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ABSTRACT Single Image Super-Resolution (SISR) using Convolutional Neural Networks (CNNs) formany
applications in supervised manner has resulted in significant improvement in state-of-the-art performance.
Such supervised models achieve remarkable accuracy; albeit their poor generalization ability for real-world
Low-Resolution (LR) images. Supervised training in many SR works involves synthetically generated LR
images from its corresponding High-Resolution (HR) images. As the distribution of such LR observation is
relatively different from that of real LR image, the supervised training in SISR task results in a degradation
when applied on real-world data. SISR has been scaled to real-world data recently by posing the unsupervised
problem into a supervised one through learning the distribution of noisy LR observation first, following
which supervised training is performed to obtain the SR image. It therefore involves two steps where the
accuracy of SR image relies on how closely the LR’s distribution is learnt in the first step. In this work,
we overcome such limitation by introducing unsupervised denoising network to transform real noisy LR
image to clean image and then pre-trained SR network is utilised to increase the spatial resolution of cleaned
LR image to generate SR image. Thus, instead of evaluating the denoised image in LR space to train the
denoising network, we inspect the denoised image in SR space which allows to overcome the SR network’s
generalization problem. The proposed Unsupervised Denoising framework for Super-Resolution (UDSR)
is validated on real-world datasets (NTIRE-2020 Real-World SR Challenge validation and testing dataset
(Track-1)) by comparing it with many recent unsupervised SISR methods. The performance of denoising
and SR networks is superior in terms of various perceptual indices such as Perceptual Index (PI) and Ma
Score in addition to numerous non-references metrics.

INDEX TERMS Convolutional neural network, generative adversarial network, image enhancement, image
restoration, single-image super-resolution, unsupervised learning.

I. INTRODUCTION
In many vision-driven applications such as surveillance and
autonomous driving, the fidelity of system relies on the
sensor’s capability of capturing High-Resolution (HR) data.
Such sensors capture precise details of the scene being
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observed which is preferred for detection and/or feature
extraction for both machines as well as to humans. However,
installation and use of such high resolution sensors is limited
by many factors such as cost of production, sensor space
requirements, and ease of manufacturing which prevent them
in those applications. To tackle this problem, many works
have proposed image Super-Resolution (SR) as an alternate
approach to obtain HR image from given LR observations
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(one or many). Despite its advantages, image SR remains an
open research problem due to its ill-posed nature, complexity
and unavailability of proper quantitative assessments [1].
Mathematically, the relation between an LR and HR images
can be expressed as,

ILR = (IHR ⊗ k) ↓s +n, (1)

where, k , s and n denote blur kernel, down-scaling factor
and noise, respectively. Further, ↓ indicates down-scaling
operation.

Traditionally, the image SR problem was successfully
solved by many theoretical approaches such as prediction-
based methods [2], [3], [4], edge-based methods [5], [6],
statistical methods [7], patch-based methods [8], and sparse
representation methods [9], [10]. However, these approaches
were limited to attain the accuracy upto certain extent
until the use of deep learning in the field of computer
vision. The recent advancements in the field of computa-
tional resources and abundant availability of datasets have
allowed the increased use of neural networks (specifically
Convolutional Neural Networks (CNNs)) based processing to
numerous problems of computer vision including the task of
Single Image Super-Resolution (SISR). By employing CNN
for SISR, researchers have obtained better accuracy over the
traditional methods; however, most of approaches are trained
in supervised manner. The drawback of such supervised
training is the unavailability of true Low-Resolution (LR)
images and thus they are created by applying known degrada-
tion (usually bicubic downsampling) to the HR images [11],
[12], [13], [14]. Such LR-HR pairs are employed in the train-
ing of CNN model which performs superior for synthetic test
images. However, the same network tested on the real-world
LR images performs poorly as a result of what is known as
domain shifting problem in deep learning where the statistical
distribution of synthetic LR image used for training is rela-
tively different from that of true/natural LR observation [15],
[16]. Further, many SR works in [17], [18], and [19] are built
on the estimation of the kernel (i.e., k in Equation 1); however,
such estimated kernel is often dissimilar from the real-world
scenario affecting the quality of final SR image [20].

The above mentioned shortcoming associated to LR gen-
eration can be solved by utilizing true LR-HR pairs in super-
vised training. One such attempt was made by Cai et al. [21]
in RealSR dataset, where the LR images have been acquired
by changing camera’s settings along with image registration
technique to reduce the registration error between LR and
HR data. Based on this dataset, an SR challenge had been
organized in NTIRE 2019 [22] and numerous works have
been published [23], [24], [25]. However, it is prominent that
RealSR dataset is limited to certain upscaling factors and,
gathering of such genuine photographs is inefficient and time-
consuming, necessitating the use of specifically developed
technology and related knowledge to reduce errors [26], [27].
To circumvent this limitation, Lugmayr et al. [16] intro-
duced unsupervised training to the problem of SISR, where
true LR-HR pair is not mandatory. In this direction, a few

FIGURE 1. The performance of the proposed method (UDSR) compared
with different existing methods for unsupervised super-resolution for the
up-scaling factor of 4 on representative image of NTIRE-2020 Real-World
SR challenge validation dataset.

challenges such as AIM 2019 [28] and NTIRE 2020 [15],
have been organised recently to explore the idea of unsu-
pervised training for SISR to real-world data. Through such
challenges, numerous works [23], [29], [30], [31], [32], [33]
obtain state-of-the-art accuracy for real LR images; however,
most of these works pose unsupervised training as supervised
by learning the distribution of synthetic LR observation to
that of natural LR data. A learned LR distribution is then used
to clean the LR observation and later paired with its corre-
sponding HR image for supervised training. Additionally, the
idea of using adversarial samples for unsupervised training
has also been introduced in USISResNet [33], where the
noisy real LR image is transformed to clean SRwithout learn-
ing LR distribution explicitly. However, optimising a model
using unsupervised learning to obtain SR via combining
these individual steps (i.e., denoising and SR) is challenging.
Therefore, Ahn et al. proposed a solution called SimUSR [34]
that employs the BM3D denoising algorithm [35] followed
by modified zero-shot learning method. Such idea obtains
fair fidelity on distortion metrics; however, the perceptual
outcome is inferior due to use of loss based on texture/finer
details in denoising task with BM3D method [35] which is
used to train zero-shot learning stage.

