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Abstract: Banks’ credit scoring models are required by financial authorities to be explainable. This
paper proposes an explainable artificial intelligence (XAI) model for predicting credit default on
a unique dataset of unsecured consumer loans provided by a Norwegian bank. We combined a
LightGBM model with SHAP, which enables the interpretation of explanatory variables affecting the
predictions. The LightGBM model clearly outperforms the bank’s actual credit scoring model (Logistic
Regression). We found that the most important explanatory variables for predicting default in the
LightGBM model are the volatility of utilized credit balance, remaining credit in percentage of total
credit and the duration of the customer relationship. Our main contribution is the implementation of
XAI methods in banking, exploring how these methods can be applied to improve the interpretability
and reliability of state-of-the-art AI models. We also suggest a method for analyzing the potential
economic value of an improved credit scoring model.

Keywords: credit risk modelling; credit default prediction; explainable artificial intelligence (XAI);
Light Gradient Boosting Machine (LightGBM)
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1. Introduction

The objective of this study is to apply explainable artificial intelligence (XAI) tech-
niques to credit scoring in banking in order to be able to interpret and justify black box-like
artificial intelligence (AI) models’ predictions.

Linear and non-linear regression models (logit and probit models) have long been
the industry standard for bank credit risk modelling. Over the last few decades, (AI)
techniques have advanced default predictions further. However, current AI approaches are
often perceived as black boxes, meaning that it is hard to understand the inner workings of
the models and their output (Ariza-Garzón et al. 2020; Gramegna and Giudici 2021). With
the implementation of the Basel II agreement (Basel Committee on Banking Supervention
2006) and the General Data Protection Regulation (GDPR) (European Union, Parliament
and Council 2016), European banks must abide by strict regulations enforcing a certain
level of explainability in all decision-making data-based models.

With its latest discussion paper, EBA (2021) uncovered three main challenges related
to the complexity of AI models: (i). The challenge of interpreting the results, (ii) the
challenge of ensuring that management functions properly understand the models, and
(iii) the challenge of justifying the results to supervisors (EBA 2021). European Union,
European Union, Parliament and Council (2016) and the European Commission (2021a) is
also working on AI-specific regulations. As a result, there is a need to utilize XAI models,
uncovering how each variable/feature influence the prediction of credit default. One
promising framework that might achieve this is the Shapley value (SHAP) framework,
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which has been applied successfully in other areas, such as disease detection (El-Sappagh
et al. 2021; Peng et al. 2021) and surgery technique selection (Yoo et al. 2020).

In this study, we apply the XAI framework to LightGBM, a Gradient Boosting Model
(GBM), on a unique dataset generously provided by a Norwegian bank. The dataset used in
this paper covers unsecured consumer loans for 13,969 customers over a four-year period,
containing more than 13 million data records. This data covers information about the
customer (age, sex, geography etc.) as well as daily behavior data (credit card transaction
volume, number of transactions, etc.). Default or delinquency is defined as being 90 days
overdue with the payment.

We contribute to the literature by implementing an AI-based credit scoring model on
a real-life dataset from a bank, benchmarking it to the bank’s current logistic regression
(LR) model, explaining and interpreting the results using XAI. In addition, we propose a
method for analyzing the potential economic gain from using LightGBM versus LR.

This paper is organized as follows. In Section 2, relevant literature on the subject
of XAI for credit scoring models is reviewed. Section 3 briefly outlines the models we
employed. Section 4 introduces and explains the data set. Section 5 provides an assessment
of the models’ predictions (both logistic regression and GBDT), and analyses of how each
variable contributes to the prediction of default This section also includes an analysis of the
potential economic value of an improved credit scoring model. Section 6 concludes.

All appendices referred to in this paper are available by clicking the following link:
https://www.ntnu.no/documents/1265701259/1281473463/Appendices.A_I.pdf/0dfebb3
4-067c-bd3a-8f85-5b96a026210c?t=1667216631547 (accessed on 6 November 2022) (Breiman
1998; Connelly 2020; Hess and Hess 2019; Hintze and Nelson 1998; Jolliffe 1986; Lever et al.
2016; Nixon et al. 2019).

2. Literature Review

European legislatures have enforced several regulations regarding the explainability
of AI models, and the laws governing AI models in banking are expected to be even stricter
going forward. Automated credit scoring processes will be subject to more comprehensive
regulations (European Commission 2021b) (as cited in Bibal et al. 2021). As the regulatory
monitoring related to explainability tightens, it is essential for financial institutions to
evaluate the explainability of their credit models (Yang and Wu 2021). Bastos and Matos
(2022) found XAI to be a solution, as it enables banks to abide by the regulatory transparency
requirements in the Basel agreements without sacrificing predictive accuracy.

AI models are highly non-linear and there are complex dependencies among the
explanatory variables and the dependent variables, as well as among the explanatory
variables. The contribution of each variable to the prediction has long been very difficult
to estimate, and AI models have been critiqued for being black boxes. XAI techniques
can be applied to overcome this (Gramegna and Giudici 2021). The two widely accepted
state-of-the-art XAI frameworks are the LIME framework by Ribeiro et al. (2016) and SHAP
values by Lundberg and Lee (2017).

The literature focusing on the use of XAI for credit scoring in finance is still limited.
Nevertheless, there are some highly relevant previous works. This involves integrating
XAI on credit scoring models for P2P lending data sets (Misheva et al. 2021; Bussmann et al.
2020a; Bussmann et al. 2020b; Ariza-Garzón et al. 2020; Moscato et al. 2021), applying XAI
to explain home equity credit risk models (Davis et al. 2022), an empirical study comparing
XAI with a scorecard model for credit scoring on a publicly available credit bureau data
set (Bücker et al. 2021), comparing different XAI models’ effectiveness on separating data
from a set of small and medium-sized enterprises data (Gramegna and Giudici 2021) and
applying XAI to interpret a model for predicting crashes on S&P500 (Benhamou et al. 2021).
We are not aware of XAI having been applied to an actual customer credit card database
from a bank.

Misheva et al. (2021) analyzed the effectiveness of LIME and SHAP XAI techniques
in the context of credit risk management. Both LIME and SHAP were found to provide
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“consistent explanations”. However, the SHAP values are highlighted as the most robust
and effective in explaining the importance of the model’s different features. Gramegna
and Giudici (2021) also found that SHAP outperforms LIME in discriminating observa-
tions in their credit scoring model. Davis et al. (2022) applied both SHAP and LIME to
analyze the explainability of the output from credit risk models. While the authors found
LIME to suffer from potential instability issues, they argue that the computation time of
KernelSHAP makes it unscalable for datasets with many features. This paper applies a
different method, TreeSHAP, that does not suffer from scalability issues as it is polyno-
mial in runtime. Bussmann et al. (2020a) focused on one specific explainable model for
fintech risk management, using XGBoost with SHAP. They found that this model clearly
outperforms the LR base model in terms of predictive accuracy while also providing a
detailed explanation for each prediction. This is in line with the findings obtained by
Bücker et al. (2021), which showed that AI techniques can achieve a level of interpretability
comparable to the traditional scorecard method while preserving its computational edge.
According to Ariza-Garzón et al. (2020), applying XAI on non-linear models, such as
XGBoost, may even improve the explainability compared to statistical approaches, e.g.,
linear regression. Such advanced models enable an understanding of complex, non-linear
aspects of the relationships between variables that classic models are unable to discover.
This includes aspects like “curved relationships, structural breaks, heteroscedasticity and
outlying behavior” (Ariza-Garzón et al. 2020). Based on the results obtained by Misheva
et al. (2021) and Gramegna and Giudici (2021), we found sufficient evidence for utilizing
SHAP in this paper.

