t, z)K ′(χ (t, η) − z)dμ(t, z) + U (t, η)
∫

R

K ′(χ (t, η) − z)dμ(t, z)

= −
∫

R

u(t, y(t, ξ ))K ′(χ (t, η) − y(t, ξ ))H̃ξ (t, ξ )dξ

+ U (t, η)
∫

R

K ′(χ (t, η) − y(t, ξ ))H̃ξ (t, ξ )dξ

= −
∫ B+C

0
u(t, y(t, �(t, η̃)))K ′(χ (t, η) − y(t, �(t, η̃)))H̃ξ (t, �(t, η̃))�η(t, η̃)dη̃

+ U (t, η)
∫ B+C

0
K ′(χ (t, η) − y(t, �(t, η̃)))H̃ξ (t, �(t, η̃))�η(t, η̃)dη̃

= −
∫ B+C

0
U (t, η̃)K ′(χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃

+ U (t, η)
∫ B+C

0
K ′(χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃. (5.63)

The correct Banach space to work in is again Lγ ([0, B + C]) ∩ L∞([0, B + C]), since

|Pη(t, η)| ≤ nPχ (t, η) ≤ n

by (4.11) and (5.43).
To summarize, we showed the following theorem.

Theorem 5.8 The function P(t, · ), given by (5.36), satisfies for almost all t the following
differential equation in Lγ ([0, B + C]) ∩ L∞([0, B + C])

Pt (t, η) + h(t, η)Pη(t, η) = R(t, η), (5.64)

where

h(t, η) = UP(t, η) −
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃
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and

R(t, η) = −
∫ B+C

0
U (t, η̃)K ′(χ (t, η) − χ (t, η̃))

(
1 − Pχη(t, η̃)

)
dη̃

+ U (t, η)
∫ B+C

0
K ′(χ (t, η) − χ (t, η̃))

(
1 − Pχη(t, η̃)

)
dη̃. (5.65)

Furthermore, the mapping t �→ P(t, · ) is continuous from [0, T ] into Lγ ([0, B + C]).

5.4 Summary

We have shown the following result.

Theorem 5.9 The functions χ (t, η), U (t, η), andP(t, η) defined by (5.7) and (5.36), respec-
tively, satisfy the following system of equations:

χt (t, η) + h(t, η)χη(t, η) = U (t, η), (5.66a)

Ut (t, η) + h(t, η)Uη(t, η) = 1
2

(
η −

∫ η

0
Pχη(t, η̃)dη̃

)
− 1

4
C, (5.66b)

Pt (t, η) + h(t, η)Pη(t, η) = R(t, η) (5.66c)

where

h(t, η) = UP(t, η) −
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))

(
1 − Pχη(t, η̃)

)
dη̃, (5.67)

R(t, η) = −
∫ B+C

0
U (t, η̃)K ′(χ (t, η) − χ (t, η̃))

(
1 − Pχη(t, η̃)

)
dη̃

+ U (t, η)
∫ B+C

0
K ′(χ (t, η) − χ (t, η̃))

(
1 − Pχη(t, η̃)

)
dη̃, (5.68)

which can be uniquely solved using the method of characteristics in Lγ ([0, B + C]) ×
(Lγ ([0, B + C]) ∩ L∞([0, B + C]))2.

We remark that Definition 2.3, which lists all properties that have to be satisfied by weak
conservative solutions, requires

u(t, · ) ∈ E2 and μ(t, (−∞, · )) = F (t, · ) ∈ E0
1 . (5.69)

In our new coordinates, these conditions can be formulated in terms of Uχη(t, η) and
χη(t, η), whose time evolution cannot be described with the help of (5.66). On the other
hand, the imposed moment condition (5.2), which is preserved with respect to time,
implies (5.69). Indeed, let

u±∞(t) = lim
x→±∞u(t, x),

which both exist and are finite. Thus, u(t, · ) ∈ E2, if and only if
∫ −1

−∞
(
(u(t, x) − u−∞(t))2 + u2x(t, x)

)
dx +

∫ 1

−1

(
u2 + u2x

)
(t, x)dx

+
∫ ∞

1

(
(u(t, x) − u∞(t))2 + u2x(t, x)

)
dx < ∞,
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by the definition of E2. Here we only consider one integral, since all of them can be
investigated using similar ideas. One has

