Reconstruction of whitewater kayak waves in Nidelva
 Master's thesis in Civil and Environmental Engineering Supervisor: Elena Pummer
 June 2022

Reconstruction of whitewater kayak waves in Nidelva

Master's thesis in Civil and Environmental Engineering Supervisor: Elena Pummer
June 2022
Norwegian University of Science and Technology
Faculty of Engineering
Department of Civil and Environmental Engineering

- NTNU

Norwegian University of Science and Technology

Abstract

Due to changes on the river bed, kayakers in Trondheim lost two popular waves. This thesis aims to reconstruct one of the kayak waves by studying the ideal hydraulic jump for whitewater kayaking. The field that is studied is the Nidelva river, in Trondheim.

A suitable wave for kayaking would be steep, and the water should have a rough surface. Therefore, it is desirable to construct an oscillating jump with a Froude number between 2.5-4.5.

The study investigated the correspondence between a physical and numerical model of the hydraulic jump. The physical model was built in a 1 m wide flume, and scaled 1:50. The numerical model was simulated in Open FOAM. The simulations for this experiment were done with Reynolds-Averaged Navier-Stokes (RANS) equations, utilising the $k-\epsilon$ turbulence model.

Discharge data over the last nine years have been analysed. The discharges 40, 140, 200, 289 and $400 \mathrm{~m}^{3} / \mathrm{s}$ were chosen to represent the situation in the river and were run in the physical and numerical model. $\mathrm{Q}=40 \mathrm{~m}^{3} / \mathrm{s}$ was too small for testing in the physical model.

A hydraulic jump was induced for all tested discharges. Comparing the different results, it appears to be several errors with the physical model. Therefore, data from the numerical model was used to calculate the weir height necessary to induce a satisfying hydraulic jump for given discharges. The calculated weir height shows that a weir with $0.82<\Delta \mathrm{h}$ <1.42 will induce a wave for the four tested discharges with a Froude number between 2.5 and 4.5.

Further research aims to use these results to decide whether it is desired to adjust the river bed as the desired wave is established.

Keywords: Hydraulic jump, OpenFOAM, physical model, whitewater kayak

Sammendrag

Etter å ha endret elvebunnen i Nidelven mistet kajakkpadlere i Trondheim to populære bølger. Denne masteroppgaven tar sikte på å rekonstruere en av kajakkbølgene ved å studere det ideelle vannstandsspranget for kajakkpadling. Området som studeres er Nidelva, i Trondheim.

En bølge for kajakkpadling vil være bratt, og vannet bør ha en ru overflate i en ideell situasjon. Derfor er det \varnothing nskelig å konstruere et oscillerende vannstandssprang med et Froude-tall mellom 2,5-4,5.

Studien undersøkte samsvaret mellom en fysisk og numerisk modell av vannstandsspranget i Nidelva. Den fysiske modellen ble bygget i en 1 m bred renne, skalert 1:50. Den numeriske modellen ble simulert i OpenFOAM. Simuleringene for dette eksperimentet ble gjort med Reynolds-Averaged Navier-Stokes (RANS) ligninger, ved å bruke $k-\epsilon$ turbulensmodellen. Vannføringer fra de siste ni årene ble analysert. Vannføringene 40, 140, 200, 289 og 400 $\mathrm{m}^{3} / \mathrm{s}$ ble valgt for å representere situasjonen i elven og ble kjørt i den fysiske og numeriske modellen. $\mathrm{Q}=40 \mathrm{~m}^{3} / \mathrm{s}$ var for lav for testing i den fysiske modellen.

Et vannstandssprang ble indusert for alle vannføringer. Ved å sammenligne resultatene, ser det ut til à være flere feil ved den fysiske modellen. Derfor ble data fra den numeriske modellen brukt til å designe overløpshøyden som er nødvendig for å indusere et tilfredsstillende vannstandssprang for gitte vannføringer. Den beregnede overløpshøyden viser at et overløp med en høyde på $0,82<\Delta \mathrm{h}<1,42$ vil indusere en bølge med et Froude-tall mellom 2,5 og 4,5 for de fire testede vannføringene.

Videre forskning tar sikte på å bruke disse resultatene til å justere elvebunnen for å etablere den $ø$ nskede bølgen. Elvebunnen bør optimaliseres i den numeriske modellen før den fysiske modellen brukes som prototype.

Nøkkelord: Vannstandssprang, OpenFOAM, fysisk modell, elvekajakk

Acknowledgements

This research would not have been possible without the great support of many.
I wish to express my gratitude to my supervisor, Elena Pummer. Thank you for your feedback and guidance. It has been a pleasure combining leisure activities and hydraulics.

My deepest gratitude also to Asli Bor Türkben, who has guided and supported me during the physical experiments. Thank you for everything you have shared of your knowledge. I have really enjoyed working with you.

I want to thank NTNU for the laboratory facilities and Trondheim kommune for financing the physical model. Thank you for the opportunity.

Jeg vil gjerne takke Thai Mai og Geir Tesaker for støtte på lab. Takk for all hjelp, og svar på alle spørsmål, selv de dumme. Prosjektet hadde ikke latt seg gjennomføre uten deres hjelp.

En stor takk til Nils Solheim Smith som har hjulpet med faglige diskusjoner og den numeriske delen av oppgaven. Det har vært til stor hjelp.

Jeg er takknemlig for all kunnskapen jeg har fått tilegne meg på NTNU. Vel så takknemlig er jeg for mulighetene H.M. Aarhønen - Bygnignslinjens forening og UKA har gitt meg. Her har jeg fått ansvar, tillitt og mulighet til personlig utvikling. Studietiden hadde ikke vært den samme uten studentfrivilligheten.

Tusen takk til kjæresten min, Tor Henry, for støtte. Takk for at du har vist en entusiasme uten like for prosjektet. Jeg er veldig takknemlig.

Takk til familien min som har støttet meg. Selv om de er langt unna føles de alltid nærme. Takk for at dere har engasjert dere i min studietid.

Sist vil jeg takke min beste venn og familie de siste seks årene, Ida. Du har gjort hverdagen i Trondheim til en fryd. Tusen takk for støtte i tunge perioder og fjasing på de gode dagene. Min tjoms!

Contents

1 Introduction 1
2 Literature review 3
2.1 Physical models 3
2.2 Numerical simulations 4
2.3 Field experiments 4
3 Theory 6
3.1 Whitewater kayaking 6
3.1.1 The hydraulic jump 6
3.1.2 Standing surfing waves in Europe 10
3.2 Study area 13
3.2.1 Discharge 14
3.2.2 Changes in river bed and possible solutions 15
3.2.3 Popular whitewater kayak waves in Nidelva 15
3.3 Hydraulics 18
3.3.1 The continuity equation 18
3.3.2 Froude number 19
3.3.3 Reynolds number 19
3.3.4 Manning's formula 20
3.3.5 Flow over weir 20
3.3.6 The height of hydraulic jump 21
3.3.7 Critical flow 21
3.3.8 The Energy equation 21
3.3.9 Bed shear stress 22
3.3.10 The Navier-stokes equation 26
3.3.11 The k- ϵ turbulence model 27
4 Modelling of the hydraulic jump 28
4.1 Calibration 29
4.1.1 Discharge 29
4.2 Physical modelling 30
4.2.1 Bathymetry 31
4.2.2 Scaling by Froude similarity 34
4.2.3 Monitoring and measuring 36
4.2.4 Experimental Procedure 39
4.3 Numerical modeling 39
4.3.1 Software 39
4.3.2 Dimensions 40
4.3.3 Geometry and bathyemtry 40
4.3.4 Boundary conditions 40
4.3.5 Solver 41
5 Results 42
5.1 Calibration 42
$5.2 \mathrm{Q}=40 \mathrm{~m}^{3} / \mathrm{s}$ 43
$5.3 \quad \mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ 43
$5.4 \mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ 46
$5.5 \mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ 49
$5.6 \mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ 52
5.7 Summarize result 55
6 Discussion 58
6.0.1 Different discharges 58
6.1 Sources of error 62
6.1.1 Scale effects 62
6.1.2 Tilting 63
6.1.3 Human errors 64
6.1.4 Air in pump system 65
6.2 Bathymetry and roughness 66
6.2.1 Instrument errors 67
6.3 Water depths 68
6.4 Comparing the numerical and physical model 70
6.5 Stakeholders 70
6.5.1 Statens vegvesen 71
6.5.2 Trondheim Omland Fiskeadministrasjon 71
6.5.3 Norges Vassdrags- og Energidirektorat 71
6.5.4 Trondheim kommune 72
6.5.5 Surfers 72
6.5.6 Trondheim Kajakklubb 72
6.6 The weir 73
7 Further research 76
8 Conclusion 77
References 78
9 Appendix 81
A1 Discharge data the last nine years 81
A2 Water depth measurements in numerical model 94
A3 Place for slicing the numerical model 98

List of figures

3.1 A hydraulic jump in the Drop of Death, Nidelva, taken 23. February 2022. $\mathrm{Q}=102.4 \mathrm{~m}^{3} / \mathrm{s}$ 7
3.2 Illustration of an Undular jump (Chow, 1959) 8
3.3 Illustration of a Weak jump (Chow, 1959) 8
3.4 Illustration of an Oscillating jump (Chow, 1959) 9
3.5 Illustration of a Steady jump (Chow, 1959) 9
3.6 Illustration of a Strong jump (Chow, 1959) 10
3.7 Photo of a artificial surf lake in Queensland (SurfLakes, 2020) 11
3.8 Photo of surfers on the Eisbach river. Photo from Steven A. Martin (Martin, 2019) 12
3.9 The placing of the study area can be seen as the red dot on the map, Nidelva in Trondehim. 13
3.10 Over a perspective of nine years, this represent the 40th percentile of discharge in Nidelva. 14
3.11 Screenshot of the relevant area between Sluppen and Kroppan bridge in Nidelva 16
3.12 Downstream Sluppen bridge, taken 23. February 2022 17
3.13 "The Drop of Death", taken 23. February 2022. 18
3.14 Illustration of the different parameters occurring in the energy equation. 22
3.15 Illustration of the different forces working on a particle in the river. There is assumed that the particle has a diameter, d 23
3.16 Shields diagram giving the critical shear stress for movement of a sediment particle from Numerical Modelling and Hydraulics (Olsen, 2017) 25
4.1 Illustration of a weir forcing the flow regime to transfer from supercritical to subcritical 28
4.2 The flume were the physical model will be built. The width of the flume is 1 m 31
4.3 Illustration of the part of the river that is going to be modelled. 32
4.4 Cross sections drawn in AutoCAD of the area that is to be modelled. 33
4.5 A 3D model of the physical model. 33
4.6 The finish result after printing the river bed on polyrethane. 34
4.7 Calculations and scaling performed in python to find the relevant discharge for the physical model. 35
4.8 Mounting of camera 1 36
4.9 Mounting of camera 2 and 3 36
4.10 Mounting of camera 4 37
4.11 Mounting of camera 5 37
4.12 Flow situation by the Vectrino 38
4.13 The placing of the ADV, Vectrino 38
4.14 The hydraulic jump over the model for a random discharge. 39
4.15 The flume where the experiment is conducted. 39
5.1 Picture of the hydraulic jump induced for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, seen from camera 5. Flow direction from right to left 43
5.2 The flow situation for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ seen from upstream, camera 1 44
5.3 Picture of the hydraulic jump for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva, seen from camera 3 44
5.4 Numerical model of the hydraulic jump for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, seen from the side. Flow direction from left to right. 45
5.5 Numerical model of the hydraulic jump for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, seen from the top 45
5.6 Picture of the hydraulic jump induced for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, seen from camera 5. Flow direction from right to left. 46
5.7 The flow situation for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ seen from upstream, camera 1 47
5.8 Picture of the hydraulic jump for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva, seen from camera 3. 47
5.9 Numerical model of the hydraulic jump for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, seen from the side. Flow direction from left to right. 48
5.10 Numerical model of the hydraulic jump for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, seen from the top 48
5.11 Picture of the hydraulic jump induced for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$, seen from camera 5. Flow direction from right to left. 49
5.12 The flow situation for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ seen from upstream, camera 1 50
5.13 Picture of the hydraulic jump for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva, seen from camera 3. 50
5.14 Numerical model of the hydraulic jump for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$, seen from the side. Flow direction from left to right. 51
5.15 Numerical model of the hydraulic jump for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$, seen from the top 51
5.16 Picture of the hydraulic jump induced for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$, seen from camera 5.Flow direction from right to left. 52
5.17 The flow situation for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ seen from upstream, camera 1 53
5.18 Picture of the hydraulic jump for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva, seen from camera 3. 53
5.19 Numerical model of the hydraulic jump for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$, seen from the side. Flow direction from left to right. 54
5.20 Numerical model of the hydraulic jump for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$, seen from the top 54
$5.21 \mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$. Comparison of the highest and lowest water discharge tested in the flume. Flow direction from right to left. 55
$5.22 \mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$. Comparison of the highest and lowest water discharge tested in the flume. Flow direction from right to left. 56
$5.23 \mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$. Comparison of the highest and lowest water discharge tested in the numerical model. Flow direction from left to right. 56
$5.24 \mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$. Comparison of the highest and lowest water discharge tested in the numerical model. Flow direction from left to right. 57
6.1 Nidelva, The drop of death, $\mathrm{Q}=102.4 \mathrm{~m}^{3} / \mathrm{s}$ 58
6.2 Nidelva, The drop of death, $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ 58
6.3 Camera 1, Physical model $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ 59
6.4 Camera 1, Physical model, $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ 59
6.5 Physical model, $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from right to left. 60
6.6 Nidelva, The drop of death, $\mathrm{Q}=102.4 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from right to left. 60
6.7 Numerical model, $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from left to right. 61
6.8 Physical model, $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from right to left. 61
6.9 Nidelva, The drop of death, $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from right to left. 62
6.10 Numerical model, $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from left to right. 62
6.11 The tilting of the flume before adjustments were made. 64
6.12 The tilting of the flume after adjustmenst. 64
6.13 The panel where the pump is operated from. 65
6.14 The valve that adjusts the inlet of the pump. 65
6.15 Illustration of the pumping system of the flume. The scaling or mounting of the system is not correct. 66
6.16 Illustration of rocks on the river bed under the Sluppen bridge 67
6.17 A representation of the measured water depths from different discharges 68
6.18 A biref representation of how the changes in water depths should be according to literature and physical experiments (Chow, 1959) 69
A2.1 Water depth measured at place 1, upstream the jump. 94
A2.2 Water depth measured at place 2, supercritical. 95
A2.3 Water depth measured at place 3, subcritical. 96
A2.4 Placing for water depth measurements. Seen from upstream; place 1 (upstream), 2 (supercritical) and 3 (subcritical). 97
A3.1 Placing for slicing the numerical model to get a view orthogonal on the hydraulic jump 98
List of tables
3.1 Flow duration in Nidelva, presented by minimum, middle and maximum of the 40th percentile values the last nine years. 14
4.1 Measurements made by Sweco in 2020. Q Nidelva is collected from sildre.no 29
4.2 Flow duration in Nidelva, recomended from Statkraft. 29
4.3 Discharge in Nidelva, recomended from Statkraft. 30
4.4 The scale ratio for different parameters according to Froude similarity 35
4.5 Discharge for physical model, given scaling 1:50. 36
5.1 Data used to calibrate the model. Measurements made by Sweco in 2020. Q Nidelva is collected from the measurement station Rathe, from sildre.no 42
5.2 Real discharge in Nidelva and in the side channel, the Drop of Death and the discharge the experiment is conducted under 43
5.3 Water depths for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ from the physical model 44
5.4 Water depths and Froude number, 3.2 for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, numerical model 46
5.5 Real discharge in Nidelva and in the side channel, the Drop of Death and the discharge the experiment is conducted under. 46
5.6 Water depths for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ from the physical model 47
5.7 Water depths and Froude number, 3.2 for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, numerical model 49
5.8 Real discharge in Nidelva and in the side channel, the Drop of Death and the discharge the experiment is conducted under 49
5.9 Water depths for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ from the physical model 49
5.10 Water depths and Froude number, 3.2 for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$, numerical model 52
5.11 Real discharge in Nidelva and in the side channel, the Drop of Death and the discharge the experiment is conducted under. 52
5.12 Water depths for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ from the physical model 52
5.13 Water depths and Froude number, 3.2 for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$, numerical model 55
$6.1 y_{1}$ must be inside these intervals for the correlating discharge to induce the desired hydraulic jump. 73
6.2 The critical water depth for the different discharges 74
6.3 The interval of the desired $\Delta \mathrm{h}$ for inducing the desired hydraulic jump. 74

1 Introduction

Hydraulic engineering has been a central part of society since its inception. Since the earliest societies, water has been an essential factor when settling. Historically, humans have chosen to settle close to rivers because of agricultural and domestic water supply (Fang and Jawitz, 2019). Even though our primary needs induce the choice of settling close to water, as a side product, hydraulic engineering has also been used in the service of aesthetic design and leisure activities. There are several examples of how earlier societies used water for cultural use; there are ruins of decorative fountains from ancient Greece. In Vietnam, traditional theatre uses water as the main element (Gaboriault, 2009).

