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Honey bee colony loss linked 
to parasites, pesticides 
and extreme weather 
across the United States
Luca Insolia 1,2, Roberto Molinari 3, Stephanie R. Rogers 4, Geoffrey R. Williams 5, 
Francesca Chiaromonte 1,6 & Martina Calovi 7*

Honey bee (Apis mellifera) colony loss is a widespread phenomenon with important economic and 
biological implications, whose drivers are still an open matter of investigation. We contribute to this 
line of research through a large-scale, multi-variable study combining multiple publicly accessible data 
sources. Specifically, we analyzed quarterly data covering the contiguous United States for the years 
2015-2021, and combined open data on honey bee colony status and stressors, weather data, and 
land use. The different spatio-temporal resolutions of these data are addressed through an up-scaling 
approach that generates additional statistical features which capture more complex distributional 
characteristics and significantly improve modeling performance. Treating this expanded feature set 
with state-of-the-art feature selection methods, we obtained findings that, nation-wide, are in line 
with the current knowledge on the aggravating roles of Varroa destructor and pesticides in colony loss. 
Moreover, we found that extreme temperature and precipitation events, even when controlling for 
other factors, significantly impact colony loss. Overall, our results reveal the complexity of biotic and 
abiotic factors affecting managed honey bee colonies across the United States.

Honey bees (Apis mellifera) are economically important insect pollinators whose widespread loss is increasingly 
affecting Asia, Europe and North  America1–5. Between April of 2019 and April of 2020 the United States reported 
a 43% colony  loss6. Several factors can contribute to honey bee colony losses, alone or in  combination7,8. Among 
the most relevant are parasite and pathogen loads, which in turn depend on beekeepers’ management practices 
such as the control of Varroa destructor9–15. Also land use around the  colonies16, as well as urbanization and 
agricultural  intensiveness17–21, play a role by affecting forage quality and pesticide exposure. Relatedly, climate 
change is considered one of the main drivers of biodiversity loss, in conjunction with agricultural expansion, 
over-exploitation, and the introduction of invasive  species22, as it affects the species’ spatial distribution and 
 abundance23.  Climate24,25 and weather  changes26,27 may consequently play a fundamental role in honey bee colony 
loss, affecting the availability of forage, thermoregulatory ability during winter, and the initial brood rearing time 
during  spring28. Finally, honey bee colony loss varies across time and space, although overwintering survival is 
generally recognized as the most challenging period of the  year6,29–33.

To date, some state- or county-level studies investigated the effects of parasites, pathogens, weather, climate 
change, forage quality and pesticide exposure on honey bee colony loss, often considering one or a few of these 
factors in isolation and in a controlled  environment17,24,34–37. In particular, weather factors such as temperature 
and rainfall were investigated in Switanek et al. (2017) and Beyer et al. (2018)28,38, and more recently Calovi 
et al. (2021)26 coupled this information with stressor data, topography, land use, and management factors. To the 
best of our knowledge, the only study carried out at the level of the United States can be found in Naug (2009)39, 
where honey bee colony loss is analyzed solely as a function of land use information. The insights provided by 
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this body of research still await validation through analyses that employ a broader spatial scale, and consider 
multiple risk factors simultaneously.

Aside from colony tracking (i.e., migratory operations) and other possible limitations that are typical of 
large-scale observational studies, one of the main reasons for the lack of analyses at the national level is the 
absence of same-source or same-resolution databases. The present study aims to fill this gap by making use 
of several publicly available data sources (see Data for details). Because these data differ in spatio-temporal 
resolution, instead of averaging to the lowest resolution available, we propose a data up-scaling approach that 
retains some of the information at finer scales through more complex distributional characteristics (see Data 
processing). This up-scaling allows us to model most of the contiguous United States (CONUS) territory using 
quarterly data from the 2015-2021 (the first quarter being January-March), and thus to rely on state-of-the-art 
feature selection tools to identify the main statistical predictors of honey bee colony loss. The methodology is 
complemented with the use of outlier detection techniques that can identify and discard atypical observations, 
thus limiting their influence on model fitting and effect estimation (see Statistical model). Notably, inspection of 
these atypical observations can itself provide valuable insights on spatio-temporal events with extremely high 
or low honey bee colony losses.