Noting these constraints, we propose an unique SR
design based on an unsupervised approach using a two-
step process of denoising and super-resolution. The pro-
posed unsupervised denoising for real-world SR tasks,
referred as UDSR, not only improves the SR performance
but also achieves state-of-the-art denoising performance.
To demonstrate applicability, the proposed method is com-
pared to many state-of-the-art unsupervised approaches such
as dSRVAE [36], Kim et al. [31], and RCA-GAN [30] and
their SR results as depicted in Fig. 1 to visually inspect
various methods for upscaling factor ×4 on a single image
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of the NTIRE 2020 Real-world SR challenge Track-1 vali-
dation dataset [15]. The proposed model (i.e. UDSR) gains
improvement in SR images with superior preservation of
high-frequency details, as one can note from Fig. 1. Thus, the
proposed approach suppresses noise of LR image in a robust
and efficient manner and obtains superior SR result over the
other existing state-of-the-art unsupervised techniques. Thus,
the primary contributions of this work are summarised as
follows:

• We propose a new unsupervised approach for SISR
task by including denoising network for real-world LR
data. Further, the proposed SR network is placed in
between denoising and discriminator networks; thus,
they are trained simultaneously to improve the qual-
ity of the denoising algorithm as well as the com-
bined performance of both networks (denoising and
super-resolution).

• Further, we introduce Residual Channel Split Block
(RCSB) in the proposed SR network to act as a back-
bone layer which utilizes channel splitting concept with
residual and densed operations. We assert that such a
design of Residual Block (ResBlock) helps to extract
meaningful details from the LR observation in optimized
manner and the same is also validated experimentally.

• The optimality and robustness of the proposed denoising
network to derive clean LR observation is validated
quantitatively and quantitatively in an extensive ablation
study. In addition to the SR performance, we have also
evaluated the performance of the denoising network in
subjective and quantitative manners.

• The proposed approach benefits from the incorporated
Triplet loss that helps to find an embedding function
mapping data with the same label to be close in embed-
ding space and push the data of different classes far
apart. Such a design further addresses the training chal-
lenges seen in GAN models. In other words, vanilla
GAN distinguishes the SR from HR only, which is fre-
quently unstable; the triplet loss, on the other hand, seeks
to distinguish between SR with LR as well as with HR.

• The proposed method (i.e., UDSR) is extensively val-
idated on the real-world data (i.e., NTIRE 2020 Real-
world SR Challenge dataset [15]), where the noisy LR
images are given (i.e., Track-1). In addition to the visual
inspection of different SR results, the proposed method
is also evaluated on reference-based scores (i.e., LPIPS,
pair of PI-RMSE and Ma et al. score) and no-reference-
based metrics (i.e., NIQE, BRISQUE and PIQE). The
thorough experimental analysis shows that the proposed
method trained in unsupervised manner outperforms to
the recently proposed SR techniques for real-world data.

• Finally, the statistical evaluation of different quantitative
measurements has also been performed in order to sup-
port the performance gain of the proposed method.

In the rest of the paper, Section II reviews the different
prior SISR works on deep learning-based approaches for

handling real-world SR problem. The details of the proposed
method (i.e., UDSR) is discussed thoroughly in Section III
followed by experimental justification in Section IV. Finally,
the limitation and conclusion of work is reported in Section V
and Section VI, respectively.

II. RELATED WORKS
Single Image Super-Resolution (SISR) is more frequently
encountered challenge as Multiple Image Super-Resolution
(MISR) [37]. Considering the scope of the work, we have cat-
egorised the existing literature of SISR in terms of traditional,
supervised and unsupervised approaches. Since the proposed
approach is based on unsupervised training, it is elaborated at
length in comparison with other categories.

A. TRADITIONAL SR TECHNIQUES
Traditionally, numerous SR works were based on different
mathematical formulations to improve the quality of SR
images. For instance many works were based on reconstruc-
tion [38], [39], regularization [40], patch [41], [42] and also
on self similarity methods [43], [44]. In these methods, an LR
image formation is assumed and problem is posed as inverse
process. Apart from these, many methods have been uti-
lized interpolation techniques which is computationally effi-
cient [5], [45], [46], [47], [48]; however, artifacts are observed
in the SR results obtained using these methods. Importantly,
the aforementioned traditional methods are limited to obtain
the accuracy upto some extent. In the recent past, the use of
deep learning in the field of computer vision has been swelled
due to the availability of computing resources and abundant
datasets. The emerging use of deep models to the various
vision-driven tasks including to the problem of SISR provides
higher accuracy level as compared to traditional methods.

B. SUPERVISED SR METHODS
Convolutional Neural Networks (CNNs) based SR methods
train deep networks in a highly supervised manner using
synthetically generated LR images from the given HR data.
Since learning from LR to HR space is complex process,
they typically obtain an upsampled LR image first and then
improve the quality of SR image using deep neural net-
work. Dong et al. [49] proposed a pioneer model referred
as SRCNN, to learn an end-to-end mapping from interpo-
lated LR images. Such pre-upsampling, on the other hand,
has many drawbacks as most operations are conducted in
high-dimensional space. Further, the time and space costs
are substantially higher than with other frameworks [50].
Later, Dong et al. [14] advocated that most computations can
be performed in low-dimensional space by applying post-
upsampling to improve computational efficiency. Here, the
computation and spatial complexity are greatly decreased as
the feature extraction procedure, which has a high compu-
tational cost, only occurs in low-dimensional space and the
resolution rises only at the end. As a result, such pipeline
has become one of the most popular in many state-of-the-art
works [12], [13], [51].
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Further, He et al. [52] proposed ResNet model for learning
residuals instead of a comprehensivemappingwhich has been
frequently used by many recent SR models [13], [51], [53].
This can be classified into two categories: global [54], [55]
and local [56], [57]. Additionally, by precisely modelling
channel dependency, Hu et al. [58] propose a ‘‘squeeze-and-
excite’’ block to improve learning ability. Combining such
channel attention mechanism with SR, Zhang et al. [56]
introduced RCAN model, which considerably increases the
model’s representation ability and hence, also the accuracy of
SR results. To aid in the learning of feature correlations, Dai
et al. [59] further propose a Second-Order Channel attention
(SOCA) module. Moreover, in SR model [60], Zhang et al.
substitute conventional convolution with dilated convolution
to double the receptive field and obtain superior perfor-
mance. Further, with the help of recent breakthroughs in
lightweight CNNs, IDN [61], ChasNet [62] and CARN-M
[63] recommended for to employ group convolution instead
of conventional convolution. The group convolution greatly
decreases the number of parameters and operations while
sacrificing a small amount of performance. Further, Ignatov
et al. [64] recently proposed depthwise separable convolu-
tion to improve the speed up of SR architecture. Recently,
the transformers for natural language processing has further
prompted researchers to adapt it for computer vision applica-
tions, including super-resolution [65], [66], [67], [68] where
it is noted promising to improve accuracy. However, even in
such frameworks, a SR model is generally trained using a
supervised manner with LR images created by bicubic down-
sampling. This leaves the problem of realistic degradationHR
images unresolved and such models tends to fail when tested
on an actual LR image [15].

