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Abstract: Aiming at early detection of subsurface cracks induced by contact fatigue in rotating
machinery, the knowledge-based data analysis algorithm is proposed for health condition monitoring
through the analysis of acoustic emission (AE) time series. A robust fault detector is proposed,
and its effectiveness was demonstrated for the long-term durability test of a roller made of case-
hardened steel. The reliability of subsurface crack detection was proven using independent ultrasonic
inspections carried out periodically during the test. Subsurface cracks as small as 0.5 mm were
identified, and their steady growth was tracked by the proposed AE technique. Challenges and
perspectives of the proposed methodology are unveiled and discussed.

Keywords: fault diagnostics; acoustic emission; data processing; rolling contact fatigue; subsur-
face crack

1. Introduction
1.1. Background and Problem Statement

Rolling element bearings and gears are extensively used in heavy-duty applications
across almost all global industries. Rolling element bearings and gears are susceptible to
multiple forms of damage, including corrosion, denting, electrical erosion, fracture, and
spalling [1]. Failures in these critical components can often result in catastrophic accidents
with potentially massive social, economic, and environmental ripple effects. Therefore,
proactive strategies based on real-time condition monitoring and early detection of incipient
damage are being developed to prevent non-scheduled shutdowns, catastrophic failures,
and production losses [2–5].

Under normal operation conditions, the elements of bearings and gears, such as
rollers, raceways, and gear tooth flanges, are exposed to multiaxial and non-proportional,
high cyclic loadings. As a result of design complexity, multiple intrinsic and extrinsic
factors affect the service life of rotating components. These factors include (but are not
limited to) material and lubricant properties, load, the geometry of the assembly, rotation
speed, etc. Thus, even when operating normally, bearings and gears will eventually fail
as an inevitable result of contact fatigue phenomenon [6]. Contact fatigue damage often
initiates as a subsurface crack at local structural inhomogeneities and shear stress risers,
which are introduced by a contact pressure at the surface. The crack then grows and
propagates towards the surface, giving rise to spalling and crumbling in bearings and gear
components [7,8], and ultimately causing failure of the entire structure [6]. The failure
starts to evolve unpredictably after some variable time of service, as embryonic subsurface
cracks are extremely challenging to reveal during service. When it reaches a critical size at
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the surface of the component, the fault is detectable by a wealth of vibration and acoustic
emission (AE) techniques [9–20], or a combination of both. These techniques are powered
by contemporary signal processing algorithms [21,22] and/or other non-destructive testing
methods, such as the ultrasound technique [23], Barkhausen noise analysis [24], shock-pulse
methods [25], infrared thermography [26–28], oil monitoring [29], etc., or a combination of
these methods [30,31]. However, it is fair to say that vibration analysis currently prevails in
the field of monitoring rotating machinery, including the rolling bearing fault diagnosis [11].
Despite its obvious advantages associated with analysis based on fundamental bearing
frequencies [32], this method is limited to systems operating at relatively high speeds.
However, many heavy-duty bearings and gearboxes operate at low speeds where surface
vibrations are hardly detectable. In addition, vibration-based techniques are sensitive
almost exclusively to surface defects. That is, the insipient subsurface cracks induced by
rolling contact fatigue are unlikely to be detected by vibration methods until the cracks reach
the surface of the rotating machine component and cause a surface defect. This is because
most of the remarkable changes in vibration signals occur mainly due to modification of the
contact surface geometry [11,33]. However, at the moment when the damage reaches the
surface and becomes detectable, minimal time (if any) is left for maintenance and repair. The
decisive benefit of AE compared to vibration methods (as well as to other non-destructive
techniques used for condition monitoring of rotating machinery) is its unique capacity
to follow the initiation and propagation of fine dynamic defects regardless of their place
of origin—surface or subsurface [34]. The AE technique is capable of detecting transient
elastic surface waves caused by released strain energy during elementary processes of
plastic deformation in metals [35], crack initiation and growth, and friction and wear
sources [36–38].