The kayak is also an example of ancient hydraulic engineering. The Inuits and Aleuts have been practising the kayaking skill since the first migrants settled in Eastern Arctic around 1250 AD (Walls, 2016). The skill has rapidly grown from an essential part of the Inuit lifestyle for hunting and transport. Today advanced hydraulic engineering has been used to optimize kayaks' speed, design, and equipment used in competitions and championships, such as the Olympic Games.

As the world keeps getting industrialized, we have a greater need for recreational activities, and there are constant developments in water sports. The attainment of the skill of Eskimo roll, which was first completed by a European in 1927 but is an old Inuit skill, brought a new dimension of safety to whitewater kayaking (Nickel, 1996). Today this technique is taught as a primary safety method, making kayaking more available.

Because people settled close to water resources years ago, several European cities have a river in the city centre. In several cities, people use these city rivers for water sports. Also, in Trondheim, Nidelva is used for recreational activities. Several sports teams use the river to practice sports, like whitewater kayaking and surfing.

Before 2017, there were primarily two waves in Nidelva that stood out among whitewater kayaking enthusiasts; under the Sluppen bridge and further upstream: the Drop of Death. Elevation differences in the river bed would induce a hydraulic jump in both these areas. This type of wave dissipates a significant amount of energy, creating severe erosion on the river bed and bridge piers. Because of this challenge, the area was filled with course material to minimize the scouring effect. The filling changed the flow pattern in the river,
and the kayakers lost two popular waves.
This thesis aims to study the possibility of reconstructing the river's kayak wave. The kayak wave should be optimized as a hydraulic jump for a wide range of flows and must satisfy the shape conditions for whitewater kayaking. The possibilities of reconstructing the kayak wave will be addressed according to the following research objectives: exploring literature on the topic, simulations in a numerical model, building a physical model, and a recommendation for placing a weir.

The thesis aims to give a recommendation for the changes needed to be made to reconstruct one of the whitewater kayak waves in Nidelva for a wide range of flows.

2 Literature review

2.1 Physical models

Before the Olympic Games in Athen in 2004, the slalom water course for kayaking was modelled mathematically. To validate the model Christodoulo et al. (2004) built a physical model. These results led to significant modifications of the initially suggested water course. It is concluded that a 1D mathematical model is not sufficient for complex flows.

Lemmin and Rolland (2005) used an ADV in hydraulic research in two laboratory open channels with smooth and gravel beds. The measurement results compare favourably with established laws, for instance, velocities and turbulence. The ADV instrument is a good tool for hydraulic research.

Sweet (2009) used the patent from McLaughlin Whitewater Design Group called Waveshaper to generate waves in a 1:4 scaled physical model. The Waveshaper's use of adjustable vanes induced a robust non-retentive wave for a great variation of flows.

Babaali et al. (2015) compared a numerical simulation of a hydraulic jump with a built physical model. The numerical model was conducted in the commercial software Flow3D and was applied to solve the Navier-Stokes equation. The standard k- ϵ and RNG model was used to study the turbulence. The physical model and CFD results showed promising results, and Babaali recommends further comparisons of numerical and physical models to understand the flow situation better.

Adjustable flaps have been shown to stabilise the surf wave because they will decrease tailwater flow depths. Fuchs (2017) conducted physical laboratory experiments to quantify the effect of adjustable flaps on generated river surf waves. In a small flume, parameters such as discharge, flow depth, drop height, flap length, and angle were varied until favourable surf wave properties were found. The flap significantly increases the wave height for most discharges and mounting of flaps. However, flaps with a slight angle led to a wave height reduction.

Asiaban et al. (2021) introduced a new mechanism for inducing a hydraulic jump on flat river beds. The mechanism is a construction consisting of a ramp, downfall, transition
and finally, a kicker. The structure is found by adjusting a numerical model before the physical model is built as a prototype.

2.2 Numerical simulations

Famiglietti (2010) did a numerical simulation where the aim was to create a kayakingsurfing standing wave for a wide range of flows on the Isar River in Munich, Germany. The geometry was modelled using HEC-RAS and Flow 3D. The thesis reached its' aim of constructing a wave by using two different geometries; one that gives a wave with Froude number 1.7 for each discharge and one geometry that gives a wave for Froude numbers over 1.7 for two hundred days per year. For further research, it is recommended to check the numerical simulations against a physical model.

Borman et al. (2014) used a numerical model of three-dimensional transient two-phase RANS CFD-VOF to predict the position of hydraulic jumps within a complex geometry and flow environment. The environment tested was a recreational whitewater course with significant variations in flow rates. The results demonstrated that this type of CFD reliably can predict hydraulic jumps in open channel flow conditions.

Bayon and López-Jiménez (2015) did a numerical model of a hydraulic jump in an open channel. The study addressed the increase of shear stress because of hydraulic jumps and how this affects erosion on the river bed. Turbulence was modelled using RANS. Bayon created a model using OpenFOAM that can be used to study hydraulic jumps with complex geometries.

2.3 Field experiments

Lane et al. (1998) wrote a paper describing the use of instruments for determinating three-dimensional flow velocities in rivers; the ADV included a method for positioning and orienting such measurements relative to the local coordinate system to relate flow velocity vectors with the bed and water surface. With this discovery, it was possible to create velocity profiles of the river area.

Laboratory experiments and field investigations Fujita et al. (1998) showed that the LSPIV is a reliable and economically efficient flow diagnostic tool. The output of the

LSPIV analysis is a velocity profile that can be used to calculate, for instance, the Froude number.

Lester et al. (2012) did his master thesis of landscape architecture about Whitewater park design. He identified seven design principles for constructing whitewater through interviews with whitewater designers. The conclusion is that adjustability is the essential principle to allow stakeholders to influence the decisions.

3 Theory

3.1 Whitewater kayaking

Whitewater kayaking is not much like peaceful ocean kayaking. After dialogue with different kayak enthusiasts from among others, Trondheim kayakklubb, it is stated that practising whitewater kayaking is about finding a perfect wave. In the wave, the kayakers will perform other acrobatics or technical moves. Therefore, river kayaking is about finding a perfect wave where the kayaker can stay and play for a more extended time.

Eddies are essential to do the same wave over again. When doing a wave, kayakers aim for eddies from hydraulic jumps. If they manage to flow with the eddies, they will get some time to rest and the possibility to do the same wave again. This environment, a steep wave with a rough water surface and eddies, is the ideal kayak situation.

3.1.1 The hydraulic jump

A hydraulic jump occurs when the flow regime changes rapidly from supercritical to subcritical. The rapid change of flow regimes dissipates a significant amount of energy. Hydraulic jumps are therefore used either as energy dissipation below hydraulic structures or are unwanted because they contribute to erosion on the river bed. (Ghaderi et al., 2020). In the case of whitewater kayakers, hydraulic jumps are highly wanted. Figure 3.1 shows an example of a hydraulic jump.

Figure 3.1: A hydraulic jump in the Drop of Death, Nidelva, taken 23. February 2022. $\mathrm{Q}=102.4 \mathrm{~m}^{3} / \mathrm{s}$

Hydraulic jumps occur in different shapes, depending on, i.e. cross-section, discharge, bathymetry and bed roughness. The different hydraulic jumps are best expressed by the inlet Froude number (Chow, 1959).

- Pre-jump Fr=1

To induce a hydraulic jump, the flow must transition from supercritical to subcritical flow; it then transits through the critical flow where the Froude number is 1. This jump is the smallest and has a smooth water surface.

- Undular jump $1<\mathrm{Fr}<1.7$

The surface of the water is rotating, creating small, steady waves. There is little energy loss in this wave, practically zero. Illustrated in figure 3.2.

Figure 3.2: Illustration of an Undular jump (Chow, 1959)

- Weak jump $1.7<\mathbf{F r}<2.5$

Small rollers are created on the water surface. Downstream of the jump, the water surface is smooth. This jump occurs when the velocity of the water is rather low. Illustrated in figure 3.3.

Figure 3.3: Illustration of a Weak jump (Chow, 1959)

- Oscillating jump $2.5<\mathrm{Fr}<4.5$

Oscillating jets enter the jumps; this creates large waves of irregular periods. Downstream of the jump, relatively large waves are created, making a rougher water surface. Illustrated in figure 3.4.

Figure 3.4: Illustration of an Oscillating jump (Chow, 1959)

- Steady jump $4.5<\mathbf{F r}<9$

These waves are created in stable conditions, a clear static hydraulic jump. The wave creates an energy dissipation. The water surface is rough. Illustrated in figure 3.5 .

Figure 3.5: Illustration of a Steady jump (Chow, 1959)

- Strong jump $\mathbf{9}<\mathbf{F r}$

The water surface is rough, and the waves continue for a long distance downstream of the jump. Therefore, this substantial jump creates strong forces at the bed bottom and is often to be avoided because of bed erosion. Special about this jump is that the water flow changes from supercritical to subcritical in a shorter length than the other jumps. Illustrated in figure 3.6.

Figure 3.6: Illustration of a Strong jump (Chow, 1959)

The kayak is first to be analyzed when studying the perfect kayak wave. Unlike ocean kayaking, the kayaks used for river kayaking are short. Therefore, these kayaks are suitable for steeper waves than surfers, with longer boards. The undular jump is the steepest of the waves, but the water surface is too smooth downstream of the jump (Chow, 1959). Therefore, the desired wave is the oscillating jump. This wave is steep, and downstream it has several smaller waves and a rough water surface, a whitewater effect. Consequently, it is ideal for constructing a wave with a Froude number between 2.5 and 4.5 that will induce varied discharges in Nidelva.

3.1.2 Standing surfing waves in Europe

The popularity of surfing and kayaking is growing, as is the availability of standing surfing waves. Across Europe, several countries construct multiple standing surfing waves in city centres by changing the river bed or introducing adjustable weirs in the rivers. This method has been implemented in several inland countries, where the shoreline and surfing waves are distant. In Nidelva, it would be ideal to change the river bed to induce a hydraulic jump.

For some years, leisure hydraulics have been practised in great pools where a mechanical device or a pump will induce the waves which travel across the pool. This solution gives an environment and a water surface close to what a surfer would experience along the shore. An example of this is shown in figure 3.7 where an artificial surf lake is built in

Queensland, Australia.

Figure 3.7: Photo of a artificial surf lake in Queensland (SurfLakes, 2020)

It is a popular method, but the challenge is to dedicate enough area for these significant installations. Especially in urban areas, it is desired to create area-efficient solutions. As a result, the concept of surfing on a simple standing wave was created. These waves can be made in artificial environments using the natural components and slope of the river.

International Association for Hydro-Environment Engineering and Research's member Magazine, Hydrolink, dedicated in February 2018 an issue to leisure hydraulics, focusing on the standing surfing waves. These installations, made to induce the standing waves, have the same purpose as this thesis; to create a standing kayak/surfing wave for a wide range of flow by using the natural components in the river. In addition, some of the solutions also include a weir or a ramp that is placed in the river.

Figure 3.8: Photo of surfers on the Eisbach river. Photo from Steven A. Martin (Martin, 2019)

The February issue of Hydrolink describes several solutions and approaches for creating an artificial leisure hydraulic area. One of the most well-known is the Eisbach River in Munich, Germany, as shown in figure 3.8. In this river, a standing wave of 1 m forms. The waveforms are due to optimizing the up-and downstream characteristics and the river bed geometry, which adjusts itself according to the discharge (Fuchs, 2017). Since its installation in 1980, the wave has become a popular attraction for surfers and tourists. Because of this success, several European cities have adopted this form of constructing a standing surf wave in the middle of the town. Projects like this are also brought up in Norway. Akerselva, Numedalslågen and Evje are examples of places where studies are made to examine the possibilities of constructing kayak waves. Unfortunately, these were not available for comments.

3.2 Study area

The river examined in this thesis is Nidelva, located in Trondheim, Norway, as shown in figure 3.9. The river's discharge varies greatly because three upstream hydropower stations regulate it; Øvre Leirfossen, Nedre Leirfossen and Bratsberg power station. The river originates in Trondheimsfjorden, approximately $8,7 \mathrm{~km}$ north of the studied area. The tide affects the northern part of the river, closest to the fjord. However, the tide does not influence the water depth in the cross-sections examined in this thesis because of the far distance to the fjord.

Figure 3.9: The placing of the study area can be seen as the red dot on the map, Nidelva in Trondehim.

3.2.1 Discharge

Because of the regulation from the upstream hydropower plants, the discharge in Nidelva highly varies. According to Statkraft, which controls the plants and monitors the river, there is no "normal" discharge in the river. The day-to-day differences create a challenge when designing a weir whose purpose is to generate a hydraulic jump. Therefore, the weir, or river bed, must satisfy conducting a wave for several discharges. By analyzing discharge data from the last nine years, it is possible to get a mapping of the discharges that dominate the river. The dominated discharge is found by looking at the 40th percentile every day for the last nine years. The 40th percentile corresponds to approximately 150 days a year. These values are presented in figure 3.10, while the minimum, average and maximum of these values are presented in table 3.1.

Figure 3.10: Over a perspective of nine years, this represent the 40 th percentile of discharge in Nidelva.

Variation in 40th percentile	
Value	Discharge $\left[\mathrm{m}^{3} / \mathrm{s}\right]$
$Q_{\text {min }}$	64.95
$Q_{\text {middle }}$	102.98
$Q_{\text {max }}$	145.38

Table 3.1: Flow duration in Nidelva, presented by minimum, middle and maximum of the 40th percentile values the last nine years.

3.2.2 Changes in river bed and possible solutions

The flow changes due to the erosion under the bridge are represented in a report from Sweco. Before the filling, the waves in the area attracted many people. In 2015 the Norwegian Championship in slalom kayak was arranged by Trondheim kajakklubb in this area. According to Sweco, three main changes in the rived bed affect the hydraulic jumps.

- The depth between the bridge pillars is decreased. The rived bed has been increased 0.5-1.0 m.
- The difference between before and after the filling can be up to 3 m .
- Before the filling, there was a variation in the depth between the pillars. After the filling, they are all the same.

It is possible to construct an adjustable weir that can be modified for different discharges to facilitate the hydraulic jump. These weirs are a popular solution for similar installations in Southern Europe (Aufleger and Neisch, 2018). This type of weir will be too complex to build and expensive for this project. The preferred solution will be to build a classic weir. Another solution is to remove sediments downstream of the bridge to increase the water depth, but this can be risky considering erosion on the river bed. Because of erosion challenges, Trondheim kommune has forbidden removing sediments under the bridge. The preferred solution is, therefore, to construct a weir. The shape of the weir will be found and optimized by analyzing the water stream in a physical and numerical model of Nidelva.

3.2.3 Popular whitewater kayak waves in Nidelva

The kayakers from Trondheim kajakklubb have suggested several areas in the river where a kayak wave is desired.

Figure 3.11: Screenshot of the relevant area between Sluppen and Kroppan bridge in Nidelva.

The first solution is to create a weir downstream of the Sluppen bridge, as shown in figure 3.11 and 3.12. The width of the river channel in this area is 62.3 m , and the distance between the bridge piers is approximately 10 m .

Figure 3.12: Downstream Sluppen bridge, taken 23. February 2022.

Further upstream of the Sluppen bridge, downstream of Kroppan bridge, there is a popular kayak area called "Dødens drop", which translates to "The Drop of Death". A kayak wave in the shape of a hydraulic jump already exists in this area, as shown in 3.13. Before the filling under the bridge, the wave was even steeper and better fitted for whitewater kayaking than it is today. After the filling under the bridge, the tailwater of the hydraulic jump rose and downscaled the jump's effect. Today, the kayakers are still enthusiastic about the wave in the Drop of Death, but it is still possible to optimize the wave, make it even stepper, and adjust it to the kayaker's desires.

Figure 3.13: "The Drop of Death", taken 23. February 2022.

In addition to these two river areas, several smaller drops and rapids can be examined and modelled. For this thesis, "the Drop of Death" will be the main study.

3.3 Hydraulics

A numerical model will be simulated to study and validate the desired wave, and a physical model will be built. This subchapter explains the hydraulic principles on which the models are based.