∫ −1

−∞
(u(t, x) − u−∞(t))2dx =

∫ −1

−∞

(∫ x

−∞
ux(t, z)dz

)2
dx

=
∫ −1

−∞

(∫ x

−∞
1

(−z)γ /2 (−z)γ /2ux(t, z)dz
)2

dx

≤
∫ −1

−∞

(∫ x

−∞
1

(−z)γ
dz

)(∫ x

−∞
(−z)γ u2x(t, z)dz

)
dx

≤ 1
γ − 1

∫ −1

−∞
1

(−x)γ−1 dx
(∫

R

|z|γ u2x(t, z)dz
)

≤ 1
(γ − 1)(γ − 2)

(∫

R

|z|γ dν(t, z)
)
,

which is finite if γ > 2 and (5.2) is satisfied.
For the second condition, recall that

lim
x→−∞ F (t, x) = 0 and lim

x→∞ F (t, x) = C.

Thus, F (t, · ) ∈ E0
1 if and only if

∫ −1

−∞
F2(t, x)dx +

∫ 1

−1
F2(t, x)dx +

∫ ∞

1
(F (t, x) − C)2dx < ∞,

by the definition of E1
0 . Again we only consider one integral, since all of them can be

considered using similar ideas. One has
∫ −1

−∞
F2(t, x)dx

=
∫ −1

−∞

(∫ x

−∞
1

(−z)γ /2 (−z)γ /2dμ(t, z)
)2

dx

≤
∫ −1

−∞

(∫ x

−∞
1

(−z)γ
dμ(t, z)dz

)
dx

(∫

R

|z|γ dν(t, z)
)

=
∫ −1

−∞

(
1

(−x)γ
F (t, x) − γ

∫ x

−∞
1

(−z)γ+1 F (t, z)dz
)
dx

(∫

R

|z|γ dν(t, z)
)

≤ C
∫ −1

−∞

(
1

(−x)γ
+ γ

∫ x

−∞
1

(−z)γ+1 dz
)
dx

(∫

R

|z|γ dν(t, z)
)

≤ 2C
γ − 1

(∫

R

|z|γ dν(t, z)
)
,

which is finite if γ > 2 and (5.2) is satisfied.
We have proved the following theorem.

Theorem 5.10 Let γ > 2, then for any initial data (u0,μ0) ∈ D such that
∫

R

(1 + |x|γ )dμ0 < ∞

the Hunter–Saxton equation has a unique global conservative weak solution (u,μ) ∈ D in
the sense of Definition 2.3, which satisfies

∫

R

(1 + |x|γ )dμ(t) < ∞ for all t ∈ R.
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Appendix A: Proof of Lemmas 5.2 and 5.6
Lemma A.1 (Lemma 5.2) (i) Let g(t, ξ ) be given by (4.13). Then, there exists a positive
constant M̄ such that

− M̄|t − s|3/2 − p
(
t, y(t, ξ + u(t, y(t, ξ ))(t − s))

)
u(t, y(t, ξ ))(t − s)

−
∫

R

u(t, y(t, η))K
(
y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)

)
H̃ξ (t, η)dη (s − t)

≤ g(s, ξ ) − g
(
t, ξ + u(t, y(t, ξ ))(t − s)

)

≤ M̄|t − s|3/2 − p
(
t, y(t, ξ + u(t, y(t, ξ ))(t − s))

)
u(t, y(t, ξ ))(t − s)

−
∫

R

u(t, y(t, η))K
(
y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)

)
H̃ξ (t, η)dη (s − t). (A.1)

(ii) Let H (t, ξ ) be defined by (5.9). Then,

− (M̃ + M̄)|t − s|3/2 − p
(
t, y(t, ξ + u(t, y(t, ξ ))(t − s))

)
u(t, y(t, ξ ))(t − s)

−
∫

R

u(t, y(t, η))K
(
y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)

)
H̃ξ (t, η)dη (s − t)

≤ H (s, ξ ) − H
(
t, ξ + u(t, y(t, ξ ))(t − s)

)

≤ (M̃ + M̄)|t − s|3/2 − p
(
t, y(t, ξ + u(t, y(t, ξ ))(t − s))

)
u(t, y(t, ξ ))(t − s)

−
∫

R

u(t, y(t, η))K
(
y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)

)
H̃ξ (t, η)dη (s − t).