T. Yoshioka [39] first indicated the possibility of detecting acoustic emissions stemming
from subsurface fatigue cracks induced 50–200 µm below the surface of the raceway
in running ball bearings (see also [40]). The location technique capable of finding the
stationary position of AE sources on the raceway was used to this end. Since then, despite
significant efforts invested into this topic by the research community, detecting incipient
subsurface fatigue cracks as the earliest harbingers of imminent failure remains acute
and challenging. In 2005, Price et al. [41] presented results showing the advantages of
the continuous AE recording for fault detection in heavily loaded specimens during four-
ball testing. Before pitting occurred at the free surface, a distinct shift in AE energy
from the peak (at approximately 115 kHz) to the peak at a lower frequency (of 50 kHz)
was observed. The post-mortem autopsy of the balls showed subsurface crack networks
leading to the pits, thus indicating a possibility of identifying the subsurface damage.
Using the time-frequency analysis of AE in the four-ball tribology testing scheme, Lees
et al. [42,43] made a similar conclusion. Recently, using seeded subsurface cracks introduced
to a raceway by means of compressing its outer surface with a rolling element, Fuentes
et al. [44] took the next step forward in developing monitoring methods capable of detecting
subsurface damage in rotating machinery. These authors demonstrated this possibility
in an elegant way by employing the probabilistic Gaussian mixture models applied to
hit-based AE features, including hit summary statistics, auto-regressive coefficients of the
individual AE hit time histories, and the envelope spectra of raw AE signals. The proposed
approach, however, has not been verified for practical cases when the subsurface damage
initiates and evolves naturally as a consequence of the rolling contact fatigue (RCF) in the
initially undamaged bearings. Subsurface cracking is readily observed as a key feature
and prevailing mechanism in the very high cycle fatigue of structural materials [45,46],
including bearing steels [27,28]. Recently, it was shown [47] that the contemporary AE
technique powered by the temporal-frequency short-time Fourier analysis is capable of
detecting subsurface damage initiated during the laboratory ultrasonic fatigue testing in
the gigacycle regime. Nevertheless, none of the methods proposed in the above-cited
works can be regarded as robust enough to become a widely deployed and effective tool
for condition monitoring systems capable of reliable subsurface crack detection in noisy
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industrial settings. A new flavour and additional dimension to routine data processing
and condition monitoring is added by burgeoning machine learning approaches [5,48–51].
Despite the rapid progress in the field, the typical black-boxed properties of inference
mechanisms involved in machine learning models make outcomes hard to verify, thus
preventing the concept from reaching a level of acceptance and credibility that assists in its
adoption or adaptation in the industry outside of some niche applications. Thus, subsurface
crack detection in rolling element bearings and gears, using the acoustic emission time
series, remains an important issue in the condition-monitoring world.

The objective of the present work is to develop a robust methodology for AE time
series analysis aiming at condition monitoring and early diagnosis of faults induced
in rolling element bearings during contact fatigue loading. The prime novelty lies
in a combination of knowledge-driven feature extraction based on windowed pulse
integration and the original verifiable decision-making protocol. Using the developed
signal processing toolbox enabled us to detect and prove the appearance of subsurface
contact fatigue cracks through AE waveform analysis with high confidence for the first
time, to the best of our knowledge.

1.2. Methodology

The condition-based monitoring and industrial predictive maintenance strategy (as
opposed to run-to-failure maintenance), in general, involves four main stages: (i) data
acquisition, (ii) data processing aiming at constructing the so-called health indicators, (iii)
determination of the decision threshold, and (iv) decision making through the detection
of an anomaly in the signal behaviour [52,53]. Data acquisition is the process of collecting
sampled sensor data such as AE, vibration and ultrasound data, temperature, ambient mois-
ture, etc. At the data processing stage, relevant features associated with health indicators
are extracted from raw data and classified to separate the effects of damage from those of
normal operation and outliers created by a variety of sporadic external or internal sources
of noise (friction and wear, roller impact, misalignments, splashing oil, electric interferences,
etc.). The categorised extracted features then serve as inputs for the decision-making stage
according to the chosen decision threshold.