3.3.1 The continuity equation

The quantity of water flow will be constant as water flows down a river because it is an incompressible fluid. Therefore, the water must adjust its velocity to be compiled to changes on the river bed and cross-section changes. Since the quantity is constant, so is the product of the velocity and the cross-section area.

$$
\begin{equation*}
Q=U A \tag{3.1}
\end{equation*}
$$

This equation describes the conservation of mass and forms the basis for many further calculations in hydraulics. It is called the continuity equation. (Chow, 1959)

3.3.2 Froude number

The Froude number is very relevant when looking at hydraulic jumps. The number is defined as the square of the ratio of the flow's internal and external forces. U is the flow velocity, and g and y are the gravitonial influence and the water depth.

$$
\begin{equation*}
F r=\frac{U}{\sqrt{g y}} \tag{3.2}
\end{equation*}
$$

The Froude is dimensionless and represents the effect of gravity on the state of flow in a stream (Chow, 1959). The number determines the flow regime, whether subcritical, critical or supercritical. The number also determines the direction the disturbances travel. Therefore, the Froude number determines what type of hydraulic jump will occur.

- $\operatorname{Fr}<1$ sub-critical flow regime The flow is downstream controlled
- $\mathrm{Fr}=1$ critical flow
- $\operatorname{Fr}>1$ supercritical flow

The flow is upstream controlled.

3.3.3 Reynolds number

The Reynolds number represents the ratio of internal forces to viscous forces within a fluid. When calculating the Reynolds number, the internal forces are the product of the hydraulic radius and the fluid velocity, while the viscous forces are the kinematic viscosity of the water. The ratio determines whether the flow is turbulent or laminar (Chow, 1959).

- $\operatorname{Re}>2000=$ Turbulent flow
- $\operatorname{Re}<500=$ Laminar flow
- All values between are transition stages

$$
\begin{equation*}
R e=\frac{U R_{h}}{v} \tag{3.3}
\end{equation*}
$$

3.3.4 Manning's formula

Manning's equation is the most common formula for average velocity in a channel with uniform flow. (Olsen, 2017)

$$
\begin{equation*}
U=\frac{1}{n} R_{h}^{2 / 3} I^{1 / 2} \tag{3.4}
\end{equation*}
$$

Here, n is Manning's coefficient, representing the roughness of the channel bed. R_{h} is the hydraulic radius, which is the cross-section area divided by the wetted perimeter. Lastly, I is the slope of the bed.

3.3.5 Flow over weir

The Norwegian directorate regarding rivers and water distribution, subordinate to the oil and energy ministry, has published guidelines for designing weirs. (NVE, 2020) For the weirs, the discharge is to be calculated on the following method:

$$
\begin{equation*}
Q=C L_{e f f} H_{O}^{3 / 2} \tag{3.5}
\end{equation*}
$$

Here the following parameters are:

- Q is the total water capacity, discharge
- C is the weir coefficient, which is calculated from several empirical formulas. Here, H is the water height above the weir, and B is the width of the weir.
- $L_{e f f}$ is the efficient length of the weir. Which is the length when side contraction is taken into account.
- H_{O} is the designed water height above the weir

3.3.6 The height of hydraulic jump

The water level is higher downstream than upstream the hydraulic jump. (Chow, 1959) defines this height ratio and relates it to the Froude number. The ratio is expressed like this:

$$
\begin{equation*}
\frac{y_{2}}{y_{1}}=\frac{1}{2}\left(\sqrt{1+8 F r^{2}}-1\right) \tag{3.6}
\end{equation*}
$$

3.3.7 Critical flow

When a hydraulic jump is induced, the water transitions from super to subcritical flow. This transmission forces the water through a critical flow situation. Therefore, identifying the critical water depth and velocity can indicate whether or not a hydraulic jump will induce.

The critical flow depth is derived from the sum of energy, also called the specific energy height of water flow in a channel, and is expressed:

$$
\begin{equation*}
y_{c}=\sqrt[3]{\frac{q^{2}}{g}} \tag{3.7}
\end{equation*}
$$

By using the continuity equation, 3.1 on this equation, 3.7 the critical velocity can be expressed:

$$
\begin{equation*}
u_{c}=\sqrt{g y_{c}} \tag{3.8}
\end{equation*}
$$

3.3.8 The Energy equation

Looking at water flow in an open channel, there are two types of energy; Kinematic energy due to the water velocity and pressure energy due to the weight of the water and the water depth. (Olsen, 2017)

$$
\begin{equation*}
E=E_{k}+E_{p}=y+\frac{u^{2}}{2 g} \tag{3.9}
\end{equation*}
$$

Over a weir, the water will go through a critical flow regime before transitioning to supercritical flow downstream. (Olsen, 2017) Therefore, the energy over the weir can be defined as the critical energy, which is denoted:

$$
\begin{equation*}
E_{w e i r}=E_{c}=\frac{3}{2} y_{c} \tag{3.10}
\end{equation*}
$$

As energy is conserved, the energy over a weir will be the same downstream. The different parameters are illustrated in figure 3.14, meaning that

$$
\begin{equation*}
E_{1}=E_{c}+\Delta h \tag{3.11}
\end{equation*}
$$

Figure 3.14: Illustration of the different parameters occurring in the energy equation.

3.3.9 Bed shear stress

The hydraulic jump is often avoided because of its energy dissipation and erosion challenges.
The bed shear stress is calculated to validate a wave's scouring effect on the river bed. This is done by calculating the forces induced on a particle in the water flow (Olsen, 2017). The forces induced are illustrated in 3.15.

Figure 3.15: Illustration of the different forces working on a particle in the river. There is assumed that the particle has a diameter, d .

There are four forces induced on the particle:

- Drag forces, D

$$
\begin{equation*}
D=k_{2} \tau_{0} d^{2} \tag{3.12}
\end{equation*}
$$

The drag force is the water suction and pressure parallel with the river bed. Here τ_{0} is the bed shear stress.

- Friction forces, F

$$
\begin{equation*}
F=(G-L) \tan (\alpha) \tag{3.13}
\end{equation*}
$$

- Gravity forces, G

$$
\begin{equation*}
G=k_{1}\left(\rho_{s}-\rho_{w}\right) g d^{3} \tag{3.14}
\end{equation*}
$$

- Lifting forces, L

$$
\begin{equation*}
L=k_{3} \tau_{0} d^{2} \tag{3.15}
\end{equation*}
$$

The lifting force is due to the difference in pressure because of local velocity differences in the sediment.

The friction force works parallel with the river bed. The α is the angle of repose of the particle.

The coefficients k_{1}, k_{2} and k_{3} are coefficients for the geometry for different particles. By combining the equations of the forces working on the particle and the equilibrium of forces along the direction of the bed, the expression of Shields number is derived.

$$
\begin{gather*}
F=D \tag{3.16}\\
\tan (\alpha)\left[k_{1} g\left(\rho_{s}-\rho_{w}\right) d^{3}-k_{4} \tau d^{2}\right]=k_{3} \tau d^{2} \tag{3.17}
\end{gather*}
$$

The equation is solved for d to find the diameter of the sediment that will be eroded.

$$
\begin{equation*}
d=\frac{\tau_{c}}{g\left(\rho_{s}-\rho_{w}\right)\left[\frac{k_{1} \tan (\alpha}{k_{3}+k_{4} \tan (\alpha}\right]}=\frac{\tau_{c}}{g\left(\rho_{s}-\rho_{w}\right) \tau^{*}} \tag{3.18}
\end{equation*}
$$

The parameter τ^{*} was originally found experimental by Shields (Olsen, 2017) and can be found in Shields diagram 3.16:

Figure 3.16: Shields diagram giving the critical shear stress for movement of a sediment particle from Numerical Modelling and Hydraulics (Olsen, 2017)

The x -axis in the diagram represents the Reynolds number and is denoted as:

$$
\begin{equation*}
R e_{*}=\frac{v_{*} d}{v}=\frac{d \sqrt{\frac{\tau}{\rho_{w}}}}{v} \tag{3.19}
\end{equation*}
$$

Here, v_{*} is the sheer velocity of the water, d is the sediment diameter, and v is the viscosity of water. v_{*} can be described as the square root of the ratio between the bed shear stress, τ and the density of water. The bed shear stress is relevant for solving this equation and is expressed as:

$$
\begin{equation*}
\tau=\rho g h I \tag{3.20}
\end{equation*}
$$

The critical bed shear stress can be calculated from Equation 3.18 when the diameter of the sediments is known. Then it can be validated whether there will be erosion or not on the river bed. The critical bed shear stress results can be compared to actual bed shear stress, equation 3.20 and it can be validated whether there will be erosion or not.

3.3.10 The Navier-stokes equation

The Navier-Stokes equation describes the water velocity, U , in the river, and is expressed:

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial t}+U_{j} \frac{\partial U_{i}}{\partial x_{j}}=\frac{1}{\rho} \frac{\partial}{\partial x_{j}}\left(-P \delta_{i j}+\rho v\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)\right. \tag{3.21}
\end{equation*}
$$

P is the pressure, t is the time, v is the kinematic energy, ρ is the water density and $\delta_{i j}$ is the Kronecker delta. The Kronecker delta is 0 unless when $\mathrm{i}=\mathrm{j}$, then $\delta_{i j}=1$.

Because the flow in the river is turbulence, there is a need to use Reynold's averaged version of the Navier-Stokes equation, also called the RANS equation (Olsen, 2017).

Firstly, assumption of incompressible Newtion fluid is made:

$$
\begin{equation*}
\frac{\partial u_{i}}{\partial x_{i}}=0 \tag{3.22}
\end{equation*}
$$

The velocity is then divided into a fluctating value u and the average value U. These parameters are intersteted in 3.21 . By simplifing the equation, the Navier-stokes for turbulence flow is expressed:

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial t}+U_{j} \frac{\partial U_{i}}{\partial x_{j}}=\frac{1}{\rho} \frac{\partial}{\partial x_{j}}\left(-P \delta_{i j}+\rho \bar{u}_{i} \bar{u}_{j}\right) \tag{3.23}
\end{equation*}
$$

The new term, to the right in 3.23 is Reynold's stress term:

$$
\begin{equation*}
-\rho \overline{u_{i}} \bar{u}_{j}=\rho v_{T}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)-\frac{2}{3} \rho k \delta_{i} j \tag{3.24}
\end{equation*}
$$

Here v_{T} is the eddy-viscosity. Inserting 3.24 in 3.23 , the RANS equation is derived.

$$
\begin{equation*}
\frac{\partial U_{i}}{\partial t}+U_{j} \frac{\partial U_{i}}{\partial x_{j}}=\frac{1}{\rho} \frac{\partial}{\partial x_{j}}\left(-\left(P+\frac{2}{3} k\right) \delta_{i j}+\rho v_{T}\left(\frac{\partial U_{i}}{\partial x_{j}}+\frac{\partial U_{j}}{\partial x_{i}}\right)\right. \tag{3.25}
\end{equation*}
$$

There is a convective and transient term on the right side, and on the left, there is a pressure term, a diffusive term and the stress term derived from Reynold's stress term.

The k in this equation represents the kinetic energy. To solve this equation, there is a
need for a turbulence model.

3.3.11 The k- ϵ turbulence model

The most commonly used turbulence model is the $\mathrm{k}-\epsilon$ model (Jones and Launder, 1973). This model can be used to solve the stress term in 3.25 . The eddy-viscosity is by the $\mathrm{k}-\epsilon$ model expressed as:

$$
\begin{equation*}
v_{T}=c_{\mu} \frac{k^{2}}{\epsilon} \tag{3.26}
\end{equation*}
$$

k is here the kinetic energy, which is defined as:

$$
\begin{equation*}
k=\frac{1}{2} \bar{u}_{i} \bar{u}_{j} \tag{3.27}
\end{equation*}
$$

k is modelled by

$$
\begin{equation*}
\frac{\partial k}{\partial t}+U_{j} \frac{\partial k}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(\frac{v_{T} \partial k}{\sigma_{k} \partial x_{j}}\right)+P_{k}-\epsilon \tag{3.28}
\end{equation*}
$$

where P_{k} is expressed as:

$$
\begin{equation*}
P_{k}=v_{T} \frac{\partial U_{j}}{\partial x_{i}}\left(\frac{\partial U_{j}}{\partial x_{i}}+\frac{\partial U_{j}}{\partial x_{j}}\right) \tag{3.29}
\end{equation*}
$$

The dissipation of k is denoted ϵ, and the expression for the $\mathrm{k}-\epsilon$ model is:

$$
\begin{equation*}
\frac{\partial \epsilon}{\partial t}+U_{j} \frac{\partial \epsilon}{\partial x_{j}}=\frac{\partial}{\partial x_{j}}\left(\frac{v_{T} \partial \epsilon}{\sigma_{\epsilon} \partial x_{j}}\right)+C_{\epsilon 1} \frac{\epsilon}{k} P_{k}+C_{\epsilon 2} \frac{\epsilon^{2}}{k} \tag{3.30}
\end{equation*}
$$

The different constants that are being used in this model are the following (Olsen, 2017):

- $c_{\mu}=0.09$
- $C_{\epsilon 1}=1.44$
- $C_{\epsilon 2}=1.92$
- $\sigma_{k}=1.0$
- $\sigma_{\epsilon}=1.3$

4 Modelling of the hydraulic jump

The hydraulic jump will only occur under a flow regime that transitions from super to subcritical. There are several ways to achieve this essential flow transition; one option is to increase the subcritical depth by removing sediments in Nidelva. Because of the challenges of scouring the river bed, Trondheim kommune has forbidden removing sediments under the bridge. There might be possible to remove sediments and increase the water depth by the Drop of Death because it is placed upstream of the bridge. However, it is desired to look most into decreasing the supercritical flow depth.

The decrease can be done by placing a weir on the river bed, illustrated in figure 4.1. The weir will force a supercritical flow. The water will transition through critical flow during the shut of the weir and eventually transition to subcritical flow as the depth increases.

Figure 4.1: Illustration of a weir forcing the flow regime to transfer from supercritical to subcritical.

If the sub and supercritical water depths ratio are insufficient, a weir is essential to force a hydraulic jump (NEH, 2007). The main part of the experiment will be about monitoring how the hydraulic jump behaves and is induced for different water discharges. Secondly, a weir is modelled in the numerical model to examine how decreasing supercritical water depth will improve the hydraulic jump. The measurements that will be made are visual monitoring, velocity and depth measurements, and camera documenting.

4.1 Calibration

In 2020 Sweco Trondheim was engaged in a project examining and measuring the area around the Sluppen bridge as a mapping of the consequences of the filling in the river. They, therefore, conducted water depth measurements by the Drop of Death. The measurements were made right under the bridge over the drop. Their results are presented in table 4.1.

Q Nidelva	Q Drop of death	Water depth
$289 \mathrm{~m}^{3} / \mathrm{s}$	$67 \mathrm{~m}^{3} / \mathrm{s}$	2 m

Table 4.1: Measurements made by Sweco in 2020. Q Nidelva is collected from sildre.no

These data will be used to calibrate the physical and numerical model. As the table 4.1 shows, there is a difference between the total discharge in Nidelva and the quantitative water that flows through the Drop of Death. The ratio between these two discharges has been used when calculating the discharge over the Drop of Death for other discharges scenarios in Nidelva.

4.1.1 Discharge

To validate the assumptions made by looking at the 40th percentile of the discharge over the last nine years, a dialogue was established with Statkraft. Statkraft states that there is no "normal" discharge in Nidelva, but discharges between $40 \mathrm{~m}^{3} / \mathrm{s}$ and $200 \mathrm{~m}^{3} / \mathrm{s}$ are common. In addition to the more common discharges, a recommendation is to test for the typical value during the melting and flood period, respectively, spring and autumn, which is $Q_{10}=400 \mathrm{~m}^{3} / \mathrm{s}$. The discharges recommended by Statkraft are listed below in table 4.2 and do not vary much from the 40th percentile values.

Recomended discharge scenarios from Statkraft	
Value	Discharge $\left[\mathrm{m}^{3} / \mathrm{s}\right]$
Q_{1}	40.00
Q_{2}	140.00
Q_{3}	200.00
Q_{4}	400.00

Table 4.2: Flow duration in Nidelva, recomended from Statkraft.

The water level determines the downstream conditions in Nidelva. One of the challenges
in this modelling is the varieties in discharge from the upstream power plants. Because it is desired to do the test with a controlled discharge, the discharge is defined after dialogue with Statkraft. The discharges that are to be tested are presented in table 4.3 and include the discharges from Statkraft including the discharge present when Sweco did measures in Nidelva.

Recomended discharge scenarios from Statkraft	
Value	Discharge $\left[\mathrm{m}^{3} / \mathrm{s}\right]$
Q_{1}	40.00
Q_{2}	140.00
Q_{3}	200.00
Q_{4}	289.00
Q_{5}	400.00

Table 4.3: Discharge in Nidelva, recomended from Statkraft.