C. UNSUPERVISED SR TECHNIQUES
The supervised training in SISR does not translate well to
real-world data as its distribution differs significantly from
that of synthetically generated LR observations [15], [16],
[28]. To tackle this problem, Cai et al. [21] created the
RealSR dataset with real LR and HR data. On the basis of
this dataset, the NTIRE-2019 challenge [22] was release,
and numerous papers have been published [69], [70], [71].
However, creating a real LR-HR pair, on the other hand,
is a time-consuming job that necessitates additional hard-
ware and professional hands to avoid image acquisition
problems [72], [73].

An alternative way to solve the above challenge is unsuper-
vised trainingwhere original LH-HR pairs are not demanded.
Here, unsupervised training is accomplished through adver-
sarial learning by employingGenerativeAdversarial Network
(GAN), Cycle GAN, Cycle in Cycle GAN and variational
autoencoder within the networks. The primary task of such
network is to learn unknown degradation of LR observa-
tion. However, such models often suffer from stability issues
and thus, they are hard to get successful trained model.
To accelerate the solution for unsupervised training, couple
of challenges have been organised recently in ICCV-2019

(called AIM 2019 Challenge [28]) and CVPR-2020 (called
NTIRE 2020 Real-world SR Challenge [15].

Different strategies used to handle the problem of unsuper-
vised SR in the existing literature are depicted in Fig. 2 for the
convenience of the reader. Many works in [31], [32], [36],
and [23] achieve the unsupervised training by splitting it into
two sub-tasks as shown in Fig. 2(a). In first task, degradation
of real-world LR observation is learned and later, the learnt
distribution is used to create synthetic LR image [23], [32].
A few methods in [34], [36], and [31] generate clean image
from real-LR image by employing adversarial training. In the
following step, such generated/synthetic LR image are paired
with its true HR image to train the SR network in supervised
manner. However, the accuracy of the SR network is largely
depends on the learning capability of unsupervised network
and thus, error in the first step affects significantly the sequen-
tial task which deteriorates the overall performance. Addi-
tionally, a few techniques in [30], [74], and [75] employ
random augmentation with multiple noise models to train the
SR network (see Fig. 2(b)). Based on this concept, method
in [76] combines several augmentation techniques. Similarly,
authors in [77] proposed a second order degradation to model
the realistic noise environment to train SR network. Such
idea makes the SR network robust to the actual noisy LR
to tackle the aforementioned problem with two sequential
tasks. However, this strategy presumes a true noise model,
which may differ from the real-world noise degradation.
To mitigate this issue, Mou et al. [78] proposed a metric
calculation strategy to handle un-quantified noise. Further,
Prajapati et al. introduced USISResNet [33] and DUSGAN
[29], a GAN-based approach that uses the capabilities of
unsupervised learning with content loss estimated from a
bicubic up-sampled picture to maintain the content of an LR
image. Instead of sequential learning, they directly learn the
noise degradation along with SR in a single step which is
depicted in Fig. 2(c). However, the drawback of this idea is
training of network which may result in poor preservation of
the original content (i.e. less PSNR) and thus, it limits their
applicability. In comparison to all of these existing methods,
an unique method is been suggested in this paper that learns
super-resolution first and then noise reduction with an SR
network to generalise the entire framework’s performance is
illustrated in Fig. 2(d). Thus, the proposed UDSR framework
not only works with super-resolution on real-LR images,
but it also outperforms in terms of both quantitative and
qualitative removal of noise.

III. PROPOSED METHOD
The framework of the proposed method is depicted in Fig. 3.
To obtain superior perceptual quality of SR solutions in
unsupervised manner, we adopt GAN models due to their
ability to generate images with better visual quality. As men-
tioned earlier, it is designed for two specific tasks: Denoising
and Super-Resolution (SR). Thus, the proposed approach
consists of four different networks: Generator-DeNoise and
Generator-SR, Discriminator (D) and Quality Assessment
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FIGURE 2. Different strategies involved in the existing unsupervised SR
approaches. Here, (1) and (2) indicate the order of two steps in the given
strategy.

(QA) networks. The function of Generator-DeNoise network
is to obtain clean LR image from the given noisy LR obser-
vation. The output of this is provided to the Generator-SR
network which produces SR image from the available clean
LR image. The use of Discriminator (D) network is to train
generator networks in adversarial fashion. The QA network is
helpful to improve the visual quality of SR image through loss
function which is used to train Generator-DeNoise network.
In Fig. 3, all above four networks are represented with differ-
ent colors in rectangle cubical blocks fashion. The Generator-
SR and QA networks are shown with blue colors which
mean that these networks are pre-trained first and retained
fixed in the framework. The SR network is pre-trained in
adversarial manner with conventional supervised training.
Later, the remaining networks (i.e., Generator-Denoise and
Discriminator) are optimized in the adversarial fashion and
hence, they are drawn with yellow color. They are trained
in unsupervised manner to obtain denoised LR (i.e., clean
LR) as well as SR images. The SR network trained prior
using synthetically clean dataset cannot handle the noise
presented in real-world environment.Moreover, we freeze the
parameters of the SR network in the training of the generator
network. Hence, in the proposed framework, to improve the
quality of SR images using suggested losses, the generator
network acts like denoising network which provides clean LR
images from the real-world noisy images to the SR network.

Thus, as depicted in Fig. 3, a real-world noisy LR image
is passed through the denoising network which acts as a
generator in adversarial fashion and hence, cleaned LR image
is obtained from this network. It is further fed to pre-trained
Generator-SR network to obtain the super-resolved image.
The available SR image is given to discriminator and QA
networks for computing necessary losses and based on those
losses, the Generator-DeNoise and discriminator networks
are trained in unsupervised manner. It is necessary to men-
tion here that the training of the Generator-DeNoise and
discriminator networks is performed with unpaired LR-HR
data (see in Fig. 3) of NTIRE-2020 Real-World SR Challenge

dataset [15]. Thus, due to the unavailability of true LR-HR
pairs in this dataset, the problem of the SR task is converted
into unsupervised training which is hard to solve with tradi-
tional GAN loss. Hence, we introduce a modified GAN loss
which is conceptualized from triplet loss [79]. In addition to
the modified GAN loss (i.e., triplet loss), the proposed frame-
work also includes color and Quality Assessment (QA) [33]
losses to remove the noise of LR image and to improve
the perceptual quality of the SR image. The design aspects
of each of above network are elaborated in details in the
following texts.