The problem of extracting health indicators from condition monitoring signals has long
been recognised as a central issue that currently remains acute despite significant efforts to
address it with or without aid from artificial intelligence [54]. Hundreds of features and
related statistical techniques were proposed and tested in a traditional vibration-based
fault diagnostics domain [52,55–61]. A similar picture is seen in the evolution of a family of
rapidly evolving acoustic emission methods [62–69]. Fusion of information is often used
to mitigate the uncertainty and shortcomings of individual techniques by combining the
incomplete and imperfect pieces of mutually complementary sensor data, thereby raising
confidence in decision-making.

The acoustic emission from rotating machinery can be described as a random wave-
form with a continuously changing noise floor. Rolling contact fatigue-induced cracks
manifest themselves in the waveform as short bursts of energy, or low-amplitude pulses,
which can be completely hidden in the severe background noise. The general problem of
finding these pulses [70], which was reviewed and addressed with an account of specifics
of AE signals in [71] (see also [72,73]), reduces problems dealing with periodically re-
appearing signals to a narrower class of detection. A recently emerged branch of signal
processing called cyclostationarity [74–76] represents an influential statistical theory devel-
oped for analysing signals that contain a cyclic pattern of statistical features. It is, therefore,
extremely useful when dealing with waveforms that have hidden periodicities. In a nar-
rower sense, the problem is similar to that commonly faced in the radar target detection
problem [77,78]. Inspired by radar target detection theory and methods, the approach
proposed in the present work employs a robust detector capable of independent detection
of multiple RCF-induced subsurface cracks occurring in an operating rotating machine.
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The outputs from the detector are easily verifiable; therefore, decision-making is arguable
with high confidence.

In the following discussion, we endeavour to demonstrate that incipient subsurface
fatigue cracks can be detected via the analysis of acoustic emission time series obtained
during a roller element durability test.

The rest of the paper is organised as follows. Section 2 presents the experimental
setup and testing schedule, AE recording system. Mathematical description of the pro-
posed detector is given in Section 3. Section 4 demonstrates the evolution of damage
assessed by the AE technique during the durability test, detector decisions, and verifi-
cations. In Section 4, the main findings are interpreted and discussed. The proposed
detector’s performance is evaluated and compared to the behaviour of the most com-
monly extracted AE feature—root mean square (rms) voltage. Finally, conclusions are
drawn in Section 5.

2. Experimental
2.1. Testing Rig, Specimen and Loading Conditions

To monitor the rolling contact fatigue (RCF) phenomenon occurring in a loaded rolling
machine element, such as bearing elements or gear tooth flanges, a run-to-failure test was
carried out using an instrumented special-purpose rolling fatigue test rig designed by
one of the co-authors (H.L.) at SINTEF Industry (Trondheim, Norway). The experimental
setup is schematically illustrated in Figure 1. The test specimen (central roller, made of
case-hardened gear steel) is supported by three support rollers (60 HRC through-hardened
tool steel), and each support roller is supported by two needle bearings. The diameter of
the rollers is ø115 mm. The case-hardening depth of the test roller is 1.0 mm, which is
equivalent to the gear module of a typical large spiral bevel gear. The contact surface of
the support rollers has a 3750 mm radius curvature to avoid any edge effects. The surface
roughness of the contact surfaces is RZ ≤ 0.4 µm. To control the contact stress, a load cell
is mounted above the upper support roller. An axle pin is bolted to the test roller on the
opposite side from the shaft coupler (Figure 1b), and the broadband WD sensor (MISTRAS,
Princeton, NJ, USA) is mounted on a linear bearing mounted to the axle pin. The AE sensor
is attached to the surface of the bearing house with a constant force created by a spring,
mounted inside the sensor holder, which is bolted to the sensor mounting bracket by two
screws. A high-temperature grease GLEITMO 591 (Fuchs Lubritech GmbH, Kaiserslautern,
Germany) is used as a contact medium between the sensor and sensor mount. The linear
bearing, needle bearings, and contact points between the test and support rollers are all
lubricated with SP100 gear oil supplied from the rig’s oil management system. The oil
is continuously filtered with a 4 µm oil filter. The electrical signal from the AE sensor
output was amplified by 40 dB in the frequency band 20–1200 kHz by the 2/4/6 low-
noise preamplifier (MISTRAS, Princeton, NJ, USA) and transferred to the high-speed data
acquisition system HSIO-100-A developed by Kongsberg Maritime. The HSIO-100-A unit
is based on the high-resolution 24-bit high accuracy analogue-to-digital converter operating
in a continuous streaming mode at 2 Msamples/s frequency.