Results
Honey bee colony loss and parasites across space and time. Honey bee colony loss strongly 
depends on spatio-temporal  factors33,42, which in turn have to be jointly modeled with other stressors. Focus-
ing on CONUS climatic regions, defined by the National Centers for Environmental  Information40 (see Fig. 1), 
this is supported by the box plots in Fig. 2 which depict appropriately normalized honey bee colony loss (upper 
panel) and presence of V. destructor (lower panel) quarterly between 2015 and 2021. Specifically, Fig. 2a high-
lights that the first quarter generally accounts for a higher and more variable proportion of losses. Average losses 
are typically lower and less dispersed during the second quarter, and then tend to increase again during the third 
and fourth quarters. The Central region, which reports the highest median losses during the first quarter (larger 
than 20%) exemplifies this pattern, which is in line with existing studies that link overwintering with honey bee 
colony  loss6,29–33,43. On the other hand, the West North Central region follows a different pattern, where losses are 
typically lower during the first quarter and peak during the third. This holds, albeit less markedly, also for North-
west and Southwest regions. These differing patterns are also depicted in Fig. 3, which shows the time series of 
normalized colony loss for each state belonging to Central and West North Central regions – as well as their 
smoothed conditional means. Figure 2b shows that also the presence of V. destructor tends to follow a specific 
pattern; in most regions it increases from the first to the third quarter, and then it decreases in the fourth – with 
the exception of the Southwest region, where it keeps increasing. This is most likely because most beekeepers try 
to get V. destructor levels low by fall, so that colonies are as healthy as possible going into winter, and also because 
of the population dynamics of V. destructor alongside honey bee colonies – i.e., their presence typically increases 
as the colony grows and has more brood cycles, since this parasite develops inside honey bee brood  cells44,45. The 
West region (which encompasses only California since Nevada was missing in the honey bee dataset; see Data) 
reports high levels of V. destructor throughout the year, with very small variability. A comparison of Fig. 2a and 
b shows that honey bee colony loss and the presence of V. destructor tend to be higher than the corresponding 
medians during the third quarter, suggesting a positive association. This is further confirmed in Fig. 4, which 
shows a scatter plot of normalized colony loss against V. destructor presence, documenting a positive association 
in all quarters. Although with the data at hand we are not able to capture honey bee movement across states, as 
well as intra-quarter losses and honey production, these preliminary findings can be useful to support commer-
cial beekeeper strategies and require further investigation.

Figure 1.  Contiguous United States climatic regions identified by the National Climate Data  Center40. Climatic 
regions are presented in different colors for visualization purposes; more detail on the states belonging to each 
region is provided in Supplementary Fig. S1. The map has been generated by the authors in ArcGIS Pro 2.8.341.
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Up-scaling weather data. The data sets available to us for weather related variables had a much finer spa-
tio-temporal resolution (daily and on a 4× 4 kilometer grid) than the colony loss data (quarterly and at the state 
level). Therefore, we aggregated the former to match the latter. For similar data up-scaling tasks, sums or means 
are commonly employed to summarize the variables available at finer  resolution47. The problem with aggregating 
data in such a manner is that one only preserves information on the “center” of the distributions – thus losing a 
potentially considerable amount of information. To retain richer weather related information in our study, we 
considered additional summaries capturing more complex characteristics, e.g., the tails of the distributions or 
their entropy, to ascertain whether they may help in predicting honey bee colony loss. Within each state and 
quarter we therefore computed, in addition to means, indexes such as standard deviation, skewness, kurtosis, L2
-norm (or energy), entropy and tail  indexes48. This was done for minimum and maximum temperatures, as well 
as precipitation data (see Data processing for details).

Figure 2.  Empirical distribution of honey bee (Apis mellifera) colony loss (a) and Varroa destructor presence 
(b) across quarters (the first one being January-March) and climatic regions; red dashed lines indicate the 
overall medians. (a) Box plots of normalized colony loss (number of lost colonies over the maximum number 
of colonies) for each quarter of 2015–2021 and each climatic region. At the contiguous United States level, 
this follows a stable pattern across the years, with higher and more variable losses during the first quarter (see 
Supplementary Figs. S2-S6), but some regions do depart from this pattern (e.g., West North Central). (b) Box 
plots of normalized V. destructor presence (number of colonies affected by V. destructor over the maximum 
number of colonies) for each quarter of 2015–2021 and each climatic region. The maximum number of colonies 
is defined as the number of colonies at the beginning of a quarter, plus all colonies moved into that region 
during the same quarter.

Figure 3.  Comparison of normalized honey bee (Apis mellifera) colony loss (number of lost colonies over the 
maximum number of colonies) between Central and West North Central climatic regions for each quarter of 
2015–2021 (the first quarter being January-March). (a) Trajectory of each state belonging to Central (yellow) 
and West North Central (blue) climatic regions. (b) Smoothed conditional means for each of the two sets of 
curves based on a locally weighted running line smoother where the width of the sliding window is equal to 0.2 
and corresponding standard error bands are based on a 0.95 confidence  level46.
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Next, as a first way to validate the proposed weather data up-scaling approach, we performed a likelihood 
ratio test between nested models. Specifically, we considered a linear regression for colony loss (see Statistical 
model) and compared an ordinary least squares fit comprising all the computed indexes as predictors (the full 
model) against one comprising only means and standard deviations (the reduced model). The test showed that 
the use of additional indexes provides a statistically significant improvement in the fit (p-value = 0.03 ). This 
test, which can be replicated for other choices of models and estimation methods (see Supplementary Table S5), 
supports the use of our up-scaling approach.