Generator-SR network: The proposed SR network is pre-
trained initially in an adversarial manner using supervised
training. It also facilitates the task of unsupervised SR by
employing it after denoising network during inference time.
The architecture of Generator-SR network is displayed in the
Fig. 4(a). To make it simple, the functionality of whole SR
network is divided in three modules as: Low-Level Feature
(LLF) extraction, High-Level Feature (HLF) extraction and
Image Reconstruction (IR) modules. The LLE extraction
module consists of three parallel convolutional layers with
different kernel size of 3×3, 5×5, and 7×7. Such dissimilar
size of kernels assists the network to learn different features
available at various reception fields in the LR image. They are
equipped with 64 channels which are concatenated further to
make them to 192 features maps. In the last layer, we pass
these featuremaps to a convolution layer with 3×3 kernel and
64 channels. Thus, the output of the LLF extraction module
(ILLF ) can be represented mathematically as,

ILLF = FLLF (ILR), (2)

where ILR indicates LR image and FLLF denotes the func-
tionality of the LLF extraction module in the proposed SR
network. rk in the proposed framework.

The low-level features are further passed through a deeper
CNN module referred here as High-Level Feature (HLF)
extraction module. This consists of sequence of Residual
Channel Splitting Blocks (RCSBs) followed by Channel
Attention Block (CAB). The design of RCSB is the backbone
of SR network as it extracts vital features from the LR image.
In addition to such sequential layers, one skip connection is
also appended to improve the stability of the network [13],
[51], [80]. The RCSB is designed using a sequential arrange-
ment of Channel Splitting Blocks (CSBs) followed by Pixel
Attention Blocks (PABs) connected in residual fashion as
displayed in the Fig. 4(b). Inspired from [81], the architec-
ture of the CSB comprises of channel splitting technique to
perform two independent operations on two separate paths
which are combined at end and multiplied to the skipped
path. Inspired from the literature [1], [13], [51], [63], [82],
the most common operations to extract features consist of
residual and dense operations. Hence, in the proposed RCSB
module, we employ them on different paths after the chan-
nel splitting (see Fig. 4(b)). Further, the attention based
approaches improve the performance of the SR network by
changing the features based on the statistics of the up-coming
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FIGURE 3. The framework of the proposed unsupervised denoiseing SR (UDSR) for Real-World image for the up-scaling factor of ×4. Here, blocks
represented with blue color are pre-trained networks initially in supervised fashion and networks shown with yellow color indicate that they are
trained later in unsupervised manner using unpaired LR-HR images.

FIGURE 4. The architecture of the proposed SR network-UDSR to upsample the denoised LR image for the factor of ×4.

features. For instance, RCAN [56] introduces the channel
attention block while PAN [83] introduced pixel attention
scheme which boosts the performance significantly. Inspired
from these, the proposed SR model utilizes channel attention
scheme in CAB block and pixel attention scheme in PAB

block which are illustrated in the Fig. 4(a) and Fig. 4(b),
respectively. The concatenated features available from two
different paths are further multiplied by constant available
from residual connectionwhich is inspired from [83]. Further,
it is noteworthy that the first convolutional layer in RCSB
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uses batch normalization to improve the stability of the train-
ing process [84] (see Fig. 4(b)). By denoting the functionality
of the HLF extraction module by FHLF , we can represent the
high-level features IHLF by following equation.

IHLF = FHLF (ILLF )+ ILLF . (3)

In the last module (i.e., Image Reconstruction module
(IR)), the high-level features are mapped to the required
dimension of the SR image. First, the usage of each up-
sampler layer resizes the features by ×2 which effectively
increases the spatial dimension by ×4 (use of two such up-
sampler blocks). Each up-sampler consists of nearest up-
sampler followed by convolutional layer with kernel size of
3 × 3. However, the channels of such features are 64 which
is finally reduced by 3 channels by using couple of convo-
lutional layers at end in this module network. Additionally,
we also employ the usage of Global Skip Block (GSB) to
improve the stability of the proposed network. The resultant
SR image (ISR) can be formulated as,

ISR = FIR(IHLF )+ FGSB(ILR). (4)

Here, FGSB and FIR indicates the functionality of the GSB
and IR modules, respectively. As depicted in Fig. 3, the
denoised SR image available at the end of SR network is given
to discriminator due to following advantages.

• Usage of SR network before discriminator helps to
enlarge the contents of denoised image which improves
the overall quality of adversarial learning pipeline due to
higher spatial resolution.

• Moreover, the intermediate usage of SR network in
between Generator-DeNoise and Discriminator network
helps to generalize the performance of the denoising
network along with SR network which improves the task
of unsupervised SR.

Generator-DeNoise Network: Employing a single gener-
ator network for the SR task in unsupervised manner for real
world noisy image, is difficult which motivates us to deploy
an another generator network (i.e., Generator-DeNoise) for
cleaning the noisy LR observation before SR task. Such
design of two networks allows to train the proposed denois-
ing network along with pre-train SR network in unsuper-
vised manner with adversarial learning. Hence, as men-
tioned earlier, by making the SR network fixed, the denoising
network is trained in unsupervised setting to eliminate the
unknown degradation available in real-world LR images.
The architecture of the denoising network in the proposed
framework is depicted in the Fig. 5 which is inspired from
DnCNN [85] where residual has been learnt using sequence
of 16 (i.e., k = 16) convolutional layers. However, instead
of learning residual directly on 3 channels, the proposed
network employs residuals at 64 feature maps which are sub-
tracted from the input features. Moreover, the initial features
are extracted using parallel usage of separate convolutional
layers having different kernel sizes similar to the proposed

SR network. Additionally, one can notice that the convolu-
tional layers used in residual path utilized the batch normal-
ization which effectively improve the denoise performance.
The effectiveness of each parameter and/or setting utilized
in the denoising network are studied separately and also
demonstrated experimentally in ablation section later in the
manuscript.

Quality Assessment (QA) Network: The QA network is
used to evaluate the quality of SR image based on Mean
Opinion Score (MOS) score provided at the training of the
network. The architecture of this network used as proposed
by Prajapati et al. [33]. It is used as a loss fucntion in order to
train the two generators and its effectiveness in the proposed
framework is also justified in ablation study.

Discriminator (D) network. Instead of traditional dis-
criminator, the proposed framework utilizes patch discrimi-
nator [86] which examines the image into the small patch and
discriminates each patch either as HR patch or fake/generated
patch. Compared to a classical discriminator, this discrim-
inator does not use fully connected layers to generate a
single predictive value for the entire image. Instead, it gen-
erates localized predictive values to describe information
for each patch. The architecture of the patch discrimi-
nator consists of 6 sequential convolutional layers with
64-128-256-512-512-1 channels. Moreover, each convolu-
tional layer uses a 4 × 4 kernel as suggested in the original
patch discriminator [86]. All convolutional layers except the
last one follow with leaky ReLU while the last convolutional
layer has a Sigmoid activation function to generate output in
the range of 0 to 1.