Proof (i): We want to estimate

g(s, ξ ) − g(t, ξ + u(t, y(t, ξ ))(t − s)).

Recalling (4.13), we split the above difference into two terms as follows

g(s, ξ ) − g(t, ξ + u(t, y(t, ξ ))(t − s)) =
∫ y(s,ξ )

y(t,ξ+u(t,y(t,ξ ))(t−s))
p(s, z)dz

+
∫ y(t,ξ+u(t,y(t,ξ ))(t−s))

−∞
(
p(s, z) − p(t, z)

)
dz

= I1 + I2.

I1: Since p(t, x) is continuously differentiable on [0, T ] × R, we have by the mean value
theorem that

I1 =
∫ y(s,ξ )

y(t,ξ+u(t,y(t,ξ ))(t−s))
p(s, z)dz

= p(s,m)(y(s, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s)))

= (
p(s,m) − p(t, y(t, ξ + u(t, y(t, ξ ))(t − s)))

)

× (y(s, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s)))

+ p(t, y(t, ξ + u(t, y(t, ξ ))(t − s)))(y(s, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s)))
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for somem between y(s, ξ ) and y(t, ξ + u(t, y(t, ξ ))(t − s)). Furthermore, we find
∣
∣p(s,m) − p(t, y(t, ξ + u(t, y(t, ξ ))(t − s)))

∣
∣
∣
∣y(s, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s))

∣
∣

≤ M
( |s − t| + ∣∣m − y(t, ξ + u(t, y(t, ξ ))(t − s))

∣∣ )

× ( ∣∣u(t, y(t, ξ ))(t − s)
∣∣ + M̃ |t − s|3/2 )

≤ M
( |s − t| + ∣∣y(s, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s))

∣∣ ) |t − s|
≤ M

( |s − t| + ∣∣u(t, y(t, ξ ))(t − s)
∣∣ ) |t − s|

≤ M |s − t|2 ,

for some constant M (that is increased during the calculation), using (4.8), (4.11), (5.29),
and (3.6). In addition, we estimate

p(t, y(t, ξ + u(t, y(t, ξ ))(t − s)))(y(s, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s)))

= p(t, y(t, ξ + u(t, y(t, ξ ))(t − s)))
(
u(t, y(t, ξ ))(t − s)

+ (y(s, ξ ) − y(t, ξ + u(t, y(t, ξ ))(t − s))) − u(t, y(t, ξ ))(t − s)
)
.

Finally, using (5.29) once more, there exists a positive constant M̂ such that
∣∣I1 + p(t, y(t, ξ + u(t, y(t, ξ ))(t − s)))u(t, y(t, ξ ))(t − s)

∣∣ ≤ M̂|t − s|3/2.
I2: Using (3.1), (3.2), and (4.5), we can write

I2 =
∫ y(t,ξ+u(t,y(t,ξ ))(t−s))

−∞
(
p(s, z) − p(t, z)

)
dz

=
∫ y(t,ξ+u(t,y(t,ξ ))(t−s))

−∞

∫ s

t
pt (τ , z)dτdz

= −
∫ y(t,ξ+u(t,y(t,ξ ))(t−s))

−∞

∫ s

t

∫

R

u(τ , x)K ′(z − x)dμ(τ , x)dτdz

= −
∫ s

t

∫

R

u(τ , x)K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − x)dμ(τ , x)dτ

= −
∫ s

t

∫

R

u(τ , y(τ , η))K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(τ , η))H̃ξ (τ , η)dηdτ

= −
∫ s

t

∫

R

(u(τ , y(τ , η)) − u(t, y(t, η)))

× K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(τ , η))H̃ξ (τ , η)dηdτ

−
∫ s

t

∫

R

u(t, y(t, η))(K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(τ , η))

− K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η)))H̃ξ (τ , η)dηdτ

−
∫ s

t

∫

R

u(t, y(t, η))

× K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))(H̃ξ (τ , η) − H̃ξ (t, η))dηdτ

−
∫ s

t

∫

R

u(t, y(t, η))K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))H̃ξ (t, η)dηdτ

= II1 + II2 + II3

−
∫ s

t

∫

R

u(t, y(t, η))K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))H̃ξ (t, η)dηdτ .
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Next we will show that each of the terms II1, II2, and II3 is of order |t − s|3/2. Therefore,
it is important to keep in mind that 0 ≤ yξ , H̃ξ ≤ 1.
II1: Since u(t, x) is Hölder continuous with Hölder exponent 1