The discussion above clearly suggests that utilizing AI for enhanced predictive perfor-
mance, in combination with XAI for sufficient explainability, can improve current credit
scoring models. However, a challenge with credit scoring as a classification problem is that
only a small minority of customers are usually expected to default, i.e., that the dataset is
highly imbalanced. Gradient Boosting Decision Tree (GBDT) is an AI technique that has
been frequently used for credit scoring in the literature because it provides good accuracy
for such imbalanced classification problems (Brown and Mues 2012; Benhamou et al. 2021).
One example is Bussmann et al. (2020a), who showed that the GBDT method XGBoost
(Chen and Guestrin 2016) clearly yields better accuracy than the linear regression model
for predicting default on a P2P data set. This is in line with the work by Ariza-Garzón et al.
(2020) who found that a GBDT model (XGBoost) performs better globally than all the other
methods in their study of credit scoring models in P2P lending. The works conducted on
P2P lending are closely related to credit scoring in banks, as the classification problem is
fundamentally similar. Thus, we found convincing evidence in the literature for applying a
GBDT model for credit scoring in this study. As Benhamou et al. (2021) found LightGBM
to be the better GBDT model, with three times the speed of XGBoost and similar predictive
performance, this study will employ LightGBM.

3. Methodology
3.1. Gradient Boosting Decision Trees

Ensemble methods combine several learners to obtain better predictive performance
than a single constituent learning algorithm. The ensemble method used in this study is
boosting, where learners are trained on misclassified instances from the previous learners.
Thus, several weak learners are combined into one strong learner. With weak learners, we
mean models whose performance is slightly better than random chance. The advantages of
using weak learners are outlined in Freund and Schapire (1995) and can be summarized
as being computationally simple, with the ability to reduce overfitting and bias (Bartlett
et al. 1998). Gradient Boosting Decision Trees (GBDT) utilize the boosting technique by
sequentially training decision trees based on the residuals from the previous trees. See
Zhang et al. (2017) for more details on the GBDT model.
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3.2. LightGBM

One of the limitations of traditional GBDT methods, such as AdaBoost (Freund and
Schapire 1999) and XGBoost (Chen and Guestrin 2016), is the time-consuming process of
iterating through all the data in order to estimate the information gain for all possible splits
(Quinto 2020). Light Gradient Boosting Machine (LightGBM) is a variant of GBDT designed
to be significantly faster than conventional GBDT techniques without sacrificing accuracy.
This is done by implementing Gradient-based One-Side Sampling (GOSS) and Exclusive
Feature Bundling (EFB) (Ke et al. 2017). GOSS exploits that the information gain for
instances with larger gradients (undertrained instances) is higher. By randomly dropping
instances with smaller gradients, and to a larger extent keeping instances with larger
gradients, the number of instances used for training can be reduced without sacrificing the
accuracy in information gain estimation used for feature splitting in GBDT. EFB exploits
sparse data by bundling mutually exclusive features into a single feature. These two
improvements significantly improve the computational speed and memory consumption
of LightGBM, making it state-of-the-art for many applications (Ke et al. 2017).

3.3. Shapley Values

Shapley values (Shapley 1953) were initially used for calculating a fair payout in
a game, i.e., finding payouts to players reflecting their contribution to the total payout.
Strumbelj and Kononenko (2013) found that Shapley values can be applied to explain
models by viewing features as players and the predictions as payouts. Over the years,
several other techniques for explaining AI models have been developed, such as LIME
(Ribeiro et al. 2016) and DeepLift (Shrikumar et al. 2019). Common to these techniques,
however, is that they do not necessarily meet the properties of local accuracy, missingness,
and consistency. To have a unified measure of feature importance, an explanatory model
should satisfy the following three requirements. It should match the original model for
a single instance (local accuracy), attribute zero importance to missing features in a given
coalition (missingness) and increase any attributions for a given feature if the underlying
model changes into giving that feature more impact (consistency) (Lundberg and Lee 2017).
Young (1985) found that the only values satisfying these three properties are Shapley values.
This implies that any explanation technique not based on Shapley values will violate local
accuracy or consistency (Molnar 2019).

3.4. SHAP

Calculating Shapley values exactly is challenging and computationally expensive. One
solution to this problem is using weighted linear regression (KernelSHAP) (Lundberg and
Lee 2017). Another approach, and the one employed in this study, TreeSHAP (Lundberg
et al. 2019), is optimized for tree-based artificial intelligence models such as LightGBM.
Given an ensemble tree, by pushing all subsets down each tree simultaneously and keeping
track of each subset’s overall weights as well as the number of subsets, Shapley values of
each tree can be calculated in polynomial time (Molnar 2019). Moreover, because of the
additive property of Shapley values (Shapley 1953), the Shapley values of the ensemble
tree model equals the weighted average Shapley values of the individual trees.

3.5. Logistic Regression Models

Our models are compared to the classical LR model currently used by the bank.
Unfortunately, we are not able to disclose details on this particular LR model as the bank
views the model and the particular features used as input data as trade secrets. See our
Appendix A for more details on this and the other models described in this chapter.

4. Data

The models outlined in Section 3 were implemented on a proprietary dataset, gener-
ously provided by a Norwegian medium-tier bank. The data set contains time series data
for 13,969 unique customers and is split into two different files: a mainfile that consists of
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monthly customer application data and behavioral data with a total of 268,120 records, and
a balancefile that contains 13,017,635 records of daily account movements. These data sets
are linked through unique customer identification numbers and dates. The data contains
only unsecured consumer loans and is captured over approximately four years.

The data is imbalanced as defaulting customers constitute a minority class of 8.8% of
the total customers. The target variable indicating default is determined by the customer
being in default for at least 90 days within the 12 months following the scoring date. This
choice of target is in line with the regulatory definition of default for Norwegian banks
and thus the industry standard. The features used in both models are further explained in
Appendix B. Summary statistics for the features used in the LightGBM model are found in
Table 1 below.

Table 1. Feature statistics for the training set consisting of 8381 instances (60% of the data). Note that
the data is not normalized.

