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ABSTRACT

Hyperspectral imaging has the potential of delivering highly
accurate results due to its high spatial and spectral resolu-
tions. However, to ensure relevant and highly accurate end
results, the processing steps need to go through rigorous qual-
ity assessments. This article provides a generic hyperspectral
dataset suitable for designing quality assessment protocols for
spectral image processing algorithms. The dataset consists of
hyperspectral images of 195 pigment patches and spectral li-
braries originating from 327 unique pigments. Additionally,
two examples of how it can be used for the evaluation of dis-
tance functions are also provided.

Index Terms— hyperspectral imaging, dataset, quality
assessment, pigment identification

1. INTRODUCTION

Acquiring and processing hyperspectral images are costly and
complex. To ensure accurate measurements, a hyperspec-
tral acquisition must be carried out following calibration and
characterization protocols [1, 2]. Then, to fully exploit their
accuracy, the data need to be considered as measurements of
physical objects or surfaces. For image processing, this en-
tails a need for metrology, where bias, uncertainty, trueness,
and other metrological aspects are considered [3].

Embedding the notion of metrology in image processing
can be done through the concept of image quality assessment
(IQA) [4], especially its objective approaches. The basic idea
is, knowing what to expect of the image processing results,
we can devise a protocol to assess the closeness of the results
to the expectation. An example is given in the quality as-
sessment of spectral median filters [5]. The median filters are
known for reducing noise and performing smoothing without
blurring the edges. Their statistical and deterministic proper-
ties have also been thoroughly studied [6, 7], although only
automatically applies in the scalar domain. As soon as the fil-
ters depart to the multivariate domain, e.g., color and spectral
images, whether those properties still hold must be evaluated.
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An integral part of designing an assessment protocol is
the availability of data with characteristics appropriate for the
properties to be evaluated. Using the example of median fil-
ters, we know how they should perform in reducing white
noise with uniform, normal, and double-exponential distri-
butions [6]. If that property is to be validated for spectral
median filters, the test must use images with the appropriate
noise characteristics. This can simply be done by modifying
any arbitrary images with, e.g., uniformly distributed additive
white noise. However, since separating the effects of signal
and noise for nonlinear filters is complex [6], it is important
to use constant signals or images with known characteristics.

There is a need for a generic purpose dataset with known
characteristics to allow for the quality assessment of various
spectral image processing algorithms. Available datasets are
often for specific tasks, e.g., classification [8] and anomaly
detection [9]. The dataset published in this work is aimed at
filling the gap. An earlier version of the dataset has been used
to assess the quality of various spectral processing algorithms
[10, 11, 12]. In this article, two examples of its use in IQA
protocols for distance functions will be demonstrated to in-
spire readers in designing their own protocols. In addition to
IQA protocols, the dataset is also useful for applications in
the cultural heritage domain, e.g., pigment identification.

2. DATA DESCRIPTION

This dataset consists of pigment patches and spectral libraries.
They both come from the same image acquisition of Kremer
color charts, thus having identical spectral dimensions, i.e.,
186 bands at 3.26 nm intervals, captured between the range
of 405.37 and 995.83 nm. The physical pigment patches
themselves were flat objects, and the application of the col-
orants were done through screen-printing on white cards with
printed grayscales on them [13].

2.1. Pigment patches

In total, there are 195 pigment patches belonging to 19 pig-
ment groups. The groups roughly correspond to the Kremer
color charts they belong to, e.g., red pigments. Table 1 pro-



Table 1: 19 pigment groups in the pigment patches sub-
dataset and the number of pigments within each group.

Blue-1 11 Earth pigments
Blue-2 12 Brown/ black 7
Cadmium 14 Green 12
Green-1 7 Red 13
Green-2 8 Umbrae 12
Iron oxides 1 12 Yellow 12
Iron oxides 4-5 8 Red-2 12
Organic pigments Red-3 12

Blue/ violet 9 Yellow-3 11
Brown/ black, green 5 Yellow-4 7
Orange 11

vides the list of pigment groups and their corresponding num-
ber of pigments. Examples are also provided in Fig. 1.

Each pigment patch has six associated files, i.e., a header
file (*.hdr), a binary file containing the data (*.img), three
color images (*.jpg, * FIXED.png, * CMF.png), and
a ground truth image (* cls.png). Together, the header
and binary files form the hyperspectral image, and they must
have the same file name. The rest are accompanying files, see
Fig. 2, made for observation purposes and further uses of the
hyperspectral image. Read below for more details of the files.

