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a b s t r a c t

To achieve a fully automatic artificial pancreas (AP), i.e., an AP without the need for meal announce-
ments, the intraperitoneal (IP) route is explored. This route has faster dynamics than the typical
subcutaneous (SC) route. Model predictive control (MPC) is the most promising control algorithm,
but it requires a predictive and identifiable model. This paper presents the design of such a model for
MPC-based dual hormone IP APs. This model is trained and tested on recorded data from anesthetized
pigs. Animal experiments show that the saturation of the hepatic first-pass effect is essential in how
IP insulin and IP glucagon affect glucose levels. These physiological phenomena must be modeled to
estimate the system behavior for various conditions. This, in turn, increases the number of parameters
and complicates system identification. The availability of rich experimental data from 26 animal trials
motivated the design of a technique to exploit this prior information to ensure the identifiability of
our model. Through this technique, most parameters were either modeled as body weight functions
or common among animals. The correlation between parameter values and body weight is discovered
utilizing prior data from various animal experiments, such as blood glucose, plasma insulin, and
glucagon levels, in which hormones were administered intraperitoneally or intravenously. This method
simplifies the system identification for every new subject while keeping the model’s essential details
that improve the prediction capability relative to comparable models. The model can be exploited in
MPC or any other model-based controller of a bi-hormonal IP AP. It can also be used as a simulator
to develop control approaches for single and bi-hormonal IP APs.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Type 1 diabetes mellitus (T1DM) is potentially a life-threaten-
ng illness in which the pancreas produces little or no insulin [1].
requently even glucagon production is impaired [2]. Insulin is
he essential hormone to reduce blood glucose levels (BGL) by
nabling cellular glucose uptake. The cells either use glucose as
n energy source or store it as glycogen, e.g., the liver and skeletal
uscle cells. In contrast, glucagon triggers glycogenolysis, a pro-
ess that involves converting stored glycogen to glucose, releasing
t into the bloodstream, and thus raising the BGL.

External insulin therapy is the current solution to control the
GL in T1DM patients. Generally, patients estimate the required
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amount of insulin based on their body weight, activity level, and
lifestyle. Once the insulin bolus is calculated, they infuse insulin
subcutaneously (SC). In an intensive care unit, it can be infused
intravenously (IV), but the SC route is the standard in T1DM
patients.

Nowadays, the calculations of the required insulin can be
made by a device called the artificial pancreas (AP). An AP consists
of an insulin pump, BGL sensors, and a control algorithm that cal-
culates the amount of required insulin based on the patient’s BGL
profile and physical characteristics. The commercially available
APs are discussed by Moon et al. [3] and Cobelli et al. [4].

When insulin is delivered via the IV route, as shown in Fig. 1,
it is distributed throughout the body by blood circulation. De-
spite the quickness and reliability of the IV route, blood clots
and catheter-related problems make it unsuitable for continuous
insulin infusions. The SC route is safer and less invasive than the
IV route [4]. Therefore, continuous subcutaneous insulin infusion

(CSII) has become a widely used solution since the 1990s, and
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Fig. 1. Comparison of the time delays and pharmacokinetics block diagram of
he SC, IP, and IV insulin administration. Notice that the HFP is saturated at
reater insulin concentrations, and insulin enters the blood circulation system
gain by bypassing the liver.

dvances in the safety and accuracy of the SC pumps and BGL
ensors have improved the diabetes management.
Due to the intrinsic delay in the SC route and the slow dy-

amics of insulin absorption, no matter how advanced the control
lgorithms are, there is always a trade-off between the perfor-
ance of the controllers and the risk of hypoglycemia episodes.
he slow dynamics and delay can cause oscillations, especially
f the control algorithm is aggressive (high gain). It requires
recise control tuning to achieve a fully automated AP without
eal announcement. Therefore, in commercially available single-
ormonal APs, the carbohydrate content of each meal must be
stimated and announced to the AP ahead of time [5].
In addition, CSII delivers insulin to the entire body in equal

oncentrations, whereas the primary target organ of insulin is the
iver. Under normal conditions, insulin is secreted from the pan-
reas and transported directly to the liver via the portal vein (PV).
he insulin concentration is consequently much higher in the
iver than in the rest of the body. However, the non-physiological
ature of CSII leads to a high concentration of insulin in periph-
ral tissues, which impacts the BGL control quality.
An alternative and feasible approach for delivering drugs to

he liver is to deposit the drug into the peritoneal cavity [6–8].
he peritoneal cavity is a space within the abdomen enclosed
y the peritoneal lining. It is lubricated by a small volume of
eritoneal fluid that facilitates movements of the abdominal or-
ans [9]. Although the peritoneal cavity is small in volume, it
as a large surface area and the blood vessels within the lining,
ogether with the blood vessels from the intestines, drain into
he liver via the PV. Drug injections via this route are called
ntraperitoneal (IP) injections.

In addition to mimicking normal pancreatic function with
P injections, this route has significant control benefits, such as
aster insulin appearance in the blood due to a higher absorption
ate and also faster insulin disappearance rate due to the hepatic
irst-pass (HFP) effect [10]. The current challenges and solutions
f using the IP route are discussed in [5].
Our recent animal studies revealed nonlinear insulin phar-

acokinetics and pharmacodynamics behavior of IP route [11].

hese results showed that insulin boluses of less than 0.125 U/kg

14
rapidly affect BGL without causing a significant change in plasma
insulin levels (PIL). However, despite a slight extra reduction
in BGL, a substantial increase in PIL is found for greater IP in-
sulin boluses. Unlike the IP injections, a dose-dependent relation
between insulin dosage and the PIL is observed following SC
administration.

These findings are consistent with saturation of the HFP effect,
which holds that when insulin concentration in the PV exceeds
a certain level, insulin clearance in the liver becomes saturated.
As a result, more insulin enters the general blood circulation.
Additionally, the insulin effect in the liver is not proportional to
the size of the insulin boluses; following a large insulin bolus,
the liver’s capacity to absorb glucose is saturated. Therefore, the
saturation of the HFP effect must be modeled to predict the body’s
behavior for different insulin bolus sizes.

Taking full advantage of the IP pathways in the AP systems
necessitates having a mathematical model. This paper proposes
a model to describe IP insulin and glucagon interaction with the
BGL. The model aims to be used in APs with model-based control
techniques like model predictive control (MPC). Therefore, the
model should track the measured data and have a high perfor-
mance in predicting future BGL. In addition, the parameters must
be identifiable, and the system identification procedure must be
feasible and noninvasive. It is helpful to have a short identifica-
tion phase since then; one can rapidly start automated glucose
management and reduce the patient involvement in glycemic
control. It may be even more critical to have a short identification
phase in animal experiments since it is desirable to decrease the
duration of these experiments. Therefore, the model is designed
with a minimum number of parameters and states necessary for
mimicking the real-life behavior of the body’s response to IP
insulin and glucagon.

In summary, the main aim of this paper is to design a model
for blood glucose prediction with IP insulin and IP glucagon with
a few parameters to use in model-based control.

The proposed model extends our previous model [12] by in-
cluding the HFP effect and improvement of the glucagon sensitiv-
ity sub-model. The modifications improve the model to predict
the response to a wide range of insulin and glucagon boluses.
In addition, to overcome the identifiability issues and ease the
identification procedure, a novel method based on physiological
and practical assumptions is proposed. In this method, called
‘‘meta-model identification’’, one could split the model’s param-
eters into the population and individual parameters. Population
parameters are a set of parameters that are functions of body
weight or common among individuals/animals, and individual
parameters are the parameters that vary from subject to subject.
The proposed method enables us to split the invasive sets of
excitation and measurements among several animal experiments
instead of performing them on each animal. Notably, the popula-
tion parameters are found using prior information. For every new
subject, there is only a need to identify five individual parameters
without an invasive excitation.

Using data from several animal experiments, we showed that
the proposed model could satisfactorily reproduce the behavior
of glucose metabolism in response to a wide range of insulin and
glucagon boluses. Furthermore, the newmodel outperforms other
comparable models in prediction performance, which is a crucial
feature for the closed-loop performance of MPC-based methods.

The paper is structured as follows. Animal care and surgical
procedures are described in Section 2, while pharmacokinetics
and pharmacodynamics of insulin and glucagon are modeled in
Section 3. We provide identification method and meta-model
designation in Section 4. The utilized data sets and evaluation
tools are described in Section 5, and the destined model is trained
in Section 6. Using the test data, the performance of the pro-
posed model in fitting to the measurements and prediction is
compared with other models in Sections 7 and 8, respectively.
The conclusions and discussions are provided in Section 9.
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. Methods

This section provides an overview of animal experiments and
linical procedures. The procedures are described in more detail
n [11,13].

