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Pre-tensioned Membrane Sheet in Regular Waves

Mukhlas, M.1>* Kristiansen, T.!, Lader, PF.! and Kristiansen, D.!

! Department of Marine Technology, Norwegian University of Science and Technology (NTNU),
Trondheim, Norway

Abstract. A vertical pre-tensioned rectangular membrane sheet in regular waves is inves-
tigated in the present study. A two-dimensional study is carried out in a glass-wall wave
flume at the Marine Technology Centre in Trondheim. The membrane is fixed at the flume’s
bottom and attached to vertical and horizontal springs at the top. A linearized frequency-
domain analysis using the framework of generalized body modes is performed in WAMIT
v7.3. The wet eigenperiods are predicted reasonably well by the numerical model. The hor-
izontal force results suggest the importance of viscous drag force at membrane resonance
periods. This might come from the flow separation at the side and bottom gaps between
the membrane sheet and the flume walls in the experiment. The generalized drag force
based on the Morison equation is added to the system of equations, and the unknown mem-
brane motion is solved in the time domain. The inclusion of drag force demonstrates some
improvement to the results, although they need further research.
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1. Introduction

Several concepts of ocean structures, in which the membrane is the main constituent of the con-
structions, have been proposed in recent years. Some examples are closed flexible bag for aquaculture
[1, 2, 3], floating membrane solar island [4, 5], membrane breakwater [6], floating fluid-filled membrane
barge [7], and submerged fluid-filled membrane breakwater [8]. One of the main arguments for using
membrane for structures in an ocean environment is its flexibility; hence the structural loads can be dra-
matically reduced in comparison to rigid structures with similar geometrical shapes. However, this adds
another difficulty in predicting the hydrodynamic response of such structures under wave loads since the
hydrodynamic loads, the structural loads, and the structures’ responses are coupled. In addition, based
on the authors’ previous experience on the closed flexible bag for aquaculture in [1, 3], the membrane
responses in waves give two main identified challenges to the structures: snap loads on the membrane
and mean heave set-down. Stress concentrations in connections have also been addressed as the main
challenge. Hence, more knowledge of the membrane responses in waves is the first necessary step in
understanding the problem.

The present study investigates a near two-dimensional vertical pre-tensioned membrane in regular
waves, focusing on membrane responses and loads. The study is intended as a groundwork for rational
structural and hydrodynamic modeling of the closed flexible bag, where the two-dimensional problems
introduced in [9, 10] have inspired the authors to study their membrane system using experimental and
numerical methods. The motivation for a two-dimensional study is to have a more controlled study of
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the system’s physics, and it is also easier to perform a parameter sensitivity study. The experimental
setup, data analysis, and errors discussion are presented in Section 2. A numerical method based on
generalized modes of body motion [11, 12] is adopted and is explained briefly in Section 3; the total
deformation of the membrane is expressed as a sum of the membrane’s dry eigenmodes. Consequently,
the membrane is assumed to be governed by the linear membrane equation; hence, it limits the method
to a small deformed membrane slope and small dynamic tension. Experimental and numerical results
are presented in Section 4, and possible candidates that cause the differences are addressed and dis-
cussed. One important finding that needs to be emphasized is the experimental bias errors resulting
from the three-dimensionality of membrane motions and viscous gap flow between the membrane and
the flume’s glass wall. In particular, it was found that the flow separation at those gaps was so dominant,
inducing significant viscous damping and excitation forces to the membrane system. Therefore, it is not
recommended to do similar two-dimensional membrane studies in the future.

2. Model tests

2.1. Experimental setup

A schematic drawing of the model test setup is given in Fig. 1. The model tests were conducted in a
glass-wall wave flume at the Marine Technology Centre in Trondheim. The wave flume is 13.64 m long
and 0.60 m wide, with water depth A = 1.0 m. The wave flume is equipped with one bottom-hinged
wavemaker (WM) located at z = —7.0 m and one parabolic beach at z = 6.0 m. In addition, six wave