Feature Name Mean Std. Dev Min 25% 50% 75% Max

Customer Length in
Months 64.4 59.1 0.0 17.0 41.0 108.0 247.0

Number of Mortgages 0.3 0.5 0.0 0.0 0.0 1.0 5.0

Average Salary (L3M) 14,905.9 21,945.6 0.0 0.0 0.0 0.0 505,969.7

Limit Blanco Unsecured
(2MA) 42,913.6 30,217.4 0.0 20,000.0 40,000.0 60,000.0 150,000.0

Average Used Credit
(L3M) −0.4 0.4 −1.1 −0.8 −0.4 0.0 0.0

Savings Balance 35,722.6 155,915.8 −1965.0 190.7 4087.1 24,913.7 6,253,344.9

Savings Balance (1MA) 30,458.1 96,637.5 −255.4 161.9 3769.1 23,371.0 3,025,371.2

Number of Logins 68.8 93.1 0.0 14.0 39.0 89.0 1419.0

Number of First
Reminders Unsecured 0.3 1.1 0.0 0.0 0.0 0.0 15.0

Balance Consumer Loan −97,884.9 94,672.0 −500,000.0 −134,114.8 −69,094.0 −27,986.5 −0.4

Balance in Percentage 0.0 0.3 0.0 0.5 0.8 0.9 1.1

Percentage Change in
Balance (1MA) 0.0 2.8 −1.0 −0.1 0.0 0.0 211.8

Percentage Change in
Balance (3MA) −0.1 2.6 −1.0 −0.2 −0.1 0.0 201.8

Balance Longest Positive
Interval (L3M) 57.3 38.0 0.0 13.0 89.0 89.0 89.0

Balance Standard
Deviation (L3M) 15,078.5 34,701.4 0.0 1462.4 7503.6 15,099.0 1,047,771.4

Balance Minimum Level
(L3M) 1201.2 63,817.5 −102,880.9 −19,393.5 0.0 1000.5 1,192,793.8

Balance Mean (L3M) 20,442.1 80,739.1 −100,326.1 −4901.6 1291.1 19,573.4 1,277,713.6

Balance Differentiated
Max Change (L3M) 26,426.8 103,991.6 0.0 137.7 3099.6 14,141.6 3,364,772.6

In Figure 1 below, we provide the equivalent of a correlation matrix for the LightGBM
model and a heat map. The figure shows the linear correlation between all features, includ-
ing the target variable. The colors shown on the right-hand axis indicate the magnitude
of the correlation. From the plot, it is clear that the target variable does not display any
significant correlation with the features, and that most of the features are only weakly cor-
related with themselves. However, a few stronger correlations exist, most notably between
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two pairs of balance-features, Balance Mean (L3M) with Balance Minimum Level (L3M) and
Balance Differentiated Max Change (L3M with Balance Standard Deviation (L3M).
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4.1. Data Preparation for LightGBM

Unlike models such as LSTM and ARIMA, LightGBM and Logistic Regression are not
designed to handle time-series data directly. Several data processing steps were conducted
in order to convert the temporal data into static data that can be utilized by the LightGBM
and Logistic Regression models. These steps can be summarized as data filtering, feature
extraction, and feature selection. Note that these steps were only applied to the LightGBM
model dataset, as the bank has predefined the features used in the Logistic Regression
model. This is further discussed in Section 4.2.

4.1.1. Data Filtering

As the data contains a large number of observations per customer, it is necessary to
filter out noise. Figure 2 shows the overall strategy for selecting these observations. The
customer is defined to be in legal default after having failed to fulfil its loan obligations
for 90 days, shown as the pink line in the figure. The objective is to predict such legal
defaults occurring within the next 12 months, as shown with the stapled orange line. For
the remainder of the text, we define this as a default, unless otherwise specified. Thus, all
observations after a default are irrelevant for predicting legal default, and consequently,
removed for all defaulting customers.
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Figure 2. Timeline illustrating the distinction between default and legal default. Ninety days of
balance data and three months of main data are used for predicting the probability of a legal default
within the next 12 months. A legal default occurs if a customer fails to fulfil its obligations over a
period of 90 days.

4.1.2. Feature Extraction

Several aggregation measures were implemented on the filtered data to extract signals
from the data. These aggregation measures differed between the mainfile and the balancefile.

A pivot transformation was applied to the mainfile. This transformation is illustrated
in Table 2, where the original data is converted to a format with one row per customer, i.e., a
matrix with 13,969 rows. The new table is built around the last observation of each customer,
following the description above. In the pivot operation, one- and three-month lags were
utilized. There are two reasons why a customer might have its last observation at time T;
either it enters a default at T + 1 or there are no subsequent observations for the customer
in the data. Either way, the final dataset will include features captured at time T and the
lagged features from T − 1 and T − 3. Note that, in the pivot transformation, missing
observations are preserved to ensure consistency between the observations. Hence, if the
mainfile has a customer with only one observation, as is the case for new loan applicants,
NaN values are generated for the lagged features.

Table 2. Illustration of the pivot transformation used on the mainfile dataset. xi
j represents an

observation (array of feature values) for customer j at time i, where i = 0 indicates the last observation
present in the data. Observe how customer A has four consecutive rows of data, and thus no NaN
values after the transformation, whereas customer B misses an observation at time T − 1 and thus
has NaN values for the lags of 1.

(A) Before Pivot Transformation

Date Id Features

30.9 A x0A
31.8 A xA1
31.7 A xA2
30.6 A xA3
31.5 B x0B
31.3 B xB2
28.2 B xB3
31.7 C xC0

(B) After pivot transformation

Date Id Current Lag 1 Lag 2

30.9 A x0A xA1 xA3
31.5 B x0B NaN xB3
31.7 C xC0 NaN NaN

In order to capture the development leading up to the last observation, several func-
tions were applied to the lagged features, thus further increasing the feature space. In
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addition to including the still features, shown in Table 2B, both the actual difference in
feature values and the percentage changes in the feature values for the lagged features
were included in the pivot transformation.

A different set of aggregation measures was applied to the balancefile. Based on each
customer’s balance movements over the last 90 days, we generated five new features, and
three of them are visualized in Figure 3. The new features represent the standard deviation,
maximum value, and minimum value over the entire period. The purpose of adding these
features is to obtain deeper insights into the customer’s economic situation and financial
stability. In addition to the information provided by these three features, we wanted to
derive a measure indicating financial distress. Based on the assumption that distressed
customers will struggle to remain balance-positive for long periods, we designed a “distress
feature” capturing the longest coherent period with a positive balance. Finally, the fifth and
last feature generated based on the balancefile dataset captures irregularly large deposits by
measuring the difference between the largest and the second-largest jump in the balance.
There are two reasons why this feature is assumed to be relevant. First, abnormally large
jumps in the balance may indicate loan disbursements from other banks, meaning that the
feature can uncover worrying signs in an otherwise positive balance. Secondly, a measure
of the stability of the income might provide additional insights into the customer’s financial
situation. The inclusion of the balance features provides a lot of additional information to
the credit scoring models. Furthermore, it incorporates time series data in a way the bank
has never done before.
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4.1.3. Feature Selection

The resulting dataset from the feature extraction procedures contain 13,969 rows,
corresponding to one row per customer. Due to the pivot transformations, this dataset
entails more than 100 features. The number of features had to be significantly reduced to
make the model more explainable and avoid the curse of dimensionality, i.e., separating
the data based on too many features. Features were dropped based on a backward feature
selection procedure on a random subset of the data used for training. The resulting dataset
eventually used for training and evaluating the LightGBM model has 13,969 rows and
18 features. Further feature explanations, statistics, and distributions are provided in
Appendix B.