.1. Ethical approval

The Norwegian Food Safety Authority (FOTS number 12948)
pproved the animal experiments, which were carried out in ac-
ordance with ‘‘The Norwegian Regulation on Animal Experimen-
ation’’ and ‘‘Directive 2010/63/EU on the protection of animals
sed for scientific purposes’’.

.2. Animals and animal handling

The tests were carried out on 29 non-diabetic farm pigs (Sus
crofa domesticus) that weighed 30–63 kg. Before the experi-
ents, the animals were given a week to get used to the staff
nd their new surroundings. The animals were kept together in
roups whenever possible. They were fed commercial growth
eed twice a day and given unlimited water access.

.3. Anaesthesia

The anesthesia procedure, the drugs used in this procedure,
nd the environmental factors are described in [11,13] in detail.

.4. Surgical procedure

A venous line for fluid infusion was established in the left
nternal jugular vein, and the left carotid artery was cannu-
ated for blood sampling and monitoring of physiological param-
ters. The same cut-down was used to insert both catheters. The
atheters from the insulin and glucagon pumps were connected
t the end and inserted 10–15 cm into the upper left part of
he abdomen through a 2–3 cm long craniocaudal incision in the
bdominal wall, 2–3 cm caudally to the umbilicus. The pigs were
uthanized with an IV overdose of pentobarbital (minimum 100
g/kg)(pentobarbital NAF, Apotek, Lørenskog, Norway) at the end
f the experiments while fully anesthetized.

.5. Suppression of endogenous insulin and glucagon secretion

Twenty pigs were given IV boluses of 0.4 mg octreotide (San-
ostatin 200 g/ml, Novartis Europharm Limited, United Kingdom)
very hour and SC injections of 0.3 mg pasireotide (Signifor
.3 mg/ml, Novartis Europharm Limited, United Kingdom) every
hree hours to inhibit endogenous insulin and glucagon secretion.
he remaining pigs received octreotide as a 5 g/kg/h infusion and
o pasireotide injections.

.6. Measurements

PHL was analyzed with Glucagon ELISA (10-1281-01 Mercodia,
ppsala, Sweden), and PIL was analyzed with Porcine Insulin
LISA (10-1200-01, Mercodia, Uppsala, Sweden). The assay ranges
or the glucagon and porcine insulin ELISA kits were 2–172 pmol/l
nd 2.3–173 mU/l, respectively. Blood glucose was analyzed on a
adiometer ABL 725 blood gas analyzer (Radiometer Medical ApS,

rønshøj, Denmark).
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Fig. 2. Block diagram of the proposed IP drug pharmacokinetics. The IP and IV
drug administration rates are denoted by Uip and Uiv , respectively. Cd,ip and Cd,p
are the drug concentrations in the peritoneal cavity and plasma, respectively.
The portal vein (PV) and extra portal veins (EPVs) transport the drug (at a rate
of Dp) from the peritoneal cavity to the liver and heart. In the liver, the drug
undergoes the hepatic first-pass (HFP) effect, and a portion of it (at a rate of
Dl) is removed from the blood. The remaining drug (at a rate of Dh) enters the
heart and is cleared from the plasma at a rate equal to Dc .

. Background and model development

From the pharmacokinetics point of view, drugs deposited in
he IP cavity are absorbed by the surrounding capillaries and
ransported to other organs via blood circulation [14]. The cap-
llaries in the vicinity of the peritoneum can be divided into two
roups, (a) capillaries emptying compounds into the PV and (b)
apillaries draining into the extra-portal veins (EPVs). The PV
arries blood from the stomach, intestines, spleen, and pancreas
o the liver and is essential in transferring insulin and glucagon
rom the pancreas to the liver in the body. The EPVs go directly to
he heart. Notably, drugs absorbed into the PV and transported to
he liver are subject to the HFP effect, and a significant portion is
leared from the blood before reaching the systemic circulation.
From the pharmacodynamics point of view, the liver can store

lucose as glycogen in quantities of up to 6% of its weight,
hich equates to 100–120g glycogen for a 70 kg male. Other
rgans, such as skeletal muscles, kidneys, and lungs, may not
ubstantially influence the BGL, but their cumulative impact is
omparable to that of the liver. For example, skeletal muscle
lycogen storage can amount to 2% of their weight, allowing for a
otal of 400 g of glycogen storage in the muscles of the body as a
hole [15,16]. Therefore, the liver and other organs’ cumulative
harmacodynamics must be modeled separately to describe the
ffect of insulin.
In the following sections, the mathematical models of the

harmacokinetics and pharmacodynamics of insulin and glucagon
re described.

.1. IP insulin and glucagon pharmacokinetics

To simulate the pharmacokinetics of insulin and glucagon in
he body, one should model the concentration dynamics of these
rugs in peritoneal fluid, the quantity of the drugs entering the
iver and the heart, and the concentration of the drug in plasma.
he equations are given in the following sections, and the block
iagram of the proposed IP pharmacokinetics is presented in
ig. 2.

.1.1. Concentration of the drugs in peritoneal fluid
The IP cavity fluid is where the drugs are administrated, and

rug dissemination relies on its dynamics. Similarly to Canal
t al. [17] and Zazueta et al. [12], we modeled the concentration
f the drugs (i.e., insulin or glucagon) in the peritoneal cavity as
linear system as follows:

˙d,ip = −kd1 · Cd,ip +
Uip (1)

Vd,ip
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here Cd,ip [mass/ml] is the concentration of drugs in the peri-
oneal fluid, Uip [mass/min] is the mass rate of drug injection, Vd,ip
[ml] is the volume of the peritoneal fluid, and kd1 [min−1] is the
diffusion rate of the drug from the peritoneal cavity to capillaries.
From (1) one can conclude that

Dp ≜ kd1Vd,ipCd,ip (2)

is the rate at which the mass of a drug escapes from the peritoneal
cavity and gets absorbed into the capillaries that surround the
peritoneal cavity.

3.1.2. Mass rate of drug entering to liver
A sizeable portion of Dp eventually drains into the PV, and

the rest goes to the heart via EPVs [14]. As shown in Fig. 2, the
PV supplies blood from the abdominal organs to the liver, where
the main metabolism of glucose takes place. The drug mass rate
entering the PV can be defined as βdDp where 0 < βd ≤ 1 is the
ratio of drug drained into the PV to the total amount of drug that
is absorbed from the peritoneal cavity.

Notably, the HFP effect becomes saturated for a high IP insulin
bolus, and the liver cannot remove the drug from the blood in the
PV. We used the model suggested in [18] to model the hepatic
drug clearance rate and its saturation as follows.

Dl = kd2
βdDp

kd3 + βdDp
(3)

where Dl is the liver clearance rate, kd2 [mass/min] is the maxi-
um drug clearance rate of the liver, and kd3 [mass/min] is the
alf-saturation constant in the liver response function [19].

.1.3. Mass rate of drugs entering to heart
The drug bypassing the HFP effect or absorbed into the EPVs

ill ultimately reach the heart and spread throughout the body.
herefore, the drug mass rate entering the heart, Dh, can be found
s follows.

h = Dp − Dl (4)

.1.4. Concentration of drugs in plasma
The quantity of drugs available to the different tissues in the

ody is dissolved in blood plasma. In addition, the concentration
f the drug in the blood is a measurable quantity modeled as
ollows in this paper.
˙d,p = −kd4Cd,p + (Uiv + Dh)/Vd,p (5)

here Cd,p is the concentration of drugs in plasma [mass/l], Uiv
s IV drug infusion rate [mass/min], and kd4 is the clearance rate
f the drug from plasma [min−1], and Vd,p is the volume of the
lasma that the drug is solved in [l]. Notably, Dc ≜ Vd,pkd4Cd,p is
he drug mass clearance rate from plasma [mass/min].

Please note that peritoneal fluid in people ranges from 50 to
5 ml [20], whereas a 70 kg man’s blood volume is 5.81 l [21].
n order to avoid showing low values for Vd,ip, or large values for
lood volume, we choose to measure Vd,ip in milliliters and the
lood volumes in liters.