probes (WP1-WP6) of capacitance type were distributed inside the flume to measure the free-surface
elevation.
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Figure 1: Schematic drawing of the experimental setup. Top-left: side view of the setup. Bottom-left:
bird’s eye view of the setup. Right: front view of the membrane. A wavemaker (WM) and a parabolic
beach (PB) are located on the flume’s ends. The membrane is located approximately at the middle of the
flume (i.e., at x = 0 m), and the details of the attachments are provided in the right part of the figure. The
locations of the wave probes (WP1-WP6), and the load cells (Fg, Iy rp, Fy ap, I, 11,and I, 72) are
given. Different membrane pre-tension values were achieved by varying the vertical spring elongation
controlled by moving the attachment point at z = z7 vertically.
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A rectangular membrane sheet with length [ = 1.109 m and breadth b = 0.595 m was made of
Ripstop nylon material with surface density of p,,, = 0.164 kg/m?. There were two narrow side gaps
with a width of ; = 0.0025 m between the membrane and the flume’s glass walls as indicated in
Fig. 1. The top and bottom parts of the sheet were sewn to lightweight carbon rods with a diameter of
@ = 0.016 m and mass mp = 0.050 kg. The bottom rod was attached at z = —d = —0.924 m to
two-component load cell, hence there existed a bottom gap d, = h — d + 0.5 = 0.068 m. That load
cell measured both horizontal and vertical forces at membrane bottom Fg = [F}, g, F, g]. The top rod
located at z = f = 0.185 m was connected to vertical lines and horizontal crow-foot mooring lines that
lead to springs with stiffness ks = 278.37 N/m. Tension on those lines were measured by four one-
component load cells (i.e., F; pp, F ap, F> 71, and F}, 12) as indicated in Fig. 1. All measurements
were acquired with a sampling frequency of f; = 200 Hz, and they were low-pass filtered at 20 Hz
using a Butterworth filter. Pre-tension was applied to the membrane sheet prior to each test by varying
the elongation of the vertical spring, hence five different normalized pre-tension values could be tested:

Ty = f;‘g%b = [0.01,0.0125,0.015,0.0175, 0.02], where Tj refers to the pre-tension force (N).

In total, 964 regular wave tests were performed, including repetition tests. The regular waves had
periods between 0.7 < T (s) < 1.5 with period spacing of dT' = 0.02 s, and four different wave
steepnesses € = [1/60,1/45,1/30,1/15]. Examples of the measurements are given in Fig. 2. Wave
documentation tests were also performed at the beginning of the experimental period; the membrane
was not installed, and undisturbed wave elevation was measured. The measured wave amplitudes by
WP1-WP6 from the wave documentation tests were 94-99% of the input wave amplitudes.
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Figure 2: Example of the measurements of wave probe and horizontal forces, extracted from the tests
with wave steepness e = 1/60 and normalized pre-tension Ty = 0.175. For each test, the input signals
to the wavemaker are multiplied with a cosine taper window to ramp the ends of the time series slowly
for five oscillation periods (i.e., trqamp = 5T). In (a), only three tests with 7" = [0.96,0.98,1.00] s
are presented for clarity. The waiting time ¢,,,;+ between each test was 210 s, which was found to be
sufficient to calm the water down. The zoom-in of the filtered signals for 7" = 1.00 s is presented in (b).

167



9" International Conference on HYDROELASTICITY IN MARINE TECHNOLOGY
Rome, Italy, July 10*"-13%" 2022

Experimental results presented in Section 4 are calculated from average amplitudes of the near
steady-state part of the filtered time series. The signals were band-pass filtered around the basic har-
monic by multiplication with a Gaussian mask in the frequency domain. An example of filtered signals
and truncation of the steady-state time window is presented in Fig. 2b. For the membrane force measure-
ments, the steady-state parts were determined as time windows between the end of the start-up transient
stage t; a7 and the arrival of wave re-reflections ¢, 3. Typically, the membrane required two oscillation
periods after ramp-up to reach the steady-state; hence t; 3 = 1.4t,qamp Was used. This is illustrated in
Fig. 2 for F; g measurement. t,. js was estimated based on the minimum time between the re-reflected
waves from the wavemaker or the beach reaching the membrane again. All the aforementioned time
quantities were estimated based on linear wave group velocity C, for finite water depth. A similar prin-
ciple also applies to estimate the end time of wave probes’ steady-state windows. However, for the start
time of wave probes’ steady-state windows (e.g., t; y p1 for WP1 in Fig. 2), it was estimated as the time
when reflected/transmitted waves by the membrane reached the wave probes.