4.2. Data Preparation for Logistic Regression

The bank provided the LR model used in this study, making it an entirely realistic
benchmark model. The target variable of the bank’s model is the same as the default vari-
able used in ours, i.e., predicting the probability of a legal default occurring within the next
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12 months. The bank’s LR model utilizes six features, where each feature is split into several
bins. Consequently, we created an LR-specific dataset based on a recipe from the bank
that was one-hot-encoded to match the categories defined by the bins. To ensure that the
LR model and the corresponding dataset complied with the assumptions behind Logistic
Regression, we used Variance Inflation Factors (VIF) to verify an acceptable level of multi-
collinearity among the features and the Box-Tidwell test to check for linearity in log-odds.
As the bank has deemed its LR model to be a trade secret, we are prevented from disclosing
further details of its inner workings or details of the performed binning operations.

4.3. Data Visualization

Several data visualization techniques were employed to gain additional insight into
the nature of the data. These are described in Appendix I.

5. Results

In this section, we present and discuss our findings. We focus on how AI models, such
as LightGBM, can advance credit scoring by enabling the models to process more extensive
datasets. However, to verify the predictive advantage of LightGBM compared to LR, a
second, scaled-down LightGBM model is fitted solely on the features used in the LR model.

Prior to developing the models, the data was split into a training set and a test set
using stratified sampling. The test set contained 40% of the original data, corresponding
to 5587 customers. The test was completely held out during the development phase as a
measure to prevent overfitting and to ensure the validity of the results. Class distributions
for the training and test set are found in Appendix B. Stratified k-fold cross-validation was
further used to optimize the training on the training set.

Neptune-Optuna client (Niedzwiedz 2022) was used to perform hyperparameter
searches for the LightGBM model. The resulting hyperparameters from the best performing
trial used in the final model can be found in Appendix D.

The performances of the models were evaluated using ROC and PR curves, with
their corresponding area under the curve (AUC) values. One of the advantages of using
these evaluation metrics, is that they are not constrained to thresholds for classifying
default or non-default. Hence, ROC AUC and PR AUC provide an aggregated performance
measure across all possible classification thresholds. The metrics are further explained in
Appendix E.

5.1. Model Evaluation

Table 3 shows confusion matrices comparing the performance of the LightGBM model
and the Logistic Regression model. For the LightGBM model with a threshold of 10%, the
value of 467 represents the number of true positives, 1170 is the number of false positives,
25 is the false negatives, whereas 3926 represents the true negative values. Note that the
table includes the thresholds 10% and 15%. Using a probability of default (PD) threshold
of 10% means that any customer with PD higher than 10% is classified as defaulting, and
any customer with lower or equal PD is classified as not defaulting. Thus, from a practical
perspective, lower thresholds correspond to stricter models as fewer loans are granted.
From the table, we can see that at the strictest level (threshold = 10%), the LightGBM model
is able to capture more customers subject to default yet still achieves a higher precision
(fewer false positives).

Figure 4 provides the ROC and PR curves for both the LR model and the LightGBM
model. Both models perform well measured ROC AUC, with scores above 0.8, thus indicat-
ing strong predictive capabilities. It is evident from both plots, however, that the LightGBM
model outperforms the LR model for all thresholds, with an area under the LightGBM curve
(orange) of 0.96 compared to 0.82 for the LR model (blue). The difference constitutes a 17%
improvement in ROC AUC for the LightGBM model. The findings in Table 3 and Figure 4
clearly show the advantage of the LightGBM model, as it outperforms the benchmark LR
model for all thresholds. Further evaluation metrics, confirming the edge of LightGBM, are
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summarized in Table 4. Other authors also find that AI models outperform LR models both
in credit default prediction and explicability. Bussmann et al. (2020b), inform that their best
XGBoost model attains an AUROC of 0.96, strongly outperforming their LR benchmark
model, which attains an AUROC of 0.81. Ariza-Garzón et al. (2020) concludes that credit
risk machine learning approaches may outperform statistical approaches, such as logistic
regression, in terms of not only classification performance but also explainability. Other
authors cited in this study obtain similar results.

Table 3. Confusion matrix for different thresholds for the LightGBM and Logistic Regression models.

LightGBM Logistic Regression

Actual Positive Negative Positive Negative

Predicted

Threshold = 10%
Positive 467 1170 464 3255
Negative 25 3926 28 1841

Threshold = 15%
Positive 455 927 438 2524
Negative 37 4169 54 2572

J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 11 of 25 
 

 

Table 3. Confusion matrix for different thresholds for the LightGBM and Logistic Regression 
models. 

  LightGBM Logistic Regression 
 Actual Positive Negative Positive Negative 
 Predicted     

Threshold = 10% Positive 467 1170 464 3255 
Negative 25 3926 28 1841 

Threshold = 15% Positive 455 927 438 2524 
 Negative 37 4169 54 2572 

Figure 4 provides the ROC and PR curves for both the LR model and the LightGBM 
model. Both models perform well measured ROC AUC, with scores above 0.8, thus 
indicating strong predictive capabilities. It is evident from both plots, however, that the 
LightGBM model outperforms the LR model for all thresholds, with an area under the 
LightGBM curve (orange) of 0.96 compared to 0.82 for the LR model (blue). The difference 
constitutes a 17% improvement in ROC AUC for the LightGBM model. The findings in 
Table 3 and Figure 4 clearly show the advantage of the LightGBM model, as it outperforms 
the benchmark LR model for all thresholds. Further evaluation metrics, confirming the 
edge of LightGBM, are summarized in Table 4. Other authors also find that AI models 
outperform LR models both in credit default prediction and explicability. Bussmann et al. 
(2020b), inform that their best XGBoost model attains an AUROC of 0.96, strongly 
outperforming their LR benchmark model, which attains an AUROC of 0.81. Ariza-
Garzón et al. (2020) concludes that credit risk machine learning approaches may 
outperform statistical approaches, such as logistic regression, in terms of not only 
classification performance but also explainability. Other authors cited in this study obtain 
similar results. 

 
(a) 

 
(b) 

Figure 4. Evaluation curves. (a) ROC plot and (b) PR plot comparing the performance of the 
LightGBM and LR model. It is clear that LightGBM outperforms LR with a 17% and a 114% increase 
in ROC AUC and PR AUC, respectively. 

LightGBM Model Based on LR Features 
A second, scaled-down LightGBM model was created to confirm the predictive 

advantage of LightGBM compared to LR. This model used the same six features as the LR 

Figure 4. Evaluation curves. (a) ROC plot and (b) PR plot comparing the performance of the
LightGBM and LR model. It is clear that LightGBM outperforms LR with a 17% and a 114% increase
in ROC AUC and PR AUC, respectively.