.1.5. Summary of the proposed pharmacokinetics model
In summary, a general model for the pharmacokinetics of IP

nd IV administrations is developed. For insulin and glucagon in-
ections, one needs to replace d with {i: insulin, and h: glucagon}
n the notations. The unit [mass] must also change with [U]
nd [µg] for insulin and glucagon, respectively. Notably, mg is

the most common unit for glucagon. However, in our animal
experiments, due to the size of the pigs, glucagon injection doses
were mainly in the range of 0 to 150 µg. Therefore, µg is chosen
s the mass unit for the glucagon in this paper.
The block diagram and the equations are summarized in Figs. 2

nd 3. In the next section, the effects of both insulin and glucagon
n BGL are modeled using the proposed pharmacokinetics model.
16
3.2. IP insulin and glucagon pharmacodynamics

The purpose of this section is to model the reaction of the
organs receiving insulin and glucagon.

3.2.1. Effective insulin in liver
In this study, it is assumed that the rate of glucose absorption

in the liver is proportional to the quantity of insulin taken up by
the liver cells. The liver will then take up glucose based on the
insulin sensitivity of the cells and the amount of glucose in the
blood. For the sake of simplicity, the amount of insulin taken up
by the liver cells is called effective insulin.

To develop a mathematical model for the effective insulin rate
in the liver, we assume it is a linear system that responds to the
rate at which the liver absorbs insulin from the PV. Since there
is a saturation in the insulin uptake from the PV, the effective
insulin in the liver will also be saturated for higher amounts of
insulin. Therefore, using (1) and the HFP saturation (see Eq. (3)),
the concentrations of insulin in the IP cavity and the effective
insulin in the liver are modeled as follows:

Ėi,l =
1
τl

(
−Ei,l + ki2

βiVi,ipki1Ci,ip

ki3 + βiVi,ipki1Ci,ip

)
(6)

Ċi,ip = −ki1Ci,ip +
I

Vi,ip
(7)

where Ei,l is the effective insulin rate in the liver [U/min], Ci,ip
is the concentration of insulin in the peritoneal fluid [U/ml]. τl is
he liver response time to insulin [min], and I is the rate of insulin
nfusion into the peritoneal cavity [U/min]. In addition, ki1 , ki2 and
i3 are diffusion rates of the drug from the peritoneal cavity to
apillaries [min−1], maximum insulin clearance rate of the liver
rom blood [U/min], and half-saturation of the insulin HFP effect
U/min], respectively.

.2.2. Effective insulin in the extra hepatic organs
The amount of insulin that reaches the heart is distributed

hroughout the systemic circulation and to the other organs. For
model developed for control purposes, describing the insulin
ction in each of these organs is not advisable since it introduces
ore parameters to the model. Therefore, this paper modeled the
umulative effective insulin in body organs (other than the liver),
here effective insulin in body organs is the amount of insulin
bsorbed by the insulin receptors.

˙i,b =
1
τb

[
−Ei,b +

(
Vi,ipki1 − ki2

βiVi,ipki1
ki3 + βiVi,ipki1Ci,ip

)
Ci,ip

]
(8)

where Ei,b is the effective insulin rate in the body organs other
than the liver [U/min] and τb is the body response time to insulin
[min].

3.2.3. Effective glucagon
Similar to the insulin sub-model, the effective glucagon in the

liver is defined as the number of cells allowed by glucagon to
break down glycogen. Notably, the amount of released glucose
depends not only on the number of cells receiving glucagon but
also on the amount of glycogen stored mainly in the liver or
possibly other organs. The cumulative effective glucagon is only
considered in the liver to simplify the model and reduce the
number of parameters. Additionally, to account for unmodeled
glycogenolysis in other organs, we assume that the liver is a linear
system that responds proportionally to the amount of glucagon
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absorbed from the peritoneal cavity without taking the HFP effect
into account. The effective glucagon rate is modeled as follows:

Ėh,l =
1
τh

(
−Eh,l + kh5Ch,ip

)
(9)

Ċh,ip = −kh1Ch,ip +
H

Vh,ip
(10)

here H is the rate of IP glucagon infusion [µg/min], Ch,ip is
the concentration of glucagon in the peritoneal fluid [µg/ml], Eh,l
is the effective glucagon rate in the liver [µg/min]. Parameters
kh1 and τh are, respectively, the glucagon diffusion rate from the
peritoneal cavity to the capillaries [min−1] and the response time
of the body to glucagon [min]. Furthermore, kh5 is a constant
parameter [ml/min].

3.2.4. Mathematical model for hepatic glucose production rate
Glycogenolysis is the liver’s process of producing glucose in

response to effective glucagon. The experiments showed that the
amount of glucose produced depends on the effective glucagon,
insulin, and glycogen stored in the liver.

According to the literature, glycogen is predominantly stored
in the cytoplasm of hepatocytes. Zazueta et al. [12] described
glycogenolysis sensitivity to glycogen storage level as a linear
function. Notably, a high glycogen storage level does not neces-
sarily result in increased glucose production because the glucagon
may not diffuse to all liver cells simultaneously, and the liver’s
glycogenolysis rate can be subjected to saturation. In addition,
one can assume that having insulin in the liver decreases glycoge-
nolysis. To account for these assumptions, we define the hepatic
glucose production rate as follows.

HGP ≜ kg3 · Eh,l ·
√

ξ · exp
(
−kξ0 · Ei,l

)
(11)

here HPG [mmol/l/min] is the hepatic glucose production rate,
∈ [0 − 100]% is liver glycogen storage level modeled as

escribed in (12). The term
√

ξ refers to the saturation of the
iver in terms of glucose production, kξ0 [min/U] is a constant
parameter describing the negative influence of effective insulin
rate in the liver on glucose production rate, and k is a coefficient
g3

17
describing the sensitivity of liver cells to effective glucagon in
the liver, glycogen storage level, and effective insulin in the liver
[ mmol
l·
√
%·µg

].

.2.5. Glycogen storage level
We assume that glucose absorbed by the liver is stored as

lycogen and thus increases glycogen storage level, whereas hep-
tic glucose production decreases glycogen storage level. With
hese assumptions and using (13), one can model the dynamics of
he liver glycogen storage level for ξ (t0) ∈ [0, 100]% as follows.

˙ =

{
kξ1 Ei,l G −

kξ2
kg3

HGP ξ ∈ [0, 100]%

0 otherwise
(12)

here kξ1 [%· l/mmol/U] and kξ2 [
√
%/µg] are constant values

representing the charging and discharging rates of the glycogen
storage. One can assume that these parameters are proportional
to the weight of the liver. In addition, G is BGL defined in (13).
otably, the term kξ1Ei,lG is proportional to the rate of glucose
hat liver uptakes.

.3. Blood glucose dynamics

Using the proposed sub-models for insulin and glucagon in
he body, it is now possible to model the aggregated effect of
nsulin and glucagon on the BGL. To achieve this, we employed
he following equation.

˙ = −
(
kg0 + kg1 · Ei,l + kg2 · Ei,b

)
· G + HGP + Rg (t)/Vb (13)

here G is the blood glucose level [mmol/l]. Rg (t) is the glucose
ppearance rate due to meal digestion [mmol/min], and Vb [l]
s the volume of the blood circulating in the body. kg0 is the
nsulin-independent glucose uptake rate [min−1] (e.g., brain glu-
ose uptake rate). kg1 , and kg2 are the sensitivity rates of the
ubjects to effective insulin in liver [U−1], and in the organs other
han liver [U−1], respectively.
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.4. Summary of model development

An overview of the proposed mathematical model of the
harmacokinetics and pharmacodynamics for both IP insulin and
lucagon infusions is shown in Fig. 3. The challenges of the
arameter identification for the proposed model are explored in
he next section.

. Practical techniques to ensure identifiability and reduce the
ime needed to identify the parameters

In order to use the model for control purposes, we must ensure
hat the parameters of the model are identifiable in two ways:

1. Structural identifiability: The necessary condition for hav-
ing structurally identifiable parameters is to have no re-
dundant parameters in the model. Otherwise, there will
be a set of parameters that may vary without changing
the output. Therefore, the parameters are not uniquely
identified [22].

2. Practical identifiability: The data used to estimate the
parameters provides sufficient information, making it prac-
tically possible to identify them. The amount of data re-
quired for a reliable estimation of the parameters typically
increases with the number of parameters. In addition to the
amount of data, we must ensure that the inputs are rich
enough to excite the system dynamics [22]. For example,
different insulin bolus sizes must be injected to capture the
dynamics of the HFP and the insulin pharmacodynamics.