Figure 5 provides a spatial representation of (normalized) honey bee colony losses and of three indexes relative 
to the minimum temperature distribution; namely, mean, kurtosis and skewness (these all turn out to be relevant 
predictors based on subsequent analyses; see Table 1). For each of the four quantities, the maps are color-coded 
by state based on the median of first quarter values over the period 2015-2021 (first quarters typically have the 
highest losses, but similar patterns can be observed for other quarters; see Supplementary Figs. S12-S14). Nota-
bly, the indexes capture characteristics of the within-state distributions of minimum temperatures that do vary 
geographically. For example, considering minimum temperature, skewness is an index that (broadly speaking) 
provides information on whether the data tends to accumulate at one end or the other of the observed range 
of minimum temperatures (i.e., a positive/negative skewness indicates that the data accumulates towards the 
lower/upper range, respectively). On the other hand, kurtosis is an index that captures the presence of “extreme” 
values in the tails of the data (i.e., a low/high value of kurtosis indicates that the tail minimum temperatures are 
relatively close/very far from the typical minimum temperatures). With this in mind, going back to Fig. 5, we 
can see that minimum temperatures in states in the north-west present large kurtosis (a prevalence of extreme 
values in the tails) and negative skewness (a tendency to accumulate towards the upper values of the minimum 
temperature range), while the opposite is true for states in the south-east. More generally, the mean minimum 
temperature separates northern vs southern states, kurtosis is higher for states located in the central band of the 
CONUS, and skewness separates western vs eastern states.

We further note that the states with lower losses during the first quarter (e.g., Montana and Wyoming) do 
not report extreme values in any of the considered indexes. Although these states are generally characterized 
by low minimum temperatures, these are somewhat “stable” (they do not show marked kurtosis or skewness 
in their distributions) – perhaps allowing honey bees and beekeepers to adapt to more predictable conditions. 
On the other hand, states with higher losses during the first quarter such as New Mexico have higher minimum 
temperatures as well as marked kurtosis, and thus higher chances of extreme minimum temperatures – which 
may indeed affect honey bee behavior and colony loss. Overall, across all quarters of the years 2015-2021, we 
found that normalized colony losses and mean minimum temperatures are negatively associated (the Pearson 
correlation is -0.17 with a p-value < 10−6 and a sample size of 937). Among all quarters, we also found that the 
second and the third over the same period showed significantly different kurtosis and skewness of minimum 
temperatures between states with high and low normalized colony losses (t-tests for the difference in mean 
between minimum temperature kurtosis and skewness for states above and below the overall normalized colony 
loss median provide p-values smaller than 10−4 and 10−3 , respectively, for a sample size of of 472). Similarly, 
meaningful associations can be outlined also for other indexes we constructed (see Supplementary Figs. S9-S11), 
lending additional support to our up-scaling approach. However, these are all “marginal” findings, concerning 
one potential predictor at a time. Our next task is to move to an analysis that accounts for multiple relationships.

Figure 4.  Scatter plot of normalized honey bee (Apis mellifera) colony loss (number of lost colonies over the 
maximum number of colonies) against normalized Varroa destructor presence (number of colonies affected 
by V. destructor over the maximum number of colonies) for each state and each quarter of 2015–2021 (the 
first quarter being January-March). Points are color-coded by quarter, and ordinary least squares fits (with 
corresponding standard error bands based on a 0.95 confidence level) computed by quarter are superimposed to 
visualize the positive association.
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Joint modeling highlights the roles of Varroa destructor, pesticides and extreme weather 
events. To construct an effective and interpretable model comprising multiple predictors, we need to select 
which, among the variables at our disposal (including the additional indexes we built by up-scaling weather 
data), are jointly most predictive of honey bee colony loss. This feature selection exercise is rendered more 
complex by at least two factors. First, the candidate features we consider, especially the indexes produced by up-
scaling, present strong collinearities (see Supplementary Fig. S8). Second, because of the coarse spatio-temporal 
resolution at which they are measured, most of our variables are likely to aggregate several underlying stochastic 
mechanisms and thus to contain spurious “contaminations” and outliers that can induce biases and hinder both 
feature selection and estimation of effects. Hence, while assuming that the majority of the observations are 
generated by one mechanism (the one being modeled), we need a procedure that can exclude a portion of them 
from the model fit. For this joint analysis, unlike the descriptive statistics described above, we only consider data 
covering the years 2015-2019, as honey bee data for 2020-2021 may be affected by the Covid-19 outbreak, and 
they may also require further validation from the United States Department of Agriculture-National Agricul-
tural Statistics Service (USDA-NASS). Results from an extended analysis covering 2015-2021 are reported in 
Supplementary Table S13 for comparison, and they are consistent with the ones based on 2015-2019 data.

After transforming normalized colony loss values (per quarter, per state) into log-odds ratios, we regressed 
them on the features at our disposal. These are 24 features in total, encompassing several stressors (V. destruc-
tor, pests and parasites, diseases, pesticides, etc.), weather-related information (various indexes computed on 
minimum and maximum temperatures and precipitation), land use, as well as categorical controls for climatic 
regions, years and quarters; see Data for details. On this set of variables, we applied state-of-the-art statistical 
learning tools for simultaneous feature selection and outlier detection (see Statistical model for details). Specifi-
cally, we employed a combinatorial procedure developed by our  group50, which selects subsets of relevant fea-
tures and non-outlying points and, on such subsets, is equivalent to an ordinary least squares estimator. Table 1 
shows results produced by the procedure when the proportion of outliers to be excluded from the fit is set to 
10%. Details on parameter tuning, out-of-sample prediction performance and model diagnostics are provided 
in Supplementary Figs. S16-S19; similar results obtained with alternative models and estimation methods are 
discussed in Supplementary Table S8.