A point on the perimeter of the test roller passes three contact points at the support
rollers per rotation of the test roller due to the triangular symmetry of the loading system.
That is, three fatigue cycles occur per axle rotation. The corresponding “test frequency” is,
therefore, defined as f text = 3f r, with f r = FA/60, where FA is the axle rotation frequency
defined in rpm.
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roller, the support rollers, and the AE sensor mounting.

2.2. AE Acquisition System and Test Schedule

Before any significant loading was applied to the test roller during testing, a warmup
stage was performed. Monitoring the oil temperature, the test rig was operated using
stepwise uploading until the oil temperature stabilised at 50 ◦C. The initial axle rotation
frequency was then set to FA = 364 rpm, and the initial load was set to 67 kN, which
corresponded to 1800 MPa contact stress on the rollers. The test was interrupted periodically
for ultrasonic inspections using the OMNISCAN SX (Olympus, Tokyo, Japan) phase array
ultrasonic tester (PAUT). As PAUT inspections revealed no faults after initial cycling, the
load was gradually increased in a stepwise manner up to 91 kN (2000 MPa contact stress)
after 2.7 × 107 cumulative fatigue cycles. Sudden excessive vibrations were detected in
the axle flex coupling during the first test period at 2000 MPa (91 kN) contact stress. The
rotation frequency, FA, was thereafter reduced to 256 rpm until the end of the duration
test, and the contact stress was kept constant at 2000 MPa. The first subsurface crack of
0.5 mm length was detected by the ultrasonic technique after 2.8 × 107 fatigue cycles (i.e.,
1.1 × 106 fatigue cycles at 2000 MPa contact stress). The crack then slowly expanded to
approximately 5 mm length and 10 mm width before the test was terminated after the
accumulation of 6.7 × 107 fatigue cycles (in the order 1.6 × 107 at 1800 MPa, 1.4 × 107 at
1900 MPa, and 3.6× 107 at 2000 MPa). The test roller was then sectioned for metallographic
inspections and verification of both PAUT and AE results.

AE waveforms were continuously recorded at 2 MHz sampling frequency for 2 s per
record. At the beginning of the test, AE streams were collected by timer every 60 min.
After confirmation of the first subsurface crack by the PAUT inspection, the time interval
between the successive AE acquisitions was reduced to 20 min.

3. Proposed Detector

The detector described in this paper was introduced in the master’s thesis of one of
the present authors—E.L. Hidle [79]. In what follows, we provide a brief, yet self-consistent
description of the signal processing methodology used. For the complete mathematical
description, readers are encouraged to review the reference [79].

A flowchart representing the workflow followed is illustrated in Figure 2. Data
processing involves two primary stages—constructing the powerful health indicator (left-
hand side) and decision-making (right-hand side). Data processing details are unfolded in
subsequent sections.
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3.1. Hypothesis Testing