2 on [0, T ] × R, we have,
by (3.8) and (3.9), for all τ between s and t that

|u(τ , y(τ , η)) − u(t, y(t, η))| ≤ D
(|t − τ | + |y(τ , η) − y(t, η)|)1/2

≤ D
(
1 + ∥∥u(0, · )∥∥L∞ + 1

4
CT

)1/2|t − τ |1/2

≤ D
(
1 + ∥∥u(0, · )∥∥L∞ + 1

4
CT

)1/2|t − s|1/2,

and

|II1| ≤ DC
(
1 + ∥∥u(0, · )∥∥L∞ + 1

4
CT

)1/2|t − s|3/2.
II2: Since K ( · ), given by (4.3), is smooth one has for all τ between s and t that

|K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(τ , η)) − K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))|

= |
∫ y(τ ,η)

y(t,η)
K ′(y(t, ξ + u(t, y(t, ξ ))(t − s)) − x)dx|

≤ n|y(τ , η) − y(t, η)|
≤ n

( ∥
∥u(0, · )∥∥L∞ + 1

4
CT

)
|t − τ |

≤ n
( ∥∥u(0, · )∥∥L∞ + 1

4
CT

)
|t − s|

and

|II2| ≤ nC
( ∥

∥u(0, · )∥∥L∞ + 1
4
CT

)2|t − s|2.
II3: Here integration by parts will be the key. Indeed, one has

∫

R

u(t, y(t, η))K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))(H̃ξ (τ , η) − H̃ξ (t, η))dη

= −
∫

R

ux(t, y(t, η))

× K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))(H̃ (τ , η) − H̃ (t, η))yξ (t, η)dη

+
∫

R

u(t, y(t, η))

× K ′(y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))(H̃ (τ , η) − H̃ (t, η))yξ (t, η)dη.

Recalling (3.24) and that 0 ≤ H̃ξ ≤ 1, we have for all τ between s and t that

|H̃ (t, η) − H̃ (τ , η)| ≤
( ∥∥u(0, · )∥∥L∞ + 1

4
CT

)
|t − s|

and

|
∫

R

u(t, y(t, η))K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))(H̃ξ (τ , η) − H̃ξ (t, η))dη|

≤
( ∥∥u(0, · )∥∥L∞ + 1

4
CT

) ∫

R

|ux(t, x)|K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − x)dx |t − s|

+
( ∥

∥u(0, · )∥∥L∞ + 1
4
CT

) ∫

R

|u(t, x)|K ′(y(t, ξ + u(t, y(t, ξ ))(t − s)) − x)dx |t − s|

≤
(( ∥∥u(0, · )∥∥L∞ + 1

4
CT

)
C1/2π1/2 + n

( ∥∥u(0, · )∥∥L∞ + 1
4
CT

)2
π

)
|t − s|.
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Thus, we have

|II3| ≤
(( ∥∥u(0, · )∥∥L∞ + 1

4
CT

)
C1/2π1/2 + n

( ∥∥u(0, · )∥∥L∞ + 1
4
CT

)2
π

)
|t − s|2.

Combining now all these estimates, we have that there exists a positive constant M̌ such
that

∣
∣∣∣I2 +

∫

R

u(t, y(t, η))K (y(t, ξ + u(t, y(t, ξ ))(t − s)) − y(t, η))H̃ξ (t, η)dη (s − t)
∣
∣∣∣

≤ M̌|t − s|3/2

(ii): Combine (5.9), (5.30), and (A.1). ��
Lemma A.2 (Lemma 5.6) Consider the function h defined by (5.45). Then

(i) t �→ h(t, η) is continuous;
(ii) η �→ h(t, η) is Lipschitz and satisfies

|h(t, η2) − h(t, η1)| ≤ (1 + 2n
∥
∥u(0, · )∥∥L∞ + C + n

2
Ct)|η2 − η1|. (A.2)

Proof (i) First, we establish the continuity with respect to time. Recalling (3.6), (3.9), (4.4),
(4.9), and (5.27), we have

|UP(t, η) − UP(s, η)| ≤ |U (t, η)||P(t, η) − P(s, η)| + |P(s, η)||U (t, η) − U (s, η)|
≤ ( ∥∥u(0, · )∥∥L∞ + 1

4
CT

)|p(t,χ (t, η)) − p(s,χ (s, η))|
+ C|u(t,χ (t, η)) − u(s,χ (s, η))|

≤ ( ∥
∥u(0, · )∥∥L∞ + 1

4
CT

)( ∥
∥u(0, · )∥∥L∞ + 1

4
CT + 2A

)
nC|t − s|

+ CD
(
1 + 2A

)1/2|t − s|1/2.