Only 15 out of 25 features (including the intercept) were selected as relevant and provided an R2
= 0.6 . In 

considering estimated coefficients and their signs, recall that negative/positive signs correspond to positive/
negative impacts on honey bees (that is, lower/higher colony loss) and that estimates in a joint model need to be 

Figure 5.  Spatial representation (by state) of median values for four different indices regarding colony loss and 
minimum temperature in the first quarter (January-March) of seven consecutive years (2015–2021) for each 
state. (a) Normalized honey bee (Apis mellifera) colony loss. (b) Mean of minimum temperatures. (c) Kurtosis 
of minimum temperatures (how “extreme” the minimum temperatures were). (d) Skewness of minimum 
temperatures (whether they tended to concentrate in their lower or upper range). In each panel, the color 
attributed to a state represents the median of seven index values (first quarter of seven years). North Dakota 
shows a relatively low normalized colony loss (panel (a)), one of the lowest mean minimum temperature 
(panel (b)), and one of the lowest minimum temperature kurtosis (panel (c)). This suggests that consistently 
low minimum temperatures during the first quarter (low mean and low kurtosis) may be associated with lower 
colony loss in that state. The map has been generated by the authors in R 3.6.249.
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interpreted in context (that is, conditional on the other features in the model “being held fixed”). We must note 
that the following findings take several potential stressors and spatio-temporal controls into account and are 
thus more complete, informative and interpretable than marginal analyses. Specifically, the descriptive results 
reported in Figs. 2–5 consider indices in isolation from others and are consequently not fully comparable to the 
modeling results which take into account several stressors and control variables. All categorical controls were 
among the relevant features. Signs here are relative to the reference categories, which are “Central” for regions, 
“2019” for years and “4th” for quarters (these references do not appear in the Table). In terms of spatial effects, 
Southeast experiences the highest losses; Southwest and Central (the reference category) have similarly high 
losses, while all other regions show significantly lower losses – with particularly large decreases for Northwest 
and West North Central (these findings are in line with a separate analysis conducted with state-level controls; see 
Supplementary Table S9). In terms of temporal effects, years do not appear to have a large impact overall – aside 
from 2015, when losses were significantly higher. Quarters have a larger impact, with first and second quarters 
characterized by significantly elevated and reduced losses, respectively – likely due to the fact that most vulner-
able colonies die in the Winter, leaving a much healthier population at the start of the Spring (see also the box 
plots in Fig. 2a; the third quarter estimated coefficient is positive, but the effect is not significant).

Even in conjunction with the spatio-temporal controls, and consistently with existing literature, we found that 
the presence of V. destructor9–11,15, the use of  pesticides51–53 and “other” factors appear to be positively associated 
with honey bee colony  loss16,28. Although our findings are not sufficient to draw definite conclusions on causal 
mechanisms, the statistical associations we documented provide insights and offer hypotheses that can guide 
future research. Based on the USDA-NASS definition, “other” is a very broad feature which includes factors 
such as weather, starvation, insufficient forage, queen failure, hive being damaged or destroyed, etc. (see Data); 
we employ it as an additional control variable, which can usefully mitigate confounding effects, but we do not 
attempt to interpret it – as we do not have a way to assess the role of individual factors within it based on the 
data at our disposal. Importantly, “other” does provide a significant signal in modeling honey bee colony loss 

Table 1.  Features selected using the mixed-integer programming procedure described in Insolia et al. (2021)50 
for the years 2015-2019, with corresponding coefficient estimates, standard errors, t-statistics and p-values 
computed on a subset encompassing 90% of the observations (these are 607 selected as “non-outlying”, 
concurrently with the feature selection). Group-constraints are used to ensure that the terms introduced to 
represent each categorical control, e.g., the three terms representing quarters (the first one being January-
March), are either all selected or all excluded (the categorical controls used are year, quarter and climatic 
region). The model has an R2

= 0.601.

Coefficient Estimate Std. Error t  value Pr(> |t|)

