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ABSTRACT Understanding complex systems by the help of modeling, simulation, and control is a
well-known challenge across several application domains. As such, these type of systems are not amenable to
empirical models, typically due to their dynamic and non-linear nature. Data-driven methods, have in recent
years gained traction regarding their application to such complex systems. This paper presents findings
from a systematic literature review of data-driven methods applied to complex systems in recent years.
The review is a result of a search strategy resulting in 1106 scientific publications, out of which forty one
were identified as primary studies. It is our goal that the review findings will guide researchers with an
evidence-base regarding data-driven methods, thereby equipping them with an arsenal of applied methods
across various application domains. Also, the objective is to construct a knowledge-base based on these
methods’ contributions while applied to different types of problems. Additionally, the review findings may
also guide researchers to realize potential gaps for future research.

INDEX TERMS Complex systems, data-driven methods, systematic map, systematic review.

I. INTRODUCTION
Several real-world systems are described by their compo-
nent parts, which may exhibit collective behavior through
self-organization and properties like emergence and non-
linear evolution. Such systems can be found in several appli-
cation domains, such as epidemiology [1], social sciences [2],
and urban systems [3]. These systems are commonly referred
to as complex systems [4], [5].

Understanding complex systems through modeling and
simulation has been a well-known challenge across sev-
eral scientific and technological domains. Several scientific
methods have been developed, to predict or control such
complex systems [6]. These methods are mainly based on
expert knowledge and, more recently, measured data [7], [8].
With the advent of advanced computational systems, data-
driven methods are gaining popularity due to the fact that the
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understanding of complex systems can be more robust if
measured data is used [9].

According to Solomatine et al. [10], data-driven discovery
or modeling is based on analyzing data about a system, in par-
ticular to find connections between the system state vari-
ables (input, internal, and output variables) without explicit
knowledge of the physical behaviour. Data-driven discovery
has been referred to as the fourth paradigm of scientific
discovery, providing opportunities to engineers and scientist
through vast quantities of data [11]. This fourth paradigm is
a consequence of the first three paradigms: empirical exper-
imentation, analytical derivation, and computational investi-
gation [9]. Recent scientific publications, such as [12], [13],
and [14], present efforts pertaining to data-driven modeling
in the fields of Chaotic systems, Financial trading, Epidemi-
ology, Video processing, Neuroscience, Control theory, and
Fluid dynamics. According to Brunton and Kutz [9], such
complex systems are not amenable to empirical models or
derivations based on first principles (i.e., classic theoretical
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work), due to their typically non-linear, dynamic, multi-scale
(space and time) nature. As such, researchers are increasingly
turning to data-driven approaches to model, predict, and con-
trol complex systems.

Motivated by the current rapid influx of new data-driven
methods applied to several domains and a corresponding
lack of recent systematic reviews having a broader scope of
application, we have conducted a review with the following
objectives:

1) To establish an evidence-base of state-of-the-art data-
driven methods using a systematic literature review
methodology,

2) To establish a broader knowledge-base of data-driven
methods, by aiming the study scope to be across several
application domains.

Based on these objectives we defined the following
research questions:

• RQ1: What are major data-driven methods applied to
complex systems described in literature?

• RQ2: What are major data-driven methods’ main con-
tributions?

In the next section we briefly discuss some recent sec-
ondary studies performed in relation to the application of
data-driven methods. In section III, we detail the research
methodology adopted for our study. Next, we show and dis-
cuss the results of the study in section IV and V respectively.
In section VI, we present our conclusions.

II. RELATED WORKS
Applications of data-driven methods are being studied for
various research and practice domains, in the form of com-
prehensive reviews. For instance, in [15] Wadoux et al.
state soil as a complex system in which biological, chem-
ical and physical interactions take place. The behaviour of
these interactions changes in spatial scale from the atomic
to the global, and in time. Wadoux et al. [15] discuss sev-
eral issues and opportunities of knowledge discovery from
soil data, with application of data-driven methods to soil
science. Notably, [15] served as a starting point for fur-
ther discussions on new epistemological challenges facing
soil science research in the information era. In [16], Rajen-
dra and Brahmajirao attempt to review application of deep
learning methods to dynamical systems. A major focus of
the review in [16], is to identify data-driven representa-
tions that make nonlinear systems amenable to linear anal-
ysis. How et al. [17] present a review of recently used
state of charge (SOC) estimation methods highlighting the
model-based and data-driven approaches for lithium-ion bat-
teries. Woldaregay et al. [18] present a review identifying and
discussing the current trends ofmachine learning applications
within the context of medicine, specifically, pertaining to
the controller of an artificial pancreas (closed-loop systems),
modeling of personalized profiles, personalized decision sup-
port systems, and blood glucose alarm event applications.
In [19], Peres et al. present a systematic review of current