LightGBM Model Based on LR Features

A second, scaled-down LightGBM model was created to confirm the predictive advan-
tage of LightGBM compared to LR. This model used the same six features as the LR model
to make the comparison as realistic as possible. Note that these features were not binned as
in the LR model but used directly. The scaled-down LightGBM version still outperformed
the LR model, achieving an ROC AUC of 0.89, corresponding to a 9% increase. Results
from this model are shown in Table 4 as LightGBM (LR). Further comparison figures, such
as ROC AUC and PR AUC curves, are found in Appendix F.
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Table 4. Metrics for the three models that were trained. LightGBM was trained with 18 features,
whereas LightGBM (LR) was used for directly comparing Logistic Regression with LightGBM using
the same six features.

Metric LightGBM LightGBM (LR) Logistic
Regression

Threshold = 10%
F1-score 43.90% 26.00% 22.00%
Recall 94.90% 97.00% 94.30%

Precision 28.50% 15.00% 12.50%
Accuracy 78.60% 51.40% 41.20%

Threshold = 15%
F1-score 48.60% 29.10% 25.30%
Recall 92.50% 95.10% 89.00%

Precision 32.90% 17.20% 14.80%
Accuracy 82.80% 59.10% 53.90%

5.2. LightGBM Explainability

Figure 5 shows the feature importance in the LightGBM model. Note that, in order
to obtain the splits and gains for the entire LightGBM model, we averaged the feature
importance across the ten individual models resulting from cross-validation. In the plot,
blue bars indicate the total number of splits on each feature, whereas orange bars indicate
the total information gains of splits that use the feature. From the plot, it is clear that Balance
in Percentage and Percentage Change in Balance (1MA) are the two features associated with
the highest information gain. It can also be observed that Balance Minimum Level (L3M),
Balance Standard Deviation (L3M), and Percentage Change in Balance (1MA) are the features
with the largest number of splits in each node. Besides being only a proxy for average
feature effects on the dependent variable, a clear disadvantage of LightGBM explainability
plots is the lack of directional feature effects. The high information gain of Balance in
Percentage indicates that it is an important feature for separating the two classes in the
dataset. However, it is impossible to interpret to what extent the feature would impact a
given prediction. This information is not provided by the number of splits either, as this
only measures the number of times each feature is used in the model. There is clearly a
need to improve the explainability of LightGBM, and the following section shows how this
can be achieved using SHAP.

5.3. SHAP Explanations

SHAP values correspond to feature effects. As outlined in Section 3.5, SHAP values
are calculated using a conditional expectation function derived from the LightGBM model.
However, the 10-fold cross-validation of the LightGBM model complicates the application
of SHAP, as SHAP expects one single model as the input. To overcome this issue, we
averaged the SHAP values of the ten individual models, in line with the recommendations
of the creator of SHAP (Lundberg 2018).

5.3.1. Global Explanations

Figure 6 shows the magnitude of the contribution of each feature, measured in absolute
log-odds values. We observe that Balance Standard Deviation (L3M), Balance in Percentage and
Customer Length in Months have the highest impact on the model. The feature effects found
by SHAP correspond reasonably well with the LightGBM importance plot in Figure 5, as
many of the same features show significant importance measured in either splits or gain.
Furthermore, we can observe that features from the balance dataset are of high importance.
This clearly indicates that utilizing daily account movements for credit scoring customers
gives the model more signal, thus increasing its predictive performance.



J. Risk Financial Manag. 2022, 15, 556 12 of 23J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 13 of 25 
 

 

 
Figure 5. Feature importance according to the LightGBM model. Average values across the 10 
models from the stratified cross-validation, ranked by information gain. The number of splits on the 
right y-axis, and corresponding information gain for splits on the left y-axis. 

5.3.1. Global Explanations 
Figure 6 shows the magnitude of the contribution of each feature, measured in 

absolute log-odds values. We observe that Balance Standard Deviation (L3M), Balance in 
Percentage and Customer Length in Months have the highest impact on the model. The 
feature effects found by SHAP correspond reasonably well with the LightGBM 
importance plot in Figure 5, as many of the same features show significant importance 
measured in either splits or gain. Furthermore, we can observe that features from the 
balance dataset are of high importance. This clearly indicates that utilizing daily account 
movements for credit scoring customers gives the model more signal, thus increasing its 
predictive performance. 

Figure 7 shows a more detailed summary of the workings of the LightGBM model, 
where directional feature effects on the resulting predictions are visualized. Each dot on 
the feature row represents a single instance in the dataset, distributed on the x-axis 
according to the SHAP value for that feature value. The high and low relative feature 
values are color-coded as red and blue, respectively. Missing values are colored grey. 
High SHAP values are associated with an increase in the predicted probability of default, 
whereas low SHAP values correspond to a reduction in the predicted probability of 
default. The features are ranked by importance, with the most important features for the 
prediction at the top. 

Figure 5. Feature importance according to the LightGBM model. Average values across the 10 models
from the stratified cross-validation, ranked by information gain. The number of splits on the right
y-axis, and corresponding information gain for splits on the left y-axis.

J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 14 of 25 
 

 

 
Figure 6. Simplified SHAP variable importance plot for the Light-GBM model, ranked by 
importance. Note that SHAP values are in absolute log-odds. 

 
Figure 7. SHAP variable importance plot for the LightGBM model. Positive SHAP values are 
associated with an increase in default probability. Feature values are color-coded according to the 
scale on the right side, e.g., a high level of Customer Length in Months, shown in red, is associated 
with a decrease in default probability, whereas a low feature level, shown in blue, is associated with 

Figure 6. Simplified SHAP variable importance plot for the Light-GBM model, ranked by importance.
Note that SHAP values are in absolute log-odds.



J. Risk Financial Manag. 2022, 15, 556 13 of 23

Figure 7 shows a more detailed summary of the workings of the LightGBM model,
where directional feature effects on the resulting predictions are visualized. Each dot on the
feature row represents a single instance in the dataset, distributed on the x-axis according
to the SHAP value for that feature value. The high and low relative feature values are
color-coded as red and blue, respectively. Missing values are colored grey. High SHAP
values are associated with an increase in the predicted probability of default, whereas low
SHAP values correspond to a reduction in the predicted probability of default. The features
are ranked by importance, with the most important features for the prediction at the top.
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Figure 7. SHAP variable importance plot for the LightGBM model. Positive SHAP values are
associated with an increase in default probability. Feature values are color-coded according to the
scale on the right side, e.g., a high level of Customer Length in Months, shown in red, is associated
with a decrease in default probability, whereas a low feature level, shown in blue, is associated with
an increase in the probability of default. Missing values are colored grey, and all SHAP values are
measured in log-odds.

Most of the feature rows in Figure 7 display a distinct trend in how different feature
values affect the model. In other words, one can observe a clear distinction between the red
and blue dots, as high and low feature values contribute in different directions in terms of
default probability.