A. LOSS FUNCTIONS
It is noteworthy to mention that the adversarial learning
produces better SR results; however, it results in stability
problem during training due to involvement of two different
networks. Hence, the loss function plays a major role to train
network when trained in an adversarial manner [87], [88],
[89]. In this subsection, we discuss different loss functions
employed in the proposed framework to train each module.

As discussed earlier, we train SR network prior to the
adversarial training of denoise network in the framework.
Since the aim of the work is to obtain high fidelity SR
solutions for real-world degraded LR images, we use adver-
sarial approach to train the SR network in supervised manner.
To train the SR network, we use following combination of
losses:

LSR = λ1L1(I
Synthetic
SR , IHR)+ λ2LVGG(ISyntheticSR , IHR)

+λ3LRa−GAN (ISyntheticSR , IHR). (5)

Here, ISyntheticSR denotes SR image generated on synthetically
generated LR image which is represented by ISyntheticSR =

FSR(I
Synthetic
LR ), where FSR denotes the function of SR net-

work. It is worth mentioning here that during the train-
ing phase of SR network only, we generate the LR
image (ISyntheticLR ), using known down-sampling operation
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FIGURE 5. The architecture of the proposed denoising network (Generator-DeNoise).

(i.e., bicubic) from the available HR images (IHR).L1 denotes
L1 loss between ISyntheticSR and IHR, while LVGG represents
VGG perceptual loss suggested by Ledig et al. [51]. In addi-
tion, we use relativistic GAN approach [90] for estimating
adversarial loss which is denoted by LRa−GAN . The values of
λi are set empirically to 0.01, 0.1, and 0.05 for i = 1, 2, 3.
Further, the denoising network (Generator-DeNoise) is

trained in an adversarial manner using discriminator network
which are illustrated with yellow color in Fig. 3. This is
accomplished by using unsupervised mode of training. In the
proposed framework, we use a combination of three types of
losses as:

LDenoise = L1(IRealSR ,B(IRealLR ))+ LQA(IRealSR )

+LLSGAN−G(IRealSR ). (6)

The SR image in the learning is generated by denoising
network following the SR network and same is represented
as IRealSR = FSR(FDenoise(IRealLR )). B denotes the bicubic up-
sampling function. Further, inspired by Prajapati et al. [33],
we incorporate QA loss i.e., LQA to improve the perceptual
quality of the SR image. Due to the stability issue in unsuper-
vised training, here we employ Least-Square (LS) GAN loss
(i.e., LLSGAN−G) [91] represented as,

LLSGAN−G =
N∑

(1−D(IRealSR ))2. (7)

Here, N represents batch size during training iteration. The
classical GAN frameworkwhich uses non-saturating loss (i.e.
−log(D(·))) or min-max loss (i.e. log(1− D(·))) saturates on
either side and hence it creates problem of vanishing gradient.
It can be resolved by least-square based loss which is not
saturating on either side. Additionally, authors in [91] also
claim that the LSGAN generates better quality of images as
compared to classical GAN.

Additionally, to improve the quality of generated SR image
and also to stabilize the training, the loss function of the
discriminator has beenmodified in this manuscript.We incor-
porate the notion of triplet loss with few modifications to
optimize the discriminator network. It can be written as

LLSGAN−D =
N∑(

D(B(IRealLR ))+D(IRealSR )+ (1−D(IHR))
)
,

(8)

where, the bicubic upsampled image (B(IRealLR )), super-
resolved image (IRealSR ) and unpaired HR image (IHR) are

treated as negative, anchor and positive samples respectively.
By inserting negative samples (i.e. bicubic up-sampled noisy
LR image), we are providing more clue to the discriminator
network which helps to stabilize the adversarial learning
[79]. Thus, by comparing anchor with negative and posi-
tive samples, we maximize discriminator score for positive
sample and minimizing the score for negative and anchor
samples by optimizing the discriminator network. Further,
the vanilla GAN suffers with the problem of mode col-
lapse [92] which can also be solved by triplet loss based GAN
framework [93], [94].

IV. EXPERIMENTAL ANALYSIS
We have conducted numerous experiments to validate the
proposed method. These experiments have been performed
on a system equipped with an Intel Xeon(R) Dual CPU with
128GB RAM and a dual NVIDIA Quadro P5000 GPU with
16GB memory. The PyTorch library is used to implement the
proposed framework. To show the different details associated
with experimental details, this section is categorized in the
series subsections. The training dataset and augmentation
strategies, as well as the hyper-parameters utilized to train the
network, are discussed in Section IV-A. Further, the testing
dataset, as well as the reference-based and no-reference-
based image quality assessment criteria utilized here to com-
pare the proposed network’s performance are detailed in
Section IV-B followed by ablation study in Section IV-C.
Later, the performance of the proposed SR method is com-
pared with other state-of-the-art methods quantitatively in
Section IV-D and statistical analysis of the performance is
presented in Section IV-E. Apart from the quantitative com-
parison, the qualitative comparison is also provided in the
Section IV-F. Last, the computational complexity of the pro-
posed method is compared with other existing methods and
same is presented in Section IV-G.

A. TRAINING DETAILS AND HYPER-PARAMETER
SETTINGS
The proposedmethod uses two independent training pipelines
to address the unsupervised real-world SR problem. In the
first stage, the SR network along with discriminator are
trained on DIV2K [95] by creating an LR image synthetically
using bicubic downsampling. This dataset consists of total
1000 images among which it is divided into 800-100-100 for
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training-validation-testing purposes. It is trained upto 2×105

number of iterations with a batch size of 16. Apart from the
SR network, we also performed pre-training of the Quality
Assessment (QA) network which has been trained to estimate
better Mean Opinion Score (MOS) based on human rating.
To train this network, we used KADID-10K [96] dataset
which contains 10,125 images obtained using 81 unique pris-
tine images with 25 types of degradation at 5 levels of each.
The detailed description related to network architecture and
training strategy are discussed in USISResNet [33].

After the completion of the first stage of training, the
trained SR and QA networks are kept fixed to train the
denoising network (i.e., Generator-DeNoise) further using an
unsupervised approach in the second stage. Here, we use the
NTIRE-2020 Real-world SR Challenge dataset [15] which
consists of 2650 noisy images from DF2K dataset [97] where
the noise is generated synthetically. Apart from the noisy
images, it also consists the 800 clean DIV2K [95] images.
It is important to that the dataset in this stage is not in paired
which forces us to use unsupervised learning. Initially, both
networks are initialized with a Kaiming initialization [98]
(i.e., Denoising and SR networks). In the training of both
networks, the random crop with 192×192 on HR images and
with 48×48 on LR images along with random horizontal flip-
ping and random rotation with 90◦ are used in augmentation
process. An Adam optimizer with β1 and β2 having the value
of 0.9 and 0.99 are set to train the SR and denoising networks.
The denoising network is trained upto the 4× 105 number of
iterations. In both stages of training, we start the training with
the learning rate of 1×10−4 which is decayed by half at every
(1/4)th of the total iterations.