Aiming at developing an automated detection process, the detector is built around a
well-established decision theory. Decision making is a branch of statistics that describes the
process of mapping noise-contaminated input data to a decision about the state of a system.
The detector considers two possible alternative hypotheses, H0 and H1. In application
to rotating machines, we deal with a binary hypothesis testing problem, where the null
hypothesis, H0, describes normal machine operation, and H1 refers to the alternative
situation where a fault (surface spall, subsurface crack, etc.) is present in the rotating
machine. Given these hypotheses and the input data, x, the detector makes a decision,
Di, i ∈ 0, 1, prioritising one of two hypotheses [70]. The hypothesis is often tested by a
likelihood ratio method [80]. The decision-making rule is based on the popular Neyman–
Pearson (NP) criterion, which merely represents the condition of a minimum of the error
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probability of one kind at a given error probability of the other kind. In this criterion,
the probability of a false alarm, p f a = p(D1|H0), is set as high as the operator decides to
tolerate, thus maximising the probability of detection, pD = p(D1|H1). Effectively, the
detector decides D1 if the likelihood ratio, L(x), is equal or greater than a certain threshold,
T [78], i.e.,

L(x) =
p(x|H1)

p(x|H0)
≥ T (1)

and the decision, D0, is made otherwise (compare Figure 2). Thus, the likelihood ratio, L(x),
which will be specifically defined in the following sections, serves as a health indicator in
the present work.

3.2. Pulse Integration Method

The core procedure for building a powerful health indicator centres on the pulse
integration method, which is implemented in several successive steps highlighted in
Figure 2. In systems where multiple pulses form a train with a hidden periodicity, this
method can be utilised to magnify the significance of pulses that emerge at specific time
intervals. In other words, when the period from one pulse to the next one is known (or
predictable) and constant, several pulses can be integrated within a certain time interval to
achieve improved detectability. This procedure can be efficient even for time series with a
very low signal-to-noise ratio (SNR), enabling the detection of low amplitude transients
buried in heavy noise [77]. For the NP-based detector, the pulse integrating detector is
reduced to the square-law detector, where D1 is decided if the likelihood ratio is equal to,
or greater than, T. Equation (2) thus takes the form

L(y[n]) = ∑N
k=1 y2[n, k] ≥ T (2)

where y[n] is the filtered signal vector x[n], and k is the sequential number of the pulse.
The advantage of using the pulse integration technique is understood by noting that

integration is a process that reduces variance. If N independent noise samples are averaged,
the standard deviation to mean ratio of L is reduced by

√
N relative to the variation in

y. Thus, the SNR is improved by reducing the noise rather than enhancing the signal
itself [78].

3.3. Detection Stage

The detection algorithm represented by the left branch of the flowchart in Figure 2 is
briefly described in this section.

3.3.1. Window Function

The typical AE record, which is fed to the initial analysis block represented in Figure 2,
is shown in Figure 3. Let the realisation x[n] illustrated in this figure be a sampled AE
waveform of length lsignal , where n =

{
1, 2, 3, . . . , lsignal

}
is the number of readings. The

record contains AE pulses repeating at various fault frequencies such as f fault = 3/rev and
f fault = 1/rev. The first step is to find the locations in the n-space where the pulses originated
from the same faults (surface or subsurface). This is accomplished using a sliding window
function with a rectangular shape. The window function can be interpreted as a matrix
where each row corresponds to one window (and one distinct axle position), and the entries
in each row correspond to sub-windows of each window (see Table 1).
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Table 1. Interpretation of the window function.

Recorded Axle Revolutions

Sub Window 1 Sub Window 2 Sub Window 3 · · ·

Axle position

Window 1 Pos1, Rev1 Pos1, Rev2 Pos1, Rev3 · · ·
Window 2 Pos2, Rev1 Pos2, Rev2 Pos2, Rev3 · · ·
Window 3 Pos3, Rev1 Pos3, Rev2 Pos3, Rev3 · · ·

...
...

...
...

. . .

From one row to the next, the sub-windows are shifted in the n-space with a sample
distance equal to the difference between the window length, lw, and the window overlap,
ow. The number of sub-windows is a product of the number of axial revolutions recorded
in each file and the number of times a subsurface crack is expected to excite an AE pulse per
axle revolution ( f f ault). If f f ault is an integer, each sub-window will capture the recorded
signal at the same angular position of the axle. The recorded signal captured by each
sub-window in each row is used for pulse integration.