Dependence Plot

Contrary to LR, LightGBM can utilize complex cross-feature relations in its black box
calculation. SHAP can visualize this by plotting all instances in a scatter plot, with the
feature value on the x-axis and the importance measured in SHAP values on the y-axis.
By color-coding the values of a second feature, the plot can then display dependencies
between variables and how they affect the model. The insights from such dependence plots
can provide valuable information for banks and regulators about the inner workings of AI
models and thus help evaluate whether the model abides by the regulatory requirements
described in Section 2.
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Figure 8 shows how the SHAP values, and thus the feature effects, for Balance Standard
Deviation (L3M) vary for different feature values. Note that the data is not normalized.
The upward trend in the plot indicates that higher volatility in a customer’s balance over
the last 90 days is associated with an increase in default probability. Standard deviations
below approximately 2000 are associated with negative SHAP values, meaning that these
feature values contribute to nondefault. In the range between approximately 2000 and
approximately 30,000, the SHAP values increase steadily, denoting that the importance of
the Balance Standard Deviation (L3M) feature as an indicator of default increases. Above
30,000, the plot is significantly sparser as few customers experience such high levels of
volatility in their balance.

J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 15 of 25 
 

 

an increase in the probability of default. Missing values are colored grey, and all SHAP values are 
measured in log-odds. 

Most of the feature rows in Figure 7 display a distinct trend in how different feature 
values affect the model. In other words, one can observe a clear distinction between the 
red and blue dots, as high and low feature values contribute in different directions in 
terms of default probability. 

Dependence Plot 
Contrary to LR, LightGBM can utilize complex cross-feature relations in its black box 

calculation. SHAP can visualize this by plotting all instances in a scatter plot, with the 
feature value on the x-axis and the importance measured in SHAP values on the y-axis. 
By color-coding the values of a second feature, the plot can then display dependencies 
between variables and how they affect the model. The insights from such dependence 
plots can provide valuable information for banks and regulators about the inner workings 
of AI models and thus help evaluate whether the model abides by the regulatory 
requirements described in Section 2. 

Figure 8 shows how the SHAP values, and thus the feature effects, for Balance 
Standard Deviation (L3M) vary for different feature values. Note that the data is not 
normalized. The upward trend in the plot indicates that higher volatility in a customer’s 
balance over the last 90 days is associated with an increase in default probability. Standard 
deviations below approximately 2000 are associated with negative SHAP values, meaning 
that these feature values contribute to nondefault. In the range between approximately 
2000 and approximately 30,000, the SHAP values increase steadily, denoting that the 
importance of the Balance Standard Deviation (L3M) feature as an indicator of default 
increases. Above 30,000, the plot is significantly sparser as few customers experience such 
high levels of volatility in their balance. 

 
Figure 8. SHAP dependence plot showing SHAP values for Balance Standard Deviation (L3M), up to 
the 95th percentile. Each dot represents one customer and positive SHAP values are associated with 
an increase in default probability. 

The SHAP dependence plot can be further extended by color-coding interaction 
effects between features. This is displayed in Figure 9, where the SHAP values of Customer 

Figure 8. SHAP dependence plot showing SHAP values for Balance Standard Deviation (L3M), up to
the 95th percentile. Each dot represents one customer and positive SHAP values are associated with
an increase in default probability.

The SHAP dependence plot can be further extended by color-coding interaction effects
between features. This is displayed in Figure 9, where the SHAP values of Customer Length
in Months are displayed and colored based on the feature values of Balance Longest Positive
Interval (L3M). A clear trend is visible. Longer customer relationships with the bank are
associated with a lower probability of default. Furthermore, a few larger shifts in the
effect on the probability of default are visible. For instance, customer relationships shorter
than approximately four years (48 months) contribute to default (positive SHAP values),
whereas relationships longer than approximately 12 years (144 months) are very positive in
terms of creditworthiness (large negative SHAP values). More mature customers are thus
less likely to default on their loans.

However, the vertical spread in the plot indicates that other features interact with
Customer Length in Months. For customer lengths below 150, the vertical separation of
the color-coding suggests that Balance Longest Positive Interval (L3M) is one among these
variables. For customers with longer continuous positive balances (red dots), the feature
effect of customer length on default is reduced, as the red dots tend to lie closer to a SHAP
value of zero. However, for customers with a shorter continuous positive balance (blue
dots), the effect of customer length is more important for default prediction, as the absolute
SHAP values are larger. This pattern ends for customer lengths above 150, indicating that
other features have more significant interaction effects with Customer Length in Months for
these instances.
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Dependence Plot with Logistic Regression Coefficients

In the following subsection, we offer a novel way of comparing the SHAP feature
effects with the feature effects in the LR model. The LR dependencies were derived using
the coefficient of the features and mapping the binned values back to the original values to
use the same x-axis. The result is visualized with grey dots in the figures. This approach
can show where the feature effects differ between the models and provide insights as to
why one model outperforms the other.

Figure 10 combines a SHAP dependency plot with an LR dependency plot for the
Balance in Percentage feature. This feature measures the percentage share of the issued
consumer loan that the customer has outstanding at the time of credit scoring. Specifically,
a feature value of 0.0 means that the customer has repaid all its debt, while a value of 1.0
implies that all the debt is still outstanding. The leftmost dots in the plot, next to the y-axis,
represent missing feature values in the dataset provided by the bank and correspond to the
gray dots in Figure 7.

Both the SHAP and LR graphs display an upward-sloping trend, where higher feature
values are associated with a higher probability of default. Comparing the two graphs
plotted in Figure 10, one can observe that the magnitude of the SHAP feature effects is
greater than the LR model’s feature effects on both ends of the x-axis (further away from
y = 0). Thus, the LR model appears to underestimate the effects of the Balance in Percentage
feature, though it is able to capture the overall trend of the effects. For instance, the LR
model assigns the same negative contribution for all feature values below approximately
0.75. The straight grey LR line shows this. The LightGBM model is able to differentiate this
group of customers substantially. LightGBM clearly finds segments where the customers
with outstanding consumer loans lower than approximately 17% have notable negative
SHAP values, indicating significant creditworthiness. The difference between the models
is also visible for the largest feature values. For example, for customers with outstanding
consumer loans over 95%, LightGBM and SHAP yield a significantly higher probability
of default than the LR model. Overal, the LightGBM model’s advantage in its ability
to differentiate customers based on the Balance in Percentage feature can be a part of the
explanation of why the model significantly outperforms the LR model.
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An example where the feature importance of the LR model coincide better with the
SHAP values is shown in Figure 11. The figure contains both SHAP and LR dependence
plots for Average Used Credit (L3M). The feature measures the average share of the granted
credit limit for unsecured products drawn in the last three months. Drawn credit is defined
as a negative number and credit limit as a positive number, meaning that feature values
of −1.0 and 0.0 indicate that the credit facilities have been fully drawn and remained
untouched, respectively.
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Longest Positive Interval (L3M) can help to explain the spread. Among customers who have 
drawn most of their credit facilities (feature values below approximately −0.7), those with 
a shorter period of continuous positive balance (blue) are far more likely to default than 
those with longer positive stretches (red). For the latter, the default probability is actually 
reduced, meaning that a combination of a low feature value for Average Used Credit (L3M) 
and a high Balance Longest Positive Interval (L3M) is an indicator of creditworthiness. The 
LR model’s inability to detect such multidimensional relationships between features 
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model. The plot shows the feature effects of 20 instances that go into default. These 
instances are wrongly classified as non-default by the LR model, but correctly classified 
as default by the LightGBM model. The features on the y-axis are ordered by descending 
importance, whereas the upper x-axis shows the LightGBM predictions on these instances. 
The colors of the lines indicate the predicted probability of default; red indicates strong 
confidence in default, whereas blue indicates lower confidence. Moving from the bottom 
to the top of the plot, one can observe that each feature’s effects on the resulting prediction 
are added to the intercept. The intercept, represented as the gray vertical line in the plot 
at 10%, is the chosen cutoff for predicting default versus non-default. The value was 
selected as 10% as it represents the sum of the true proportion in the test class (8.8%), plus 
a small risk margin. 