B. TESTING DETAILS
The potential of the proposed unsupervised SR approach
is validated on two testing datasets. Along with the
NTIRE-2020 Real-world SR Challenge Track-1 [15] valida-
tion dataset where HR images are available, we have also
employed the testing dataset of that challenge (Track-1) in
which original ground-truth is not unavailable. Further, the
performance of the proposed denoising network is compared
with many state-of-the-art methods such as BM3D [35],1

DIP [99]2 and NAC [100].3 Similarly, the unsupervised SR
results are compared with ZSSR [101], SRMD [11], USIS-
ResNet [33],4 SimUSR [34], dSRVAE [36],5 Kim et al. [31],6

SRResCGAN [32] 7 and RCA-GAN [30] methods.
Additionally, we compare the quantitative performance

of the proposed method for real-world unsupervised SR
using fidelity based measures such as Root Mean Squared

1https://github.com/gfacciol/bm3d
2https://github.com/DmitryUlyanov/deep-image-prior
3https://github.com/csjunxu/Noisy-As-Clean-TIP2020
4https://github.com/kalpeshjp89/USISResNet
5https://github.com/Holmes-Alan/dSRVAE
6https://github.com/GT-KIM/unsupervised-super-resolution-domain-

discriminator
7https://github.com/RaoUmer/SRResCGAN

Error (RMSE) and perceptual measures such as Ma et al.
score [102] and Perceptual Index (PI) on NTIRE-2020 Real
World-SR validation dataset [15] since they require ground-
truth images. In addition, we also utilize Naturalness Image
Quality Evaluator (NIQE) [103], Blind/Referenceless Image
Spatial Quality Evaluator (BRISQUE) [104], and Percep-
tion Based Image Quality Evaluator (PIQE) [105] measures
based on no-reference image quality assessment to compare
the performance on NTIRE-2020 Real-World validation and
Track-1 testing dataset. The deep learning based image qual-
ity measure termed LPIPS [106] is also estimated which has a
better correlation with human perception. It is noteworthy to
mention that there are always a trade-off between perception
and distortion [107] and the same is also analyzed in the
PI-RMSE plot in the results. Finally, we show the statistical
analysis on the quantitative evaluation of the different meth-
ods along with the proposedmethod to judge the performance
of all the above methods in statistical sense.

C. ABLATION STUDY
In this section, we discuss the importance of different hyper-
parameters settings of the proposed framework. This is
categorized into three parts for better readability. First, the
effectiveness of different modules in the SR network is dis-
cussed. In the second part, we show the ablation study on
denoising network. At last, we discuss the effectiveness of
loss function in the proposed whole framework (i.e., denois-
ing and SR).

Numerous experiments to study the effect of the pixel
and channel attention modules in the SR network have been
conducted. Here, we have trained the SR network without
using the above two modules by adopting training strategy
as mentioned in the Section IV-A. To observe the effect that
are comparable with other experiments, denoising model has
been trained separately after pre-training of both SR networks
as discussed earlier. The quantitative results obtained using
these experiments is compared in terms of PSNR, SSIM and
LPIPS values in Table 1. By observing this table, one can
note that the SR performance is boosted by employing pixel
and channel attention modules in the proposed SR network.
Along with quantitative evaluation, the visual inspection of
above cases are also depicted in Fig. 6. Here, both of these
cases are shown in the Fig. 6(b-c) lack in preserving percep-
tual fidelity (i.e., visual details) as compared to the proposed
method with pixel and channel attentions.

In the proposed denoising network, we employ 16 convolu-
tional layers with 5×5 kernel size (see Fig. 5); to understand
the effectiveness of the size of kernel in SR results, we have
carried out first experiment with different size of kernel i.e.,
3× 3 and 7× 7. Similarly, above experiment is extended by
increasing the number of convolution layers to 24 instead of
16. Further, one can note that the intermediate layers of the
proposed denoising network are designed without any activa-
tion function which is also tested by using ReLU activation
function. The quantitative comparison of all above settings
are depicted in Table 1 in terms of PSNR, SSIM and LPIPS.
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TABLE 1. The quantitative comparison of different settings to validate the
proposed framework design for Real-World SR problem.

One can observe that the proposed denoising network with
16 convolutional layers and 5×5 earns better gain in different
metrics than those configurations. From the visual compari-
son also, one can note that the proposed setting obtains better
visual quality than that of other configurations displayed in
Fig. 6(d-g). Additionally, the proposed framework consists
of a modified triplet and LSGAN losses in addition to QA
loss to improve the perceptual quality of SR results. The
performance of the proposed method without QA loss and
without LSGAN, with triplet loss is also analysed. The results
depicted in Table 1 indicate that the proposed configuration
achieves better measures over the different losses. The same
have been compared visually in Fig. 6(h-j) with the proposed
method where the efficacy of the proposed method can be
easily observed.

Here, our prime focus is to deal with real-world SR prob-
lem in unsupervised manner. To solve the problem, the pro-
posed approach is employed with denoising network which
is optimized by introducing SR network prior to the dis-
criminator network as suggested in Fig. 3. Such insertion of
the SR network in the optimization of the denoise network
improves the performance of the denoise network along with
SR output. To check the effectiveness of the proposed set-
ting, we measure the outcomes obtained from the denoising
network and the quantitative measurements are listed in the
Table 2. It can be easily observed that the SR network in the
proposed framework is helpful to improve the performance
of denoising network and hence to obtain SR image too. This
is due to estimation of loss functions in SR space instead of
on LR output. Hence, the enhanced images obtained from
SR network further useful to improve the performance of
denoising network.

D. QUANTITATIVE EVALUATION
Here, we show the quantitative evluation of the proposed
denoising model along with SR network in terms of various
measures. In addition to the distortion metric (i.e., RMSE),

FIGURE 6. The visual SR results for various cases of ablation study.

TABLE 2. The effectiveness of the SR network prior to discriminator in
unsupervised denoising problem.