The models will be tested under these five conditions.

4.2 Physical modelling

The physical modelling will involve building a scaled model of the desired area, the Drop of Death. The model will be built in Norges Hydrotekniske Laboriatorium at NTNU in Trondheim. Trondheim kommune will finance the building of the physical model, which will be used for further research on this topic after these measurements are done.

The physical model building will be simplified by using one of the flumes that already exists in the laboratory, as shown in figure 4.2 . The experiments will be carried out in a rectangular flume that is 12.6 m long, 1 m wide and 1 m deep. The slope of the flume can be adjusted. The flume has transparent walls made of Plexiglas, making it easy to monitor and visually inspect the hydraulic jump. The see-through walls also make documenting the experiment easier because the flow is available for a camera.

The water in the flume is pumped into a closed system. There are two pumps in the system that have a capacity of approximately $260 \mathrm{l} / \mathrm{s}$ each. At the downstream end of the flume, there is a tailgate. By adjusting this, it is possible to change the water level in the flume.

Figure 4.2: The flume were the physical model will be built. The width of the flume is 1 m.

To validate that a wave is the desired oscillating wave, finding the velocity and depth that gives the desired Froude number is necessary. These parameters can be modelled by combining equation (3.2) and Chow's definition of the height of a hydraulic jump, equation (3.6).

The equation (3.6) is solved for the Froude number. The aim is to validate if the Froude number is in the desired interval (2.5-4.5). If not, the water depth is adjusted by a weir in the numerical model.

4.2.1 Bathymetry

There are two solutions to how the model of the river bed is to be constructed; one that is somewhat complex and one simplified solution. It is necessary to have detailed and up to date bathymetry of the desired area to build a model as accurate as possible. The bathymetry could then be modelled and scaled digital to be 3D-printed to match the physical model. Building the river bed and weir with gravel or more minor rocks is also
possible. The experiment will eventually consist of the bathymetry placed in the flume with a realistic rock weir. Another option is to make a simplified river bed geometry.

The bathymetry is essential to understanding the geometry of the river bed. The bathymetry is plotted by creating a triangular model in HEC-RAS and importing satellite data. The cross-sections are drawn and scaled in AutoCAD.

The blue rectangular in figure 4.3 shows the part of the river built in the flume. The cross-sections are drawn for every 5 meters as in 4.4, and more often if there are significant elevation differences or changes in the river bed. The cross-sections are then placed in order, and the complete model can be shown as 4.5 .

Figure 4.3: Illustration of the part of the river that is going to be modelled.

Figure 4.4: Cross sections drawn in AutoCAD of the area that is to be modelled.

Figure 4.5: A 3D model of the physical model.

If it is desired to validate the bathymetry, a point of action could be to do new measurements of the environment where it is desired to place the weir. ADCP measurements could do the validation. If these measurements are necessary depends on whether the modelling depends on a true copy of the river geometry or if a simplified geometry is sufficient.

After discussing with experienced lab technicians and supervisors, it is decided that the model will be built with the actual bathymetry from the river but with a smooth surface. The bathymetry is 3D-modeled in AutoCAD. This model is then printed on high-density polyurethane foam, the river bed in the physical model in the flume. One of the river bed modules is shown in 4.6.

Figure 4.6: The finish result after printing the river bed on polyrethane.

The area between the two bridges has a complex geometry because the river turns at this point. The turning and the uneven river bed give a flow situation challenging to study in a physical model, like a flume. The study is challenging because when the river is modelled, the surroundings that do not fit in the flume are either neglected or simplified. Examining the flow situation when entering the modelled area is necessary to get a flow situation as accurately as possible. The flow situation is mapped and recreated in the physical model by examining the river.

4.2.2 Scaling by Froude similarity

When deciding the scaling of the model, two main parameters need to be weighed against each other. If the model is too small, it could cause significant scaling issues. At the same time, the costs increase as the model grows in size; here, the flume sets the boundary for the model's size. If the model is scaled less, less area will be modelled. Therefore the river is scaled by $1: 50$.

Froude similarity is the preferred model law because the dominant forces on the particles
in the river are gravitational. To avoid significant scaling issues because of Reynolds similarity, the flow in the flume must be turbulent. In addition, a minimum water depth of $4-5 \mathrm{~cm}$ must be maintained due to the scaling issues of surface tension of water. By using Froude similarity, the scaling ratios presented in 4.4 are to be used (Heller, 2012),

Froude similarity	
Parameter	Froude scale ratio
Length	λ
Area	λ^{2}
Time	$\lambda^{1 / 2}$
Velocity	$\lambda^{1 / 2}$
Discharge	$\lambda^{5 / 2}$
Force	λ^{3}

Table 4.4: The scale ratio for different parameters according to Froude similarity

The discharges Statkraft recommended are the amount of water that will pass through the whole cross-section of the river. When the discharges are modelled in the flume, it is necessary to adjust them for the cross-section that is being modelled. The cross-section spans approximately 100 m . The part that is being modelled is more narrow. Therefore the discharge is multiplied by the ratio Sweco found between total and discharge over the drop. The scaling is calculated in python by Froude similarity as shown in 4.7. The results are presented in table 4.5.

Figure 4.7: Calculations and scaling performed in python to find the relevant discharge for the physical model.

Recomended discharge scenarios from Statkraft			
Value	Discharge $\left[\mathrm{m}^{3} / \mathrm{s}\right]$	Scaled discharge $\left[\mathrm{m}^{3} / \mathrm{s}\right]$	Scaled discharge $[\mathrm{l} / \mathrm{s}]$
Q_{1}	40.00	0.0005	0.52
Q_{2}	140.00	0.0018	1.84
Q_{3}	200.00	0.0026	2.62
Q_{4}	289.00	0.0038	3.79
Q_{4}	400.00	0.0052	5.25

Table 4.5: Discharge for physical model, given scaling 1:50.

4.2.3 Monitoring and measuring

The flow situation in the flume can easily be monitored by visualising through the walls made of plexiglass. Five cameras are mounted around the flume in the following set-up to document and monitor the flow situations obtained in the flume, as shown in 4.8, 4.9, 4.10 and 4.11 .

Figure 4.8: Mounting of camera 1

Figure 4.9: Mounting of camera 2 and 3

Figure 4.10: Mounting of camera 4

Figure 4.11: Mounting of camera 5

Documenting the flow situation with video cameras will make it easier to communicate the experiment results to stakeholders like Trondheim kajakklubb and kommunen. It will also be added colour drops in the water to better understand the flow situation.

When running the flume with discharges below $11 \mathrm{l} / \mathrm{s}$, the discharge measurement mounted to the pipe system has difficulties reading the discharge. Therefore, to validate the velocity and discharge in the flume, a Vectrino ADV is mounted upstream of the model 4.13. Here the flow is approximately uniform, as shown in 4.12 , so that it will give a good validation of the discharge running over the drop of death.

Figure 4.12: Flow situation by the Vectrino

Figure 4.13: The placing of the ADV, Vectrino

The Vectrino is an acoustic doppler velocity meter, ADV, with an accuracy of $\pm 0.5 \%$ of measured value $\pm 1 \mathrm{~mm} / \mathrm{s}$ (NORTEK, 2018)

The ADV instrument is shaped like a stick with four branches. The ADV is placed vertically in the water through the water surface. By using five transducers, the ADV determines the velocity of the water. The transmitter, one of the transducers, sends out a short acoustic pulse, and the other four transmitters record the echo of the pulse. The echo is processed to find the Doppler shift. Adjustments for the speed of sound in liquids are made, and the velocity is recorded on a computer.(NORTEK, 2018)

The other parameter measured during the experiments is the water depth, an essential parameter to validate the Froude number. Therefore, the inlet will measure the water depth to the model and where the flow is supercritical and subcritical. The water depth is measured with ultrasonic mic+ sensors. The instruments use ultrasonic technology to measure the distance to the water level, which is converted and documented in software. The first sensor is located at the inlet, the second is placed with the movable Vectrino, and the third is placed at the outlet. The degree of precision of the mic+ sensor is $\pm 1 \%$. (Microsonic, 2020)

In addition to the digital instruments, the water depth is controlled manually using a ruler. This validation will minimise the failure and uncertainty of using digital instruments.

4.2.4 Experimental Procedure

The hydraulic jump in the Drop of Death will be monitored and studied by running different discharges. The aim is to better understand how the jump changes by different discharges and changes in the river bed. An example of a hydraulic jump in the flume is shown in 4.14. The aim is to run the physical model with representative discharges for the area in Nidelva studied. The final experimental set-up is shown in figure 4.15.

Figure 4.14: The hydraulic jump over the model for a random discharge.

Figure 4.15: The flume where the experiment is conducted.

4.3 Numerical modeling

4.3.1 Software

The open-source finite volume software OpenFOAM was conducted for the numerical modelling of the Drop of Death. Olsen (Olsen, 2015) used OpenFOAM to model flow and water elevation over a weir with accurate results compared to a physical model. The simulations for this experiment were done with Reynolds-Averaged Navier-Stokes (RANS) equations, utilising the k - ϵ turbulence model. The specific solver used was interFoam, a volume of fluid (VOF) solver for multiphase flow.

4.3.2 Dimensions

Numerical modelling can be time-consuming. Choosing a one-dimensional model can save time but give a less accurate result than a 3D model. The one-dimensional model can present accurate models of hydraulic jumps, but only if they appear uniformly across the cross-section of the river. This is not the case in the Drop of Death. Hydraulic jumps that appear at weirs are localised and can therefore not be said to be uniform across the cross-section as the wave will follow the shape of the weir. (Gordon, 2016). A 3D model is chosen to achieve a comparable result with the physical model and as accurate as possible.

4.3.3 Geometry and bathyemtry

Several software is used to preprocess the model. The bathymetry is extracted from a raster file based on in-situ GPS measurements and satellite data. The profile lines are drawn before extracting to AutoCAD by loading the raster file in GIS. In AutoCAD, the profile lines are joined. AutoCAD is conducted to mesh the area between the profile lines. This software makes adjustments so that the topography matches the accurate site. The 3D surface of the bathymetry is then exported as a stereolithographic file (STL format), which can be utilised directly in OpenFOAM.

After the file is exported into OpenFOAM, a mesh of the flow domain is created. The tool blockMesh is used to create s structured grid of cells. These are defined in the blockMeshDict. The initial cell size are approximately $0.3 \times 0.3 \times 0.1 \mathrm{~m}$, in X- Y- Zdirection respectively. Then the structured grid is snapped to the unstructured bathymetry STL file. The snapping is done by snappyHexMesh. The result is an unstructured mesh consisting of 2.010^{6} cells.

4.3.4 Boundary conditions

While meshing the domain, the boundary conditions are defined. Regarding the velocity, the surfaces representing the river bed are given no-slip boundary conditions.

The outlet is defined by inletOutlet. This means a Dirichlet boundary condition handles outflow. The reverse flow is then defined as zero. variableHeightInFlowRate defines the inlet. This definition means inflow is defined as a fixed volumetric inflow rate. Here the
water level is adjusted according to the calculated water level. The initial water level was set prior to start the simulation. The relevant wall functions were used for the riverbed for the Reynolds-Averaged Stress terms (k, $\epsilon, \mu \mathrm{t}$).

4.3.5 Solver

OpenFOAM allows discretisation to be set for each variable. As a default second-order Gaussian scheme is set. Whereas variables for the turbulence model, $k-\epsilon$, are discretised by the first-order upwind scheme. The Courant number limited the timestep. For stability reasons, a Co-number under 0.3 is maintained. The VOF-equation is solved with the MULES algorithm. The velocity field is derived from the pressure field using the PIMPLE algorithm, combined with the SIMPLE and PISO method. This explanation can be summarised as an iterative solver that uses a guessed value for the pressure field and solving for the correct pressure and the velocity field.

The model was run for 100 seconds. A stable situation was found, and post-processing was conducted using Paraview, an open-source graphical data analysis tool well suited for handling results from OpenFOAM.

5 Results

The physical model was run with the different discharges. The different discharges were conducted through visual monitoring by cameras and water depth measurements. The water discharge was controlled by a Vectrino upstream of the model.

Because the changes and adjustments in the flume were made manually by turning a valve, it was challenging to achieve the proper discharge. Therefore the measured discharge often has a slight variation or deviation from the original discharge.

5.1 Calibration

To ensure that the model is tested for a realistic environment, the model was calibrated for the measurement data conducted by Sweco in 2020. To create a realistic environment, it had to be sure that both the discharge and water depth were correct, which, by the continuity equation (3.1) will give a realistically scaled velocity in the flume. The desired values are presented in table 5.1.

	Q Nidelva	Q Drop of death	Water depth
Real	$289 \mathrm{~m}^{3} / \mathrm{s}$	$67 \mathrm{~m}^{3} / \mathrm{s}$	2 m
Scaled	$0,016 \mathrm{~m}^{3} / \mathrm{s}$	$0,0038 \mathrm{~m}^{3} / \mathrm{s}$	$0,04 \mathrm{~m}$

Table 5.1: Data used to calibrate the model. Measurements made by Sweco in 2020. Q Nidelva is collected from the measurement station Rathe, from sildre.no.

Calibrating the physical model was an iterative process. First, the flume's system was filled with water, ensuring the water level was above the level of the pipes and pump. The water level needed to be monitored during the measuring process, ensuring no air entrainment in the pump system. When the water level was correct, the system was emptied for air. Air in the pumps would cause either inaccurate discharges or the pump stops as a safety measure.

Upstream the model, the Vectrino is mounted, measuring the water velocity. After several measurements and adjusting the inlet from the pump, the correct discharge that corresponds to $67 \mathrm{~m}^{3} / \mathrm{s}$ is found. The correct discharge was found by starting the pump and the inlet to the flume; the system would then start pumping water with continuous
discharge. The tailgate is adjusted, so the water flows over the gate to create a realistic environment. This way, the flume is outlet controlled. The tailgate is adjusted until the reference point measure the correct water depth, corresponding to 2 m .

$5.2 \mathrm{Q}=40 \mathrm{~m}^{3} / \mathrm{s}$

$\mathrm{Q}=40 \mathrm{~m}^{3} / \mathrm{s}$ were supposed to be the lowest discharge tested in the physical model. This discharge corresponds to the minimum water flow in Nidelva. Experimenting showed that it was impossible to get this discharge in the flume. The scaled discharge is $0,5 \mathrm{l} / \mathrm{s}$ which is approximately $0,2 \%$ of the maximum capacity of the flume. Several attempts were made to adjust the low discharge, but with no good results.

5.3 $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$

$\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ was the lowest discharge that was tested in the flume. The hydraulic jump seen from camera 5 is shown in figure 5.1.

Figure 5.1: Picture of the hydraulic jump induced for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, seen from camera 5. Flow direction from right to left.

The equivalent discharges to $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva are presented in table 5.2.

Q Nidelva	Q Drop of Death	Q flume
$140 \mathrm{~m}^{3} / \mathrm{s}$	$32,46 \mathrm{~m}^{3} / \mathrm{s}$	$31 \mathrm{~m}^{3} / \mathrm{s}$

Table 5.2: Real discharge in Nidelva and in the side channel, the Drop of Death and the discharge the experiment is conducted under.

The probes measured the following water depths when running the flume for this discharge. The water depths are presented in table 5.3.

Measure	Inlet	Supercritical flow depth	Subcritical flow depth
Probe [V]	4.7	0.62	2.8
Water depth $[\mathrm{mm}]$	14	4.9	2.0

Table 5.3: Water depths for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ from the physical model

From the visual inspection, the hydraulic jump can be seen as a smaller hydraulic jump. The wave height is significantly lower than for the more significant discharges, but there is a rough water surface and some small eddies occurring even though the discharge is low, as shown in 5.2 and 5.3.

Figure 5.2: The flow situation for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ seen from upstream, camera 1.

Figure 5.3: Picture of the hydraulic jump for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva, seen from camera 3.

The numerical modelling in OpenFOAM shows that a hydraulic jump is induced for $\mathrm{Q}=$ m^{3} / s. The hydraulic jump seen from the same angle as camera 5 is presented in figure 5.4. Figure 5.5 shows the simulation of the hydraulic jump seen from upstream of the jump.

Figure 5.4: Numerical model of the hydraulic jump for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, seen from the side. Flow direction from left to right.

Figure 5.5: Numerical model of the hydraulic jump for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, seen from the top

The measured flow depths in the numerical model were taken in the hydraulic jump's super and subcritical flow regime. The data and the calculated and corresponding Froude
number, equation 3.2, are shown in 5.4.

