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Abstract—Mitral annular plane systolic excursion (MAPSE)
is an important measure of left ventricular function. Current
clinical practice is to measure it manually using M-mode ultra-
sound imaging which has several disadvantages such as ”out-of-
line” motion and M-mode angle and operator dependency. In
this work, we propose a fully automatic method for measuring
MAPSE in B-mode ultrasound using deep learning. The method
involves multiple neural networks to detect end-diastolic and end-
systolic frames, perform annulus landmark detection, and frame-
by-frame tracking. It is also demonstrated how this B-mode based
MAPSE can be used to remove radial motion of the annulus from
the MAPSE measurement, thereby only measuring longitudinal
motion of the annular plane. The landmark detection accuracy
in end-diastole was measured to be 3.0± 2.5 mm, while the full
pipeline gave a MAPSE accuracy of −1.5 ± 2.1 mm on a 72
subject dataset.

I. INTRODUCTION

Mitral annular plane systolic excursion (MAPSE) is a
measure of left ventricular (LV) longitudinal function. Current
clinical practice is to use M-mode imaging to measure MAPSE
along a line from the transducer and through the annulus
on both sides of the mitral valve as shown in Fig. 1. This
1-dimensional way of measuring MAPSE has the disadvan-
tages of M-mode angle dependency, “out-of-line” motion of
the mitral annulus, operator dependent selection of M-mode
direction and manual M-mode image analysis. In this work,
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Fig. 1. The conventional way of measuring MAPSE using ultrasound M-
mode imaging. The B-mode image to the left shows where the M-mode line
(green) is set, and the right image is the corresponding M-mode image used
for measuring MAPSE (blue caliper).

the goal was to tackle these disadvantages and fully automate
the measurement using B-mode ultrasound imaging and deep
learning.

Automation of MAPSE measurements in 2-dimensional
imaging has been studied before. In 2016, Storve et al. [1]
presented a method for apical four chamber views which
used an automatic segmentation method to detect the annulus
landmarks and then tissue Doppler, also called tissue veloc-
ity imaging, to track the landmarks during the heart cycle.
The method was accurate with a standard deviation of 2.1
mm, however, it requires both B-mode data, ECG and tissue
Doppler. In 2018, Smistad et al. [2] proposed to use an auto-
matic deep learning method to estimate MAPSE directly from
B-mode images by segmenting images in end-diastole (ED)



Fig. 2. Proposed pipeline for automatic MAPSE measurement directly from B-mode images using three different neural networks.

and end-systole (ES), and estimating the annulus points from
the segmentation. However, this method was inaccurate with
a standard deviation of over 4 mm. An automatic method for
MAPSE requires an accurate way of identifying the annulus
landmarks and an accurate method for tracking the landmarks
from ED to ES. Recently, two publications have proposed
a deep learning method for accurate motion estimation in
B-mode ultrasound images [3], [4]. These methods use a
convolutional neural network to estimate the motion in every
pixel between two frames.

In this work, we combine the motion estimation network of
[3] with an automatic annulus landmark detection method and
an ED/ES estimation method to fully automate the MAPSE
measurement as shown in Fig. 2.

II. METHODS

A. Dataset and annotation

The mitral annulus was annotated by one expert on both
sides throughout one whole cardiac cycle in 72 apical four- and
two-chamber recordings from the HUNT population dataset.
This was done using landmark annotation and manual speckle
tracking in the open-source Annotation Web system [5]. An-
notation Web enables clinicians to efficiently annotate large
amounts of ultrasound recordings in a regular web browser
without any manual installation or transfer of data. Since
MAPSE calculated using B-mode is not directly comparable
to M-mode measurements, this annotation served both as a
measurement ground truth and as training data for annulus
landmark detection.

B. End-diastolic and end-systolic frame detection

In order to fully automate the MAPSE measurement, we
need to estimate which frames correspond to the ED and
ES time points in the cardiac cycle. In this work, we used
our previously published 3D convolutional LSTM network to

estimate ED and ES [6]. This network processes a sequence
of frames and outputs a value between 0 and 1 for each frame
depending on whether the frame is from systole or diastole of
the heart cycle. The time points of ED and ES can then be
extracted from the cross-overs between 0-1, and 1-0.