TABLE 3. The comparison of the proposed de-noising network with other
existing state-of-the-art methods on NTIRE-2020 Real World-SR
validation dataset. The best two values in each measures are highlighted
using red and blue colors respectively.

we also incorporate the perceptual measures such as Per-
ceptual Index (PI) and Ma et al. score where ground-truth
images are required. Further, the performance of the proposed
framework is also judged quantitatively by evaluting various
non-reference metrics such as NIQE, BRISQUE and PIQE
(to configure the case of unavailability of original image).
In Table 3, we show the performance of the proposed denois-
ing network (output is taken from denoising network) in terms
of NIQE, BRISQUE, PIQE, RMSE, Ma et al. score and
PI. The results here are measured on the degraded images
from NTIRE-2020 Real-World SR validation data. It is worth
mentioning that the lower value of NIQE, BRISQUE, PIQE,
RMSE and PI suggests the better performance while the
higher value in the case of Ma et al. score indicates superior
quality of an image. By inspecting Table 3, one can note
that the performance of NAC [100] method is inadequate to
denoise the noisy images. In this NTIRE-2020 Real-World
SR validation dataset, NAC [100] fails on 10 images out of
total 100 images. Further, one can easily observe fromTable 3
that the proposed method outperforms over the other state-of-
the-art methods in terms of the NIQE, BRISQUE, PIQE and
PI. However, it achieves second position for RMSE measure
in which the BM3D [35] has superior performance.
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TABLE 4. The quantitative comparison of the different existing
unsupervised SISR methods along with the proposed method for
upscaling factor ×4 on NTIRE Real-world SR challenge dataset.

FIGURE 7. The plots of perceptual measures obtained using the proposed
and other existing unsupervised methods on NTIRE-2020 Real-world SR
Challenge Track-1 validation dataset.

Additionally, the performance of the proposed unsu-
pervised SR method is benchmarked with other recent
state-of-the-art unsupervised SR methods in the Table 4.
The comparison is carried out on NTIRE-2020 Real World
SR validation and testing dataset (Track-1). Here, the no-
reference based measures are used to gauge the performance
of SR methods because of unavailability of reference images
in the testing data. These measures suggest a quality of an
image without considering the original content of LR image.

From this table, we can observe the superiority of the pro-
posed method with that of other methods. Further, there
is always a trade-off between the perception and distortion
metrics [107] and this is illustrated in the Fig. 7(a) where the
performance of different techniques are plotted in terms of
PI vs. RMSE plane [64]8 for the NTIRE 2020 Real-world
SR Challenge Track-1 validation dataset for upscaling factor
×4. From this comparison, one can see the performance
enhancement of the proposed method while comparing with
other methods. Thus, the proposed method achieves better PI
value than the other existing methods with the RMSE value
similar with SRResCGAN [32] and dSRVAE [36] techniques.
Additionally, the performance of different methods are also
depicted on the plane of Ma et al. score vs. LPIPS value
in Fig. 7(b). From both of these plots, we can observe that
the proposed method is dominated by some extent over other
methods considering the multiple performance metrics (i.e.
PI-RMSE or Ma et al. score-LPIPS).

E. STATISTICAL ANALYSIS
The quantitative comparison of various method analyzed in
last section are judged statistically here. We have carried out
the Analysis of Variance (ANOVA) test, and the findings,
computed at a 95 % Confidence Interval (CI), are depicted
in Fig. 8 as a box-plot. From Fig. 8(a-c), one can observe
that dSRVAE [36] and SRResCGAN [32] compete the other
existing methods including SimUSR [34], Kim et al. [31]
and RCA-GAN [30] in terms of NIQE, PIQE and BRISQUE
respectively. Interestingly, it can be observed that zero-shot
based method [101] (i.e., ZSSR) which learns degradation
from LR image itself, does not work well here due to noise
contain in LR image. Similarly, one can also observe that
the generalization problem of CNN network by noticing the
performance of SRMD [11] method which is trained on
different types of noise patterns. However, in all of these
cases the proposed method excels against other methods by
achieving better quantitative performance. Further, one can
note from Fig. 8(d) that the proposed method reveals slightly
lower LPIPS value than RCA-GAN method; however, the
variance of the LPIPS across the dataset for the proposed
method is consistent over the RCA-GAN method. Moreover,
as mentioned earlier that the performance of the proposed
method in terms of other perceptual measures such as PI and
Ma’s score in addition to LPIPS (see Fig. 7) is better when
compared to RCA-GAN and other existing state-of-the-art
methods.

F. QUALITATIVE EVALUATION
Apart from the quantitative comparison, we discuss the sub-
jective evaluation of the proposed method with respect to the
other state-of-the-art methods in this subsection. As men-
tioned earlier, the insertion of SR network in unsupervised
denoising algorithm improves the perceptual quality of the
denoising framework which is depicted in the Fig. 9. Here,

8https://github.com/roimehrez/PIRM2018
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FIGURE 8. The statistical evaluation of the different SISR method with Analysis of Variance (ANOVA) test on NTIRE-2020 Real-World SR
challenge Track-1 validation dataset [15].

the proposed method is compared with the other denoising
methods such as DIP [99], NAC [100] and BM3D [35] on
NTIRE-2020 Real-World SR Challenge validation dataset.
For fair comparison, the values of NIQE and PIQE of each
result are also mentioned. By inspecting Fig. 9, one can
easily observe that the DIP [99] method fails to preserve high
frequency details and hence, yields blurry results. In contrast,
NAC [100] extracts high frequency components successfully;
however, it is not effective to eliminate noise completely and
thus, noise is visible in the results (zoom these results for
better visualization). Further, BM3D method [35] generates
competing results with that of the proposed method; however,
the visual performance of BM3D is slightly poorer than that
of the proposed method. Additionally, as depicted in the
Fig. 9, in terms of quantitative metrics (i.e. NIQE and PIQE),
the performance of proposed method is superior than BM3D
method.

Further, the visual comparison of the unsupervised real-
world SR methods is depicted in the Fig. 10 and Fig. 11 for

validation and testing datasets, respectively. In this compari-
son, the proposed method is competed with the other existing
unsupervised real-world SR methods such as dSRVAE [36],
Kim et al. [31], SRResCGAN [32], RCA-GAN [30] along
with generalized method SRMD [11] and zero shot based
ZSSR [101]. Fig. 10 shows comparison of above methods on
the representative image of NTIRE-2020Real-World SR vali-
dation dataset [15]. For the shake of illustration, no-reference
based quality measurement NIQE and PIQE are also listed
with each SR patch and the best two values are highlighted
using red and blue colors, respectively. Here, tt can be observe
that the ZSSR [101], dSRVAE [36], Kim et al. [31] and
RCA-GAN [30] methods fail to generate texture from cor-
responding noisy LR image. Further, SRMD [11] estimates
the texture up to some extent. Similarly, SRResCGAN can
also generate better structure of wall; however, it is unable to
eliminate noise in the SR image. Compared to all the existing
methods, the SR result of the proposedmethod yields visually
plausible data which have better capacity to generate texture
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FIGURE 9. The visual comparison of the proposed denoising method with the other existing methods on NTIRE-2020 Real-World SR Challenge
validation LR images [15]. The values of NIQE and PIQE are also mentioned alog side of each denoised patch. The highest and second highest are
indicated with red and blue color texts, respectively.