It is worth highlighting that, from a control perspective, the
short identification tests and the procedures are desirable be-
cause one can start the closed-loop system shortly. However, To
excite all the system dynamics in a short time window, one needs
extreme inputs, which can be dangerous and invasive.

One solution to increase the identifiability and shorten the
identification phase is to embed prior physiological knowledge
in the parameter identification process. For example, the model
is based on body physiology and drug concentrations in compart-
ments; some parameters strongly correlate to the compartment
volume and the body weight. Therefore, we can use past data
from different animals to estimate these relationships and embed
them in the system identification procedure.

In addition, an easy step in addressing the structural non-
identifiability issue is to model additional physical quantities that
can be measured. PIL and PHL are two physical quantities that
can be measured by taking blood samples and analyzing them in
laboratories. However, these measurements are not real-time.

One can use the PIL and PHL measurements to find the param-
eters correlated to body weight or constant across the subjects
in a post-processing manner. For simplicity, one can assume that
the observed correlation between body weight and the selected
parameters applies generally, and one can extrapolate from these
data to all subjects.

Additionally, by combining the PIL and PHL measures with the
IV injections, it may be possible to increase identifiability. This is
achievable because adding the IV injections to the identification
procedure results in a new map from a new input to states
while maintaining the original mapping of states to outputs.
Consequently, it can increase structural identifiability [22].

Another way to improve identifiability is to use the litera-
ture to find the values for the parameters based on the body’s
physiology. For example, Vb can be estimated using body weight,
and gender [23,24]. These assumptions and information can help
improve the model’s practical and structural identifiability.

In summary, the following ideas are used in this study to solve
the identifiability issues of the proposed model:
18
1. Perform specific experiments with frequent PIL and PHL
measurements to improve the structural identifiability.

2. Perform specific experiments with IV insulin and glucagon
boluses to excite dynamics in an efficient way.

3. Find the parameters that are dependent on body weight or
are almost constant among subjects.

4. If available, look up the values of the physiology-based
parameters in the literature.

In order to find the parameters that have the same values
among the subjects or are correlated with body weight, a general
model is needed to simulate several subjects together. To put
the above concepts into action and analyze the information of
different animals, we introduced the ‘‘meta-model’’. It is a generic
model that allows us to examine a group of animals (subjects)
linked by constant and weight-dependent parameters. Adding
other features, such as gender, can also improve the model, but
we did not include other features in this study. The meta-model
is introduced in the next section.

4.1. Meta-model development

This section aims to expand the suggested model (summa-
rized in Fig. 3) to simulate subjects in a population who share
parameters related to body weight or that are constant across
the population in order to apply the concepts discussed in the
previous section. To this end, we categorize the parameters of the
proposed model into four groups:

1. Independent parameter: A set of parameters that must
be identified for each animal (subjects) separately. In this
paper, we assumed that the initial values of the states
{x1, . . . , x7, z1, z2} in Eqs. (14b) and (14a) belong to this
set, and they are denoted by A ≜ {α1, α2, . . . , α9}. Notably,
among parameters, α7 has an essential role in the model
since it is the initial glycogen storage level.

2. Analogous parameters: A set of parameters which con-
sist of values similar across individuals. However, they
must be identified individually, e.g., see the parameters in
Eqs. (14a)–(14e) that are noted by B ≜ {β1, β2, . . . β19}.

3. Weight-dependent parameters: A set of parameters that
depends on body weight. This parameter set is defined as
Γ ≜ {γ1, γ2, . . . , γ9} in the Eqs. (16) and (17).

4. Constant parameters: A set of parameters that have the
same value for all animals in normal situations, e.g., see
the parameters denoted by ∆ ≜ {δ1, δ2, . . . , δ15} in the
Eqs. (16), (17), (14d), and (14e).

Using categories for the parameter sets described above, and
he proposed model summarized in Fig. 3, a meta-model is
ntroduced in (14a) and (14b) where the detailed comparison
ith the individual model is given in Table 1. Notably, X ≜
G, Ai,b, Ai,l, Ci,ip, Ah,l, Ch,ip, ξ ]

T is a vector including the necessary
states for model base controllers. The state vector Z ≜ [Ci,p, Ch,p]

T

contains the model of insulin and glucagon pharmacokinetics in
the plasma. The model (14b) does not rely on the states of (14a)
while it provides necessary information for controllers. Therefore,
one may not consider (14a) in the controller (depending on how
the complexity of the controller). However, using it in the iden-
tification can increase the identifiability of the (14b) because the
two models share parameters and (14a) add two new measurable
variables.
d
dt

(
z1
z2

)
=

(
−β12z1 + β13 (γ5(ω) · x4 − Fsat)
−β14z2 + β15

(
γ6(ω) · x6 − F̄sat

) )
+

1
(

β18 · Iiv(t)
β · H (t)

)
(14a)
ω 19 iv
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Table 1
Description of the states, inputs and parameters of the proposed meta-model
(14b).

d
dt

⎛⎜⎜⎜⎜⎜⎜⎝

x1
x2
x3
x4
x5
x6
x7

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝

− (β1 + β2 · x2 + β3 · x3) · x1 + HGPmeta
β5 (−x2 + (β7 · γ1(ω) · x4 − Fsat))

β8 (−x3 + Fsat)
−γ1(ω) · x4

β9 (−x5 + β10x6)
−γ2(ω) · x6

γ3(ω) · x3 · x1 − γ4(ω) · x5 · HFPmeta/β4

⎞⎟⎟⎟⎟⎟⎟⎠

+

⎛⎜⎜⎜⎜⎜⎜⎝

γ7(ω)Rg (t)
0
0

γ8(ω)I(t)
0

γ9(ω)H(t)
0

⎞⎟⎟⎟⎟⎟⎟⎠ (14b)

HGPmeta ≜ β4x5
√
x7 · exp (−β11 · x3) , (14c)

sat (x4) ≜ β6
δ12γ5(ω)x4

δ13 + δ12β7γ1(ω)x4
, (14d)

¯sat (x6) ≜ β16
δ14γ6(ω)x6

δ15 + δ14β17γ2(ω)x6
(14e)

In summary, the measurable outputs of the introduced meta-
model are:⎧⎨⎩
y1 ≜ x1, blood glucose level (BGL)
y2 ≜ z1, plasma insulin level (PIL) (15)

y3 ≜ z2, plasma glucagon level (PHL)

19
Here y1 is measured from all animal experiments, while y2 and
y3 are available from some experiments. Furthermore, (14d) and
(14e) are insulin and glucagon HFP effect saturation functions.
Notably, we assume that the weight-dependent parameters are
as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

γ1(ω) ≜ δ2 · (1 + δ3 · fω(ω))
γ2(ω) ≜ δ5 · (1 + δ6 · fω(ω))
γ3(ω) ≜ δ8 · (1 + δ9 · fω(ω))
γ4(ω) ≜ δ10 · (1 + δ11 · fω(ω))
γ5(ω) ≜ β7 · δ2 · (1 + δ3 · fω(ω))
γ6(ω) ≜ β17 · δ5 · (1 + δ6 · fω(ω))

(16)

here fω(ω) ≜ (ω/ω0 − 1) is the function describing the effect
f body weight on the parameters, ω is body weight, and ω0 is
he maximum body weight among the subjects, e.g., we chose
0 = 52 kg, which is the body weight of the Pig#6 since it was
he heaviest pig in our IP experiments.