2.2. Brief discussion on error sources

The wave re-reflections were important error sources since they limited the number of oscillations in
the extracted steady-state windows. For example, less than five steady-state oscillations typically could
be extracted for T" > 1.20 s. This might affect the accuracy when extracting the amplitudes at membrane
resonance periods, for instance, since the responses might still gradually build up towards steady-state
amplitudes. However, due to rather large relative damping, all results are considered reasonable.

Four repetition tests were performed to quantify random errors in the experiment. Hence, five sam-
ples were available to quantify the random errors. Due to the limited amount of time, the repetition tests
only covered membrane pre-tension Tg = 0.0175, the same wave period range and wave steepnesses,
but with a period spacing of d7" = 0.10 s. The maximum relative standard deviation (RSD) for the basic
harmonic component of measured horizontal forces and wave elevations was 7.33%, which was within
typical experimental error levels. However, large RSD up to 50.81% was found for the basic harmonic
component of the vertical membrane force. Their basic harmonic component was typically around 2%
of the pre-tension force. Hence, the membrane was very stiff longitudinally, and it is not of present
interest to investigate the oscillating component of vertical force.

Another source of errors that could not be reflected in the repetition tests was bias errors. One source
of bias error was the standing wave modes of the flume. The first longitudinal mode (i.e., seiching)
had a different time scale (= 8.79 s) than the tested wave periods; hence it could be mitigated by the
applied band-pass filter and the waiting time ¢,,4;;. The first transverse mode eigenperiod (~ 0.88 s) was
within the tested wave periods, which could be triggered by slight three-dimensionality of the membrane
motions causing three-dimensional fluid behavior inside the flume. It was observed that the membrane
showed somewhat three-dimensional twisting-like motion (i.e., approximately 180° phase difference
between motion about z-axis) near the bottom rod at z = —d. The last source of bias error was the sides
and bottom gaps between the membrane and the flume (see Fig. 1), which was found to be significant and
is discussed further in Sections 3 and 4. In fact, this effect was so dominant, that it is not recommended
to do similar “2D” membrane studies in the future.

3. Numerical method

A numerical method based on potential flow theory and linearized membrane equation was adopted
to analyze the experimental results in Section 2. Fig. 3 illustrates the two-dimensional problem definition
of the model test in Section 1. Solutions of the fluid flow (i.e., velocity vector Vo (x, y, z,t) and pressure
fields p(x,y, z,t)) can be calculated by velocity potential ¢ that satisfies the following boundary value
problem (BVP)

V3¢ = 0, inQ )]
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Figure 3: Problem and coordinate system definition of the vertical pre-tensioned membrane sheet in
waves. A Cartesian coordinate system Oxz with the origin at the mean water level (MWL) is employed.
Time-varying oscillation of membrane deformation is described by u(z, t). The normal vector n is
defined to point to the mean position of the membrane surface Sjo.
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where Srg, Spo, and Syso define the mean boundary positions of the free-surface, sea bottom, and
membrane, respectively. A radiation condition of radiated waves is imposed on the far-field to complete
the BVP. Generalized body modes feature in WAMIT v7.3 [11, 12] was used to solve the BVP. The
membrane was discretized into quadrilateral long dipole panels with breadth byyy = 16d. Consequently,
the three-dimensional effect was minimum. Hence, the obtained hydrodynamic quantities from WAMIT
needed to be multiplied by a factor b / by to be consistent with the model tests. Numerical studies with
channel wall effects for both source and dipole panels were also attempted, but without any success.
Comparing the three numerical approaches with the results of two-dimensional numerical studies in
[9, 10] (not shown), a satisfactory agreement was obtained only for the long dipole panels without wall
effects. Also, several convergence error messages were obtained when the channel width was of the
same order as the body. More dedicated numerical studies are required to investigate the channel wall
effects on the present model tests.
The membrane motion u(z, t) is assumed to be two-dimensional, which obeys the following linear
membrane equation
P Ty 0%u