3.3.2. Pulse Extraction

The sampled input signal vector, x, is zero-mean. The envelope detector is chosen to
extract the AE pulses. This detector comprises a band-pass filter, a rectifier, and a low-pass
filter. The acquired signal is high-pass filtered digitally, with a cut-off frequency at 500 kHz
to remove the strong low-frequency components of the noise generated by the testing rig
(the cut-off frequency is chosen from the spectrogram and can vary flexibly). Figure 4
illustrates the filtering procedure applied to a Fourier spectrogram of the signal fragment
corresponding to one axle revolution.

The signal is further rectified by squaring the high-pass filtered components, xHP. The
final step is to sum all x2

HP components inside the sub-window, which is equivalent in a
sense to low-pass filtering. Thus, the pulse extraction procedure reads as

yj
i = ∑

lsignal
n=1 wj

i [n]x
2
HP[n] (3)

where yi
j refers to the extracted pulses, wi

j[n] is the window function, i refers to the window’s
number, and j refers to the sub-window’s number.
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3.3.3. Outlier Removal and Pulse Integration

This is the final procedure before pulse integration according to the flowchart shown in
Figure 2. When pulses from multiple subsurface crack sources occur simultaneously in the
AE waveform, measures must be thoroughly exercised to ensure that the AE pulses sought
are the pulses that trigger the detector. We expect pulses originating from the same distinct
source to be relatively uniform in their magnitudes. If the outliers are captured in the same
window with the signal, the amplitudes of outliers in the time series are replaced by the
mean amplitudes of the pulses, which are not considered outliers. This ensures that the
detector captures the specific temporal behaviour of pulses independently and separately
from other possible behaviours occurring simultaneously in the rotating machine. After
the outliers are removed, the pulses, ýj

i , are integrated as

Ki = ∑N
j=0

(
ýj

i

)2
(4)

where Ki is referred to as K-spectrum, and N is the number of sub-windows.
Figure 5 shows a typical example of the K-spectrum with the high prominence sharp

peak at i = 270, which is indicative of the appearance of a fault (a subsurface crack in our
case).
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Figure 5. An example of the K-spectrum. Here the index, i, denotes the sequential number of the
windows. It is only related to a specific axle angular position if the sought behaviour excites an AE
pulse once per revolution of the axle ( f f ault = 1/rev).

3.3.4. Health Indicator, Likelihood Ratio (L), Threshold (T), and Decision (D)

The sought AE pulses originating from subsurface cracks give rise to a single narrow
peak in the K-spectrum. To differentiate these peaks from other sporadic peaks, the
property called peakPower is defined as the peak prominence divided by the peak width
(peak prominence should not be confused with peak height). The prominence of a peak
measures how significantly a peak differs from the surrounding baseline of the signal; peak
prominence is defined as the vertical distance between the peak and its lowest contour line.
Only K-spectrum peaks with the highest peakPower are considered as possible candidates
for fault indicators. Furthermore, if the sampled signal, x[n], has a high noise content, the
area under the curve in the K-spectrum will be larger in general, and the probability of the
false alarm, p f a, will increase. The likelihood ratio, L, which serves as the health indicator
in the present work (Figure 2) thus takes the normalised form

L =
peakPower∫

Kidi
(5)

The noise floor and general AE activity will differ substantially for different rotating
machines. To define the threshold, T, the method chosen is to establish an upper bound
based on the temporal sequence of Ls. The idea is to record AE waveforms while the
rotating machine is in its healthy state, establishing a baseline for the normal amount of AE
activity for a particular machine. The baseline is defined as BL = [L0, L1, . . . , Llb ], where
lb is the chosen length of the baseline vector. Based on the created BL vector, the threshold,
T, is defined by the following pseudocode (compare Figure 2):