(Intercept) −2.9903 0.2501 −11.96 < 2
−16

Year 2015 0.1353 0.0558 2.42 0.0156

Year 2016 0.0231 0.0553 0.42 0.6762

Year 2017 0.0014 0.0541 0.03 0.9788

Year 2018 −0.0202 0.0540 −0.37 0.7080

Region West −0.3010 0.1050 −2.87 0.0043

Region Northwest −0.6381 0.0844 −7.56 < 1.6
−13

Region Southwest −0.0582 0.0939 −0.62 0.5357

Region West North Central −0.6265 0.0841 −7.45 < 3.5
−13

Region South −0.1443 0.0634 −2.28 0.0231

Region Southeast 0.0401 0.0562 0.71 0.4755

Region East North Central −0.1672 0.0618 −2.71 0.0070

Region Northeast −0.1657 0.0597 −2.77 0.0057

Quarter 1 0.4264 0.0480 8.88 < 2
−16

Quarter 2 −0.3433 0.0523 −6.57 < 1.1
−10

Quarter 3 0.0302 0.0744 0.41 0.6845

Varroa Destructor 0.1988 0.0209 9.51 < 2
−16

Other pests and parasites −0.0791 0.0162 −4.88 < 1.4
−6

Pesticides 0.0345 0.0123 2.81 0.0051

Other 0.1524 0.0177 8.60 < 2
−16

Min. temp. std. dev. 0.0527 0.0205 2.58 0.0102

Min. temp. skewness 0.1777 0.0499 3.56 0.0004

Min. temp. kurtosis 0.5408 0.1187 4.55 < 6.4
−6

Min. temp. alpha index −0.2357 0.0735 −3.21 0.0014

Max. temp. kurtosis 0.3212 0.1071 3.00 0.0028

Precipitation entropy 0.0875 0.0302 2.90 0.0039

Green-area index 0.1304 0.0352 3.71 0.0002
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(p-value < 10−4 ). Similarly, we notice that the variable “other pests and parasites” (tracheal mites, nosema, hive 
beetle, wax moths, etc.; see again Data) appears to be significant but, as for the variable “other”, we do not attempt 
to interpret it in depth because of its broad definition – we only use it as a control variable. However, if one were 
to attempt an interpretation of the negative sign of this variable, it may be, at least in part, due to the presence 
of collinearities within the selected features; see Supplementary Fig. S19. The marginal correlation between 
“other pests and parasites” and losses is positive, but this feature is also correlated with V. destructor, “other” and 
“pesticides”, which increase  losses54. To some extent, these features all capture related effects and disentangling 
the roles of correlated predictors is non-trivial (see Supplementary Table S7). The negative estimated coefficient 
when “other pests and parasites” is evaluated jointly with V. destructor and “pesticides” could be interpreted as a 
conditional proxy for the beneficial effect of beekeepers’ expertise, since the pathogens in this category are likely 
harder to detect and treat compared to, e.g., V. destructor. Unfortunately, this hypothesis cannot be validated 
empirically in the current study, due to the lack of information regarding beekeepers’ expertise in USDA-NASS 
data. Thus, although the estimated sign for “other pests and parasites” is different than what one would expect 
based on a marginal analysis, different estimation techniques and modeling strategies support this result (see 
Supplementary Tables S8-S12). The issue certainly warrants further investigation in the future.

Consistent with our initial likelihood ratio test, also six among the indexes produced by up-scaling weather 
data were selected as relevant by the procedure. These concern the distributions of minimum temperatures, 
maximum temperatures and precipitations. Standard deviation, skweness, and kurtosis of minimum tempera-
tures appear to significantly increase losses – suggesting an aggravating role for variability in general, and more 
specifically for extreme minimum temperature events (concentration on extreme values and tail heaviness of 
the distribution). This is confirmed by the significant negative effect of the minimum temperatures alpha index 
– another indicator of the frequency of extreme events; an increase in the index signifies a decrease in extreme 
 events48. Extreme maximum temperatures, as captured by their kurtosis, also appear to significantly increase 
losses, as does the entropy of precipitations. The latter could be interpreted as an effect of the inconsistency of 
precipitation patterns within a given state and quarter, which may affect the effectiveness of foraging behaviors 
(bees do not fly during heavy precipitation) and thus increase the probability of colony loss. This supports exist-
ing studies connecting colony loss with changing weather  patterns24,26,27,37,43,55,56.

Finally, the “green-area index”, which captures  urbanization39 (it is lower/higher for more/less urban areas; see 
Data processing for more detail on the definition), was selected as relevant by our procedure, with a significant 
positive effect. This suggests that, conditional on all other features included in the model, losses increase when 
green areas are more abundant. This is in contrast with the result in Naug (2009)39 which, however, was based 
on a regression of losses on land use alone. Indeed, we found that the sign of this relationship does depend on 
the joint model and data considered, e.g., it can change as one changes the controls included in the model and 
the set of observations detected as outliers and removed from the fit (see Supplementary Table S8). For instance, 
using state-level controls in place of regional controls, while not affecting sign and significance of other effects, 
results in a non-significant negative effect of “green-area index” (p-value = 0.9 ; see Supplementary Table S9). The 
way this index was constructed supports the intuition that it captures state-level variability (see Data processing), 
and its marginal correlation with other selected features is very weak (see Supplementary Figs. S15, S19); further 
investigation of its association with colony loss conditional on control factors and other features is clearly war-
ranted, also in local-scale studies. We also remark that green areas, particularly crops, may offer transient forage 
to honey bees, having a detrimental effect on the diversity and availability of forage. Moreover, due to pesticide 
use, green spaces corresponding to crops may have an additional negative impact on honey bees’ health. To 
investigate these effects, we decomposed the “green-area index” treating crops and other green areas separately, 
and found that our results do not change introducing such decomposition. This is likely due to the fact that the 
two component parts and the overall index are correlated and thus capture similar effects – e.g., the “green-area 
index” and the index based only on crops have an overall Pearson correlation of 0.84 (this relationship becomes 
even stronger if we control for states or climatic regions).