Hyperspectral image Each image is of approximately 800-
900 by 500-600 pixels. Then, each pixel corresponds
to spectral reflectance values between 0-1, and repre-
sented in the 32-bit single precision floating point data
type. Other metadata required to read the hyperspectral
image, e.g., interleave, are present in the header file.

Accompanying color images They are shown in Fig. 2. The
color images are generated using i) GLIMPS software,
ii) FIXED: direct use of band numbers (75,46,19) as
the RGB channels, and iii) CMF-D65: a color trans-
formation simulating the normal vision human percep-
tion under daylight. The latter color transformation is a
known transformation within color science [14], where
the human visual system is represented by color match-
ing functions. Here, the CIE Color Matching Function
(CMF) 1931 2°standard observer and D65 standard il-
luminant are used. It will also be used throughout this
work unless stated otherwise.

Ground truth/ reference image This image should not be
treated as ground truth in the physical sense. They are
made with digital image processing purposes in mind,
e.g., image classification, where a clear separation be-
tween the color shades has to be made. In a physical
reality, on the edge between two different color shades,
there is practically no sharp change of colors or spectra
but rather a gradual one.

Blue-1, 23050 Blue-2, 45110
Phthalo blue Ultramarine violet, reddish

Earth Green, 40810 Earth Red, 40440
Bohemian green earth Pompeii red

Green-1, 55700 Green-2, 44250
Studio pigment light green Viridian green

Fig. 1: Example pigment patches from the dataset. The pig-
ment groups are written in bold under each patch, followed
by the corresponding pigment number and name.

GLIMPS (*.jpg) FIXED (* FIXED.png)

CMF-D65 (* CMF.png) Ground truth (* cls.png)

Fig. 2: Three color images and a ground truth image for Bo-
hemian green earth pigment from the dataset.

2.2. Spectral libraries

Two spectral libraries are available, i.e., the average and me-
dian spectral libraries, obtained from 398 pigment patches.
Note that this is significantly more pigments than what is
made available in the form of hyperspectral images. Each
pigment patch is represented by four signals in each library
since they have four color shades, hance a total of 1592 re-
flectance spectra in each spectral library. Note also, that out
of the 398 patches, only 327 are unique pigments due to sev-
eral pigments belonging to different pigment groups.

The spectral libraries are stored as ENVI Spectral Library
data, hence the header (*.hdr) and the spectral library data



(*.sli) files. Two additional metadata related to the pig-
ment number and name are provided in the header file, i.e.,
pnumber and pname, respectively. It is important to note
that the metadata spectra names are not the same as pig-
ment names. For example, spectra shown in Fig. 3 are asso-
ciated with spectra name BL 4 1 p1, pnumber 55500,
and pname studio pigment sky blue. Average and median re-
flectance spectra originating from one pigment are shown in
Fig. 3. Both types of spectra obtained from the same region
of pixels. Users are encouraged to use the median spectral
library in cases where it is important to measure metrologi-
cal aspects, e.g., uncertainty, trueness, etc., to avoid the false
color problem [15].

3. QUALITY ASSESSMENTS OF
DISTANCE OR SIMILARITY FUNCTIONS

In the following are two examples of how the pigment dataset
can be used to evaluate and finally choose suitable distance
function and their combination for the task and data at hand.
Due to space limitation, these examples will be presented con-
cisely and many details, e.g., mathematical formula, will be
left to the referred literature.

3.1. Sensitivity to intensity variation

Spectral capture of a physical surface will always give us dif-
ferent spectral values for every pixel. This results in spectral
variability and is not only caused by noise but also, e.g., sur-
face roughness and varying illumination condition. By ob-
serving Fig. 1, we can see how one pure pigment applied on a
flat surface can already generate perceptual variability. Then,
in Fig. 3, we can see how this perceived variability is also
reflected in the spectral reflectance domain.

Spectral variability, especially one that is dominated by
intensity variations as illustrated in Fig. 4, can be encountered
in remote sensing applications as a result of shadows. Conse-
quently, it is often important to suppress the impact of shadow
by using distance functions that suppress intensity variations,
e.g., spectral angle mapper (SAM) [16] and spectral informa-
tion divergence (SID) [17]. However, for other purposes such
as material discrimination, it is important to use a distance
function that is sensitive to intensity variation, e.g., root mean
square (RMS) or Chebyshev distances. There is a need to
evaluate the appropriateness of various distance functions for
the task at hand and this dataset allows such evaluation.