Supercritical flow depth $[\mathrm{m}]$	Subcritical flow depth $[\mathrm{m}]$	Fr
0.29	1.87	2.62

Table 5.4: Water depths and Froude number, 3.2 for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, numerical model

5.4 $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$

$\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ is the second-lowest discharge situation tested in the flume. During this discharge, approximately $46 \mathrm{~m}^{3} / \mathrm{s}$ runs over the drop of death in Nidelva. The hydraulic jump is more extensive than the lower discharge, the water surface is rougher, and it is a more significant trend for eddies formation - based on visual monitoring. The hydraulic jump is shown in 5.6

Figure 5.6: Picture of the hydraulic jump induced for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, seen from camera 5 . Flow direction from right to left.

The equivalent discharges to $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva are presented in table 5.5.

Q Nidelva	Q Drop of Death	Q flume
$200 \mathrm{~m}^{3} / \mathrm{s}$	$46,4 \mathrm{~m}^{3} / \mathrm{s}$	$46 \mathrm{~m}^{3} / \mathrm{s}$

Table 5.5: Real discharge in Nidelva and in the side channel, the Drop of Death and the discharge the experiment is conducted under.

The probes measured the following water depths when running the flume for this discharge. The water depths are presented in table 5.6.

Measure	Inlet	Supercritical flow depth	Subcritical flow depth
Probe [V]	4.8	0.7	2.8
Water depth [mm]	16	7.1	2.0

Table 5.6: Water depths for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ from the physical model

The flow situation and the hydraulic jump are documented and shown in 5.7 and 5.8.

Figure 5.7: The flow situation for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ seen from upstream, camera 1.

Figure 5.8: Picture of the hydraulic jump for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva, seen from camera 3.

The numerical modelling in OpenFOAM shows that an hydraulic jump is induced for $\mathrm{Q}=$ $\mathrm{m}^{3} / \mathrm{s}$. The hydraulic jump seen from the same angle as camera 5 is presented in figure 5.9. Figure 5.10 shows the simulation of the hydraulic jump seen from upstream the jump.

Figure 5.9: Numerical model of the hydraulic jump for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, seen from the side. Flow direction from left to right.

Figure 5.10: Numerical model of the hydraulic jump for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, seen from the top

The measured flow depths in the numerical model were taken in the hydraulic jump's super and subcritical flow regime. The data and the calculated and corresponding Froude
number, Equation 3.2, are shown in 5.7.

Supercritical flow depth $[\mathrm{m}]$	Subcritical flow depth $[\mathrm{m}]$	Fr
0.39	1.93	2.41

Table 5.7: Water depths and Froude number, 3.2 for $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, numerical model

$5.5 \mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$

$\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ was the discharge used to calibrate the model, and because the relationship between water depth and discharge was known, it was decided to use the discharge for further testing.

Figure 5.11: Picture of the hydraulic jump induced for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$, seen from camera 5. Flow direction from right to left.

The equivalent discharges to $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva are presented in table 5.8.

Q Nidelva	Q Drop of Death	Q flume
$289 \mathrm{~m}^{3} / \mathrm{s}$	$67 \mathrm{~m}^{3} / \mathrm{s}$	$64 \mathrm{~m}^{3} / \mathrm{s}$

Table 5.8: Real discharge in Nidelva and in the side channel, the Drop of Death and the discharge the experiment is conducted under.

The probes measured the following water depths when running the flume for this discharge.
The water depths are presented in table 5.9.

Measure	Inlet	Supercritical flow depth	Subcritical flow depth
Probe [V]	6.8	1.8	3.0
Water depth $[\mathrm{mm}]$	34.0	40.0	6.0

Table 5.9: Water depths for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ from the physical model

From the visual inspection of the experiment, it can be seen a rougher water surface and higher wave height as the discharge increases. The flow situation and the hydraulic jump are documented and shown in 5.12 and 5.13.

Figure 5.12: The flow situation for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ seen from upstream, camera 1.

Figure 5.13: Picture of the hydraulic jump for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva, seen from camera 3.

The numerical modelling in OpenFOAM shows that an hydraulic jump is induced for Q $=289 \mathrm{~m}^{3} / \mathrm{s}$. The hydraulic jump seen from the same angle as camera 5 is presented in figure 5.14. Figure 5.15 shows the simulation of the hydraulic jump seen from upstream the jump.

Figure 5.14: Numerical model of the hydraulic jump for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$, seen from the side. Flow direction from left to right.

Figure 5.15: Numerical model of the hydraulic jump for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$, seen from the top

The measured flow depths in the numerical model were taken in the hydraulic jump's super and subcritical flow regime. The data and the calculated and corresponding Froude
number, Equation 3.2, are shown in 5.10.

Supercritical flow depth $[\mathrm{m}]$	Subcritical flow depth $[\mathrm{m}]$	Fr
0.49	2.0	2.49

Table 5.10: Water depths and Froude number, 3.2 for $\mathrm{Q}=289 \mathrm{~m}^{3} / \mathrm{s}$, numerical model

$5.6 \mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$

$\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ is the maximum discharge tested in the flume. It is a discharge that does not occur as often as the other discharges tested in the flume. $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ is the Q_{10} in Nea-Vassdraget, which Nidelva is a part of (NVE, 2001).

Figure 5.16: Picture of the hydraulic jump induced for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$, seen from camera 5.Flow direction from right to left.

The equivalent discharges to $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva are presented in table 5.11.

Q Nidelva	Q Drop of Death	Q flume
$400 \mathrm{~m}^{3} / \mathrm{s}$	$92,7 \mathrm{~m}^{3} / \mathrm{s}$	$90 \mathrm{~m}^{3} / \mathrm{s}$

Table 5.11: Real discharge in Nidelva and in the side channel, the Drop of Death and the discharge the experiment is conducted under.

The probes measured the following water depths when running the flume for this discharge.
The water depths are presented in table 5.12.

Measure	Inlet	Supercritical flow depth	Subcritical flow depth
Probe [V]	5.7	1.3	3
Water depth $[\mathrm{mm}]$	34.0	24.3	6.0

Table 5.12: Water depths for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ from the physical model

The flow situation and the hydraulic jump for the maximum tested discharge are documented and shown in 5.17 and 5.18.

Figure 5.17: The flow situation for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ seen from upstream, camera 1.

Figure 5.18: Picture of the hydraulic jump for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$ in Nidelva, seen from camera 3.

The numerical modelling in OpenFOAM shows that an hydraulic jump is induced for Q $=400 \mathrm{~m}^{3} / \mathrm{s}$. The hydraulic jump seen from the same angle as camera 5 is presented in figure 5.19. Figure 5.20 shows the simulation of the hydraulic jump seen from upstream the jump.

Time: 98.600000

Figure 5.19: Numerical model of the hydraulic jump for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$, seen from the side. Flow direction from left to right.

Figure 5.20: Numerical model of the hydraulic jump for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$, seen from the top

The measured flow depths in the numerical model were taken in the hydraulic jump's super and subcritical flow regime. The data and the calculated and corresponding Froude
number, Equation 3.2, are shown in 5.13.

Supercritical flow depth $[\mathrm{m}]$	Subcritical flow depth $[\mathrm{m}]$	Fr
0.63	2.16	2.35

Table 5.13: Water depths and Froude number, 3.2 for $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$, numerical model

5.7 Summarize result

From the different results, it can be summarized to increase in three of the most important parameters for kayakers when increased discharge:

- Rougher water surface.
- Height and slope of hydraulic jump. The jump gets higher and steeper when discharge increases.
- Formation of eddies increases as discharge increases.
- The Froude number is satisfied for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$

A comparison of the results from the heighest and lowest tested discharge is presented in figure 5.21, 5.22, 5.23 and 5.24.

Figure 5.21: $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$. Comparison of the highest and lowest water discharge tested in the flume. Flow direction from right to left.

Figure 5.22: $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$. Comparison of the highest and lowest water discharge tested in the flume. Flow direction from right to left.

Figure 5.23: $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$. Comparison of the highest and lowest water discharge tested in the numerical model. Flow direction from left to right.

Time: 98.600000

Figure 5.24: $\mathrm{Q}=400 \mathrm{~m}^{3} / \mathrm{s}$. Comparison of the highest and lowest water discharge tested in the numerical model. Flow direction from left to right.

By looking at the Froude numbers calculated from the numerically measured water depths, it is found that for $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$, the form of the hydraulic jump is satisfying for the kayakers. It is, though, desired to optimize the waveform for the other discharges.

6 Discussion

6.0.1 Different discharges

To compare the nuemrical and physical model the footage from the experiments and simulations are compared to equivalent dishcarges in Nidelva. The two discharges documented in Nidelva, over the drop of death are $\mathrm{Q}=102.4 \mathrm{~m}^{3} / \mathrm{s}$, as shown in figure 6.1, and $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$, as shown in figure 6.2. Here $\mathrm{Q}=102.4 \mathrm{~m}^{3} / \mathrm{s}$ is compared to $\mathrm{Q}=$ $140 \mathrm{~m}^{3} / \mathrm{s}$ as tested in the lab and simulated in the Numerical model. $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ is compared to $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$.

Figure 6.1: Nidelva, The drop of death, Figure 6.2: Nidelva, The drop of death, $\mathrm{Q}=102.4 \mathrm{~m}^{3} / \mathrm{s}$ $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$

As seen in the pictures taken from Nidelva, there is a visible difference in water quantity and surface roughness between the two discharges. The higher discharge has a white water effect, as the water breaks and the rough surface continues after the hydraulic jump; this effect is better seen in figure 6.6 and 6.9.

Figure 6.3: Camera 1, Physical model
Figure 6.4: Camera 1, Physical model, $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$

When comparing the two water discharges from the physical model, visual differences are less than for the river. The water flow is approximately the same, forming the same patterns in the flume. The comparison is shown from upstream angle in figure 6.3 and 6.4.

The two discharges can be compared from the same angle in the three different environments in the following pictures. Discharge $\mathrm{Q}=140$ and $102 \mathrm{~m}^{3} / \mathrm{s}$ is shown in the physical model 6.5 , in situ 6.6 and in the numerical model 6.7. Discharge $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$ is shown in the physical model 6.8, in situ 6.9 and in the numerical model 6.10.

Figure 6.5: Physical model, $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from right to left.

Figure 6.6: Nidelva, The drop of death, $\mathrm{Q}=102.4 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from right to left.

Figure 6.7: Numerical model, $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from left to right.

Figure 6.8: Physical model, $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from right to left.

Figure 6.9: Nidelva, The drop of death, $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from right to left.

Figure 6.10: Numerical model, $\mathrm{Q}=200 \mathrm{~m}^{3} / \mathrm{s}$. Flow direction from left to right.

6.1 Sources of error

6.1.1 Scale effects

Even though there are few visible scaling effects in the physical model, some might be present. The scaling issues often happen due to force errors, such as friction or surface tension. These forces are especially present when the water level is low, which is the case
in the physical model in this experiment. The lowest measured water depth is 2 cm , below the recommended water depth ($4-5 \mathrm{~cm}$) to avoid significant scale effects Heller (2012). This limitation is set because friction forces and surface tension might not be correctly scaled and realistic for these water depths. An extreme version of this environment is when water is left on a blackboard after cleaning it. The water will stick to the board because the surface tension and friction forces are more potent than the gravitational. In the physical experiment, the gravitational forces are still dominating, but the friction forces and surface tension might be more present and influence than in situ.

According to Heller (2012), scale effects increase as the model decreases. Because the physical model is scaled relatively much, some scale effects could be avoided by looking at a minor part of the river. Less scaling is the best method for avoiding greater scaling issues.

When conducting the physical experiment, monitoring the flow situation and adjusting when visible scaling issues or other errors occurred was possible. Avoiding scaling issues would be more complicated if the flume were not equipped with Plexi glass walls.

6.1.2 Tilting

The river bed's slope is considered when designing and modelling the bathymetry in AutoCAD drawings. The first calibration could not achieve the desired discharge and water depth ratio. Because of this challenge, it was discovered that the flume was tilted, as shown in 6.11 and 6.12.

Figure 6.11: The tilting of the flume before adjustments were made.

Figure 6.12: The tilting of the flume after adjustmenst.

As the plaque on the spirit level says, the tilting still has an accuracy of $\pm 0.003 \mathrm{~mm} / \mathrm{m}$ even though the spirit level says the flume is levelled. Not propper levelling can affect the discharge or water depth through the flume, 3.4

6.1.3 Human errors

The intake to the flume is a pipe with a diameter of approximately 40 cm . The pump velocity is regulated on a panel, figure 6.14, and a valve regulates the quantitative of inlet water. When running as low discharges as was necessary for the physical experiment, the panel could not read the velocity or discharge. Therefore, the settings on the panel were left static, and the valve was used to adjust the discharge. The valve had to be operated manually by turning the wheel, as shown in figure 6.13 .

Figure 6.13: The panel where the pump is operated from.

Figure 6.14: The valve that adjusts the inlet of the pump.

Because the experiment was done with discharges that are only 1% of the maximum capacity of the flume, the valve was almost closed for all time. Only minor adjustments were made to change the discharge in the flume. Even minor adjustments caused significant changes in discharges, which made the changes unpredictable. The Vectorino validated the discharge, but the data needed to be handled propper as the only validation.

6.1.4 Air in pump system

Because the flume was run with low discharges compared to the maximum capacity, there were repeated problems with air in the pumping system. To get the correct calibration of discharge and water depth, the water depth in the system was sometimes adjusted lower than the in- and outlet of the pipes, causing air entrainment in the system. An illustration of the challenges with air entrainment is shown in figure 6.15.

Figure 6.15: Illustration of the pumping system of the flume. The scaling or mounting of the system is not correct.

Air in the piping and pump system would cause inaccurate discharges, or the pump stops as a safety measure. The air issues were solved by emptying the air in the pumps and filling the system with water. If it was significant differences between the discharges delivered by the pump and what was measured, it was possible to expose the error. It is possible that more minor errors were delivered in measured and actual discharge as an effect of air in the pumping system.

6.2 Bathymetry and roughness

During an inspection of the river area, it was discovered that under the Sluppen bridge, the river bed is covered with rocks with a diameter of approximately $50-60 \mathrm{~cm}$. The stones are course with roughness at about 10 cm , as illustrated in figure 6.16. These stones were placed on the river bed due to erosion challenges.

Figure 6.16: Illustration of rocks on the river bed under the Sluppen bridge .

For the physical experiment, a smooth riverbed surface printing the bathymetry on highdensity polyurethane foam was chosen. The printing was more time-efficient than it would have been to build a replica of the accurate bathymetry and roughness. When choosing this simplification, the bathymetry remains realistic, but the river bed rocks' roughness and irregularities are not preserved. Manning's equation 3.4 shows that this simplification can affect the water depth and discharge ratio and thereby cause inaccuracies.

6.2.1 Instrument errors

The measuring instrument used in the experiment was mainly Vectrino and Mic + sensor. The Vectrino has an accuracy of $\pm 0.5 \%$ of measured value $\pm 1 \mathrm{~mm} / \mathrm{s}$ (NORTEK, 2018), while the Mic+ sensor has a degree of precision of the mic + sensor is $\pm 1 \%$. These accuracies mean the instruments are relatively precise, but there is still room for errors. The most common error experienced during the experiments were either incorrect mounting of the instruments, causing them to have the wrong calibration or the disturbance of air bubbles. During experiments, small unsees by the human eye; air bubbles would attach to the sensor on the Vectrino, causing incorrect measurements. The error was only discovered when the Vectrino gave unrealistic data, for instance, when the valve was almost closed. The Vectrino said that the discharge in the flume was equivalent to the experiment's most extensive discharge. The air bubbles were removed by wiping the sensor with paper, and the Vectrino delivered accurate data.

6.3 Water depths

A significant discrepancy has been identified by studying the correspondence between the water depths and the experiments' film footage. The different measurements are plotted in figure 6.17.

Figure 6.17: A representation of the measured water depths from different discharges

The different probes are placed in the different stages of the hydraulic jump; the inlet, the supercritical flow and the subcritical flow. From literature and the physical experience, the changes in water depths should be something like illustrated in 6.18, (Chow, 1959):

Figure 6.18: A biref representation of how the changes in water depths should be according to literature and physical experiments (Chow, 1959)

According to the laboratory technicians, there are probably technical errors with the sensors or the calibration of the sensors. A possibility is that all the sensors measure correct, but due to poor calibration, they do not read from the same heights levels, as if they do not speak the same language. They will therefore measure correct, but it is impossible to see the correspondence in the changes in water depths because it is impossible to compare the data.

Because the probes might measure correct, but the data is not comparable, it might be that the probe used for calibration of the flume, Probe 3, still gives accurate data. This means that the system is still calibrated, and the results will still be realistic. The greatest error will be if there are some technical errors with the sensors. Making all the results useless. Because the water depth manually was controlled with a ruler during the calibration, the essential measure is correct, validating the reliability of the other results. Because of this error, the water depts measured with the sensors will not be used to calculate the Froude number. Instead, the water depths from the numerical model will be used.