In Eq. (16), γ1 [min−1] and γ2 [min−1] are the diffusion rates
f insulin and glucagon from the peritoneal cavity to the sur-
ounding capillaries (equivalent to ki1 and kh1 introduced in Sec-
ion 3.1.1), respectively. Since the size of the IP cavity varies
ith body weight, γ1 and γ2 are considered functions of ω.
oreover, γ3 [% l/mmol/U] and γ4 [% l/mmol/µg] are the charging
nd discharging rate of glycogen storage level (equivalent to kξ1
nd kξ2 introduced in Section 3.2.5), respectively. Since the liver
ize is related to body weight, we assumed that γ3 and γ4 are
eight-related parameters.
IV glucose infusion was used in the experiments to simulate

eal absorption in the anesthetized pigs. The glucose solution
ad a concentration of 200 mg/ml. Therefore, γ5(ω) is a coefficient
irectly related to the concentration of IV glucose infusion and
nverse to the body weight (blood volume). In addition, γ6(ω)−1,
nd γ7(ω)−1 are the volumes of peritoneal fluid in which insulin
nd glucagon are dissolved. These parameters are defined as
ollows:

γ7(ω) ≜ δ1
ω

, γ8(ω) ≜ δ4
ω

γ9(ω) ≜ δ7
ω

(17)

.2. Parameter identification

In the animal trials, we assume that the endogenous insulin
nd glucagon are negligible, and we know there were no IP
nsulin or glucagon boluses before the experiments. Therefore,
he initial values of the states x2, x3, . . . , x6 are zero (i.e., the val-
ues of α2, . . . , α6 are zero). Moreover, α1, α8, and α9 are chosen
qual to BGL, PIL, and PHL measurements at t = 0. The initial
lycogen storage is a function of different factors, and therefore
7 needs to be identified individually. In addition, the weight-
ependent parameters (Γ ) are designed as body weight functions
nd constant parameters across the animals. Therefore, we only
eed to identify Θ ≜ {β1, β2, . . . , β19, α7} which are individual
arameters and ∆ ≜ {δ1, δ2..., δ15} that are constant parameters
cross the animals. As previously stated, we expect the individual
arameters (except the initial values) of different pigs to be in the
ame range with a slight variation due to their similar properties.
Objective function (18) is designed for trajectory-fitting and

arameter identification. Using the proposed objective function,
he modeled BGL, PIL, and PHL tried to fit the measurements in
animals. Each pig is allowed to have individual parameters, but

he objective function contains a penalty on the variation of these
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arameters across animals. The designed objective function is as
ollows.

(Θ1, Θ2, . . . , ΘN , ∆) =

N∑
i=1

(
EGi (Θi, ∆)T · QGi · EGi (Θi, ∆)

+EIi (Θi, ∆)T · QIi · EIi (Θi, ∆)
+EHi (Θi, ∆)T · QHi · EHi (Θi, ∆)

+(Θi − Θ̄)T · Qθ · (Θi − Θ̄)
)

(18)

here:

• EGi (Θi, Γ ), EIi (Θi, Γ ) and EHi (Θi, Γ ) are the fitting error
vectors of the model in tracking the BGL, PIL and PHL mea-
surements, respectively. They are defined as the following:

EGi (Θi, ∆) ≜

⎛⎜⎜⎝
BGLi(t0) − y1(Θi, ∆, t0)
BGLi(t1) − y1(Θi, ∆, t1)

...

BGLi(tni ) − y1(Θi, ∆, tni )

⎞⎟⎟⎠ , (19)

EIi (Θi, ∆) ≜

⎛⎜⎜⎝
PILi(t0) − y2(Θi, ∆, t0)
PILi(t1) − y2(Θi, ∆, t1)

...

PILi(tni ) − y2(Θi, ∆, tni )

⎞⎟⎟⎠ , (20)

and

EHi (Θi, ∆) ≜

⎛⎜⎜⎝
PHLi(t0) − y3(Θi, ∆, t0)
PHLi(t1) − y3(Θi, ∆, t1)

...

PHLi(tni ) − y3(Θi, ∆, tni )

⎞⎟⎟⎠ . (21)

• Θ̄ is the vector of the average individual parameters identi-
fied for the test data:

Θ̄ = (Θ1 + Θ2 + · · · + ΘN )/N. (22)

• QGi , QIi , and QHi are positive definite matrices that should be
chosen according to the variance of the measurement noise
and the scale of the measurements. Matrix Qθ is also positive
definite and should be chosen according to the expected
variability of each parameter. For the animals or the samples
that the PIL and PHL are not available, both EIi (Θi, Γ ) and
EHi (Θi, Γ ) are zero.

.3. Summary of the proposed identification method

In order to address the practical identifiability issues, we pro-
ose a meta-model that can characterize some parameters as
ither function of body weight or as constant among all animals.
To address the structural non-identifiability, we added PIL and

HL measurements as new outputs and IV drug injections as new
nputs to the meta-model. However, measuring the BGL, PIL, and
HL necessitates at least 1–1.5 ml of blood to be extracted at
ach sampling time, which can interfere with the normal glucose
etabolism of the animals. Therefore, due to animal safety, we
annot measure the PIL and PHL in all animals.
Notably, some analogous parameters can have a negligible

ariation among animals and, therefore, can be considered a con-
tant parameter. In order to find these parameters, the following
teps are done in the following sections:

1. Choose training data and test data.
2. Identify the parameters belonging to the sets ∆ and Θ for
training data.
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3. Analyze the analogous parameters to find more parameters
that can be considered fixed among the animals using the
sensitivity and inter-subject coefficient of variability.

4. Re-identify the remaining parameters and evaluate the
model by assuming the fixed parameters are known.

5. Compare the meta-model with other models for test and
training data sets.

5. Training data, test data, and evaluation methods

Data collected in 26 animal experiments are used to evalu-
ate the performance of the proposed model and identification
method. Experiments are numbered Pig #1–29. Pigs #19–21 re-
ceived SC insulin injections, which are outside the scope of this
paper and were excluded from this analysis. Pigs #1–10 are
bi-hormonal IP experiments, Pigs #11–14 are bi-hormonal IP
experiments with additional IV boluses, and the rest contain only
IP insulin injections. The durations of the experiments are 420–
725 min, except Pig #15, which lasted only 250 minutes. BGL
was measured every five minutes. In other words, the number of
samples for the experiments are 84–145 samples, and 50 samples
in Pig #15.

A set of 13 experiments is selected as training data to esti-
mate the parameters of the proposed meta-model and verify its
performance, while the remaining 13 experiments are considered
test data. Each group of experiments chosen for training has a
specific purpose in the identification, to ensure that all dynamics
are excited. Table 2 describes experiment IDs, characteristics, and
key features of the selected experiments. Group 1 helps to ex-
cite the dynamics of insulin, glucagon sub-models, and glycogen
storage level. Group 2 helps in the identification of parameters
related to body weight and the excitation of insulin and glucagon
pharmacokinetics. Group 3 helps to excite the dynamics of the
HFP effect since they include a wide range of insulin boluses.

Among the selected experiments, we used BGL measurements
of {Pigs #2, 4, 5, 6, 10, 15, 22, 23}, PIL measurements of {Pigs #4,
5, 6, 11, 12, 13, 22, 23}, and PHL measurements of {Pigs #4–7,
11–14} for identifying the parameters of the BGL, PIL and PHL
sub-models, respectively.

Notably, to estimate the parameters of (14b), one needs to
ensure that the dynamics of all compartments are excited. To
this end, we performed four specific experiments, which are
Pigs #11–14. In these experiments, we excited the glycogen stor-
age dynamics by injecting insulin and glucagon in different com-
binations. In addition, IV insulin and glucagon were also infused.
The body weight of the pigs used in these experiments was
chosen in the range of 30–63 kg to increase the identifiability of
the body weight-related parameters.

5.1. Parameter coefficient of variability

After the identification using the training data set, the esti-
mated analogous parameters will be analyzed to find the inter-
subject parameter variability. This will be used to find the pa-
rameters that can be considered as constant across the animals.
To this end, the coefficient of variability (CVp) for parameters
and sensitivity of the outputs to a parameter (Syip ) are defined as
follows:

CVp =
p − p̄
p̄

100% (23)

Syip =
∂yi
∂p

·
p
yi

⏐⏐⏐
p=p∗

∀i = {1, 2, 3} (24)

where p∗ is the estimated value of the parameter p, p̄ is the
average value of that parameter identified for the training ex-
periments, and yi for i = {1, 2, 3} is the output defined in (15).
Notably, the derivatives in this paper are calculated numerically.
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Table 2
Description of the three groups of animal experiments chosen as training data sets, their
characteristics, and their key features. I and H refer to insulin and glucagon, respectively.
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5.2. Bayesian information criterion

After estimating the parameters and analyzing the inter-
ubject parameter variability, the rest of the experiments are used
o evaluate the performance of the proposed model. The Bayesian
nformation criterion (BIC) is employed to compare the proposed
odel with the other available models in the literature. The BIC

s defined as follows:

IC = ns · log
(
σ 2)

+ p# · log(ns) (25)

where ns is the number of samples, σ 2 is the mean square error
MSE) of the model, and p# is the number of the parameters. As
he number of samples is equal for all models, The lower MSE of
he model with the minimum number of parameters will result
n lower BIC values. Therefore, the lower the BIC value, the better
he model performance.