industrial artificial intelligence literature, focusing on its
application in real manufacturing environments to identify
the main enabling technologies and core design principles.
The novelty of [19] is that they provide a clear definition
and holistic view of Industrial Artificial Intelligence within
Industry 4.0.

The above-mentioned studies comprehensively identify
and discuss applications of data-driven methods focused on
various individual research and practice domains pertaining
to complex systems. Furthermore, studies like [19] are rare
examples of comprehensive reviews with a cross-domain
review scope, pertaining to applications of such data-driven
methods. Indeed, deeper insights may be obtained, if such
method applications are analyzed across types of problems
and thereby reviewed for types of their contribution.

In this paper, we present findings from our cross-domain
investigation of the use of such data-driven methods, while
identifying and analyzing contributions of these methods’
ability to tackle a variety of problems.

III. RESEARCH METHODOLOGY
In our study we have adopted a research methodology based
on the guidelines presented by Kitchenham and Charters [20]
and Petersen et al. [21], which cover strategies for conduct-
ing systematic review and mapping. Systematic review and
mapping are becoming popular methodologies to establish an
evidence-base and a knowledge-base about a research topic in
a structured and comprehensive manner [21], [22].

The concepts of review used in our study is in line with
the definitions provided by Kitchenham and Charters [20],
Petersen et al. [21]. According to Kitchenham and Charters
[20, p. vi], a systematic literature review is defined as ‘‘a form
of secondary study that uses a well-defined methodology to
identify, analyse and interpret all available evidence related to
a specific research question in a way that is unbiased and to a
degree repeatable.’’ According to Petersen et al. [21], a sys-
tematic mapping study, on the other hand, is usually aimed at
categorizing and summarizing the methods applied in several
research publications related to a topic or research question.
A systematicmap helps to provide context for amore in-depth
systematic review of a research topic/question by identifying
available evidence [20], [23]. Despite the fact that systematic
review and mapping studies have different objectives, they
follow almost similar processes [24]. In our study, we used
a combination of both methodologies, i.e., both systematic
mapping and systematic review, to establish an evidence-base
pertaining to the research questions. In particular, prac-
tices around the systematic mapping methodology were used
to identify the methods applied across various application
domains, and map their popularity among researchers. On the
other hand, we used the systematic review methodology to
identify and analyze the major contributions of suchmethods,
when applied to a variety of problems. Specifically, in line
with [20], the systematic mapping methodology is used to
construct an evidence-base of use of methods across var-
ious studies. Whereas, the systematic review methodology
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is used to understand the contribution of the applied meth-
ods in the studies and hence to classify such methods
based on a novel proposed taxonomy, culminating into a
knowledge-base.

Systematic review and mapping studies follow a three
phase process in line to [20].
• Planning: The first phase deals with specification of the
research question and the review protocol.

• Conducting: The second phase forms a large por-
tion of the review study where the studies are first
identified for review through a systematic process.
Next, the selected studies are extracted and synthe-
sized for data related to the research questions of the
review.

• Reporting: The third phase relates to reporting, evalua-
tion and publication of the review.

For this study, we conducted the systematic mapping and
review through an iterative four-stage process, as depicted
in Figure 1. In the first stage, we conducted the literature
search. In the second and third stages, we selected studies
by first going through the title, abstracts, and keywords, and
then going through the full text. In the final fourth stage,
we extracted the data and performed a synthesis. Iterations
were introduced to this four-stage process, in order to obtain a
refined pool of publications being better capable of answering
the research questions.

In the following subsections, we describe the four stages
of the review and mapping process in detail.