In terms of outlier detection, our procedure identified some locations and periods which experienced unex-
pectedly “high” or “low” honey bee colony losses compared to the overall trend. These terms indicate obser-
vations for which the estimated regression residuals are much larger in magnitude than the remaining cases, 
and are characterized by a positive or negative sign, respectively. Specifically, we found that unexpectedly high 
losses tend to cluster in the third quarter in West North Central (Nebraska, South Dakota) or Southern regions 
(Arkansas, Kansas) – i.e., areas where expected losses are low. In contrast, unexpectedly low losses tend to cluster 
in the third quarter in Northeastern (New Jersey, Vermont) and Southern (Louisiana, Oklahoma) regions. Both 
types of unexpected events are less frequent in the period with highest expected losses, which is likely due to 
overwintering impacts, and the year 2015 accounted for a significant number of those (especially with lower 
losses); see Supplementary Table S6 for details. The distribution of the points detected as outliers deviates from 
the remaining observations as well. For instance, unexpectedly high losses are associated with lower levels of 
V. destructor, but the opposite holds for unexpectedly low losses. Outlying cases also showed markedly lower 
levels of the variables “other” and “other pests and parasites” (supporting the fact that they capture additional 
features of the error distribution compared to the presence of V. destructor) and larger values of the “green-area 
index”; see Supplementary Fig. S20.

Discussion
Our study explored potential drivers of honey bee colony loss considering the joint effects of a large number of 
features, controlling for space and time, and covering most of the CONUS territory. Since the open data sources 
at our disposal were collected at different spatio-temporal resolutions, we introduced an up-scaling approach 
which allowed us to exploit several distributional characteristics of weather-related variables. This was beneficial 
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in capturing complex relationships and significantly improved the predictive power of our modeling exercise 
– whose salient findings include key roles for seasonality, location, well-known stressors such as the presence of 
V. destructor and the use of pesticides, as well as weather instability and the prevalence of extreme weather events. 
Again, we stress that these associations are to be interpreted in light of the limitations of a study that aggregates 
different data sources – including honey bee surveys that may carry several forms of bias. Hence, our findings 
are best seen as informative indications – in line with prior studies and motivating future research.

Concerning seasonality, in most states, losses are highest in the first quarter, likely due to overwintering, 
and lowest in the second quarter, likely due to the beneficial effects of the spring season. This is consistent with 
existing literature showing that overwintering greatly affects honey bee colony  loss6,26. Concerning location, 
keeping all other factors constant, Central, Southeastern and Southwestern regions are generally associated to 
higher losses throughout the year. Concerning stressors, several local-level studies have provided evidence that 
V. destructor and pesticide use are positively associated to colony  losses57–59. Our work provides indications that 
these relations seem to hold also when analyzing broader spatio-temporal scales, and would appear to contradict 
other local studies that did not observe a positive association with pesticide  use9,60. However, we remark that pes-
ticide exposure is assessed through survey data that heavily rely on the beekeepers’ knowledge of their colonies. 
Concerning weather-related variables, e.g., minimum temperatures, we found that measures of variability and 
tail heaviness (extreme values) significantly increase losses. Interestingly, this is consistent with studies showing 
that varying temperatures may impact wintering because honey bees go through cycles of  clustering61. Indeed, 
one reason for beekeepers to keep honey bees in sheds over the winter, when temperatures are low, is that they 
can keep them consistent – but this in turn depends on colony metabolic rates and temperature  levels62. More 
generally, our findings on the roles of parasites and weather-related variables may inform several aspects of bee-
keepers’ practices – for instance, how to best move colonies (e.g., to target nectar flows), provide supplementary 
feed when weather restricts foraging (e.g., via drought), and implement V. destructor treatment options depending 
on weather conditions, including temperatures. Following up on this, while we did not have access to (and could 
not include in our analyses) information on beekeepers’ practices and colony sizes, these could themselves be 
among the determinants of honey bee colony loss. Including these information in our modeling exercise would 
be a very valuable future addition.

From a methodological standpoint, yet more sophisticated statistical approaches could be explored both to 
up-scale information available at finer resolutions and to construct models. In particular, gains could be made 
by explicitly accounting for small-scale spatio-temporal dependencies when up-scaling variables, and by using 
mixed-effects linear models and/or models that comprise broader-scale spatio-temporal dependencies – in addi-
tion or as an alternative to the spatio-temporal controls used in the current analyses. Improved modeling strate-
gies may also include the use of second order terms and, in particular, interactions as well as lagged variables – a 
potential role for these is suggested, for example, by the roughly anti-cyclical behavior over quarters of colony loss 
and V. destructor mites seen in Fig. 2a and b. Although further investigation is needed, some preliminary results 
(see Supplementary Tables S10–S11) do not appear to point to a significant contribution of these variables in 
terms of predictive power, and their inclusion leaves the associations presented in Table 1 generally unchanged. 
For future analyses, it would also be very beneficial to obtain data at finer spatial and temporal resolution, as well 
as for longer time spans. Finer resolution data for other variables in addition to weather-related ones would allow 
us, among other things, to further investigate the loss of information due to aggregation, and the effectiveness 
of up-scaling in limiting such loss. To the best of our knowledge, such data are currently not available for the 
United States as a whole, but we plan to better study the performance of our up-scaling approach utilizing long, 
county-level records available for smaller regions.

We note that both the up-scaling approach and the modeling strategy proposed in our work could also be 
used to study other geographical areas, species and domains – which in turn could be useful for their methodo-
logical validation. We are particularly interested in analyzing data concerning crops, where the main interest 
is in modeling harvest yields which present important differences compared to pollinators (e.g., crops are not 
generally moved from one place to another).