6.4 Comparing the numerical and physical model

The numerical and physical models are both calibrated with the same boundary conditions.
When deciding whether to build a physical model or do a numerical simulation, time and cost are the heaviest factors. Building a physical model is both time-consuming and expensive. Using a flume that already exists in the lab can save time, but calibrating and running the experiments demands a higher presence than a numerical simulation does. The physical experiment is also expensive, as it demands the use of expensive equipment and the engagement of employees.

Even though physical modelling is time-consuming and expensive, it is often preferred if the results are communicated to external people. In this case, Trondheim kommune will inspect the results. The modelling will present a visualisation of the hydraulic jump that will be implemented in the river, which has a great value when involving stakeholders that do not have a hydraulic background.

Numerical models are also time-consuming, requiring a significant understanding of the flow situation to simulate it. The simulations are often complex, which is demanding to calibrate and model. When the experiments are run, it can take several hours, depending on the complexity of the meshing and modelling. On the other hand, running the actual experiment might be more time consuming, but it does not demand supervision.

The numerical models are also expensive as they require expensive computers that can run great simulations.

Both models have pros and cons, but they give easy results to communicate and illustrate the actual situation.

6.5 Stakeholders

If changes are implemented, the aim should be to meet as many stakeholders' interests as possible. If Trondheim kommune, or others, are to make changes on the river bed in Nidelva, for instance, by introducing a weir, many stakeholders need to be kept in mind. When doing changes like this that will affect an established natural regime, several organisations, the public sector, industries, and private persons will or could be affected
by the changes. The following stakeholders should be orientated or included in the project if changes are made.

6.5.1 Statens vegvesen

Suppose changes are to be done at the drop of death. In that case, Statens vegvesen is not an essential stakeholder because their area of responsibility is not likely to be affected by changes. However, if there are to be conducted changes under the Sluppen bridge, the changes in the flow regime could increase the scouring of the river bed and bridge pillars. Erosion like this can have fatal consequences. Therefore, it will be essential to calculate the erosion effect due to the hydraulic jump. Statens vegvesen should be included in this part of the project, as they will likely know the bridge's capacity.

6.5.2 Trondheim Omland Fiskeadministrasjon

Upstream the city centre in Trondheim, Nidelva is a popular area for practising sport fishing, especially is the river famous for its salmon fishing conditions despite the river being short. Trondheim Omland Fiskeadminsitrasjon, TOFA (Trondheim fish administration) is an organisation aiming to ensure good conditions for sports fishing and outdoors life in Nidelva. They are doing this by facilitating for the fish in Nidelva, ensuring their habitat is satisfying for the fish. (TOFA, 2021).

After dialogue with TOFA, changes in the river bed can affect the fish. These changes can force the fish to move further upstream and significantly influence the fish's spawning pattern. In an email correspondence with TOFA, they say that if protection against erosion is conducted by adding leftover rocks from tunnel extraction, the river bed can be compared with a "dead" river bed; there are no more plants or vegetation. To make specific changes to the river bed that are compatible with the fish and natural river pattern, TOFA should be included in the project.

6.5.3 Norges Vassdrags- og Energidirektorat

Norges Vassdrags- og Energidirektorat, NVE, represent the Govurenment, and are under the ministry of oil and energy production. They are responsible for managing and monitoring the watercourses in Norway. Because NVE monitors the rivers, they would be
wise to include in the project because of their competence and experience. In addition to being essential to support the project, they could have information on other projects with development and construction in or along the river.

6.5.4 Trondheim kommune

Trondheim kommune has an ongoing project aiming to develop and urbanise the Sluppen area. (Trondheimkommune, 2020). Therefore they are already engaged and an important part of the project regarding reconstructing the kayak waves in Nidelva. Changes in the Sluppen area enabled changes on the river bed under the Sluppen bridge. By changing the transport pattern in the area, especially by moving vehicle transport away from the bridge, the demands regarding structural safety dimensions and scouring under the bridge are decreased, which means it will be possible making river bed changes.

Trondheim kommune is involved in most of the projects in the area and could be an essential stakeholder in optimising this project. They can also be an economic contributor if they find the project an excellent contributor to the local environment.

6.5.5 Surfers

Before the filling under the bridge, the wave downstream attracted surfers and kayakers. The induced hydraulic jump was not an oscillating wave but a standing wave. Whereas the kayaker's ideal wave has a Froude number between 2.5 and 4.5 , the ideal surfing wave has an inlet Froude number at 1.7 (Famiglietti, 2010). The surfers should therefore be included in the project so that it could be possible also to satisfy their interests. Perhaps it could be possible to dedicate different areas in the river to different wave types.

6.5.6 Trondheim Kajakklubb

This project's main stakeholder is Trondheim kajakklubb and NTNUI Padling. These sports teams in Trondheim use Nidelva for recreation and leisure by practising whitewater kayaking. Early in the project, these groups were involved with dialogue and taking inceptions of the river and its current waves. The dialogue gave valuable information about their desires and the state of the river. As they spend much time in the river, they know it and its behaviour well. For further work, representations from these sports teams
should inspect the solutions for improving the waves. They will provide helpful input for modifying or adjusting the wave to meet their needs.

All of the mentioned stakeholders should be addressed if there are changes on the river bed. How much they need to be directly involved in the project varies and is up to the project leader. It is easier to make the best solution on the first try by addressing these groups first.

6.6 The weir

By studying the different results from the physical and numerical modelling, it appears that a hydraulic jump is induced for every discharge tested. However, the Froude numbers tell that the hydraulic jumps can be improved and optimised to the kayaker's desires. The optimising can be done by placing a weir in the river and decreasing the supercritical water depth.

Because the inlet Froude number determines the outcome of the wave, it is desired to define an interval for the correlating supercritical depth, y_{1}.

$$
\begin{align*}
& F r=\frac{q}{\sqrt{g y_{1}}} \\
& F r=\frac{Q}{y}_{y_{1}}^{\sqrt{g y_{1}}} \tag{6.1}\\
& y_{1}=\frac{Q}{F r \sqrt{g}}^{2 / 3}
\end{align*}
$$

The y_{1} is solved for both $F r_{\min }=2.5$ and $F r_{\max }=4.5$. Giving an interval for the correlation y_{1} shown in table 6.1.

Discharge	y_{1} for $\mathrm{Fr}=2.5$	y_{1} for $\mathrm{Fr}=4.5$
$140 \mathrm{~m}^{3} / \mathrm{s}$	0.30	0.20
$200 \mathrm{~m}^{3} / \mathrm{s}$	0.38	0.26
$289 \mathrm{~m}^{3} / \mathrm{s}$	0.49	0.33
$400 \mathrm{~m}^{3} / \mathrm{s}$	0.60	0.40

Table 6.1: y_{1} must be inside these intervals for the correlating discharge to induce the desired hydraulic jump.

The height of the weir, $\Delta \mathrm{h}$ is calculated from the conservation energy equation. The intervals of y_{1} are used for the different discharges.

$$
\begin{align*}
& E_{1}=E_{c}+\Delta h \\
& y_{1}+\frac{v^{2}}{2 g}=\frac{3}{2} y_{c}+\Delta h \tag{6.2}\\
& \Delta h=y_{1}+\frac{v^{2}}{2 g}-\frac{3}{2} y_{c}
\end{align*}
$$

The critical water depth, y_{c}, is calculated from eq 3.7. q is found by dividing Q in the channel by the width of the channel, $\mathrm{W}=25 \mathrm{~m}$. The results are shown in table 6.2.

Discharge	$y_{c}[\mathrm{~m}]$
$140 \mathrm{~m}^{3} / \mathrm{s}$	0.55
$200 \mathrm{~m}^{3} / \mathrm{s}$	0.70
$289 \mathrm{~m}^{3} / \mathrm{s}$	0.90
$400 \mathrm{~m}^{3} / \mathrm{s}$	1.11

Table 6.2: The critical water depth for the different discharges

The equation for $\Delta \mathrm{h} 6.2$ is solved with the minimum and maximum value of y_{1} for each discharge. The results are shown in table 6.3.

Discharge	Δ h for $\mathrm{Fr}=2.5[\mathrm{~m}]$	$\Delta \mathrm{h}$ for Fr $=2.5[\mathrm{~m}]$
$140 \mathrm{~m}^{3} / \mathrm{s}$	0.41	1.42
$200 \mathrm{~m}^{3} / \mathrm{s}$	0.52	1.81
$289 \mathrm{~m}^{3} / \mathrm{s}$	0.67	2.33
$400 \mathrm{~m}^{3} / \mathrm{s}$	0.82	2.87

Table 6.3: The interval of the desired $\Delta \mathrm{h}$ for inducing the desired hydraulic jump.

The differences in values of $\Delta \mathrm{h}$ span from 0.41 m to 2.87 m . From 0.82 m to 1.42 m , the weir will, for all the four discharges, induce a hydraulic jump with a Froude number between 2.5 and 4.5 .

If the weir is to be constructed in the river, it is desired to make it compatible with the environment. Therefore, the aim should be to use materials that imitate the sediments in the river. These materials will ensure that the changes influence the fish and the ecosystem as little as possible. The river bed's natural environment will be maintained using these materials.

The hydraulic jump over the rock weir could cause erosion and scouring. Therefore this must be taken into account. The USBR report on Rock weir hydraulics and failure mechanisms shows that the primary cause of rock weirs' instability and failure is scouring
on the foundation and river bed. (Gordon, 2016) Therefore, it is necessary to calculate the bed shear stress and protect against scouring. Also, the guidelines from NVE regarding the construction of rock weirs must be followed during the design process 3.5

7 Further research

Further research aims to use these results to adjust the river bed as the desired wave is established.

The rived bed should be optimized in the numerical model before the physical model is used as a prototype. Relevant stakeholders should be invited to the laboratory to visualize the new hydraulic jump. It is also necessary to decide whether or not there is a need for new measurements of the water depths.

A hydraulic jump in a river could have side effects when scouring the river bed. Because scouring earlier has shown to be a problem under the Sluppen bridge, this effect must be considered when designing the hydraulic jump. This is done by controlling the bed shear stress the wave applies on the river bed. If the aim is to examine the scouring process, a geometry covered in gravel or smaller, scaled sediments will better understand the process. There must, therefore, be considered how much time is valuable to invest in building the model.

For further research, it would also be interesting to look at other popular parts of the river, like the Sluppen bridge. The idea is that the distance between the bridge piers could be modelled individually and optimized for different discharges. By doing this, there will be a hydraulic jump under the bridge for every discharge in Nidelva.

8 Conclusion

This thesis aims to study the possibility of reconstructing the river's kayak wave in The Drop of Death area. After changes in the river bed in Nidelva, due to safety measures due to erosion, two of the popular kayak waves were affected. The study was conducted using a numerical model and a physical model.

A hydraulic jump was induced for every discharge tested for the physical and numerical model. From the different results, it can be summarized by the following; there is an increase in three "kayak-parameters" when the discharge is increased:

- Rougher water surface.
- Height and slope of hydraulic jump. The jump gets higher and steeper when discharge increases.
- Formation of eddies increases as discharge increases.

The Froude number varied depending on the discharges but was satisfying for $\mathrm{Q}=$ $140 \mathrm{~m}^{3} / \mathrm{s}$.

The decided solution is to design a weir to achieve a wave with the desired Froude number. The calculated weir height shows that a weir with a height of $0.82<\Delta \mathrm{h}<1.42$ will induce a wave for discharges from $\mathrm{Q}=140 \mathrm{~m}^{3} / \mathrm{s}$ to $400 \mathrm{~m}^{3} / \mathrm{s}$ with a Froude number between 2.5 and 4.5. What should be done next is to measure the current step in the physical and numerical model. The step should be adjusted so that the height is between the minimum and maximum height of the interval inducing the desired hydraulic jump.

References

Asiaban, P., Rennie, C. D., and Egsgard, N. (2021). Sensitivity analysis of adjustable river surf waves in the absence of channel drop. MDPI.

Aufleger, M. and Neisch, V. (2018). Stationary surf waves in rivers. Hydrolink number 2, 2018.

Babaali, H., Shamsai, A., and Vosoughifar, H. (2015). Computational modeling of the hydraulic jump in the stilling basin with convergence walls using cfd codes. Arabian Journal for Science and Engineering.

Bayon, A. and López-Jiménez, P. A. (2015). Numerical analysis of hydraulic jumps using openfoam. Article in Journal of Hydroinformatics.

Borman, D., Sleigh, A., Coughtrie, A., and Horton, L. (2014). Hydraulic free-surface modelling with a novel validation approach. White Rose Resaerch Online.

Chow, V. T. (1959). Open-channel hydraulics. Kogakusha Company, LTD.
Christodoulo, G., Papathanassiadis, T., Georgakopoulou, C., and Kapetanaki, M. (2004). Physical vs. mathematical modelling of the canoe kayak slalom watercourse for the athens 2004 olympic games. National Technical Uniervsity of Athens.

Famiglietti, J. (2010). Kayaking-surfing wave for a wide range of flows. Master's thesis, Universita di ${ }^{〔}$ Pisa.

Fang, Y. and Jawitz, J. W. (2019). The evolution of human population distance to water in the usa from 1790 to 2010. Nature Communications.

Fuchs, H. (2017). Effect of adjustable flaps on river surf waves at abrupt drops. ETH Zürich.

Fujita, I., Muste, M., and Kruger, A. (1998). Large-scale particle image velocimetry for flow analysis in hydraulic engineering applications. Journal of Hydraulic Research.

Gaboriault, D. (2009). Topscholar® vietnamese water puppet theatre: A look through the ages.

Ghaderi, A., Dasineh, M., Aristodemo, F., and Ghahramanzadeh, A. (2020). Characteristics of free and submerged hydraulic jumps over different macroroughnesses. Journal of Hydroinformatics.

Gordon, E. (2016). Rock Weir Design Guidance. USBR Technical Service Center.
Heller, V. (2012). Froude similarity. Comprehensice Renewable Energy.
Jones, W. and Launder, B. (1973). The calucation of low-reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer.

Lane, S. N., Biron, P. M., Bradbrook, K. F., Butler, J. B., Chandler, J. H., Crowell, M. D., Mclelland, S. J., Richards, K. S., and Roy, A. G. (1998). Three-dimensional measurement of river channel flow processes using acoustic doppler velocimetry. University of Cambridge.

Lemmin, U. and Rolland, T. (2005). Acoustic velocity profiler for laboratory and field studies. ASCE.

Lester, B., Guelph, C., and Kelly, S. (2012). Whitewater park design principles: An integrated approach for multiple user groups in partial fulfilment of requirements for the degree of master of landscape architecture. Master's thesis, Universita of Guelph.

Martin, S. A. (2019). Surfing the eisbach river wave in downtown munich, germany. StevenAMartin.com.

Microsonic (2020). mic+130/d/tc. Microsonic.
NEH (2007). Stream hydraulics. National Engineering Handbook, Part 654.
Nickel, R. H. (1996). The development of a filming technique for the eskimo roll in kayaking. Master's thesis, University of Manitoba.

NORTEK (2018). Comprehensive manual 2. NORTEK.
NVE (2001). Flomsonekartprosjektet flomberegning for nea-nidelvvassdraget. NVE.
NVE (2020). Retningslinjer for flomløp til §4-6 og §4-13 i forskrift om sikkerhet og tilsyn med vassdragsanlegg. NVE.

Olsen, N. R. B. (2015). Four free surface algorithms for the 3d navier-stokes equations. Journal of Hydroinformatics.
Olsen, N. R. B. (2017). Numerical Modelling and Hydraulics. Department of Hydraulic and Environmental Engineering, The Norwegian University of Science and Technology.

SurfLakes (2020). Surf lake with five waves prototype. raisedwaterreasearch.com.
Sweet, S. (2009). Physical modeling of wave generation for the boise river recreation park in the center for ecohydraulics stream. Academia.

TOFA (2021). Nidelva. Trondheim Omland Fiskeadministrasjons webpage, www.tofa.no. Trondheimkommune (2020). Kommunedelplan for sluppen. Trondheim kommune.
Walls, M. (2016). Frozen landscapes, dynamic skills: an ethnoarchaelogical study of inuit kayaking enskilment and the perception of the environment in greenland. University of Toronto.

9 Appendix

A1 Discharge data the last nine years

呙仯

 Discharge in Nidelva. Data from Rathe measuring station, NVE All the yellow cells were missing data. "Calibrated" by looking at average values.

\square
Discharge in Nidelva. Data from Rathe measuring station, NVE All the yellow cells were missing data. "Calibrated" by looking at average values.