A. SEARCH STRATEGY
As guided by Kitchenham and Charters [20], we recognize
that the quality of systematic review and mapping studies
highly depends on the rigour of the search process. Therefore,
we directed our search strategy to find studies relating to the
research questions in a comprehensive manner. We achieved
this by a careful choice of search venues, and a search string
based on research questions, taking care of synonyms, abbre-
viations, and alternative spellings.

1) SEARCH VENUES
We used Scopus1 since it indexes most of the studies found
in other databases like IEEE Xplore,2 ACM Digital library3

etc., while not including grey literature (e.g., unpublished
materials) [25]. This contributes to a comprehensive search
of literature, while maintaining high research publication
quality (through peer-reviewed sources), to be considered for
mapping and review.

2) SEARCH KEYWORDS AND STRING
We crafted the search string used for literature search, while
taking into account synonyms, abbreviations and alternative

1Scopus – https://www.elsevier.com/solutions/scopus (As of Feb. 2022).
2IEEE Xplore – https://ieeexplore.ieee.org/Xplore/home.jsp (As of Feb.

2022).
3ACM Digital library – https://dl.acm.org/ (As of Feb. 2022).

TABLE 1. Search string.

TABLE 2. Inclusion and exclusion criteria (Final iteration).

words. We achieved this by the use of Boolean oper-
ators ‘‘AND’’ and ‘‘OR,’’ in conjunction with quotation
marks (‘‘’’) and ‘‘*.’’ Table 1 presents the used search
string.

B. SELECTION CRITERIA
We created the study selection strategy, to filter studies
capable of providing context or information to answer the
defined research questions. To obtain evidence on methods
applied to complex systems, we included studies dealing with
complex systems, in particular, non-linear dynamical sys-
tems. Also, to select studies representing the state of the art,
we included articles published between 1st January 2019 till
21st April 2021 (date of search). Moreover, we selected
studies fully published (not just as abstracts), in English
language. To achieve this, we created an inclusion-exclusion
criteria (IC-EC) as given in Table 2. We then applied the
IC-EC successively to the paper abstracts and then to the
full-text of the papers (stage 2 and 3 in Figure 1) to
obtain the final pool of studies for data extraction and
synthesis.
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FIGURE 1. Systematic review and mapping process adopted in this study as an iterative four-stage process.

1) ITERATIONS
For our study, we designed the review and mapping process
as an iterative process, in line with [26]. Iterations were intro-
duced to refine the list of papers to be reviewed, in order to
obtain a pool of publications being better capable of answer-
ing the research questions.

We employed refinements based on the following criteria
through iterations:
• We deemed it important to consider only high quality
papers for review and mapping. Hence EC4 was intro-
duced, through which CiteScore4 was used to filter out
low impact journals and conference proceedings.

• We decided to limit the scope of the review to be related
to computer science, engineering, andmathematics only.
Thus IC3 and EC5 were introduced.

• We decided to exclude publications, with insufficient
focus and discussion regarding its contribution to ana-
lyze or model the complexity of the system. Thus EC6
was introduced.

C. DATA EXTRACTION AND SYNTHESIS STRATEGY
To obtain data relevant to the research questions, we extracted
the following information:
• Applied modeling method: Data regarding the applied
method and its components.

• Problem type: Data about the type of problem addressed
in the studies.

• Method contribution: Data about the main contribution
of the applied method, usually indicating the novelty in
the studies.

Furthermore, we cross-mapped the data extracted as listed
above, to synthesize insights pertaining to the research ques-
tions, i.e.,

4CiteScore https://www.elsevier.com/connect/editors-update/citescore-a-
new-metric-to-help-you-choose-the-right-journal (As of Feb. 2022)

• to investigate RQ1, we analyzed the use of methods for
various problem types, gaining insight on the popularity
of methods as per their use for different problem types.

• to investigate RQ2, we created a taxonomy to classify
the contribution type of the used methods and per-
formed analysis of contribution types for each problem
type. This provided us with insights in the form of a
knowledge-base regarding the contextual use of meth-
ods, for different types of problems.

IV. RESULTS
Based on the methodology described in previous sections,
we obtained search results, extracted data and synthesis:

A. SEARCH RESULTS
We identified 1106 records through search in the Scopus
database. Next we screened records for eligibility through
IC-EC. Figure 2 shows the result of the final iteration of
the search process. Finally, we ended up with 41 publica-
tions, used for data extraction and synthesis (see Table 5 in
Appendix).