Figure 11. SHAP dependence plot showing SHAP values for Average Used Credit (L3M), color-coded
based on the value of the Balance Longest Positive Interval (L3M) feature. Logistic Regression feature
effects for average used credit is displayed in grey and scaled to log-odds, corresponding to the SHAP
values on the y-axis. All values from the four separate Average Used Credit bins are mapped back to
original values to fit the x-axis.
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Average Used Credit (L3M) feature values below −0.9 contribute substantially to in-
creasing the probability of default in the LR model. The effects are more ambiguous in the
LightGBM model, as the vertical distribution of the SHAP values ranges from −1 to +2,
indicating that other variables might interact with this feature. From the color coding, it is
evident that the interaction effect between Average Used Credit (L3M) and Balance Longest
Positive Interval (L3M) can help to explain the spread. Among customers who have drawn
most of their credit facilities (feature values below approximately −0.7), those with a shorter
period of continuous positive balance (blue) are far more likely to default than those with
longer positive stretches (red). For the latter, the default probability is actually reduced,
meaning that a combination of a low feature value for Average Used Credit (L3M) and a
high Balance Longest Positive Interval (L3M) is an indicator of creditworthiness. The LR
model’s inability to detect such multidimensional relationships between features makes
it fundamentally inferior to advanced AI models, thus explaining some of the deficit in
predictive utility.

Decision Plot

Figure 12 can provide further insights into why LightGBM outperforms the LR model.
The plot shows the feature effects of 20 instances that go into default. These instances are
wrongly classified as non-default by the LR model, but correctly classified as default by
the LightGBM model. The features on the y-axis are ordered by descending importance,
whereas the upper x-axis shows the LightGBM predictions on these instances. The colors
of the lines indicate the predicted probability of default; red indicates strong confidence in
default, whereas blue indicates lower confidence. Moving from the bottom to the top of the
plot, one can observe that each feature’s effects on the resulting prediction are added to
the intercept. The intercept, represented as the gray vertical line in the plot at 10%, is the
chosen cutoff for predicting default versus non-default. The value was selected as 10% as it
represents the sum of the true proportion in the test class (8.8%), plus a small risk margin.
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Figure 12. Decision plot for 20 defaulting observations correctly classified by the LightGBM model but
wrongly classified by the LR model. Each line represents one customer. The plot is read bottom-up,
starting with the chosen intercept and adding feature effects until each observation’s final prediction
is reached. Features are ordered based on importance, in descending order.
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As we can see from the upper x-axis in Figure 12, the model displays a wide range
of default probabilities among the 20 customers. The predictions vary from 0.9 to 0.1 and
are color-coded accordingly. The SHAP feature effects show that most of the differences in
PD are caused by the four most important features, as one can observe a large spike in the
predicted probabilities of the red lines for the upper four features. For almost all instances,
the balance features Balance Longest Positive Interval (L3M), Balance Standard Deviation (L3M)
and Balance Mean have an elevating effect on the PD. This effect means that these three
variables contribute significantly to the LightGBM model’s correct default predictions.
Since the Logistic Regression model is created without the balance features, this might
explain why the LightGBM model correctly classified these instances as default, whereas
LR did not.

5.3.2. Local Explanations
Waterfall Plot

SHAP can further provide descriptive and intuitive explanations for individual pre-
dictions through waterfall plots. The SHAP waterfall plots show the contribution of each
feature value to the default prediction, with red and blue bars indicating positive and
negative contributions, respectively. The features are ranked by importance, and the actual
feature values are displayed on the left side. In Figure 13, the prediction by the LightGBM
model is displayed as f (x) and the positive bias or intercept from the LightGBM model is
expressed below the plot as E[ f (x)], both measured in log odds.
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Figure 13. SHAP waterfall plot visualizing the predicted feature contributions to a non-defaulting
customer. All values are in log odds. The prediction by the model, f (x), corresponds to a probability
of 0.0003%. The bias of the LightGBM model is displayed as E[ f (x)].

The feature value contributing the most to this particular non-default prediction is the
Balance Minimum Level (L3M) of 4564, showing that constantly having a positive balance
is an important indicator of creditworthiness in the LightGBM model. The second most
decisive contribution comes from the Customer Length in Months value of 161. The negative
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contribution of −2.25 reflects the findings in Figure 9, where customer relationships longer
than 144 months display a significant reduction in the probability of default. The depicted
customer is further part of the low-risk group with a stable economic situation identified
in Figure 8, exhibiting a Balance Standard Deviation (L3M) as low as 0.155. The last major
contributor to non-default is the Average Used Credit (L3M) feature value of −1.003. It
is interesting that having over-drawn the credit facilities actually contributes towards a
nondefault prediction for the customer in the LightGBM model. This differs from the LR
model, where Figure 11 shows that such low feature values elevate the PD significantly.
However, because the customer has a high Balance Longest Positive Interval (L3M) value, the
LightGBM model considers the combination of these features to have a positive impact
on the creditworthiness of the customer. The ability to capture such complex feature
interactions showcases one of the important strengths of the LighGBM model.

Waterfall Plot with Probabilities

The explainability of the SHAP waterfall plots can be further improved by converting
the feature effects from log-odds to probabilities.

An example of SHAP waterfall plots with probabilities is shown in Figure 14, where
we see that the predicted probability of default, f (x) = 58.8%, equals the sum of the
SHAP values in probabilities, and the expected probability of default from the model,
E[ f (x)] = 0.9%.

J. Risk Financial Manag. 2022, 15, x FOR PEER REVIEW 21 of 25 
 

 

 
Figure 14. SHAP waterfall plot with feature effects converted to probabilities. 𝐸 𝑓 𝑥  is the bias 
of LightGBM, whereas 𝑓 𝑥  is the prediction of LightGBM for this instance. All SHAP values are 
transformed to probabilities. Feature values shown on the left-hand side. 