 İO

A All the yellow cells were missing data. "Calibrated" by looking at average values.

크N

 \%

			Discharge in Nidelva. Data from Rathe measuring station, NVE							
			All the yellow cells were missing data. "Cailirated" by looking at average values.							
Date	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020
1-May		174.34	57.32	76.61	38.14	113.87	126.15	38.31	79.37	158.68
2-May		163.12	69.81	91.49	38.42	136.81	133.71	47.35	110.01	158.21
3-May		180.20	96.37	78.18	38.42	142.00	133.52	47.74	90.79	161.91
4-May		180.73	99.56	82.80	38.70	145.30	131.08	76.96	72.65	158.03
5-May		171.49	76.42	148.05	37.77	135.12	101.53	73.84	76.30	139.24
6-May		173.40	114.67	144.45	37.58	61.07	74.42	63.74	102.58	72.09
7-May		177.61	115.06	146.24	36.12	65.48	67.75	110.97	102.50	70.24
8-May		179.95	109.24	125.02	44.53	56.98	48.14	143.53	92.55	157.51
9-May		172.94	111.88	107.91	36.66	119.84	38.10	153.47	72.63	154.85
10-May		177.79	88.37	38.81	36.48	105.37	88.79	145.28	65.97	97.75
11-May		184.12	113.94	40.96	51.92	107.18	126.41	153.31	44.80	106.09
12-May		186.24	131.57	39.86	45.89	106.45	105.08	217.30	60.23	101.45
13-May		184.34	141.19	39.85	38.23	63.64	73.29	202.25	136.88	118.67
14-May		178.72	130.75	40.35	37.58	36.39	64.01	182.40	181.40	114.25
15-May		187.75	125.58	39.65	37.21	36.48	104.95	176.46	138.64	113.87
16-May		183.26	112.01	69.22	37.12	36.12	79.33	140.79	177.68	103.58
17-May		179.93	126.15	40.74	37.77	82.04	103.09	113.70	177.92	102.87
18-May		186.65	132.59	40.71	76.35	97.63	103.19	82.26	178.42	144.63
19-May		187.63	120.00	41.52	60.69	164.70	122.64	37.90	178.96	141.34
20-May		184.14	134.14	99.35	70.22	159.47	89.76	37.67	178.60	145.74
21-May		173.41	153.11	64.67	62.99	142.43	101.54	37.60	172.60	132.59
22-May		180.76	138.89	101.54	42.30	137.67	162.24	60.78	177.69	163.74
23-May		182.14	181.83	175.76	37.67	150.23	172.95	58.85	183.95	164.94
24-May		181.02	170.55	194.66	37.30	173.51	173.28	37.58	202.75	159.00
25-May		179.27	49.64	188.13	38.89	175.25	176.35	37.62	194.87	161.83
26-May		182.75	41.41	194.50	79.17	175.75	176.96	37.81	187.86	173.51
27-May		183.80	130.19	191.35	96.09	171.03	171.67	38.53	175.71	171.28
28-May		183.49	124.17	179.49	102.33	163.74	170.98	67.01	170.13	179.03
29-May		183.49	130.06	145.31	131.34	164.70	176.30	51.82	160.59	178.53
30-May		184.83	96.53	151.95	182.35	157.36	174.63	65.25	129.18	172.02

Discharge in Nidelva．Data from Rathe measuring station，NVE

2013
83.19
88.69
110.00
134.05
120.00
180.00
166.54
176.61 176.61 137.63 142.82
180.00 180.00
175.0001 175.0001
141.2934 152.0842 137.3394 137.5348 93.4887产 146.9661 143.2617 161.0244 122.7274 43.7314 57.98651 97.73023
100.7297 102.4702 69.16536 69.38992 48.81532
2012
 158.3223
158.6383
 105.981
90.0266 90.0266
95.30408 금边 134.6365
160.8087 166.2289 160.4335 160.7618简 160.6092
134.8901 134.8901
141.1483 140.0603
 す
あ
in
$\underset{\sim}{0}$

Discharge in Nidelva．Data from Rathe measuring station，NVE
2020
44.63623
 144.1912 とع687＇6S H
Hin
0
0
0 N $\hat{0}$
in
on ∞
∞
∞
∞
∞
∞ 58.57051
102.157 è ल্ণী 102.203
59.37579 59.37579
57.44774 38.07063 て660て＇8を 79.09028 81.57209 82.04496

 128.4535 133.8492 71.33888 167.8487 | N |
| :--- |
| |
| |
| | N

O
ob
ํㅡㄱ
 $\stackrel{0}{0}$
$\underset{\sim}{2}$
 $\stackrel{\leftrightarrow}{\infty}$
 47.86504

44.44856 | 73.51324 |
| :--- |
| 91.70398 |
| 8.79905 | 80.79905

 80.71294 81.44237 ∞
$\stackrel{\infty}{\circ}$
∞
∞
∞
∞ 77.48334 55.00454 웅 $\stackrel{0}{\infty}$

俞
 $\stackrel{\sim}{n}$
～～～
 9
\vdots
\vdots
0
0
0 $\stackrel{\sim}{\text { N }}$ 37.0422
37.01989 36.59879
37.14003 37.08562
35.72979 35.7279
35.8145
34.99641 34.99641
35.02771 35.02197
35.97312 35.37657 35.21566
35.51546
 35.51495 34.4827
34.37861 34.37861
35.49732 35.49732
35.37775 ơ N
N
N
N N All the yellow cells were missing data．＂Calibrated＂by looking at average values． 2016
99.52959 34.51521 37.67226 55.65841 잉 35.39908 35.48821 43.91555 35.22117 36.29734
35.22117
 38.89069
72.60684

葛
$\underset{\sim}{n}$

 41.50177 | ∞ |
| :---: |
| $\underset{\infty}{\infty}$ |
| \dot{c} |
| | -1

\sim
ñ
in 63.89989 49.2312 36.11653 44.53277
87.36536

 67.35061 2015 156.1943 134.0597 137.6694
137.0278 84.99156 118.2813 138.0981 130.9259 90.10705 41.40316 51.92347 ò à 125.8089
142.433
 g
ñ
㞧 $\stackrel{\sim}{0}$
 70.22382

 87.04642 85.62043
 ～～
 81.73871 2014 131.1714 40.9983 110.1043 ． 59

 $\begin{array}{r}77.14 \\ 83.25655 \\ \hline 7.2358\end{array}$ 75.10358 87.43328

77.92381 76.55325 | $\underset{\sim}{7}$ |
| :---: |
| $\underset{\sim}{3}$ | 71.4945 71.46079

69.94237 57.06291 48.37417 51.17587 66.94373 73.6824
72.56199 on 62.04967
 65.86412
2013 39.66241

 N
す
i $\begin{array}{cc}\infty \\ \text { N } \\ \text { N } \\ 0 & 0 \\ 0 & 0\end{array}$ 39.85008
39.40605 39.86467 40.41552 43.49182 35.84713
36.20587 46.35138 63.35145 N 40.74649 40.32551
40.02498 45.3302 64.40586 55.00002 70.00002
69.34492 46.79082 77.09181
N $\underset{\substack{\text { ® } \\ \underset{\sim}{\infty} \\ \hline}}{ }$ $\stackrel{\circ}{\stackrel{\circ}{\wedge}}$

 $\stackrel{\infty}{\sim}$
 177.481 177.8174
182.6703
 N
$\underset{\sim}{7}$ 160.2442

 43.13955

 42.45008 O．

\vec{a}
$\underset{\sim}{0}$
$\underset{子}{7}$

 40.56417 $\stackrel{\hat{\infty}}{\stackrel{\sim}{\sim}}$ $\stackrel{7}{\sim}$ 60.34646
61.53571 72.44157 54.70698 74.75828 95.66272 75.8134 78.09988 76.00266
73.90524 73.90524 71.808
69.66836 63.86506 67.94313
68.07928 78.19269 $\stackrel{\circ}{\circ}$ $\stackrel{\text { ®}}{\underset{\sim}{N}}$ む 65.73035 100.2761
 41.8661
 41.64978

 $\stackrel{ \pm}{\circ}$
Discharge in Nidelva．Data from Rathe measuring station，NVE
2020
 N ∞
$\underset{\sim}{\infty}$
$\underset{\infty}{\infty}$ N
N
\dot{W}
$\dot{\infty}$ $\stackrel{\rightharpoonup}{0}$
$\stackrel{y}{0}$
gi

七0Lでヤとโ | ∞ |
| :--- |
| |
| |
| | | $\stackrel{\stackrel{\rightharpoonup}{\infty}}{\infty}$ N $\stackrel{\sim}{7}$

 40.42477

 M

ल
ぶ
－

∞
$\stackrel{0}{0}$
on

 41.21707 41.80666 41.79871

 $\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\rightharpoonup}{\circ}}$ $\stackrel{\rightharpoonup}{\infty}$
$\underset{\sim}{\circ}$
$\underset{j}{j}$ $\stackrel{\Im}{\sim}$

n

 $\underset{\substack{n \\ \\ \hline \\ \hline}}{ }$

冎 N
$\overrightarrow{7}$
－

 36.16433 N
 7
$\underset{\sim}{2}$
$\underset{j}{\infty}$
$\underset{j}{2}$ $\stackrel{n}{\stackrel{n}{2}}$

 $\underset{\sim}{N}$
$\underset{\sim}{n}$
N $\underset{\substack{\aleph \\ \text { N } \\ \text { N }}}{ }$ $\stackrel{\text { Nै }}{\stackrel{\circ}{\hat{e}}}$
 N
$\underset{\sim}{\tilde{N}}$
in $\stackrel{\infty}{\infty}$ $\vec{~}$
$\underset{y}{7}$
$\underset{i}{2}$ 64.42937

$\stackrel{\infty}{\sim}$ | n |
| :---: |
| |
| |
| |

 0
$\underset{7}{7}$
in 35.76272 35.79266
37.24075 \circ
$\stackrel{0}{0}$
in
in
 36.58672
39.72453 58.11995

 $\stackrel{\infty}{\text { y }}$
 $\stackrel{\rightharpoonup}{0}$
\mathbf{N}
∞
∞ 39.09203 52.42814 ∞
i
i
∞
∞ $\stackrel{\infty}{\circ}$ N 0
$\underset{y}{j}$
$\underset{y}{j}$柋
 $\stackrel{\rightharpoonup}{i}$ 39.89761 0

0
0

 36.09441 $\underset{N}{N}$
\vdots
\vdots
in $\stackrel{\sim}{\infty}$ ～～ o 잉 123.2224 125.6314
 66.22307
103.4384 110.7321
 57.90019

2015	2016
5.18932	46.95085

 93.23631
 88.97151
 96.7756
 122.4042
 19
 74.17619 68.57248
 84.67825 108.6444 128.8634 121.8097 78.71644
43.60898 ob 85.30563 105.3684 113.4913
 118.2813 68.0277 68.98297 101.2763
 77.52802 99.18263 100.226 M
$\stackrel{y}{\omega}$
$\dot{\omega}$
$\dot{\omega}$
$\dot{0}$ 70.22382 슬 58.32419 56.61851 55.5391 58.20122 92.90369 116.7346 89.45708 39.84494 57.83343 79.91656
58.44721 58.44721

114.0592 107.728 | ∞ |
| :--- |
| ∞ |
| 0 |
| ∞ |
| ∞ |
| ∞ | $\stackrel{n}{\infty}$

 ò | 0 |
| :--- |
| 0 |
| 0 |
| 0 |
| 0 | $\stackrel{\infty}{\infty}$ 58.57051 41.10804 N 94.40662

48.6819 51.12866
 60.18807 2014 70.9472资 90.0398
51.85386 74.71657 69.82135 79.64415 83.61204 99.24197
106.6698 73.916745 Nin 100.010175 0
0
0
0
0
0
0
0 96.427415 N
O
む
N

 \circ
0
0
0
$\stackrel{0}{0}$
$\stackrel{y}{n}$ 72.99952
68.179105

 \begin{tabular}{c}
∞

～

む

\vdots

\vdots

\hline

兑 87.337785 2013 59.88783 70.00002 웅 115.4383 116.0001 126.3063

0

\multirow{2}{g}{}

0

n
\end{tabular}

 105
90.00006 67.13046

 100.3632 125.3691 97.38522 | ∞ |
| :---: |
| ∞ |
| \sim |
| |
| | 87.60448 102.8593

102.1811 77.15067 | 104.891 |
| :--- |
| 8.77859 | 70.54657 68.43752 117.5699 $\stackrel{\stackrel{\rightharpoonup}{2}}{\stackrel{\rightharpoonup}{7}}$ 114.4875

N 43.7693 42.93719 43.32102 40.4898
59.74297 70.29141 68.43465 104.1728 64.88475 97.46478 65.17608 81.03207
93.23186 99.96435 $\underset{\sim}{0}$
$\underset{\sim}{n}$

$\underset{\sim}{1}$ 127.7197 | $\underset{\sim}{8}$ |
| :---: |
| $\underset{\sim}{~}$ |
| | 96.19827 142.6405 118.0187 68.41034 76.84515 84.12548 $\begin{array}{r}80.80614 \\ \hline 74.6424\end{array}$ 74.6424

98.11723 98.11723
102.3274 102.3274
47.48769 $\stackrel{\rightharpoonup}{7}$
$\underset{\sim}{n}$
内 92.68331
$\stackrel{7}{\square}$ 41.51815 40.50788 41.57875 40.49694
65.83951 62.91464 55.00182 60.60752 51.00431 40.26702 68.33261 51.26832 47.57393
82.98671 111.8806 111.8806
58.0369 71.47831 113.2119 230.2131 387.2766 300.5986 184.9579 178.6312 177.994
177.7326 142.8259 147.0656 $\stackrel{\rightharpoonup}{0}$
$\underset{\sim}{\dot{u}}$
$\underset{\sim}{~}$
 146.2962三 ジ
Discharge in Nidelva. Data from Rathe measuring station, NVE

				,				
2012	2013	2014	2015	2016	2017	2018	2019	2020
103.291	107.9469	74.38059	40.81428	99.18263	103.9837	107.5438	70.09416	126.2318
113.5137	84.18835	63.847755	43.50716	96.94634	105.1663	99.56935	71.19189	87.40054
89.87687	42.74428	72.89349	103.0427	56.13708	88.37592	103.7632	44.02034	138.9581
62.46801	39.01742	64.80701	90.5966	71.33888	81.34883	103.4948	41.07444	124.8013
59.1628	76.02242	83.227795	90.43317	91.25191	74.91743	76.14972	64.17339	128.4535
67.90741	110.6506	105.61295	100.5753	93.56969	64.40749	93.9763	68.99879	124.6005
65.2038	112.3711	109.77575	107.1804	80.82424	96.76829	106.9854	67.24562	84.83474
66.89104	103.4031	69.71474	36.02638	116.158	85.43554	108.3019	67.77718	120.8229
53.79082	60.76205	48.304245	35.84644	96.09492	76.78152	104.5313	67.05316	82.04496
56.95033	50.17733	55.68754	61.19775	109.3812	92.33224	68.7487	70.26112	127.4322
46.39488	46.16311	56.152995	66.14288	115.9661	71.01698	63.89778	78.77026	41.51072
44.1536	114.9999	99.061315	83.12273	123.3993	66.6321	59.60011	75.91404	83.40912
61.39132	110.8483	116.13125	121.4142	96.7756	52.43898	68.1589	71.3083	39.48059
84.31017	97.54242	93.49975	89.45708	55.18239	61.88329	73.78407	76.2137	82.33509
108.7965	94.53282	65.369865	36.20691	119.45	35.92934	50.53721	94.73019	39.98268
108.0426	99.41882	67.587735	35.75665	129.2742	38.13765	85.16041	100.0602	39.52839
47.07037	57.83985	50.319095	42.79834	120.4295	37.44596	65.01489	112.0812	83.64016
52.38402	42.86628	39.177245	35.48821	111.9853	36.07178	39.1974	119.6499	39.48059
81.9257	108.2883	71.666025	35.04375	95.92516	36.23925	64.22181	127.8435	44.21832
88.54354	69.15188	52.320045	35.48821	60.31373	36.26661	72.30389	147.4098	40.92477
105.7912	61.86976	49.219735	36.56971	64.68577	64.51773	65.77522	183.116	41.1188
105.3241	61.41108	51.210505	41.00993	91.41628	73.53204	38.87191	193.7142	41.21707
129.1531	58.32313	49.422505	40.52188	89.61921	75.81702	45.16571	263.1988	41.65894
125.1991	46.76407	42.63857	38.51307	91.08788	67.49462	75.3595	353.2543	41.69954
77.52266	40.00769	54.770175	69.53266	91.41628	73.6273	66.00633	227.826	75.76742
74.09429	46.32104	61.629645	76.93825	83.89817	75.69841	134.4677	181.5685	41.00993
87.88269	68.81107	69.6477225	70.484375	61.32477	62.94359	132.7748	168.4624	107.5452
100.9701	85.30698	74.66874	64.0305	44.01809	65.43325	84.75857	163.9875	100.226
134.1001	63.10601	68.713005	74.32	63.63931	93.37485	41.95537	149.3465	104.6493
138.5399	56.32738	66.485915	76.64445	62.60372	89.91859	70.71741	155.5935	104.4701