Pm o [ =p(y,2,t) (&)

where the term on the right-hand side represents the fluid pressure acting on Sy;9. The corresponding
membrane boundary conditions in Fig. 3 are

w(—d, ) = 0 )

T }u(f, )y = 0 %

zr — f

du
To g(f-, )+ {2k’s +
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The top boundary condition in Eq. 7 is derived based on the horizontal equilibrium of massless mass-
spring system at z = f. From a numerical trial study, added-mass force acting on the membrane was
found to be larger than the rod’s mass my by thousandfolds. Hence it is reasonable to neglect rod’s
inertial force.

Since the governing equation and the boundary conditions are linear and homogeneous, the solutions
can be found using the method of separation of variable. The homogeneous solutions of u(z, t) can be
written as

o0 oo
=Y Dj(t)fi(z) = Re {Zﬁjf:’(z)em} 6 €0 ®)
j=1 g=1

where the unknown time-dependent constants D;(t) are assumed to oscillate with basic harmonic (i.e.,
Dj(t) ¢!y with complex amplitude &;. The second term in the right-hand side of Eq. 8 represents
the eigenfunctions f;(z) = sin\;(z + d), on which the eigenvalues \; are found through boundary
conditions in Eqs. 6 and 7. The normal velocity component of arbitrary point within the membrane in
Eq. 4 can then be written as

V.n= [Ziwfjfj(z)ew, 0, 0] e 20 lefﬂ fi)ns ®

i=1
J n nj

A%

Eq. 9 above was used as an input to solve the radiation problem in WAMIT.

After solving the BVP for the unknown velocity potential ¢, the hydrodynamic pressure p in Eq. 5
can be obtained using the linear Bernoulli equation. A set of equations of motion can be obtained by
multiplying Eq. 5 by eigenfunctions f; and integrating the resulting equation over the mean membrane
length [ (see [11] for details)

Z { M” + a”( )) + iwbij(w) —+ (Cij + Cij)} 5]' = Xl(w) (10)
7j=1
where ; ;
M;j = ﬂmbw/ fifjdz, and Cj; = To/\?/ fif; dz, respectively. (1)
—d —d

aij, bij, c;j, and X; in Eq. 10 are the added mass coefficients, wave damping coefficients, hydrostatic
restoring coefficients, and wave-exciting forces, respectively. Finally, the membrane motion u(z,t) at
each wave frequency w can be determined from Eqs. 8 and 10. The corresponding horizontal forces at
top F 7 (N) and bottom F; g (N) of the membrane can be calculated by

u Ju
Fer = Tog gb:-d
As a pragmatic attempt to include viscous drag force, the drag part of the Morison equation is applied
stripwise along the membrane length. The mean wetted part of the membrane is divided into N strips
with length Az and breadth b, and the cross-flow drag force is applied to each membrane strip at vertical
coordinate z = z,. Following the same approach committed to obtain Eq. 10, the generalized Morison
drag force Fp ; can then be written as

|z:f, and F, p =Tp (12)

pCDb

FDz—Z

n=1

U (u(zm t), Zn, t) - ﬂ(zm t)) Iuw(u(zm t), Zn, t) (Zm )| f&(zﬂ) z (13)

Uy

where Cp, u,,, and u, are drag coefficient, undisturbed horizontal wave particle velocity, and relative
horizontal velocity between membrane strip and the undisturbed wave-particle, respectively. Note that
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the u,, is estimated at the exact horizontal position of the membrane strip; hence it is a function of the
total membrane deformation u(z,,t). With the additional drag force term, the membrane equations of
motion now become

J
S {(My + aij (@)D + big(w) Dy + (Cig + ) D; } = Xilw) €' + Fp (14)
=1

The system of equations above needs to be solved in the time domain. Runge-Kutta fourth-order scheme
is implemented to solve the initial value problem of the time-dependent constants D;, D, and D;. The
time-history prior to steady-state does not have physical significance; it is only the steady-state part that
is used.