C. Landmark detection

A fully-convolutional encoder-decoder neural network was
trained to identify the annulus landmarks in a single 256×256
ultrasound image frame by predicting a 256 × 256 heatmap
for each landmark. The network used was similar to the real-
time segmentation network presented in [7] which has six
levels and uses max pooling in the encoder and 2 × 2 repeat
upsampling in the decoder. Two 3× 3 convolution layers are
used at each level, together with ReLU activation. The final
layer uses softmax activation. The network has about 2 million
parameters. Training heatmaps were generated by creating a
Gaussian with standard deviation of 3 pixels at the annotated
positions. During inference, landmark positions were extracted
from the heatmaps by finding the pixel with maximum value.
Intensity, shadow, rotation and JPEG augmentations were
applied during training to reduce overfitting.

D. Landmark tracking

In order to calculate MAPSE, the annulus landmarks need to
be estimated at both ED and ES. This can be done by using
the landmark detection network on the ED and ES frames
separately. However, this approach discards valuable temporal
information between these frames, and the detected landmarks
may not represent the same physical point, even though they
are in the annulus region. For a correct MAPSE measure, it
is essential to detect the same physical point in ED as in
ES. This can be achieved using an accurate tracking method.
Tracking in cardiac ultrasound images is usually performed
using speckle tracking methods, and in this study we have used
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Fig. 3. Two different approaches to calculate MAPSE using detected landmarks in B-mode images. The simplest approach is to measure the distance between
the landmarks respectively (left, black arrows). But this will include both longitudinal as well as any radial motion. The other approach (right) involves
projecting the landmark displacement (black arrows) to the longitudinal direction defined by the average of the two annular plane normals (green arrows).

Fig. 4. Best, median and worst case landmark detection results in end-diastole and end-systole. Green points are the manually annotated landmark points,
while yellow are the landmarks extracted from the heatmap shown in red.

Fig. 5. Boxplot of landmark detection errors in ED and ES.

our previously published Echo-PWC-Net optical flow neural
network [3] which predicts a displacement field for each pair
of two consecutive frames. Fig. 2 shows how the ED/ES frame
detection, landmark detection and landmark tracking methods
are connected to form an automatic pipeline for MAPSE.

Fig. 6. Bland-Altman plot of MAPSE difference between manual B-mode
measurements and proposed automatic method using with and without track-
ing.

E. MAPSE calculation

After establishing the position of the two annulus landmarks
L⃗ in ED and ES, MAPSE can be calculated simply as the
euclidean distance of the landmark positions in ED and ES:

MAPSE = |L⃗ED − L⃗ES| (1)



Anatomically speaking, MAPSE should represent the dis-
placement of the mitral annular plane. However, measuring the
euclidean distance for each landmark will include any change
in annulus size or global transversal movement during systole
as shown in Fig. 3. For instance, one study has shown that
the mitral annulus consistently enlarges in the antero-posterior
direction during systole [8]. When measuring MAPSE in B-
mode one can however remove any radial motion by measuring
landmark displacement in the direction normal of the mitral
annular plane (see Fig. 3). This longitudinal direction may also
be estimated using the apex of the left ventricle. However, the
apex can be hard to detect, especially when image quality is
poor. Thus, we believe using the normal of the mitral plane
is more robust. We calculate this MAPSE′ by calculating the
mitral annular plane normal N⃗ as the average between the
normal of the plane in ED and ES, and then use orthogonal
projection onto the line spanned by this normal:

N⃗ =
N⃗ED + N⃗ES

2
(2)

MAPSE′ = (L⃗ES − L⃗ED) · N⃗ (3)

III. RESULTS

The method was evaluated using 10-fold cross-validation.
For each fold, the landmark detection and the MAPSE mea-
surement accuracy were measured. The mean and standard
deviation distance error of the annulus landmark detection
network were 3.0± 2.5 mm in ED and 4.1± 6.3 mm in ES.
The boxplots in Fig. 5 reveal that there are several outliers.
Fig. 4 shows best, median and worst case examples of the
landmark detection in ED and ES using the distance error. The
proposed automatic method with landmark tracking was able
to calculate MAPSE in all recordings with an accuracy and
precision of −1.5± 2.1 mm compared to the manual B-mode
reference. For comparison, we also tried to detect the annulus
landmarks directly in both ED and ES without tracking which
gave a MAPSE accuracy and precision of 0.9± 2.9 mm. This
indicates that frame-by-frame tracking of the annulus improves
precision. Fig. 6 shows Bland-Altman plots of the MAPSE
measurement difference with and without tracking.

IV. DISCUSSION

Performing the MAPSE measurement in B-mode using 2D
tracking has the potential of eliminating the disadvantages of
M-mode based MAPSE such as ”out-of-line” motion and M-
mode angle dependency. In this work, we have demonstrated
that this is possible with an accuracy of −1.5±2.1 mm using
deep learning methods for annulus landmark detection and
tracking. This is similar to the accuracy reported in the study
of Storve et al. [1] (−0.6±2.1 mm) which used tissue Doppler
for tracking.