B. EXTRACTED DATA
The review data consisted of highly inspirational state of
the art methods applied to a variety of problems. For
instance, [32], [33], [34] deal with control of non-affine/non-
linear discrete time systems. The methods applied in [32]
show an insightful combination of data-driven dynamic lin-
earization to the conventional control methods like active dis-
turbance rejection control (ADRC). References [34] and [33]
produce novel Iterative learning control (ILC) andModel free
adaptive control (MFAC) frameworks, by utilizing full form
dynamic linearization (FFDL) technique in the iteration and
time domains. A similar attempt of using data-drivenmethods
was evident in [35], to develop a data-driven adaptive learning
consensus protocol for multi-agent systems (MAS) with a
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FIGURE 2. Prisma flow diagram for the final iteration of the review and mapping
process.

strong learning ability to improve consensus performance by
learning from both time dynamics and spatial dynamics.

Many studies have also used Reinforcement learning (RL)
for data-driven control. For instance, in [36] Gros and Zanon
utilized non-linear model predictive control (NMPC) as
a function approximator in the RL based control frame-
work. [37] in turn, used RL to solve the globally robust opti-
mal output regulation problem (GROORP) of partially linear
systems. The system studied in [37] was challenging due to
unknown inherent dynamics with both static and non-linear
dynamic uncertainties. Other examples of solving highly
challenging control based problems using RL are [38] and
[39], where RL based control methods like Internal Reinforce
Q-learning (IrQ-L) is proposed to handle tracking and forma-
tion control of nonlinear multi-agent systems. As an augmen-
tation to standard RL based control frameworks, [40] propose
model-based predictive control (MPC) as a safety filter, that

can turn a highly non-linear and safety critical dynamical
systems into inherently safe systems, to which any RL-based
algorithm can be applied without any safety certification.
Additionally, [41] illustrate the use of deep neural networks
in a learning-based predictive control of cooling system of
a large business centre. In their paper, Terzi et al. present
an application of LSTM Neural network, as a dynamical
model of a real complex system (cooling system), using data
sampled from its routine operations. Reference [42] propose a
Multi Objective Optimization based predictive control frame-
work to enable smooth and accurate tracking in repetitive
tasks.

All studies mentioned above propose state-of-the-art
learning-based methods for control of complex systems.
However, in addition to the well-known data-driven meth-
ods like Dynamic linearization, Reinforcement Learning,
and Artificial Neural Networks, as discussed above, some

134748 VOLUME 10, 2022



S. Dwivedi et al.: Investigation of Contemporary Data-Driven Methods Applied to Complex Systems

atypical data-driven control methods are proposed in [43],
[44], [45], and [46] which presented novel methods like
hierarchical predictive learning, decoupled data based control
(D2C), and event-triggered communication schemes.

A variety of data-driven methods are found in the
review data, to predict system dynamical evolution. For
instance, [47], [48], [49] use Neural networks in conjunction
with Newmark-β and inhibitor methods to accurately pre-
dict evolution of system behavior. Additionally, [50] provide
a unique example of network-based modeling of complex
material flow based logistics and manufacturing systems,
where Funke and Becker use Stochastic block models to pre-
dict evolution of system behavior. Moreover, [51] illustrate a
unique application of a data informed agent-based modeling
(ABM) method to simulate autonomous shared taxi/urban
transport and perform sensitivity analysis on the number of
cars and the number of charging points.

The above mentioned methods, like dynamic linearization,
reinforcement learning, and LSTM neural networks, mostly
focus on temporal evolution of system dynamics. Other stud-
ies suggest more robust data-driven analysis and identifica-
tion of features of the dynamical system. For example, [52]
apply a Koopman operator for data-driven control. The use
of Koopman operators in their paper exploits their ability
to produce higher or lower dimensional representation of
the original state space as an embedded dynamic model.
Hence, the latent variable describes the non-linearities of the
dynamical system. A similar method is seen in the work of
Korda and Mezic [53], who propose a new algorithm for
construction of Koopman eigenfunctions from data, thereby
stating that the embedding mapping must consist of the (gen-
eralized) eigenfunctions of the Koopman operator (or linear
combinations thereof). Reference [54] also propose a novel
method of extracting dynamics of nonlinear systems using
their time-series data. The proposed method integrates the
Koopman operator and linear systems theory to construct a
linear model that approximately represents the dynamics of
a nonlinear system on a linear space of reduced dimension,
based on the available time series data. In particular, the study
uses the temporal trajectories generated by this low dimen-
sional linear system as features in machine learning to clas-
sify time-series data, in terms of the ‘distinction’ of system
dynamics.