$\underset{\sim}{7}$ 129.1072
 106.1211
76.88383
 106.7972 78.47836 88.68324 91.60629 84.117 105.4602 103.1433 86.13878 60.02385
58.72332 58.72332
59.74618 37.93958
 39.20929 39.90459 59.01244 60.02839 60.26088 59.46389
60.80795 60.80795
61.03961 ờ
 $\widehat{\infty}$
∞
$\underset{\sim}{\infty}$
 $\stackrel{ \pm}{\circ}$
Discharge in Nidelva．Data from Rathe measuring station，NVE
2020
103.2203 N

 7
0
0
0
in \circ
$\stackrel{\circ}{N}$
N カ080で「七 39.17535 79.46512 $\stackrel{0}{0}$
$\stackrel{0}{0}$
$\stackrel{1}{م}$
 으N

\square
\vdots
\vdots
\vdots

 103.7547 104.8162 ∞
∞
∞
0
on

 ت
 9
0
－
－
̈ㅜํ

 ～～ $\stackrel{\sim}{\sim}$ | ∞ |
| :---: |
| $\underset{\sim}{2}$ |
| $\underset{\sim}{~}$ |
| | $\stackrel{\text { స̈ }}{\underset{\sim}{7}}$

 87.19963 N 97.91828
 Nิ －N

茴 ∞
$\stackrel{\infty}{0}$
$\underset{子}{7}$ $\underset{\sim}{n}$
$\underset{\infty}{j}$
$\underset{\infty}{6}$ 84.2169
55.12186 55.12186

64.49031 84.34946号 $\begin{array}{ll}0 \\ 0 & 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 & ~ \\ 0\end{array}$	m
in	
in	
in	

 46.24486 $\stackrel{\infty}{\sim}$

∞
0
0
\vdots
\vdots
∞

 흥 $\stackrel{\infty}{\stackrel{\infty}{\sim}}$ $\underset{\underset{\sim}{7}}{\stackrel{\rightharpoonup}{7}}$ $\stackrel{\infty}{0}$
 128.3654
107.8057 99.3867
94.49597 113.83
80.12418

 | | All the yellow cells were missing data．＂Calibrated＂by looking at average values． | | | | |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathbf{2 0 1 2}$ | $\mathbf{2 0 1 3}$ | $\mathbf{2 0 1 4}$ | $\mathbf{2 0 1 5}$ | $\mathbf{2 0 1 6}$ | $\mathbf{2 0 1 7}$ |
| $\mathbf{1 2 9 . 5 1 9 9}$ | 39.92516 | 51.39336 | 62.86156 | 35.84644 | 73.45114 |
| 56.34596 | 36.95144 | 49.84204 | 62.73264 | 34.51521 | 57.8213 |
| 44.38618 | 59.94334 | 61.27353 | 62.60372 | 36.56971 | 37.36081 |
| 62.2177 | 68.62823 | 79.148695 | 89.66916 | 90.92387 | 38.29372 |
| 66.01065 | 51.18482 | 83.95971 | 116.7346 | 81.43305 | 37.54262 |
| 47.36134 | 47.83727 | 80.475435 | 113.1136 | 71.05908 | 37.74183 |
| 65.69069 | 42.70513 | 59.3091 | 75.91307 | 86.88731 | 37.84581 |
| 59.35278 | 37.12662 | 55.79523 | 74.46384 | 100.226 | 57.97728 |
| 98.97784 | 36.63257 | 54.83266 | 73.03275 | 105.5488 | 52.36914 |
| 83.25375 | 67.13792 | 70.44202 | 73.74612 | 97.6309 | 47.41592 |
| 100.2315 | 56.34986 | 64.40752 | 72.46518 | 78.41827 | 53.64944 |
| 94.87755 | 41.59808 | 57.315415 | 73.03275 | 73.60303 | 74.37584 |
| 121.4585 | 38.17788 | 55.605315 | 73.03275 | 113.1136 | 68.75443 |
| 149.0565 | 37.37428 | 55.203515 | 73.03275 | 118.2813 | 92.74882 |
| 102.2445 | 44.20321 | 58.61798 | 73.03275 | 147.3017 | 64.40886 |
| 55.33657 | 37.8664 | 55.734715 | 73.60303 | 148.873 | 82.24514 |
| 56.4773 | 70.00002 | 71.801525 | 73.60303 | 91.41628 | 72.55064 |
| 112.2972 | 50.09594 | 62.136065 | 74.17619 | 35.39908 | 95.15694 |
| 122.5305 | 37.56169 | 56.084855 | 74.60802 | 35.39908 | 72.13759 |
| 109.8936 | 65.62827 | 69.90223 | 74.17619 | 50.45362 | 69.13996 |
| 73.94735 | 68.22572 | 71.99657 | 75.76742 | 61.19775 | 71.98201 |
| 56.00442 | 93.70792 | 84.08588 | 74.46384 | 59.06517 | 60.00831 |
| 75.038 | 69.18147 | 71.822655 | 74.46384 | 104.6493 | 53.05086 |
| 79.6136 | 79.8424 | 77.44193 | 75.04146 | 86.56934 | 37.38211 |
| 100.8654 | 69.28053 | 72.81596 | 76.35139 | 46.52432 | 37.3815 |
| 114.8093 | 61.92474 | 69.652555 | 77.38037 | 44.94744 | 70.65353 |
| 135.4098 | 60.39948 | 68.30227 | 76.20506 | 111.4239 | 101.2259 |
| 138.9238 | 64.49306 | 70.642195 | 76.79133 | 117.6996 | 104.7489 |
| 132.2146 | 40.19457 | 58.41951 | 76.64445 | 115.392 | 108.39 |
| 128.3018 | 39.369 | 58.006725 | 76.64445 | 96.43488 | 112.3822 |
| | | | | | | $\underset{\sim}{7}$

 118.837 160.3139 ～～
 103.3689 80.99451 82.02668 78.10229 67.90055 74.02846 86.88898 146.4165 164.6253 ～
 $\stackrel{\sim}{\sim}$ $\stackrel{\sim}{\sim}$ 186.7852 181.8654 182.2105 185.6675 181.5055 110.6372 97.48717 138.4924 87.41683 144.5123
 \＃
Discharge in Nidelva．Data from Rathe measuring station，NVE
2020
125.4053

 N

 | ∞ |
| :--- | :--- |
| \vec{m} |
| |
| $\dot{子}$ | N⿹ㅡㅇ

 $\underset{\substack{\hat{N} \\ \\ \multirow{2}{\infty}{0}\\ 0}}{ }$ | \sim |
| :---: |
| \sim |
| \sim |
| | \dot{G}

$\stackrel{y}{\infty}$
$\dot{\sim}$ $\stackrel{N}{\stackrel{0}{0}}$
 0
$\tilde{0}$
$\underset{\sim}{j}$

$\underset{子}{1}$ | 0 |
| :--- |
| -1 |
| \vdots |
| \vdots | | $\underset{\sim}{\lambda}$ |
| :--- |
| | \circ

$\stackrel{0}{\circ}$
\vdots
\vdots
 $\underset{7}{7}$
$\underset{\sim}{7}$
$\underset{\sim}{j}$

 2018
69.76102
69.76379
64.50734

 ＂ n
 128.278
125.9539
 승 50.09562
50.41027
 \ddagger
0
0

0 | \circ |
| :--- |
| 0 |
| 0 |
| on | $\hat{0}$

0
0
0
0 63.94046

58.93824 91.43212 89.59258 100.1611尔	0

 92.90765 2017
124.2452
127.1636
 185.4637
送
 $\stackrel{\sim}{\infty}$ $\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{1}{n}}$ $\stackrel{n}{\infty}$

 $\stackrel{\text { N }}{\sim}$
 \circ
$\stackrel{\circ}{0}$
0
∞
∞

 N⿳士乛工冖⿰亻 \begin{tabular}{c}
N

\multirow{3}{*}{}

\dot{G}

\vdots

 $\stackrel{\hat{N}}{\substack{i \\ ~}}$

0

$\stackrel{0}{0}$

\multirow{2}{|}{}
\end{tabular} 응

 $\stackrel{n}{ }$

 \circ
$\stackrel{\circ}{\circ}$
$\stackrel{y}{\circ}$
\dot{j} ～～～～～ o
on
j
j
142.433
2.04496
2.19829
47.3017
56.8922
57.5923 157.5923
156.4266 163.2653 152.0481 112.3606 $\stackrel{\rightharpoonup}{0}$ $\stackrel{\stackrel{\rightharpoonup}{\mathrm{M}}}{\underset{\sim}{\mathrm{N}}}$ 115.201 102.6879 102.3338 83.58746 82.50565
水 100.5753
115.201 119.2547 58.57051 2015
 75.76742 68.84592 75.91307 74.60802

 81.12828
81.43305 88.16607 83.12273

 $\underset{\sim}{\tilde{\sim}}$
 87.68504 ∞
$\stackrel{\infty}{+}$
N
© $\stackrel{\infty}{\circ}$ 87.36536萑 응
 0

0
0

 2014 59.524125

 $\stackrel{\sim}{\sim}$ 72.73529 63.06634
70.77986 76.49776 68.84592 80.52095 71.47898
 ヘic
㞧 63.89989 51.80939 43.71105 46.31205 61.19775
67.48573 66.41003 63.12021 56.49787 33.73206 60.06269
 88.16607 2.55049 36.81052

 J
先
i $\stackrel{n}{\underset{\sim}{\dot{m}}}$ 65.22789
81.77343 89.21658
80.04256 80.91956 74.24156 77.41164
55.15138 72.25795 74.42458 84.29231 70.00002 9.48403 47.3436
80.78501 70.66827 96.15113 78.61456
116.2876 99.37876 68.9997 134.0053
2012 138.3444
127.2255 134.2389 132.7581 87.69787
 89.38644 81.3766 130.2357 131.2017

 118.2622
76.02841 76.02841
82.97551 $\stackrel{m}{\grave{N}}$ 114.2583
 54.51012
 77.29297 64.64828
68.87987 73.22714
74.33879 74.33879
 131.9624 N
N
O
 $\stackrel{7}{N}$ 149.5806 130.4794 125.014
64.67223 116.32
 126.0125 113.7963 103.3689 80.99451
82.02668 82.02668
78.10229 100.6753 94.81219 112.962 N
0
0

0
 101.7301
 117.1226 137.6238 125.312 104.4962 111.2014 120.0578 147.4167
132.3049

			Discharge in Nidelva. Data from Rathe measuring station, NVE					2018	2019	2020
			All the yellow cells were missing data. "Calibrated" by looking at average values.							
Date	2011	2012	2013	2014	2015	2016	2017			
27-Nov	95.73508	8.0562	150.5278	83.12273	81.28065	65.34547	34.64537	125.662	109.4322	135.5
28-Nov	69.60917	143.7022	130.8356	46.95085	79.01534	98.14644	35.24854	77.80421	120.8574	128.8634
$29-\mathrm{Nov}$	127.2671	165.5853	144.0725	68.43609	76.49776	90.43317	34.58306	68.55633	122.2634	70.22382
30-Nov	136.3844	170.1659	143.7205	63.89989	76.64445	89.78168	34.79055	71.97932	106.6253	127.6359
1-D	. 4705	. 5558	144.8024	73.03275	78.56734	74.60802	34.60868	49.215	17.444	1.05908
2-Dec	69.06026	159.9907	162.0802	76.79133	77.67599	120.2332	35.25888	49.31957	137.2803	105.0084
3-Dec	104.2619	194.1425	140.7141	91.74546	76.79133	56.853875	36.91642	68.84853	146.3691	68.43609
4 -Dec	67.01762	210.5966	105	98.66374	75.91307	56.20427	36.49547	70.74106	126.309	84.05373
5 -Dec	62.14569	173.7773	119.9171	66.14288	76.79133	174.2541	35.84301	80.9313	81.44019	127.6359
6-Dec	120.0617	171.8666	137.2876	69.67059	77.23277	172.2666	35.3443	106.8038	63.37632	83.74265
7-Dec	126.4041	170.987	126.7295	44.32641	79.91656	188.5814	35.52704	61.34646	64.86954	73.88925
8 -Dec	123.6833	198.0453	143.7629	68.70918	86.25229	222.48	62.27654	33.44995	60.3894	82.96815
9 -Dec	108.8797	210.3695	143	72.89056	87.20586	356.7106	44.28693	35.88132	71.64765	39.2706
10-Dec	90.23199	214.7362	133.3348	65.61066	87.36536	440.0186	60.02134	83.89535	83.05566	79.46512
11-Dec	58.48222	215.1588	89.54771	67.35061	86.25229	31.3638	99.67144	96.10157	69.98458	122.4042
12-Dec	65.86793	215.2679	76.54221	68.43609	86.88731	175.7542	87.05523	98.51196	72.89435	120.2332
13-Dec	112.3796	215.1122	110.0001	64.42312	86.72823	167.8487	77.62434	86.68278	73.40649	81.73871
14-Dec	109.2649	214.0181	90.8745	56.61851	87.52518	172.2666	92.42411	88.68922	63.62318	83.29449
$15-\mathrm{Dec}$	99.48669	259.3051	78.16349	61.96206	87.68504	179.7957	113.8506	55.43665	62.93066	126.2318
16-Dec	110.1231	276.8988	93.27998	68.29974	85.77819	171.0319	110.0766	46.06816	75.24385	141.6048
17-Dec	106.0257	328.4109	120.7231	89.13322	86.09412	122.6029	93.50732	87.28163	82.02698	119.6982
18-Dec	63.49137	335.1811	135	80.06731	85.46286	127.0249	105.5108	73.38405	96.064	107.8811
19 -Dec	65.30736	351.2525	125.0372	63.89989	88.00564	149.3239	104.2274	55.80958	106.9122	107.39665
20-Dec	112.8179	323.3957	96.72942	42.19669	88.16607	172.762	114.6963	42.47904	104.8636	106.130125
21-Dec	123.1751	300.0386	65.13891	45.78405	168.824	179.2871	83.57001	64.14357	84.66169	95.3959075
22-Dec	124.4869	281.0396	61.49614	58.81751	149.0984	178.7796	93.29587	61.76575	99.54499	97.47044875
23-Dec	105.503	242.4482	71.34516	56.13708	104.2909	182.6085	62.56898	74.86532	91.49517	94.48280938
24-Dec	85.91233	261.8336	62.18896	57.10248	83.58746	183.1229	68.69249	61.10886	88.22153	91.35216969
$25-\mathrm{Dec}$	52.1257	222.0641	63.87663	62.86156	84.36554	161.8347	68.75052	41.47569	113.6533	102.5027348
26-Dec	38.89078	231.247	78.98951	67.48573	85.77819	127.2284	65.3927	64.22893	100.558	101.5303674

			Discharge in Nidelva. Data from Rathe measuring station, NVE						2019	
			All the yellow cells were missing data. "Calibrated" by looking at average values.					2018		
Date	2011	2012	2013	2014	2015	2016	2017			2020
27-Dec	43.64389	233.8362	73.01498	71.33888	75.76742	156.4266	99.82936	64.33672	111.4761	106.5032337
28-Dec	67.55135	251.2778	67.28292	100.9254	75.76742	111.4239	110.2308	71.4937	104.4894	105.4963169
29-Dec	61.57082	189.7752	69.82478	114.2491	75.62181	130.7188	72.64671	64.51422	71.81645	88.65638343
30-Dec	38.42107	171.5142	70.94415	82.35194	75.91307	117.6996	37.53371	68.18186	75.35937	82.00787671
31-Dec	72.84451	170.8795	70.00002	72.04155	76.79133	118.8647	54.96998	65.50175	111.0248	96.51633836

A2 Water depth measurements in numerical model

Figure A2.1: Water depth measured at place 1, upstream the jump.

Figure A2.2: Water depth measured at place 2, supercritical.

Figure A2.3: Water depth measured at place 3, subcritical.

Figure A2.4: Placing for water depth measurements. Seen from upstream; place 1 (upstream), 2 (supercritical) and 3 (subcritical).

A3 Place for slicing the numerical model

Figure A3.1: Placing for slicing the numerical model to get a view orthogonal on the hydraulic jump

Kunnskap for en bedre verden