It is an open question regarding the applicable Cp coefficient used in Eq. 13. It is not possible to ap-
ply Graham Cp formula [13] in this case since the flume’s glass walls effects are dominant. Another way
is to think of the membrane strip as a slatted screen with a solidity ratio S,,. At each membrane strip, the
corresponding pressure-drop coefficient can be calculated using the Baines—Peterson—Weisbach formula
presented in [14, 15] (see e.g. [16] for the formula application in moonpool damping). The formula
assumes the pressure drop coefficient as a function of .S,,, and it does not depend on the Keulegan-
Carpenter number K C. However, for present study, the solidity ratio of the membrane strip is S,
= 0.99, and the formula might not be accurate for .S,, >0.90 [17]. Putting S,, = 0.99 into the for-
mula would yield overly large C'p = 41520. In addition, the membrane strips are flexible; hence when
three-dimensional membrane motion occurs (e.g., twisting motion as described in Section 2.2), the cor-
responding local tension changes might affect the drag force on the strip and its neighboring strips.
Consequently, this limits the applicability of Eq. 14. Hence, in principle, the problem in the present
study has to be solved as a three-dimensional hydroelastic problem in viscous fluid flow. Therefore, the
viscous drag in the present study is included purely by using heuristic drag-coefficient.

4. Results and discussions

A comparison of numerical and experimental horizontal force amplitudes for three different mem-
brane pre-tension values To = [0.0125,0.0175,0.0200] is presented in Fig. 4. The numerical results are
calculated based on small steepness waves assumption with correspondingly small membrane slope %
as presented in Section 3, which might not necessarily be valid when the membrane has a large motion
amplitude u(z,t) (e.g., at resonance) and hence requires in-plane membrane dynamic to be solved in
addition. Nevertheless, the membrane wet eigenperiods are predicted reasonably well by the numerical
results but with an apparent discrepancy in the force amplitudes. A fair agreement between the numerical
and experimental results can be observed outside the resonance period. The experimental and numerical
results show that the effect of increasing membrane pre-tension is to decrease the wet eigenperiods and
reduce the maximum horizontal forces, respectively. Note that the force peaks are, in principle, not
necessarily coinciding with the wet modal eigenperiods, since they depend on phasing between modes
(see Egs. 8 and 12). However, for all the analyzed cases, it was found that the force peaks occurred in
the vicinity of wet modal eigenperiods.

A qualitative comparison of membrane maximum deformation between the experimental and numer-
ical results is presented in Fig. 5. Based on video snapshots during the experiments, WAMIT predicts
membrane deformation qualitatively well. Furthermore, the wavefield amplitude and phase prediction
in the vicinity of the membrane are also in good agreement with the experiment. However, it is apparent
that the membrane motion was not uniform in the y-direction, where some qualitative illustrations of
the observed three-dimensional motion are given in the figure. One of the examples is the discussed
twisting motion in Section 2.2, which is present in the experimental snapshot at 7' = 0.96 s. Hence,
Eq. 5 could not totally explain the membrane responses in the experiment, and the three-dimensional
membrane equation, together with channel wall effects, would be needed to solve the problem.
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Figure 4: Overview of the horizontal force amplitude between experiment and numerical results. First
row: normalized horizontal force at membrane top. Second row: normalized horizontal force at mem-
brane bottom. Note the different scales between the first and the second row.
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Figure 5: A qualitative comparison of membrane maximum deformation between experimental and
numerical results. The presented snapshots are from the case with Ty = 0.0175, 7" = [0.70, 0.96, 1.50] s
and ¢ = 1/30.
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One candidate that might explain the amplitude discrepancy in Fig. 4 is the significant viscous drag
force from the side and bottom gaps, as discussed in Section 2.2 and Section 3. The numerical results
that include the Morison drag force are given in Fig. 6, where only the case with Ty = 0.0125 is
presented for clarity. The drag coefficient is assumed as C'p = 20. With the inclusion of drag force, it is
apparent that the viscous damping increases at resonance with increasing wave steepness. However, the
experimental horizontal bottom force results say otherwise. The results suggest that viscous excitation
is of importance at resonance. The simplified drag model has not captured this. It is possible that a
more complete model would improve this, where using diffracted wave particle velocity rather than the
undisturbed incident wave particle velocity would be a possibly important ingredient. However, in order
to proceed in this direction, one would need to solve a coupled system between the incident waves,
diffracted waves, and viscous gap flow. Further, the membrane twisting motion would also need to be
included, turning the problem into a full three-dimensional one. Hence, it was decided not to follow this
path, since it became clear at that stage that the attempt to perform a two-dimensional model test as a
part of a more complex three-dimensional problem was not successful.