Our study suggests that, on a large spatio-temporal scale, parasites, extreme weather events and pesticides 
are among the potential drivers of honey bee colony loss. Finally, we note that our findings could be leveraged 
to aid beekeepers’ practices, design more focused field experiments, and more generally motivate an increased 
data collection effort to support our understanding of honey bee colony loss on a large scale. Moreover, through 
our results on the effects of extreme weather, we provide preliminary insight on the potential effects of climate 
change, which may be further investigated by extending the spatio-temporal scale of our study. All methods 
developed and data sets used, as well as metadata and source code to replicate all analyses presented in this work, 
are publicly available (see Supplementary Data and Source code).

Methods
In this study we leveraged open data sources concerning three main types of variables; namely (i) honey bee 
status and stressors, (ii) weather conditions, and (iii) land use (see Data). Since the data sets we employed were 
collected at different spatio-temporal resolutions, we aggregated those at finer resolution quarterly and by state, 
but we also designed an up-scaling approach based on computing indexes on the distributional characteristics 
of values within such aggregations (see Data processing). To run our analyses, we then employed state-of-the 
art statistical learning tools for simultaneous feature selection and outlier detection recently developed by our 
group (see Statistical model).

Data. Honey bee data were obtained from the annual Honey Bee Colonies Report released by the USDA-
NASS63. This summarizes information collected by the USDA-NASS through the Colony Loss Survey. The data 
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are provided on a quarterly basis and by state for the years 2015-2021. They contain information on colony 
losses, additions and renovations, as well as the presence of specific stressors and signs of illness. Honey bee 
status and stressor-related variables are listed and described in Supplementary Table S1, and have been used in 
this study according to their definition as provided by USDA-NASS. We remark that responses submitted to the 
USDA-NASS questionnaire on honey bee status and stressors depend on the respondents’ knowledge of their 
colonies. For every given year, quarter and state, our normalized honey bee colony loss (whose transformation is 
the response variable in our modeling exercise) is computed as the number of lost colonies over the maximum 
number of colonies (colonies at the beginning of the quarter plus all colonies moved into that state during the 
quarter). We note that only operations that report five or more total colonies are included in the survey, and that 
beekeepers need to meet criteria on the definition of a farm, such as reporting an agricultural product turnover 
higher than $1,000 per year. We remark that stressor variables included in our study (e.g., “other” and “other 
pests and parasites”) have been included based on the official definitions provided by the USDA-NASS reports, 
which specify the sub-categories that they encompass (see again Supplementary Table S1). Finally, we note that 
data for Nevada, New Hampshire, Rhode Island and Delaware are not reported, and the second quarter of 2019 
is missing due to a recording suspension by the USDA-NASS.

We computed weather-related variables using the Parameter-elevation Regressions on Independent Slopes 
Model (PRISM)64 data covering 2015-2021 at daily resolution, and the whole CONUS area at the resolution of 
a 4-kilometer-squared grid. For each day and each of the 482,302 grid elements we extracted maximum and 
minimum temperature, as well as total precipitation (given by the combination of rain and melted snow); see 
Supplementary Table S2.

Land use information was obtained from the USDA-NASS Cropland Data Layer (CDL)65. The raw data are 
annual (again for the years 2015-2021) and cover the whole CONUS area at the resolution of a 30-meter-squared 
grid; Supplementary Table S3.

When creating spatial controls, we grouped states based on climate information (Supplementary Fig. S1). 
Specifically, we relied on the definition of CONUS climatic regions provided by the National Centers for Envi-
ronmental  Information40. The use of climatic regions (instead of individual states) is an effective way to limit the 
degrees of freedom devoted to spatial controls in our modeling exercise. The regions take into account historical 
commonalities in climate conditions and, importantly, also reflect some of the information contained in the 
weather indexes used in our study.

Data processing. Given the different spatio-temporal resolutions provided by different open data sources, 
variables available at finer resolution were aggregated to obtain individual entries with the same (coarser) resolu-
tion.

The weather variables (temperatures and precipitations) were aggregated across time and space as to obtain 
entries per quarter per state, and match the resolution of the variables gathered from the Honey Bee Colonies 
Report – including our colony loss response. Ideally, instead of aggregating fine-resolution variables, one could 
down-scale coarse-resolution ones. However, down-scaling requires the availability of additional information 
and can undergo different practical challenges making it a non-recommended approach for the data in this 
 study66,67. This said, aggregation can induce a considerable loss of relevant information. Given the goals of our 
study, we thus designed an up-scaling approach that partially counters this loss recovering information on the 
distribution of the values aggregated within quarters and states. In more detail, we expanded the set of features 
used in our modeling of honey bee colony loss with indexes capturing various aspects of the distributions of 
weather variables within quarters and states. We of course considered the mean as a measure of central tendency, 
and along with it indexes that capture spread (standard deviation), asymmetries and tail-heaviness (skeweness 
and kurtosis)68. In addition, since events such as anomalous temperatures and precipitations are known to have 
an important impact on bee  survival69–72, we computed the tail index (also referred to as tail exponent α ), which 
specifically quantifies the prevalence of extreme values73,74. We also computed the L2-norm or “energy” index, 
which quantifies the (normalized) overall magnitude of the signal comprised in a variable, and the Shannon 
diversity or “entropy” index, which quantifies the degree of unpredictability of the variable, i.e., how close to a 
uniform is the distribution on its  domain75.