T = 3 × mad(BL) + median(BL), where mad refers to the scaled median absolute
deviation, which is defined for a random variable vector as

mad(BL) = s×median(|BL−median(BL)|)with the scaling factor s = − 1√
2

er f cinv
( 3

2
)

and er f cinv is known as the inverse complementary error function [81].
Although the above measures were taken to prevent noise and unrelated AE activity

from interfering with the likelihood ratio, L, sporadic AE activity may still cause undesired
fault detections with L > T. To eliminate or account for these unexpected/unwanted
detections, a confidence parameter, c, is introduced to the detection scheme to ensure that
detections represent a stable breakpoint in the AE trend rather than random detections.
That is, the positive decision D1—defect detected—is made if the pre-set number of detections,
c, are observed consecutively. Thus, the final expression for the detector takes the form
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D(L, T, c) =
{

D1 [L−c, L−c+1, . . . , L−1, L] ≥ T
D0 otherwise

(6)

3.4. Pulse Integration Spectrum—A Novel Verification Procedure

Visual inspections of K-spectra provide a useful insight into the data structure that
can be classified according to the presence of stable peaks (compare Figure 5), indicat-
ing the possibility of having a fatigue-induced fault in the testing piece. However, the
K-spectrum-based detector alone does not allow verification that the positive decision orig-
inates from the sought AE behaviour corresponding to fatigue-induced faults. Therefore,
a verification tool, the Pulse Integrated Spectrogram (PIS), is introduced here to address
this challenge [79]. The process of constructing the Pulse Integrated Spectrogram is similar
to the procedure implemented in the detector, albeit with some essential modifications.
Instead of the window function, the sampled AE waveforms from complete axle revolutions
are pulse-integrated. The output is then transformed to the time-frequency domain through
the short-time Fourier decomposition, yielding a spectrogram of the pulse-integrated wave-
form. This representation will magnify the AE activity that occurs only at the same angular
position of the axle during operation. The significance of AE activity occurring at random
axle positions will be reduced. An example of the PIS revealing the characteristic hidden
periodicity in the appearance of AE pulses is shown in Figure 6a, and the corresponding
K-spectrum is represented in Figure 6b. Note that similar to Figure 5, the K-spectrum
referring to the spatial coordinate denoted by the index, i, exhibits a sharp peak indicated
by the black arrow. This suggests that there is a defect in the test piece. There are three
clearly visible vertical lines (marked with black arrows) in the PIS, which are located at
the same relative position with respect to the vertical red grid marking the initial axle
position. This suggests that there is a defect in the test piece, which manifests itself at every
interaction with the supporting rollers at f f ault = 3. Thus, the hidden periodicity with the
sought frequency is verified without doubt.
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Figure 6. Example of the pulse integration spectrum corresponding to one axle revolution divided into
three segments of equal length and marked by vertical red lines (a) and the K-spectrum corresponding
to the middle segment (b) highlighting the presence of damage recurring in the waveform with the
f f ault = 3/rev frequency. Characteristic spectral lines are indicated by black arrows.
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Figure 6 illustrates that the peak with the largest peak height in the K-spectrum does
not necessarily correspond to the sought defect. Thus, the prominence, or peakPower, is
used instead of the height as a criterion for inclusion or rejection from the analysis.

4. Results and Discussion
4.1. Application of the Proposed Detector to the Roller Bearing Test

The most notable findings from the durability test are represented in Figure 7. The
colour code is shown in the legend: green denotes the “healthy” state of the roller when
no defects were detected by any means; yellow segments indicate the “idle” status when
the testing rig was paused for maintenance and adjustments; pink segments with different
densities indicate different “damage” stages corresponding to the progressive subsurface
crack propagation according to periodic ultrasonic inspections; and vertical black lines
indicate the moments when the test was interrupted for visual and PAUT examinations
of the test roller. The PAUT investigations revealed the first subsurface crack (SSC) of
approximately 0.5 mm at 2.8× 107 fatigue cycles, as is shown in Figure 8a. After nucleation,
the crack kept growing steadily to approximately 5 mm in length (Figure 8b) before the test
was terminated and the roller was cut for metallographic examination and verification of
subsurface cracking, as will be discussed in the next section.