Other studies also suggest various methods for robust
system identification. For example, [55], [56], and [57]
use statistical methods to produce mathematical models of
dynamical systems. Reference [55] propose a generalized
power-law formulation to model stiffness and damping in an
oscillator, by fitting parameters of the differential equation
on experimental data. Reference [56] illustrate a systematic
approach to identify dynamics of Covid-19 spread through
different regions using data to identify generalized logistic
and Susceptible-Exposed-Infectious-Quarantined-Recovered
(SEIQR) with distributed time delay models. A similar
approach is taken by Volkening et al. [57], to forecast elec-
tions using compartmental models of infection.

More recently popular methods, like Sparse Identifica-
tion of nonlinear dynamics (SINDy) and Dynamic Mode
Decomposition (DMD) are used by [58] and [59]. Refer-
ence [58] incorporates the concept of SINDy based meth-
ods, and knowledge in the field of classical mechanics to
identify interpretable and sparse expressions of total energy
and the Lagrangian of the system that shelters the hidden
dynamics. Reference [59] prove the minimization problem
associated with SINDy and DMD methods as specific cases
of a more generalized objective function, which yields more
robust recovery of inherent dynamics in presence of sparse
and noisy measurements.

Additionally, we find few studies employing model order
reduction and machine learning in conjunction with sys-
tem identification methods. For example, [60] proposes to
model input-output relationships in a real Tokamak machine,
by using a combination of autoencoders, capable of com-
pressing input features, and theHammerstein-weiner method,
for identifying the system dynamics. Similarly, [61] uses
a Data knowledge based fuzzy neural network to identify
of nonlinear system dynamics. The method proposed by
Wu et al. [61] cannot only take advantage of the current
data-driven model but also the existing knowledge from a
reference model, hence overcoming the problem of incom-
plete datasets for model training. Also, [62] present a unique
methodology to test a dynamical system for its non-linearity
based on data. Thus, method of [62] can be used to deter-
mine whether or not the data motivates nonlinear modeling.
Furthermore, it also can determine whether or not a non
linear dynamical model has captured the predictability for
the data. Reference [63] propose a novel non-intrusive model
reduction method method to learn low-dimensional models
of dynamical systemswith analytically given non-polynomial
nonlinear terms. The rest of linear and polynomially nonlin-
ear dynamics are learnt as a least squares problem. Refer-
ence [64] propose an artificial neural network based partial
differential equation (PDE) integrator in conjunction with
proper orthogonal decomposition (POD) based model order
reduction. Reference [65] propose a similar approach, to con-
struct a time-stepping predictor on the basis of a non-black-
box dimensionality reduction approach using kernel based
Principal component analysis (kernel-based-PCA).

Other studies like [66], [67], and [68] form examples
of novel data-driven modeling methods applied to complex
problems like weather predictions, blast furnace industrial
process modeling. Reference [66] use data mining techniques
to establish prior knowledge from historical data, to inte-
grate with support vector machine modeling of the blast
furnace ironmaking industrial process. Reference [68] apply
evolutionary algorithm in the same blast furnace problem to
construct explainable features based on the domain knowl-
edge, to handle the characteristics of data such as nonlin-
ear, dynamic and time lag. Reference [67] propose a novel
hybrid data assimilation (DA) with neural network (MLP)
based framework to make accurate numerical weather pre-
dictions. Their paper formalizes the optimization of single
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FIGURE 3. This figure illustrates the overall popularity of data-driven
methods, applied across all types of problems. Specifically, the chart
represents the use of a method as percentage of total use of all methods.

DA methods (EnKF and 3DVar) through MLP and construct
new datasets, adding future short term predictions to correct
the current assimilation results, which significantly improves
the quality of the results.