The land use data was employed to compute the green-area index whose marginal impact on honey bee colony 
loss was studied in Naug (2009)39. Following the data processing in Naug (2009)39, we grouped land-use categories 
in 6 major classes – “developed”, “forest”, “pasture”, “rangeland”, “crop”, and “water” – computed the area devoted 
to each class per year per state, and excluded “water” from the analysis. Based on these areas, per year per state, 
we computed the index as the ratio of green vs urban land; that is, greenurban =

(crop+forest+pasture+rangeland)
developed  . To match 

the quarterly resolution of the variables gathered from the Honey Bee Colonies Report, we simply replicated the 
yearly green-area index value for each quarter of the same year.

Honey bee stressor variables, which are provided as proportions in the USDA-NASS reports, have been 
pre-processed using, for all of them, the same statistical approach which is agnostic to the obtained results; see 
Supplementary Data treatment for details.

Statistical model. We considered a typical regression model of the form y = Xβ + ε, where y ∈ R
n is the 

response vector, ε ∈ R
n an error vector which is assumed to follow a Gaussian distribution N(0, σ 2

In) , X ∈ R
n×p 

the design matrix, and β ∈ R
p the unknown vector of regression coefficients. For the i-th state, j-th quarter, and 

k-th year, we computed the proportion of lost colonies as tijk =
(lost colonies)ijk
(max colonies)ijk

 and the corresponding log odds 
ratio as yijk = log(

tijk
1−tijk

). The response vector y comprises the scalar terms yijk stacked into a vector of size 
n = 880 (the 44 CONUS states, times a total of 4 quarters in the years 2015-2019). Similarly, the design matrix 
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comprises a column of 880 1’s, for the intercept term, followed by 29 predictor columns, each formed stacking 
880 values for states, quarters and years ( p = 30 ). These include columns for climatic regions, years and quarters 
(our categorical controls); for each, one category is fixed as reference and all others are encoded through dum-
mies, so that the corresponding regression coefficients represent fixed differential effects relative to the reference 
(p increases to 42 with this parametrization). Also, some of the continuous predictors were transformed to regu-
larize their distributions, and 5 out of the 42 variables were set aside at the outset due to very high correlations 
with other predictors. Observations with missing values were excluded from the analysis, reducing the sample 
size to n = 674 ; see Supplementary Data treatment for details.

Following an approach developed by our group and described in Insolia et al. (2021)50, we considered a 
trimmed L2-loss function to limit the influence of outlying observations on the fit, and we enforced sparsity in 
the β estimates through an additional L0-constraint. The corresponding problem can be formulated as a mixed-
integer programming (MIP), where an integer parameter kn controls the amount of trimming (i.e., the number 
of largest squared regression residuals which do not affect the fit), and the sparsity level (i.e., the number of 
non-zero regression coefficient estimates) is controlled through an integer constraint kp . For realistic n and p, 
the simultaneous selection of non-outlying units and relevant features is a double combinatorial problem that 
imposes a huge computational burden. This has been rendered tractable by modern MIP solvers. In general, MIP 
methods target a global optimum – but also when the algorithm is stopped prior to achieving such optimum, 
they provide optimality guarantees for their solution. Moreover, the MIP formulation easily allows one to model 
structured data. We used this to enforce so-called group sparsity constraints76 for our categorical controls (climatic 
regions, years and quarters), ensuring that either all or none of the categories expressing one control variable 
are retained in the fit. Unlike the outcomes of other existing robust penalization  approaches77, the MIP solution 
is equivalent to an ordinary least squares fit computed on the selected subsets of cases and/or features. Notably, 
under suitable conditions, this approach possesses some desirable statistical properties. In particular, it produces 
high-breakdown point estimates (i.e., it can tolerate high levels of data contamination), it satisfies the robustly 
strong oracle property (i.e., it asymptotically behaves as if the true sets of relevant features and non-outlying 
cases were known in advance), and it is optimal in terms of prediction  errors50. Thus, although finite-sample 
inference can be problematic with this class of techniques as it depends on the selection process, the inferential 
results in Table 1 can be interpreted in terms of large-sample theory. In Supplementary Fig. S21 and Table S8 
we present results obtained using alternative estimation methods and models, which are all consistent with the 
results presented in the main text.

Data availability
The raw data that support the findings in this paper are openly available at https:// usda. libra ry. corne ll. edu/ 
conce rn/ publi catio ns/ rn301 137d (United States Department of Agriculture), https:// nass. usda. gov/ Resea rch_ 
and_ Scien ce/ Cropl and/ Relea se/ index. php (United States Department of Agriculture Cropland Data Layer), and 
https:// www. prism. orego nstate. edu/ (Parameter-elevation Regressions on Independent Slopes Model Climate 
Group). Our source code to process and combine these data sources is available at: https:// github. com/ LucaI 
ns/ honey_ bee_ loss_ US_ scirep, and the resulting combined dataset is part of the Supplementary Information.
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