. Meta-model parameter identification using the training set

Since the model is developed for control purposes, some sim-
lifying assumptions can be made before identifying the pa-
ameters. For example, the precise concentration of insulin or
lucagon in the peritoneal fluid is not a critical factor in the
ontrol algorithms; rather, the amount (mass) of insulin and
lucagon in the peritoneal fluid is required. As a result, there is
o need to determine the volume of peritoneal fluid; instead, a
alue proportional to body weight can be assumed. Therefore,
e assumed that δ4 and δ7 are 1 ml/kg. Furthermore, δ1 can be

ound based on the concentration of the IV glucose solution used
n the experiment and the approximation of the blood volume
n the body based on the body weight [23]. For example, in our
nimal trials, we utilized glucose with a 200 mg/ml concentration
o simulate the meals. Furthermore, based on our observations
nd as mentioned in [14], we assumed that 100% of the drugs
dministered into the peritoneal cavity absorbs to the PV; as a
esult, δ12 = 100% and δ14 = 100%. After selecting the data
et and having made the assumptions above, we identified the
arameters of the meta-model described in the next section.

.1. Performance of the trained meta-model

Table 3 presents the mean error (ME), standard deviation (SD),
nd mean absolute error (MAE) of the meta-model in estimating
he BGL, PIL, and PHL of the selected training data. As an example,
he performance of the proposed model for Pigs #4, #5, and #6
n tracking the BGL, PIL, and PHL measurements are plotted in
ig. 4. Notice that the meta-model could fit all BGL, PIL, and PHL
easurements of the training data with an average MAE of 0.3
mol/l, 2.9 mU/l, and 23 pmol/l, respectively.
The PIL and PHL measurements often contain more noise and

isturbances compared to BGL due to the measurement method

nd endogenous secretions.

21
.2. Identifiability of the model

The models (14b) and (14a) are considered locally structurally
dentifiable using the assumptions and the available data sets. The
dentifiability tests are presented in Appendix A.

.3. Inter-subject parameter variability

The inter-subject parameter variability is investigated in this
ection in order to find the individual parameters that can be
lassified as constant across the animals for IP injections. In the
roposed meta-model, there are seventeen analogous parameters
β1, . . . , β17) and one individual parameter (α7) for IP insulin
nd IP glucagon injections. Using the definitions of coefficient
ariability and sensitivity of the outputs to parameters given in
23) and (24), the |CVp · Syip | for the analogous parameters and
or i = {1, 2, 3} are shown in Fig. 5. Notably, the violin plots in
anel (d) of Fig. 5 shows the %CV of the parameters related to
ody weight where νb ≜ ω/δ1). Using Fig. 5, the variability of the
arameters is discussed in three sections as follows (where they
re divided based on categories shown in Fig. 5).

.3.1. Individual parameters related to blood glucose level
To every new animal experiments, the parameter set {β1,

2, . . . , β11, α7} is required to be identified. As shown in Fig. 5,
he values of |CV · Sy1p | for 7 out of 12 parameters are negligible
ompared to the others. Therefore, they can be assumed as fixed
arameters among the animals. The other five parameters are
1, β2, β3, β4, and α7, which refer to insulin-independent glucose
ptake rate, e.g., brain glucose uptake, the sensitivity of the liver
o insulin, sensitivity of extra-hepatic organs to insulin, sensitivity
f the body to glucagon, and the initial state of glycogen storage
evel. As a result, instead of identifying all 12 parameters, one
eeds to identify these five for each new individual. To examine
his, we will re-identify only these five parameters while treating
he other seven as fixed parameters for all the training and test
ata. It is worth mentioning that the parameters β6 and β7 are
he parameters of the HFP effect on insulin, and they are present
oth in the BGL sub-model and PIL sub-models (both panels of
a) and (b) of Fig. 5).

.3.2. Individual parameters of the PIL and PHL sub-models
Among the remaining eight parameters describing the con-

entration of insulin and glucagon in plasma after IP injections,
β15, β16, β17} are found to be constant across the animals since
hey have small |CV · Syip | for i = {2, 3} compared to the other
arameters. Notably, β6 and β7 are shared parameters between
IL and BGL sub-models, which are already discussed in the
revious section and considered as constant parameters.
Recall that the main aim of this paper was to design the BGL

odel with fewer parameters, and the BGL sub-model does not
nclude {β , β , . . . , β } in its parameters. Therefore, for every
12 13 17
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Table 3
Mean error (ME), error standard deviation (SD), and mean absolute error (MAE) of the proposed
meta-model in tracking the BGL, PIL, and PHL measurements of the training data set. Example
graphs for Pigs #4–6 are shown in Fig. 4.
Fig. 4. As an example, the figures demonstrate how the proposed meta-model tracked blood glucose levels (BGL), plasma insulin levels (PIL), and plasma glucagon
levels (PHL) in three experiments. The three trials shown here are part of the training data utilized to identify the parameters. The performance of the model on
the other training data is presented in Table 3. The dashed line in the first row is the Intravenous glucose infusion rate, simulating the meal absolution rate in the
intestines.
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new pig, one needs to identify only five parameters {β1, β2, β3,

4, α7}. The other parameters are either constant across animals
r are body weight-related parameters that can be identified
sing the previous experiments. Moreover, if one needs to model
he PIL and PHL, then {β12, β13, β14} must be identified.

.3.3. Weight-dependent parameters
Violin plots show the values of the CV% for the weight-

ependent parameters in Fig. 5. ω is the body weight of the pigs,
nd νb is proportional to blood volume, which directly relates to
eight.
γ1 and γ2 are insulin and glucagon diffusion rates from the

eritoneal cavity to surrounding capillaries. As expected, these
arameters are identified to be inversely correlated to weight. The
hysical explanation may include anatomical features related to
ize and age, such as thicker peritoneal lining and a lower density
f capillaries in the peritoneal lining in heavier animals. Notice
hat γ1 ∈ [0.54, 1.73] and γ2 ∈ [2.00, 3.62] which indicates that
lucagon diffuses faster than insulin.

γ3 and γ4 are glycogen storage charging and discharging rates,
espectively. In the training data, γ is close to zero, indicating
3

22
hat the glycogen storage is being charged very slowly. Notably, it
s also observed in the experiments that the pigs were responding
oorly to glucagon after receiving multiple injections and at the
nd of experiments. This could be due to a low glucose infusion
ate in our 8-hour experiments or the effect of the anesthesia, all
f which cause glycogen storage to discharge faster than charging.
ince one may experience a faster glycogen refill in humans or
wake animal experiments, γ3 was not omitted even if it was
lose to zero in these experiments.
The value of γ4 has been shown to be inversely related to body

eight in the identification, implying that heavier subjects have
igger glycogen storage and can release more glucose than lighter
nimals.

. Performance of the training and testing of the meta-model

In the previous section, the parameters of the meta-model are
dentified using the training data set, and it is discovered that for
very new experiment, one needs to identify only five individ-
al parameters (β , . . . , β , α ). The other individual parameters
1 4 7
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Fig. 5. The box-plot (a) shows the CV · Sy1p for the individual parameters that are included in the subsystem of the BGL. Panels (b) and (c) show CV · Sy1p and CV · Sy2p
of the parameters that have an influence on the PIL and PHL outputs, respectively. The violin plot (d) shows the CV% of the weight-related parameters, and their
variation depends on the body weight.
(β5, . . . , β11) are shown to have negligible variation from subject
to subject.

In this section, parameter set {β5, . . . , β11} are considered
constant among animals and set to the mean value of identified
values for the training data in the previous section. Then, the
performance of the meta-model is compared with the models in
the literature using the training and test data.

There are two important models in the literature; the bi-
hormonal low-order model by Zazueta et al. [12] and the single-
hormonal linear model by Chakrabarty et al. [25]. Therefore, we
split our analysis into bi-hormonal and single-hormonal exper-
iments when comparing the models. In addition, the classical
least square method in parameter identification of all three mod-
els is used to have a fair comparison. In these identifications,
the parameters of the models are identified separately for each
experiment using their BGL measurements. in more detail; the
following cost function is used for parameter identification of the
models:

JLS(ΨM ) =

N∑
i=1

PLS(BGLi − Mi(ΨM ))2 (26)

Where PLS is a constant positive number, BGLi is the BGL
at the sample i, and Mi is the model (Meta-model, low-order,
or Linear model) output for the corresponding sampling time.
N denotes the number of samples in the experiment. In this
cost function, the decision variables are each model’s parameter
set (ΨM ). Notably, the low-order model has ten parameters (six
without the glucagon sub-model), and the linear model has five
parameters to identify.