Studies like [69], [70], [71], and [72] use data-driven
modeling and control methods exhibiting both robust iden-
tification of system state and dynamical evolution. For exam-
ple, [69] propose a hybrid method for complex tendon driven
robots, by merging the latest mechanics-based rigid multi-
body dynamic models with neural network learning-based
models for the difficult-to-capture friction and tendon mod-
eling. A similar approach was proposed by [72], who
proposes a combination of physics and data-driven partial
process models for hybrid modeling of Electrohydrodynamic
jet printing. Reference [70] proposes a novel spatiotempo-
ral neural network taking into account a complex nonlin-
ear distributed parameter system’s relationship with space
as well as time. The proposed method uses full informa-
tion from all sensors without the use of model reduction
techniques. Reference [71] propose a deep learning net-
work called Semi-Supervised Dynamic Feature Extracting
(SSDFE) network to extract nonlinear dynamic features of
semi-supervised process data for output quality prediction.
In this network, the encoder–decoder with long short-term
memory (LSTM) cells consists of the dynamic feature extrac-
tor. Simultaneously, an efficient integer differential evolution
(IDE) algorithm is utilized to search the optimal Variable
Time delay (VTD) values in the training process of the
SSDFE network, where VTDs are also regarded as model
parameters. In this proposed IDE-SSDFE modeling algo-
rithm, the nonlinear dynamic features and VTD values are
cooperatively obtained, which significantly improves the pre-
diction performance of the quality predictor.

C. SYNTHESIS
As described in section 2.3, we classify our extracted data
based on the following criteria:

1) Problem type: Modeling or Control

FIGURE 4. This figure illustrates the popularity of data-driven methods,
applied for individual types of problems (i.e. modeling and control).
Specifically, the chart represents the use of a method as percentage of
total use of all methods, for a type of problem.

TABLE 3. Data-driven methods.

a) Modeling: Studies dealing with modeling of com-
plex systemswith an objective of system behavior
prediction or classification.

b) Control: Studies dealing with system control
based objectives or problems, i.e., studies in
which the tackled problem lies in the scope of
system control.

2) Method contribution: C1 or C2
The concept behind the proposed taxonomy for method
contribution is inspired by several studies and books
like [9], [12], [27], [28], [29], and [30]. Such literature
details fundamental concepts and knowledge regarding
data-driven methods, thereby, also providing a funda-
mental distinction among such methods. In our study,
we observe that a method, either learns the temporal
characteristics of the system evolution, or provides a
more relevant description of the state of a system.
We consequently, define a novel taxonomy to classify
methods based on their main contributions, as follows:

a) C1: Studies in which applied methods contribute
mostly to model temporal evolution of system
behaviour.
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FIGURE 5. This figure illustrates a conceptual map of a taxonomy to classify method contribution based on method
characteristics.

b) C2: Studies in which applied methods attempt
to structure and/or identify the inherent features
associated to dynamics of the complex system.

We also map the proposed taxonomy to the fundamen-
tal concepts, usually used in literature, involved in a
data-driven method as depicted in Figure 5.

V. DISCUSSIONS
In this section we discuss our findings, as the result of the
systematic mapping and review, while also answering the
research questions.
RQ1: What are major applied data-driven methods

described in the literature?
Based on extracted data as described in the previous

section, we are able to identify several state-of-the-art data-
driven methods, applied in literature. We have enumerated
those methods in Table 3. These methods are usually used
in combinations, as per system complexity and system pre-
diction/control scope. In Figure 6 we have also graphed the
co-occurrence of the applied methods in 41 studies. In order
to gain some insight on the popularity of the methods,
we recorded the number of times a method is used in 41 stud-
ies. Figure 3 provides an overview of themethods’ popularity.
In particular, Figure 4 illustrates the popularity of methods
across problem types.
RQ2: What are major data-driven methods’ main contri-

butions?
To outline main contributions of several applied methods

found in 41 studies, we created a taxonomy, defined in the
previous section. Figure 7 illustrates the methods as members
of the classification for evident method contribution. In order
to enumerate several applied methods with regards to their
use for types of problems and their types of contribution,
we cross-mapped the two classification schemes, defined in
the previous section, as given by Table 4.