By fully automating the measurement, inter- and intra-
observer variability and time consumption may also be re-
duced. Automation of MAPSE can also provide measurements
over multiple heart cycles, even in real-time. Still, a limitation
of this study is the small dataset used for both training and

testing, and a bigger study is required to investigate this
method further.

As seen in the boxplots in Fig. 5, the landmark detection
network has several outliers, thus there is room for improve-
ment. Fig. 4 depicts some of these outliers, in which the worst
(Fig. 4, bottom far right) is from an apical four-chamber view,
not focused on the left ventricle, but with a scan depth that
reaches past the posterior atrial walls. This type of view was
underrepresented in the training data. The landmark detection
can probably be improved with more training data, and by
using more advanced landmark detection networks which uses
more than a single frame as input. Also, the tracking network
used in this study is computationally expensive as it performs
tracking in the entire image although MAPSE only requires
tracking of the annulus. Thus, there is room for improving
runtime speed using a tracking method that only tracks the
annulus.

V. CONCLUSION

A fully automatic deep learning method for measuring
MAPSE directly from B-mode images was proposed. The
method showed a promising MAPSE accuracy of −1.5± 2.1
mm. Still, a study with a bigger dataset is required to validate
and develop the method further.

REFERENCES

[1] S. Storve, J. F. Grue, S. Samstad, H. Dalen, B. O. Haugen, and H. Torp,
“Realtime Automatic Assessment of Cardiac Function in Echocardiogra-
phy,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, vol. 63, no. 3, pp. 358–368, 2016.

[2] E. Smistad, A. Ostvik, I. Mjal Salte, S. Leclerc, O. Bernard, and
L. Lovstakken, “Fully Automatic Real-Time Ejection Fraction and
MAPSE Measurements in 2D Echocardiography Using Deep Neural
Networks,” in 2018 IEEE International Ultrasonics Symposium (IUS),
vol. 2018-Octob. IEEE, oct 2018, pp. 1–4. [Online]. Available:
https://ieeexplore.ieee.org/document/8579886/

[3] A. Ostvik, I. M. Salte, E. Smistad, T. M. Nguyen, D. Melichova,
H. Brunvand, K. Haugaa, T. Edvardsen, B. Grenne, and L. Lovstakken,
“Myocardial Function Imaging in Echocardiography Using Deep
Learning,” IEEE Transactions on Medical Imaging, vol. 40, no. 5, pp.
1340–1351, may 2021. [Online]. Available: https://ieeexplore.ieee.org/
document/9335592/

[4] E. Evain, Y. Sun, K. Faraz, D. Garcia, E. Saloux, B. L. Gerber, M. De
Craene, and O. Bernard, “Motion Estimation by Deep Learning in 2D
Echocardiography: Synthetic Dataset and Validation,” IEEE Transactions
on Medical Imaging, vol. 41, no. 8, pp. 1911–1924, 2022.

[5] E. Smistad, A. Østvik, and L. Lovstakken, “Annotation Web - An
open-source web-based annotation tool for ultrasound images,” in IEEE
International Ultrasonics Symposium, IUS, 2021.

[6] A. M. Fiorito, A. Østvik, E. Smistad, S. Leclerc, O. Bernard, and
L. Løvstakken, “Detection of Cardiac Events in Echocardiography using
3D Convolutional Recurrent Neural Networks,” in 2018 IEEE Interna-
tional Ultrasonics Symposium (IUS), 2018.

[7] E. Smistad, A. Ostvik, B. Haugen, and L. Lovstakken, “2D left ventricle
segmentation using deep learning,” in IEEE International Ultrasonics
Symposium, IUS, 2017.

[8] J. Kwan, M. J. Jeon, D. H. Kim, K. S. Park, and W. H. Lee, “Does
the mitral annulus shrink or enlarge during systole? A real-time 3d
echocardiography study,” Journal of Korean Medical Science, vol. 24,
no. 2, pp. 203–208, 2009.

https://ieeexplore.ieee.org/document/8579886/
https://ieeexplore.ieee.org/document/9335592/
https://ieeexplore.ieee.org/document/9335592/

	Introduction
	Methods
	Dataset and annotation
	End-diastolic and end-systolic frame detection
	Landmark detection
	Landmark tracking
	MAPSE calculation

	Results
	Discussion
	Conclusion
	References