The number of parameters for the meta-model is five. How-
ever, frequent blood samples from the jugular vein are taken
during the bi-hormonal experiments in bi-hormonal experiments
for PIL and PHL measurements. As a result, blood volume is no
longer solely dependent on body weight and may be influenced
by the number of samples taken. Two meta-models are consid-
ered to make up for it: meta-model 1 and meta-model 2, with δ7
being treated as a fixed and individual parameter, respectively.

The performance of meta-model 1 and meta-model 2 are

compared to the other models in Table 4. Meta-model 1 and

23
meta-model 2 have similar performance in training and test data.
One can conclude that the parameters of the model are identified
correctly using the training data set. By looking at the Average
values of the errors from different models, one can conclude that
all the models have acceptable performance for control purposes,
and no significant differences can be found between the models.
However, the proposed meta-model 1 and meta-model 2 require
fewer parameters to be identified than the other models in the
literature.

The BGL, PIL, and PHL measurements from Pigs #01, 09, and 16
versus the meta-model 2 (for Pig#01, and 09) and meta-model 1
(for Pig #15) responses are shown in Fig. 6. Among the test data,
Pig #1 and #9 have the inputs with the most excitation inputs,
e.g., a wide range of insulin, glucagon, and glucose infusions.
Therefore, one can conclude that the proposed meta-model can
simulate the behavior of glucose metabolism of various body
weights in both complex and simple scenarios.

7.1. Summary of training and testing the meta-model

In the previous sections, the parameters of the meta-model
are identified using the selected training data. The primary goal
of this approach is to identify parameters that are not identifiable
when the BGL is the only available data. This is accomplished by
utilizing prior data from other animals for whom the PIL and PHL
are measured.

The variability of the individual parameters among the differ-
ent animals is discussed. It is demonstrated that one must identify
only {β1, . . . , β4, α7} for every new experiment. The rest of the
parameters are fixed parameters or weight-related parameters
obtained from prior information.

Moreover, It is shown that the proposed meta-model can fit
the BGL measured from pigs and provide similar performance
with fewer parameters compared to the available models in the
literature. One can conclude that the identification procedure
of the trained meta-model is easier and faster than the other
models.

In the following sections, the predicting performance of the
meta-model is evaluated and compared with the other models in

two different practical scenarios.



K.D. Benam, H. Khoshamadi, M.K. Åm et al. Journal of Process Control 121 (2023) 13–29

(
A
v
a
t
w

m
t
p

8
e

l
t

s
t
p
t
a
m
i
s

Table 4
The mean error (ME), standard deviation (SD), mean absolute error (MAE) [mmol/l], and the Bayesian information criterion (BIC)
for different models and experiments. In the case of bi-hormonal experiments, two versions of the meta-model were analyzed,
meta-model 1, and meta-model 2, when considering ν as an individual parameter (to compensate for the volume of the blood
taken for BGL, PIL, and PHL analysis). For the single-hormonal experiments, only meta-model 1 is used since there were fewer
blood samples taken from them. Notably, the parameters of the BGL sub-model for single-hormonal experiments are not taken into
account. Notably, results for Pigs #12–#14 are not presented since they contain IV insulin and glucagon infusions from the beginning
of the experiment. However, for Pig #11, the IV infusions were given at the end of the experiment, and the performances of the
different models are presented for the IP infusion parts.
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8. Performance of the meta-model in predicting the BGL

The combination of MPC with moving horizon estimation
MHE) is one of the most commonly used control approaches in
Ps [26]. The MHE uses the historical BGL data to estimate state
alues. Based on the estimated states, the MPC predicts the BGL
nd finds optimal insulin or glucagon boluses to keep the BGL in
he range. As a result, the proposed model should be consistent
ith past data and effective at predicting.
In this section, we compare the performance of the proposed

eta-model (in which {β1, . . . , β4, α7} must be identified) with
he other models in terms of prediction. For that purpose, we
roposed the following two scenarios:

.1. Scenarios 1: Bi-hormonal model identification and prediction at
very sampling time

This scenario aims to evaluate the proposed meta-model and
ow-order model fitting the data and predicting each sampling
ime for bi-hormonal experiments.

The parameters are re-identified for both models after mea-
uring the BGL at every sampling time. Then, based on the iden-
ified model and future inputs, a 100 min prediction will be
erformed. After that, the MSE of the models for both fitting to
he measured BGL and the prediction are calculated. For example,
t ith sample, the fitting MSE is the mean squared error of the
odel in fitting to the BGL samples {1, . . . , i}, and Prediction MSE

s the mean squared error of the model in predicting the BGL

amples {i + 1, . . . , (i + 100/Ts)}.

24
In order to have proper initial values for the parameter esti-
ation, one needs to have at least one insulin and one glucagon

nfusion before starting the identification and predictions. There-
ore, this scenario starts after collecting 100 min of the BGL
easurements, and the starting model is obtained by the param-
ter identification over that 100 min time window. Notably, the
alf-life IP insulin (for the kind of insulin used in our tests) is
ithin the first 100 min of injection, according to our experience.
dditionally, glucagon effects fade off after 100 min. Therefore,
he 100 min prediction window for IP insulin and glucagon is
hosen in this scenario.
To have a fair comparison of the models, an overview of

he fitting MSE and prediction MSE are shown in Fig. 7 for the
xperiments Pig#{1, 3, 8, 16, 17, 18, 24, 25, 26, 27, 28, 29}. The
elected experiments contain only IP insulin and glucagon with
ontinuous IV glucose infusion that was not used to train the
eta-model. Pig#9 was not included since the glucose infusion

n this experiment was discontinuous and unrealistic for real-life
ituations. The supplementary material in Appendix B provides
he detailed performance of each model in Scenario 1 on all
vailable experiments with IP injections.
As shown in Fig. 7, the low-order model has a mean model

itting MSE that is 26.6% lower than the meta-model. For both
odels, the mean fitting MSE is less than 1 [mmol/l]2. In predic-

tion, the meta-model has a 39.2% lower mean MSE and a 64.0%
lower standard deviation than that of the low-order model. The
meta model has a mean prediction MSE of less than 1 [mmol/l]2.

In summary, by comparing the performance of the models
n scenario 1, one can infer that the low-order model performs
etter in fitting the measurements. However, the fitting MSE of
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Fig. 6. Three examples of meta-model performance on test data are shown in the figure. Notably, meta-model 1 is used for single-hormonal experiment Pig #16
and meta-model 2 is utilized for bi-hormonal experiments in Pigs #01, #09. The performance of the presented model in fitting to the BGL measurements for the
other experiments is presented in Table 4. However, the MAE (mean absolute error) of the proposed model is for the BGL measurements written in the titles in
order to quantify the quality of the fittings. The dashed line in the first row is the IV glucose infusion rate which simulates the meal digestion rate in the intestines.
Fig. 7. The figure compares the proposed meta-model with the low-order model regarding the fitting MSE and prediction MSE for the selected test experiments in
cenario 1. The panel on the left shows the mean and standard deviation (SD) of fitting MSE at all sampling times of the selected experiments. Similarly, the panel
n the right shows the mean and SD of 100 min of prediction MSE at all sampling times for the selected experiments.
p
i
d

oth models is in the acceptable range for control purposes. In
ontrast, the proposed meta-model performs significantly better
n prediction, which is more important than fitting when you aim
o use the model in control. In summary, the fewer parameters,
he acceptable fitting MSE, and the low prediction MSE in the
eta-model make it a suitable choice for model-based control.

.1.1. Scenarios 2: Prediction of the BGL interaction with different
nsulin boluses

This scenario investigates the effect of considering the HFP
ffect on prediction and fitting to the measurements. Among the
vailable animal experiments, Pigs #23–28 with weights of 36–
1 kg were given a constant basal glucose infusion proportional
o their weight and three different insulin boluses, i.e., 2, 5, and
0 Units with various orders. These experiments are performed
 P

25
to investigate the saturation of the HFP published in [11]. It is
shown that the liver of these subjects is saturated after 5U of
insulin, and then the insulin enters the central blood circulation.
The duration of the experiment chosen for this scenario is about
500 min in which insulin boluses were given approximately at
t1 = 75, t2 = 210, and t3 = 350 min.