Another candidate is that the effective membrane pre-tension increases for more significant mem-
brane motion. The experimental horizontal force results in Fig. 6 clearly show a shift of resonance
peak to lower wave period with increasing wave steepness. The shift can also be observed in Fig. 4
for the other two pre-tension values, and it is apparent that the shift is more prominent with decreasing
membrane pre-tension. This fact is supported by the mean vertical force measurements in the steady-
state time window, on which the mean force amplitudes normalized by the pre-tension are presented in
Fig. 7. From Fig. 7, it can be seen that the mean vertical force amplitudes increase with increasing wave
steepness and decreasing pre-tension. For To = 0.0125, up to 7 — 8% increase of pre-tension can be
observed for wave steepness € = 1/15. This means that the wet eigenperiod for ¢ = 1/15 should be
approximately proportional with the inverse square root of the effective pre-tension (i.e., (1.07 TQ)‘l/ 2.
This yields approximately 4% shift of the resonance period from 75, ; /6 to T}, 1 /15, Which is of the same
order as the shift of the experimental force peaks in those two wave steepness cases.

5. Conclusions

A rectangular membrane sheet in regular waves is investigated in the present study. The main mo-
tivation of the present paper was to study the membrane in a two-dimensional setting and perform a
parameter sensitivity study on the membrane responses under different wave parameters and different
pre-tension. A linearized frequency-domain analysis using the framework of generalized body modes
was performed in WAMIT v7.3. Furthermore, the horizontal and vertical forces at the top and bottom of
the membrane were studied, and the numerical and experimental results of membrane deformation were
qualitatively compared.

Experimental and numerical horizontal force amplitudes show significant discrepancies at resonance
periods but with a fair agreement outside those periods. The results suggest that the experimental bias
errors from the three-dimensionality of membrane motions and viscous gap flow were so large that they
significantly affected the membrane response at resonance periods. Stripwise Morison drag formula
was included in the membrane system of equations as an attempt to explain the discrepancies. The
calculation results with the additional drag term show a clear improvement, mainly in the damping part,
but still with considerable deviation from the experimental results. Also, only a pure heuristic Cp was
chosen due to the lack of experimental data for this situation in the literature. Ultimately, the present
problem would require a complete three-dimensional hydroelastic formulation of the membrane and the
viscous flow and channel wall effects. Hence, the attempt to perform a two-dimensional model test as a
part of a more complex three-dimensional problem was not successful.

In addition, it was observed from the experimental results that the resonance periods shifted to the
lower wave periods with increasing wave steepness. This can be explained by the increasing membrane
effective pre-tension when significant membrane motion occurs; hence the shift was more apparent in
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Figure 6: Normalized horizontal force amplitude (zoom-in view) for the case with fo = 0.0125. Left:
normalized horizontal force at membrane top. Right: normalized horizontal force at membrane bottom.
The corresponding numerical results that include Morison drag force are also presented. 75, 1 /60 and
T, 1,15 indicate the observed horizontal force peak amplitudes from the experiment with wave steepness
g = 1/60 and 1/15, respectively.
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Figure 7: Measured mean vertical force amplitudes in the experiment. First row: normalized mean
vertical force at membrane top. Second row: normalized mean vertical force at membrane bottom. Each
column presents the results for different membrane pre-tension values. The outliers in the I, 5 /Tp are
due to the sensor drift, which typically occurs when the sensor is submerged in the water.

the membrane with lower pre-tension values. For the lowest presented pre-tension value and the highest
wave steepness (i.., To =0.0125and e = 1 /15), up to 7 — 8% increase of pre-tension was suggested
by the mean vertical force measurements. This yields approximately 4% shift of resonance to a lower
wave period, which is of the same order as the shift in experimental force peaks.
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