A. TRENDS IN USE OF CONTEMPORARY METHODS
As evident from the method popularity graphs (i.e., Figure 3
and Figure 4), a wide variety of data-driven methods are

employed in literature, with a prevalence of studies focusing
on the use of Neural Networks, System identification, and
Reinforcement learning. This is true for both modeling- and
control-based problems. Moreover, machine learning related
methods like Neural Networks, Reinforcement learning, Sup-
port Vector Machine, among others, are often applied in com-
bination, as illustrated by the co-occurrence graph in Figure 6,
based on the problem scope. For instance, in problems related
to modeling of system behavior, the machine learning meth-
ods are commonly used in combination with Dimensionality
reduction, Model order reduction, and System identification
basedmethods. Similarly, for system control-based problems,
Reinforcement learning and Dynamic linearization are often
combined with other methods.

In addition to the above popular methods, there are few
upcoming methods, which are gaining traction recently. For
example, many studies are using Koopman operators for
modeling as well as control based problems. System Iden-
tification methods based on SINDy and DMD methods are
also good examples of such upcoming methods. The methods
have been devised very recently, for instance SINDy [12],
uses sparse data to identify the governing dynamics of the
dynamical system while producing parsimonious representa-
tive models. In a similar way, DMDmethods are also trending
as they provide a better way for dimensionality reduction.
In contrast to traditional methods, like Principal component
analysis (PCA), DMD based methods provide a predeter-
mined temporal behavior (oscillatory, damped, growth) asso-
ciated to the decomposed modes, which can make those
modes more physically meaningful [13].

B. CONTEXTUAL USE OF METHODS
The classification of studies based on type of method con-
tributions provides us with applicable insight into contextual
usage of methods. The contexts for the use of data-driven
methods are found to be, in overall, to understand the inher-
ent features associated with system dynamics, and/or for
modeling temporal evolution of system behavior. Figure 7
provides us with an applicable knowledge-base as regards to
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FIGURE 6. This figure shows Co-occurrence graph of applied methods in 41 studies. The color and size of the
nodes represent the degree of co-occurrence, i.e. more number of times a method is used in conjunction with
other methods, bigger is the size and darker is the color of the representative node. The edges represent the use
of method-pairs.

FIGURE 7. This figure enumerates several data-driven methods as nuts and bolts of the two major contribution types, based on the
classification scheme defined in Section 3.3.

the utility of various methods found in the 41 studies we have
investigated.

Also, the use of methods in conjunction with each other,
also depends on the type of problem (modeling or control).
The cross-mapping as given by Table 4 contributes to the
knowledge-base, i.e. in regards to the contextual use of meth-
ods for different problem types.

C. IMPLICATIONS FOR PRACTICE AND RESEARCH
This paper provides an evidence-base and knowledge-base of
contemporary data-driven methods applied to cross-domain

complex systems. This provides important implications in
research as well as practice. Based on our findings related
to the most popular data-driven methods and their contex-
tual use on different problem types, we provide applicable
insights to IT managers and other practitioners on how to
experiment with suchmethods according to the scope of prob-
lems. To give an example, practitioners dealing with projects
associated with control-based problems/challenges can refer
to the evidence-base and knowledge-base, to plan experi-
ments using methods like Reinforcement learning, Dynamic
linearization and Koopman operators, while also considering
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TABLE 4. Problem type and method contribution cross-map.

the contribution type needed from such methods to tackle
their problem/challenges. Such use of evidence-base and
knowledge-base, pertaining to planning experiments, can
contribute to more informed decisions for practitioners and
assist managers to properly direct future investments. At the
same time, our findings also guide researchers with an
evidence-base of the use of data-driven methods, for a vari-
ety of problems, equipping them with an arsenal of applied
methods across various application domains. The findings
of this review also makes it easier for researchers to real-
ize potential research gaps. For instance, the application of
data-driven methods as frameworks based on agent-based
modelling (ABM) has not been very evident among the
selected 41 studies. Moreover, ABM’s limited application is
mostly oriented towards modelling of complex systems, and
thus may prove to be a potential candidate to explore gaps for
future research. A similar potential research gap is indicated
by the cross-mapping summarized by Table 4. We observe
that there are limited studies with methods used in the con-
text of feature structuring and identification, with regards to
control-based problems. This might suggest potential future
research on data-driven methods for control-based problems,
with an orientation to understand features associated with
complex systems.