In this scenario, we first identified the parameters of the
different models using the BGL measurements in the time interval
[0, t2) and evaluated the models’ prediction performance in the
time interval [t2, 480). Then, we identified the parameters using
the BGL measurements interval [0, t3) and again evaluated the
rediction performance during the time interval [t3, 480). Both
dentification and prediction MSE of each experiment for the
ifferent models are presented in Table 5. Please Note that the

ig #23 was included in the training data while it is also included
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Table 5
Mean squared error (MSE) of the different models in identification and prediction for the second scenario. The terms Iden. and Pred.
in this table relate to the identification and prediction MSEs, respectively.
Fig. 8. Comparison of different models’ prediction performance. The identification period for the upper figures was t2 = 200 min and t3 = 350 min for the lower
igures. The proposed meta-model has a better prediction for both small and large insulin boluses; this is most notable for the 10U insulin bolus because it is the
nly model considering the HFP effect. In contrast, the other models fail to respond to smaller and larger insulin boluses.
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n this scenario to compare the performance of the meta-model
n both training and test data.
The proposed meta-model outperformed the other models’

redictions when different insulin boluses were given. As an
xample, the performance of the models in fitting and predicting
he BGL measurement of Pigs #23, #26, and #27 are shown in
ig. 8. Due to the modeled HFP effect and the prior information
n the meta-model, it performs better in response to 5 and 10U,
hile the other models fail to predict the BGL correctly.
By looking at the average error of the models in Fig. 7 and

able 5, one can conclude that the proposed meta-model and the
odels in the literature for the IP route can track the BGL mea-
urements for anesthetized pigs with acceptable performance.
owever, the proposed meta-model outperforms the other mod-
ls in terms of prediction. The average prediction MSE in Table 5
hows that the low-order model performs better than the linear
odel. Additionally, because of fewer parameters of the meta-
odel, this model can be set up and used in the controller more
uickly than the other models.

. Discussions

In contrast to the SC drug pathway, it is demonstrated in [5]
hat the insulin absorption from the peritoneal cavity is quick
nough to control the BGL without the meal announcement.
urthermore, an important feature of IP injection is the fact
hat insulin is transported directly to the liver through the PV,
here the HFP effect applies before entering the central blood
irculation system. It is shown that the HFP effect significantly
nfluences how the body responds to different insulin bolus sizes.
26
or that reason, a nonlinear model containing the HFP effect is
resented.
In order to identify the parameters of the designed model,

large number of tests must be performed to stimulate all the
ystem dynamics. Furthermore, it is necessary to measure both
he PIL and PHL to address the identifiability issues for this model.
owever, invasive tests and measurements are not applicable at
large scale or are dangerous for the animals.
As an alternative to performing all the tests on each subject,

he meta-model is designed to allow us to perform the tests
n a large group of animals. This approach allows us to con-
uct less invasive experiments and identify parameters that are
eight-dependent or parameters that have a fixed value for all
nimals.
Using the training data, it is shown that only five parameters

ust be individually identified for each animal to simulate the
GL dynamics. The remaining parameters are either constant
mong the animals or can be calculated using body weight.
The model is identified using data and assumptions related

o anesthetized pigs weighing between 30 kg and 60 kg. It is
hown that the model has an acceptable performance. In addition,
t performs accurately in predicting the BGL for various inputs and
rovides better prediction with fewer parameters, making it ideal
or control purposes. In future work, one might design the MPC
ontroller for APs using the model proposed in this paper.
The same procedure used in this paper can also be used for

umans. However, some distinctions between the IP structures of
umans and pigs must be taken into account. In addition, one can
se the proposed meta-model to design less invasive experiments
or humans or awake animals.
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Fig. A.9. Components of the columns of V i that Sr (t, ηi) has eigenvalues less than 10−6 for system (14a). The non-zero (non-vanishing) components are associated
ith the null space of Sr (t, ηi) as described in Appendix A. Case 1 and case 3 are the identification based on PIL and PHL measurements of all training data. Case 2

and case 4 are with assuming δ4, δ7, δ12 and δ14 equal to one (as explained in Section 6). There are no non-vanishing components in case 2 and case 4. The smallest
ingular value is printed in the lower-left corner.
Due to limitations with experiments in anesthetized animals,
he length of the experiments was shorter than a half-day.
herefore, we assumed that the parameters remained constant
hroughout the experiments. One might need to consider intra-
ubject variation in extended experiments or human experi-
ents. In addition, one may need more training data for longer
xperiments. However, the thirteen training experiments for this
aper seem to be enough to identify the parameters of the
eta-model.
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Appendix A. Local structural identifiability of the parameters

In this part, we examine the identifiability of the proposed
meta-model. To this end, we employ the algorithm described
in [27]. In this algorithm, the sensitivity matrix Sr (t, η) defined
in (A.1), which is the sensitivity of the output of the model, y,
at each sampling time, t = {to, . . . , tn}, to the parameters, η =

{η1, . . . , ηp}, must be found locally around the identified values
for the parameters.

Sr (t, η) =

⎛⎜⎜⎝
η1

y(t0)

∂y(t0)

∂η1
· · ·

ηp
y(t0)

∂y(t0)

∂ηp
...

...
...

η1
y(tN )

∂y(tN )

∂η1
· · ·

ηp
y(tN )

∂y(tN )

∂ηp

⎞⎟⎟⎠ (A.1)

By considering small random perturbations in parameters sets,
ηi, one needs to calculate singular value decomposition (SVD) for
Sr (t, ηi) as follows:

Sr
(
t, ηi)

= UiΣiV T
i (A.2)

where Ui and Vi are orthogonal matrices, and Σi is a matrix
containing the p singular values of Sr (t, ηi) in decreasing order on
the diagonal, while all the other elements are zero. It is shown
that in [27] that if the smallest singular value of Σi is zero or
very small, the last column of Vi shows the parameters that
are correlated and non-identifiable. Notable, due to numerical
errors, we considered any singular values less than 10−6 as zero.
Therefore, the columns of Vi related to any singular values less
than 10−6 will be considered null space.

This algorithm is used in four stages to evaluate the effective-
ness of the proposed meta-model and assumptions in reducing
the number of non-identifiable parameters:

A.1. Identifiability of the meta-model using single BGL measure-
ments

This section aims at finding which of the parameters of the
proposed individual model (14b) are non-identifiable without
having the PIL, PHL measurements, and the multiple animal BGL
data. To do this, we identified the parameters using the BGL
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Fig. A.10. Components of the columns of V i that Sr (t, ηi) has eigenvalues less than 10−6 for system (14b). The non-zero (non-vanishing) components are associated
with the null space of Sr (t, ηi) as described in Appendix A. Case 1 is the identification based on only BGL measurements of Pig#6, Case 2 is identification based
on multiple pig BGL measurements belonging to training data, and case 3 is the identification using the assumption that δ4, δ7, δ12 and δ14 are equal to one (as
explained in Section 6) and taking PIL, PHL, and BGL of all training data into account. There are no non-vanishing components in case 3. The smallest singular value
is printed in the lower-left corner.
measurements of Pig#6. As shown in the first case of Fig. A.10,
thirteen parameters in (14b) are correlated. Notably, the reason
for choosing the Pig#6 for this example is that it had received
wide ranges of insulin, glucagon, and glucose infusions.

A.2. Identifiability of the meta-model using BGL measurements from
multiple animals

In this stage, we investigate how many parameters become
identifiable by using the BGL measurements of the eight pigs
named as training data. As shown in the second case of Fig. A.10,
eight parameters in (14b) are correlated in that case.

A.3. Identifiability of the PIL and PHL sub-models

By employing all of the PIL and PHL measurements of the
training data in identification, four parameters are correlated in
both the PIL and PHL sub-models. The correlated parameters are
shown in cases 1 and 3 of Fig. A.9. However, as shown in cases
2 and 4 of Fig. A.9, with the assumptions given in Section 6
for preselecting values for δ4, δ7, δ12 and δ14, no correlated pa-
rameters are found. Therefore, the PIL and PHL sub-models are
considered structurally identifiable with the parameters found
using the selected training data and the assumptions in Section 6.

A.4. Identifiability of the meta-model using the chosen training data
set

For the meta-model parameters that are identified using the
assumption outlined in Section 4 as well as the BGL, PIL, and
PHL measurements present in the training data set, the minimum
eigenvalue of the sensitivity matrix is greater than 10 − 2.94. In
28
other words, all the parameters of the meta-model can be con-
sidered structurally identifiable. As it is shown in the third case
of Fig. A.10, there are no parameters in (14b) that are correlated
in that case.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jprocont.2022.11.008.
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