To assess how sensitive various distance functions are to
intensity variations, extract one row of pixels from a pigment
patch such that we obtain spectra from all four color shades.
An example is given for pigment 45110 ultramarine violet
(reddish), see their spectra in Fig. 4. The spectrum in green
will be used as the reference spectrum Sr in the distance com-
putation d(Sr, Si), where Si is the spectrum associated to
pixel i, i ∈ [1, n]. The obtained distance values d(Sr, Si)

Fig. 3: Median and average reflectance spectra entries for
studio pigment sky blue, available from their corresponding
spectral libraries. Four spectra are available from each library
since every pigment patch has four color shades.

Fig. 4: Spectral reflectance obtained from the pigment patch
45110 ultramarine violet, reddish in Fig. 1. The reference
spectrum is used in the calculation of distance values. The
number 1 to 4 roughly corresponds to the color shades, from
darkest to lightest.

for all pixels from location 1 to n should then resemble a step
function with four steps, each corresponds to a color shade.

Distance values have been obtained for various distance
and similarity functions and the results are plotted in Fig. 5.
The expected step functions are indeed obtained from the dis-
tance functions shown in the left plot, i.e., RMS, Manhattan,
Chebyshev, and Canberra functions. Note that they are shown
in normalized values to reflect their sensitivity to intensity
variation, despite the actual ranges of the obtained values. In
this plot, we can also see that there are fluctuations within
each step as expected due to variations in the spectra. The
distance values obtained for SAM, SID, GFC [18], and Smith
functions are shown in their real values to compare their per-
formance in suppressing intensity variation. A better perfor-



Fig. 5: Distance values for various distance functions com-
puted from spectra shown in Fig. 4. Distance values in the
left plot are shown in normalized values, while those in the
right plot are in their real values. The expected steps corre-
sponding to each color shade are indicated by the red arrows.

mance is indicated by a function that has values closer to zero
and where the steps demonstrated by, e.g., RMS, are not as
prominent.

3.2. Separability in the two-dimensional distance space

For discrimination tasks, e.g., classification and clustering,
often one feature is insufficient. When it comes to spectral
data, the available information is abundant from, typically, the
hundreds of wavelengths. However, using all the wavelengths
as features will cause the curse of dimensionality, hence the
need for feature selection. There are multitudes of ways to
select the feature for a spectral classification task, e.g., di-
mensionality reduction or band selection. For the purpose of
demonstrating the use of this dataset, we will use combina-
tions of distance functions as features.

Instead of using only one row of pixels, all pixels in a pig-
ment patch shall be used. In the following, the same pigment
45110 ultramarine violet (reddish) is used for demonstration.
The reference spectrum used to compute the distance values
is also the same as shown in Fig. 4.

The results of three combinations of distance functions
can be seen in Fig. 6, provided in terms of two-dimensional
histograms of distance functions. Since the pigment patch we
use consists of four color shades, we expect to see four main
clusters or distributions of pixels that are well-separated. The
first histogram in Fig. 6 is a combination of RMS and SAM,
and is called the Normalized Spectral Similarity Score (NS3)
[19]. It has been shown to be superior than the maximum like-
lihood classifier (MLC), and SAM and SID for a spectral li-
brary search task. Since SID is also commonly used in remote
sensing, a result is also provided for RMS-SID combination
in Fig. 6b. Upon observing Fig. 5, Chebyshev function shows

the largest inter-class separation especially for the two last
steps. Therefore, a combination of SAM and Chebyshev is
also experimented and the result can be seen in Fig. 6c. Com-
paring the three histograms, it is immediately evident that the
SAM-Chebyshev combination generates more well-separated
clusters. The four distributions also better resembles a normal
distribution and, therefore, a better choice for discrimination
purposes. For NS3, since it was developed for library search
task, this result is reasonable. The reference spectrum used
is coming from the cluster closest to 0 in the y-axis. There-
fore, other spectra from the same cluster would be densely
distributed around 0 to the extent that it is almost impercepti-
ble in this plot. In SID-RMS combination, the obtained distri-
bution indicates that there is a nonlinear relationship between
SID-RMS, which mainly is due to the logarithmic operation
embedded in the calculation of SID.

4. CONCLUSION

In this work, a hyperspectral pigment dataset has been pre-
sented with its main use as a generic purpose dataset for the
quality assessment of spectral image processing algorithms.
Two examples of such use was given for assessing spectral
distance functions in its sensitivity to spectral variation and
its discriminatory power when used in a two-dimensional dis-
tance space. In both examples, the protocol can be taken fur-
ther by measuring the intra- and inter-class separations of the
obtained distance values using, e.g., an extension of Jeffries-
Matusita measure for a multiclass problem. Besides uses in
quality assessments, especially the spectral libraries will be
useful for applications in the cultural heritage domain, e.g.,
pigment identification. The pigment dataset can be accessed
by the following DOI: 10.5281/zenodo.5592484.
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