D. EFFICIENCY OF MAPPING AND REVIEW
The proposed methodology presented in the paper involves
elements of systematic literature review, which results from a
comprehensive study. Usually, such studies may prove to be
highly time consuming, based on a given set of resources.

In our study, due to limited resources, we aimed at automat-
ing several parts of the methodology. As given in Figure 2, the
search, and screening parts of the review andmapping process
were fully or partially automated, distilling the final pool
of publications to a manageable number for further manual
process components. For instance, tools given by Scopus
were used to apply several exclusion criteria. Moreover, the
Citescore database provided by Elsevier was used to remove
low impact publication venues.

These types of automated tools and measures helped us to
increase the efficiency of the entire study.

E. THREATS TO VALIDITY AND LIMITATIONS OF THE
STUDY
Based on [31], we accounted for threats to validity in our
study, regarding (1) descriptive validity, (2) generalizability,
(3) interpretive validity and (4) repeatability, as follows:

1) Descriptive validity relates to the accuracy of the data
collection. The data collection was performed accord-
ing to the methodology described in Section 2. We mit-
igated this threat by carefully directing the search
strategy to find studies relating to the research ques-
tions, while including only high quality publications.
We achieved this by a careful choice of search venues,
a search string based on research questions, taking care
of synonyms, abbreviations and alternative spellings,
and study selection using a robust set of IC-EC.
Nevertheless, we must express a potential threat to
validity to the study, originating from using Scopus as
the only search venue. Even though Scopus does cover
a large part of relevant literature as compared to Web
of Science and Google Scholar, as studied by [25] in
the general fields of computer science and engineering,
using just Scopus as search venue does not guarantee a
complete coverage of literature.

2) Generalizability relates to the extent to which the study
can be generalized to other areas outside the context
of this study. We aimed our study to be cross-domain
in nature, hence contributing to a generalized applica-
bility of the findings. Nevertheless, one of the greatest
threat to generalizability of this study is associated to
the volatile nature of what is state-of-the-art as regards
to data-driven methods. Due to increasing popular-
ity of using such methods for a variety of problems,
new methods are getting recognized rapidly and being
included in literature. With such fast arrival of new
methods, the representative quality of data, sampled
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TABLE 5. Systematic review data.

for state-of-the-art in our study, may get outdated very
soon.

3) Interpretive validity relates to the measure of reason-
ability of conclusions drawn from the extracted data.
While the risk of researcher bias cannot be completely
mitigated, the data extraction and synthesis was thor-
oughly reviewed by all authors, to minimize this threat.

4) Repeatability relates to the measure of detail while
reporting the research process, in order to be able to
replicate the results of the study. One of the main rea-
sons we adopted this methodology, to be based on sys-
tematic review and mapping, was due to its repeatable
nature [20]. This way, we mitigated threat to repeata-
bility.

VI. CONCLUSION
Data-drivenmethods, have recently gained popularity regard-
ing their application to understand complex systems in terms
of modeling, simulation and control of such systems. In our
paper, we present findings of a systematic mapping and
review of application of data-drivenmethods to such complex
systems.

Our systematic mapping and review process resulted in a
selection of 41 studies. To obtain data relevant to the research
questions, these studies were subjected to data extraction in
context with the application of data-driven methods and their
major contributions to these studies. To investigate RQ1, data
was thenmapped and classified to find popular and upcoming

data-driven methods used in recent research studies. To eval-
uate RQ2, a classification scheme or taxonomy was created
to analyze contributions of data-driven methods applied to
different types of problems.

As illustrated by Figure 3 and Figure 4, the results of this
study demonstrate current popular data-driven methods being
applied to various problem types in the form of an evidence-
base. Often these methods are applied in conjunction with
each other, whereby co-occurrences are illustrated in Fig-
ure 6. Depending on problem type, the use of methods in
combination contribute to the evidence-base. Additionally,
based on the kind of method contributions and the problem
type the methods were used for, a knowledge-base could be
constructed. Table 4 and Figure 7 compile this knowledge-
base.

Since what is state-of-the art regarding data-driven meth-
ods is volatile in nature, our detailed description of the review
process aims at making it easy for readers to run future review
updates. At present, section V-C. highlights existent research
gaps in the application of data-driven methods for complex
systems.
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