For the second term of h(t, η), note that one can write
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃

=
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))dη̃ −

∫

R

K (χ (t, η) − y)up(t, y)dy.

Using (3.9), (5.27), and Lemma 4.1, one has

∣∣∣
∫ B+C

0

(
U (t, η̃)K (χ (t, η) − χ (t, η̃)) − U (s, η̃)K (χ (s, η) − χ (s, η̃))

)
dη̃

∣∣∣

≤
∣∣∣
∫ B+C

0
(U (t, η̃) − U (s, η̃))K (χ (t, η) − χ (t, η̃))dη̃

∣∣∣

+
∣∣
∣
∫ B+C

0
U (s, η̃)(K (χ (t, η) − χ (t, η̃)) − K (χ (s, η) − χ (s, η̃))

)
dη̃

∣∣
∣

≤ (B + C)
∥
∥U (t, · ) − U (s, · )∥∥L∞

+ 2n
( ∥∥u(0, · )∥∥L∞ + 1

4
CT

)
(B + C)

∥∥χ (t, · ) − χ (s, · )∥∥L∞

≤ (B + C)D
(
1 + 2A

)1/2|t − s|1/2

+ 2n(
∥∥u(0, · )∥∥L∞ + 1

4
CT )(B + C)2A|t − s|.
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Last but not least, recalling (3.9), Lemma 4.1, (4.4), (4.10), and (5.27), we have
∣∣
∣
∫

R

(
K (χ (t, η) − y)up(t, y) − K (χ (s, η) − y)up(s, y)

)
dy

∣∣
∣

≤
∣∣∣
∫

R

(K (χ (t, η) − y) − K (χ (s, η) − y))up(t, y)dy
∣∣∣

+
∣
∣∣
∫

R

K (χ (s, η) − y)(up(t, y) − up(s, y))dy
∣
∣∣

≤ n
∥∥χ (t, · ) − χ (s, · )∥∥L∞

∫

R

|u|p(t, y)dy
+ π

∥
∥up(t, · ) − up(s, · )∥∥L∞

≤ 2nA(
∥∥u(0, · )∥∥L∞ + 1

4
CT )B|t − s|

+ πn(
∥∥u(0, · )∥∥L∞ + 1

4
CT )2C|t − s| + πCD(t − s)1/2.

Thus, we have that h(t, η) is Hölder continuous with exponent 1
2 with respect to time.

(ii) To establish the Lipschitz continuity with respect to space is a bit more involved,
but follows pretty much the same lines. As a closer look at (5.12) reveals, one has

σG(t,χ (t, η)−) + (1 − σ )G(t,χ (t, η)+) = η for some σ ∈ [0, 1].

This means especially given η ∈ [0, B + C], there exist η− ≤ η ≤ η+ such that

χ (t, η−) = χ (t, η) = χ (t, η+)

and

η− = G(t,χ (t, η)−) and η+ = G(t,χ (t, η)+).

In view of Definition 2.3 (v), (5.3), (4.11), and (5.5), we then have for η1 < η2 such that
χ (t, η1) �= χ (t, η2) that

|UP(t, η2) − UP(t, η1)|
= |UP(t, η−

2 ) − UP(t, η+
1 )|

= |up(t,χ (t, η−
2 )) − up(t,χ (t, η+

1 ))|

≤
∫ χ (t,η−

2 )

χ (t,η+
1 )

|uxp + upx|(t, y)dy

≤
∫ χ (t,η−

2 )

χ (t,η+
1 )

(u2x + p2 + n|u|p)(t, y)dy

≤ (1 + ∥
∥p(t, · )∥∥L∞ + n

∥
∥u(t, · )∥∥L∞ )

∫ χ (t,η−
2 )

χ (t,η+
1 )

(u2x + p)(t, y)dy

≤ (1 + C + n(
∥∥u(0, · )∥∥L∞ + 1

4
Ct))(G(t,χ (t, η−

2 )) − G(t,χ (t, η+
1 )))