FIGURE 10. The qualitative comparison of the SR images obtained using the proposed and other recent unsupervised SR methods on
NTIRE-2020 Real-world SR Challenge Track-1 validation dataset [15]. The values of NIQE and PIQE are mentioned alogside of each SR
patche and the highest two values are depicted red and blue color texts, respectively.

with elimination of noise in robust manner. The visual result
can also be validated by comparing the quantitative mea-
surements which are listed with each method. The proposed
method has highest value in terms of NIQE and second high-
est value in terms of PIQE which supports that the superior
performance of the proposed method over the other methods
for NTIRE-2020 validation dataset [15].

Similarly, the qualitative comparison of the proposed
method with other state-of-the-art methods are depicted in
the Fig. 11 where the SR results are taken from representa-
tive image from NTIRE-2020 Real-World SR testing Track 1

dataset [15]. It is worth tomention that the original images are
not available in this dataset. Similar to earlier result, here one
can notice that the performance of SRMD [11], ZSSR [101],
Kim et al. [31], dSRVAE [36] and SRResCGAN [32] meth-
ods is poor as they are not preserving the proper shape of
objects (see the window frame and vertical border between
different colored wall). However, RCA-GAN [30] generates
the SR image with better shapes of an objects; In contrast, the
proposed method reconstructs SR image with proper shape
of window and also looking plausible when compared to
other methods. In addition, the quantitative measurements of

VOLUME 10, 2022 122341



K. Prajapati et al.: Unsupervised Denoising for Super-Resolution (UDSR) of Real-World Images

FIGURE 11. The qualitative comparison of the SR images obtained using the proposed and other recent unsupervised SR methods on
NTIRE-2020 Real-world SR Challenge Track-1 testing dataset [15]. The values of NIQE and PIQE are mentioned alogside of each SR patche
and the highest two values are depicted red and blue color texts, respectively.

TABLE 5. The computational complexity in terms of the number of
parameters and number of multiplication-addition operations of different
unsupervised real-world SR models. The number of
multiplication-addition operations is calculated for each model for SR
image of size 512 × 512 resolution of an SR image.

this experiment are in support with that of visual assessment
and thus, indicates the superiority of the proposed method
when compared to other existing Real-World SR methods
on NTIRE-2020 Real-World SR challenge testing Track-1
dataset [15].

G. COMPUTATIONAL COMPLEXITY
Additionally, Table 5 shows the number of trainable param-
eters along with multiplication-addition operations of the
proposed and other real-world SR methods. The differ-
ent SR methods such as SimUSR [34], Kim et al. [31],
and RCA-GAN [30] have employed either RCAN [56]
or ESRGAN [13] network for their SR network, which

have almost 15M-16M number of trainable parameters. The
proposed method consists of 9.3M parameters with SR net-
work which is far less than of all of the other competitive
methods. However, the proposed approach needs denois-
ing network along with SR network to generate clean SR
image from an LR observation. Adding the complexity of the
denoising network (i.e. 1.6M parameters) in entire pipeline
results in a total of 10.9M parameters and is marginally lower
than other existing SR methods. Additionally, all methods
have been compared based on multiply-addition operations
for an SR network on 128×128 input LR image. Based on this
measure, the proposed network shows less complexity than
ZSSR [101], SRMD [11], Kim et al. [31] and dSRVAE [36]
methods. The complexity of the proposed method is slightly
higher than SimUSR [34] and RCA-GAN [30] based on this
metric. Further, it is worth mentioning that computational
complexity of SRResCGAN [32] method is better than that
of the proposed method; however, the visual and quantitative
evaluations indicate better performance compared to all of the
above-mentioned existing state-of-the-art methods.

V. LIMITATIONS AND FUTURE SCOPE
Despite of achieving better quantitative and qualitative SR
results, the proposed method has moderate distortion in terms
of RMSE metric. It is always a trade-off between percep-
tual quality (which can be measured by LPIPS, Ma’s score,
NIQE, PIQE and BRISQUE) and distortion (which is mostly
described by PSNR, SSIM and RMSE) for image restoration
problem [107]. Further, the perceptual quality of the proposed
method beats to other existing methods; however, same can
be improved from that of visual SR results depicted in Fig. 10
and Fig. 11. Additionally, in this work, we have designed
very lightweighted denoising network which also may be the
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reason for limited SR performance. In future work, it can
also be extended to see the effect of complex denoising
architecture.

Further, Aakerberg et al. [108] proposed semantic segmen-
tation based annotation to solve the real-world SR problem.
However, it demands specific kind of annotation (i.e., based
on segmentation) which is not cost effective. Thus, one can
study to utilize such other types of cheaper annotations which
can improve the SR performance. Moreover, Xu et al. [109]
observed the cross-domain limitation to broaden the super-
resolution problem. Additionally, authors in [110] employed
UNet based discriminator and obtained performance gain in
the SR task. Such flavour of discriminator can also be investi-
gated for real-world scenarios. In the same work, authors also
introduce an uncertainty visualization about the genuineness
of each pixel whether it is generated or natural. Such addi-
tional informationmight be useful in some critical application
including medical imaging, biometric application etc., which
is again an interesting domain to consider in future works.

VI. CONCLUSION
The requirement of the paired LR-HR dataset to train any
deep network in supervised manner cannot be met in practical
scenarios. However, such problem can be solved by training
the network in unsupervised manner which has drawback
of stability issue. In this manuscript, we have proposed a
framework called UDSR using unsupervised way to handle
the problem of Real-World Super-Resolution by inserting
separate denoising network. The combination of SR network
and denoising networks can be evaluated by measuring the
performance of both networks and we found that it improves
the performance of both. With respect to denoising network,
the inclusion of SR network before to discriminator network
improves the quality of the denoise network which has been
evaluated quantitatively as well as qualitatively. However,
because of stability issue, it is hard to train SR network
that can perform both tasks simultaneously (i.e. denoising
and SR) to handle real-world SR problem. In the proposed
method, we train the SR network prior in supervised manner
followed by optimizing denoising network in unsupervised
way. In addition, we incorporate triplet loss based concept
into LSGANwhich stabilizes the training process more effec-
tively which is also validated in the ablation study section
of the manuscript. Based on vast amount of reference based
and no-reference based measurements, one can conclude that
the proposed method outperforms than the other state-of-the-
art methods. Moreover, the SR performance of the proposed
method is validated in subjective manner with the other exist-
ing methods.
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