The instance in Figure 14 represents a customer correctly identified as defaulting by 
the LightGBM model but predicted not to default by the Logistic Regression model. The 
plot clearly shows that the features from the balance dataset are important; Balance Longest 
Positive Interval (L3M), Balance in Percentage and Balance Standard Deviation (L3M) increase 
the probability of default with approximately 17%, 15%, and 11%, respectively. These 
features correspond with the most important features found in the decision plot in Figure 
12. The feature effects of the SHAP waterfall plots with scaled probabilities are intuitive 
and easy to understand, making them suitable for explaining model outcomes to non-
practitioners. 

5.4. The Economic Value of a More Accurate Model 
This section analyzes the potential economic value of the LightGBM model’s 

increased predictive performance compared to the bank’s LR model. 
For this purpose, we created two evaluation metrics: LGD and LP. LGD represents 

loss-given-default and is the associated loss from customers who received a loan but 
defaulted (false negatives). This metric was calculated as a proxy by assuming that all 
remaining balance is lost on default. LP represents lost profits and is the yearly alternative 
cost of not granting loans to non-defaulting customers (false positives). LP was calculated 
by assuming a flat 10% yearly interest rate on all consumer loans. A separate, three-
dimensional LP plot, which includes changes in interest rates, is provided in Appendix G. 

Figure 15 shows LGD (loss-given-default) and LP (lost-profits) for both models for 
various probabilities of default thresholds (x-axis). The left y-axis indicates the losses for 
LP and LGD, whereas the right y-axis indicates the total loss of having an imperfect model. 
As we can see from the figure, the losses from the LightGBM model are lower than Logistic 
Regression for both LP and LGD at almost all thresholds higher than 20%. Below 20%, the 

Figure 14. SHAP waterfall plot with feature effects converted to probabilities. E[ f (x)] is the bias
of LightGBM, whereas f (x) is the prediction of LightGBM for this instance. All SHAP values are
transformed to probabilities. Feature values shown on the left-hand side.

The instance in Figure 14 represents a customer correctly identified as defaulting
by the LightGBM model but predicted not to default by the Logistic Regression model.
The plot clearly shows that the features from the balance dataset are important; Balance
Longest Positive Interval (L3M), Balance in Percentage and Balance Standard Deviation (L3M)
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increase the probability of default with approximately 17%, 15%, and 11%, respectively.
These features correspond with the most important features found in the decision plot
in Figure 12. The feature effects of the SHAP waterfall plots with scaled probabilities are
intuitive and easy to understand, making them suitable for explaining model outcomes to
non-practitioners.

5.4. The Economic Value of a More Accurate Model

This section analyzes the potential economic value of the LightGBM model’s increased
predictive performance compared to the bank’s LR model.

For this purpose, we created two evaluation metrics: LGD and LP. LGD represents loss-
given-default and is the associated loss from customers who received a loan but defaulted
(false negatives). This metric was calculated as a proxy by assuming that all remaining
balance is lost on default. LP represents lost profits and is the yearly alternative cost of not
granting loans to non-defaulting customers (false positives). LP was calculated by assuming
a flat 10% yearly interest rate on all consumer loans. A separate, three-dimensional LP plot,
which includes changes in interest rates, is provided in Appendix G.

Figure 15 shows LGD (loss-given-default) and LP (lost-profits) for both models for
various probabilities of default thresholds (x-axis). The left y-axis indicates the losses for LP
and LGD, whereas the right y-axis indicates the total loss of having an imperfect model. As
we can see from the figure, the losses from the LightGBM model are lower than Logistic
Regression for both LP and LGD at almost all thresholds higher than 20%. Below 20%, the
losses from the LP of Logistic Regression are significantly larger than those from the LP of
LightGBM. This plot assumes that the default threshold is equal for both models. Further
details are provided in Appendix H.
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Figure 15. Approximated costs for imperfect credit scoring models. The x-axis indicates the threshold
for default, whereas the left y-axis indicates potential losses. The shaded area displays the difference
in total loss between Logistic Regression and LightGBM and is measured on the right y-axis. Loss
given default (LGD) and lost profits (LP) are plotted, for both LightGBM and Logistic Regression.

Despite being an approximated figure, Figure 15 indicates that bank losses can be
substantially reduced by enabling AI in credit scoring. As the current effective interest rates
on consumer loans in Norway typically range between 10% and 25%1, having an internal
threshold of default in the bank somewhere between 10% and 20% seems like a reasonable
approximation. At these thresholds, the lost profits of the LightGBM model are significantly
lower than for the LR model, with a reduction ranging from about NOK 35,000,000 at 10%
to 22,000,000 at 20%. This benefit clearly outweighs the slight inferiority of the LightGBM
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model’s LGD for the same thresholds. The total reduced losses for using LightGBM instead
of LR, on the test set, shown as the shaded area with the y-axis on the right-hand side, are
between NOK 30,000,000 and 20,000,000 yearly, depending on the threshold for default.

6. Conclusions

The objective of this study was to apply explainable artificial intelligence (XAI) tech-
niques to credit scoring in banking in order to be able to interpret and justify the models’
predictions. We have shown that LightGBM models outperform LR models for credit
scoring in terms of both predictive capability and explainability, and that the economic
value of the predictive improvement can be substantial.

The main contributions of this paper are:

1. Combining monthly customer application data (income, gender, age, etc.) with daily
account data (i.e., transactions data)

2. Showing why and how LightGBM outperforms the bank’s current Logistic Regression
model, predicting default on unsecured consumer loans

3. Exploring how XAI can improve interpretability and reliability of state-of-the-art AI
models for credit default prediction

4. Proposing a method for measuring the economic value of a more accurate credit
default prediction model

We further argue that the combination of SHAP and LightGBM has the potential to
answer the three challenges highlighted by EBA, previously discussed in Section 1.

• SHAP can ease the challenge of interpreting results

The local explanations provided by waterfall plots show that SHAP provides an
intuitive approach for interpreting results.

• SHAP can facilitate managers’ understanding of the credit models

The dependence plots with LR coefficients provide improved comparisons between dif-
ferent credit scoring models, enabling managers to bolster their understanding of the models.

• SHAP can help to justify a model’s results to supervisory authorities

Comprehensive global explanations visualizing feature importance, feature depen-
dencies, and interactions between features enable a detailed understanding of the different
features’ impact on the model output.

In addition, the local explanations provided by SHAP enable justifications for individ-
ual predictions, which is a regulatory requirement imposed by GDPR (European Union,
Parliament and Council 2016).

In closing we mention some potential future improvements to this study, which
might further help enabling XAI for credit scoring. Different tree-based models with XAI
should be evaluated on various bank data. A constraint on our study is the propriety
nature of our data set and the bank’s logistic regression model. The LR model used
for comparing our models should be open-sourced facilitating a more comprehensive
comparison with LightGBM. This would require a strategic change at the bank. More
research on the calibration of LightGBM models should be conducted. Details on our
calibration method, demonstrating the significance of calibration for the LightGBM model’s
predictive capability, can be found in Appendix H.2. We believe default predictions could
be further improved by developing better calibration methods for the LightGBM model.
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