= (1 + C + n(
∥∥u(0, · )∥∥L∞ + 1

4
Ct))|η−

2 − η+
1 |

≤ (1 + C + n(
∥∥u(0, · )∥∥L∞ + 1

4
Ct))|η2 − η1|.

As far as the second part is concerned, observe that (cf. (5.63))
∫ B+C

0
U (t, η̃)K (χ (t, η) − χ (t, η̃))(1 − Pχη(t, η̃))dη̃ =

∫

R

u(t, y)K (χ (t, η) − y)dμ(t, y),
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and we have

|
∫ B+C

0
U (t, η̃)(K (χ (t, η2) − χ (t, η̃)) − K (χ (t, η1) − χ (t, η̃)))(1 − Pχη(t, η̃))dη̃|

= |
∫

R

u(t, y)(K (χ (t, η2) − y) − K (χ (t, η1) − y))dμ(t, y)|

= |
∫

R

u(t, y)
∫ χ (t,η2)

χ (t,η1)
K ′(z − y)dzdμ(t, y)|

= |
∫ χ (t,η−

2 )

χ (t,η+
1 )

∫

R

u(t, y)K ′(z − y)dμ(t, y)dz|

≤ (
∥∥u(0, · )∥∥L∞ + 1

4
Ct)

∫ χ (t,η−
2 )

χ (t,η+
1 )

∫

R

nK (z − y)dμ(t, y)dz

= n(
∥∥u(0, · )∥∥L∞ + 1

4
Ct)

∫ χ (t,η−
2 )

χ (t,η+
1 )

p(t, z)dz

= n(
∥
∥u(0, · )∥∥L∞ + 1

4
Ct)

(
G(t,χ (t, η−

2 )) − G(t,χ (t, η+
1 ))

)

≤ n(
∥
∥u(0, · )∥∥L∞ + 1

4
Ct)|η2 − η1|.

Thus, we have that h(t, η) is Lipschitz continuous with respect to space with

|h(t, η2) − h(t, η1)| ≤ (
1 + 2n

∥
∥u(0, · )∥∥L∞ + C + n

2
Ct

)|η2 − η1|.
��

Lemma A.3 Given γ > 2 and a weak conservative solution (u,μ) in the sense of Defini-
tion 2.3, which satisfies

∫

R

(1 + |x|γ )dμ(t) < ∞ for all t ∈ R.

Then for any n ∈ N such that n ≥ γ
∫

R

(1 + |x|γ )p(t, x)dx < ∞ for all t ∈ R.

Proof Due to (4.10), it suffices to show
∫ −1

−∞
|x|γ p(t, x)dx +

∫ ∞

1
|x|γ p(t, x)dx < ∞.

Since p(t, · ) is nonnegative and both integrals can be estimated using the same ideas, we
only present the details for the first one. Direct computations yield

∫ −1

−∞
|x|γ p(t, x)dx =

∫ −1

−∞
(x2)γ /2

∫

R

1
(1 + (x − y)2)n

dμ(t, y)dx

=
∫ −1

−∞
(((x − y) + y)2)γ /2

∫

R

1
(1 + (x − y)2)n

dμ(t, y)dx

≤ 2γ /2
∫ −1

−∞

∫

R

(
(x − y)2 + y2

1 + (x − y)2

)γ /2 1
(1 + (x − y)2)n−γ /2 dμ(t, y)dx

≤ 2γ /2
∫ −1

−∞

∫

R

(1 + y2)γ /2 1
(1 + (x − y)2)n−γ /2 dμ(t, y)dx

≤ 2γ /2
∫

R

(∫

R

1
(1 + (x − y)2)n−γ /2 dx

)
(1 + y2)γ /2dμ(t, y)
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≤ 2γ /2
∫

R

(∫

R

1
1 + z2

dz
)
(1 + y2)γ /2dμ(t, y)

≤ 2γ /2π

∫

R

(1 + y2)γ /2dμ(t, y)

≤ 2γ π

∫

R

(1 + |y|γ )dμ(t, y).

In the above calculations, we used that (a + b)2 ≤ 2(a2 + b2) and that (a + b)2 ≤
2max(a2, b2). ��
Received: 28 July 2021 Accepted: 3 February 2022 Published online: 19 March 2022
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