Figure 7a shows the behaviour of the conventional AE rms value, which apparently
leaves no hope of finding any signature of early damage in a realistically noisy environment,
at least as long as the damage initiates and propagates in the subsurface layer before
becoming critical at the surface. The proposed algorithm, however, successfully captured
the initiation and propagation of the subsurface cracks. The following parameters were set
for the detector: lw = 1000, ow = 500, c =10, and lB = 300.

The first positive detector decision, D1 (defect detected), is indicated in Figure 7b by the
red cross. Beyond this breakpoint, the same decisions are consistently obtained until the
end of the test. The corresponding PIS verification of the detector decision is shown above
in Figure 6. Apparently, it signifies the faulting process that occurs with the frequency
f f ault = 3/rev, which is plausibly expected for the damage related to the test roller, as
the only place in the test machine that can cause this behaviour is a point on the test
specimen perimeter passing the support rollers. During the test, no damage was detected
on the surface of the roller. As the subsurface cracks were reliably detected by PAUT
inspections, we conclude that the proposed method captured the subsurface cracking with
high confidence.

It should be noted that Figure 7c makes it evident that, besides the subsurface damage
propagating in the test roller, another source of hidden periodic signals does exist with
the characteristic frequency of 1 pulse per revolution, i.e., with f f ault = 1/rev. This source
is apparently not associated with the behaviour of the test roller. The independence
of this kind of damage process from the one featured by the frequency f f ault = 3/rev
is corroborated by the fact that the second process commences later in time (compare
Figure 7b,c), and evolves differently, as can be seen by trends in the L vs. cycles plots. The
pulse integrated spectrogram in Figure 9 corresponds to the later stage of the test beyond
the breakpoint, D1 (defect detected), in Figure 7c. In addition to the three familiar spectral
lines seen earlier in Figure 6, a pronounced spectral line corresponding to the periodic AE
behaviour with f f ault = 1/rev can appear on the spectrograms such as those shown in
Figures 4 and 9 (marked with pink arrows). This line is notably more difficult to notice
in the K-spectrum, and it is only visible within the broad peak marked by the pink arrow.
As this particular detector seeks a defect with f f ault = 3/rev, this behaviour illustrates the
importance of outlier removal to achieve a better resolution of the sought frequencies.
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Figure 7. The AE behaviour during the durability test: (a) the conventional AE rms value as a function
of the number of fatigue cycles; the likelihood ratio, L, corresponding to two fault frequencies (b)
f f ault = 3/rev and (c) f f ault = 1/rev, respectively. The points corresponding to changes in contact
pressure are indicated in (a). The test status is colour coded, as shown in the legend. The black
vertical lines indicate the moments of PAUT inspections. The break points highlighting decisions, D1,

are marked by red crosses in (b,c).

As a matter of discussion, Figure 7a shows that the rms value of the unfiltered signal
does not correlate with either of the two types of faults found in AE waveforms by the
proposed detector. Therefore, rms or similar features are not good candidates for training
any classifier, including those based on machine learning algorithms. Furthermore, the
fault behaviour, which is characterised by f f ault = 1/rev, has a maximum L-value that
is approximately 17 times greater than the maximum of L in the sought behaviour with



Sensors 2022, 22, 5187 14 of 19

f f ault = 3/rev. This means that the cause of this behaviour is likely not associated with the
subsurface or surface faults in the test roller. These pulses are notably different from those
with f f ault = 3/rev; they are significantly stronger by far. There are several locations on the
testing rig that might cause pulses of this kind, including the gearbox, motor, shaft couplers,
etc. However, the origin of this behaviour is not yet precisely established. Another corollary
is that even though there are three times more pulses integrated to produce the L vs. cycles
plot for f f ault = 3, compared to that for f f ault = 1/rev, AE pulses from subsurface cracks
are so weak that detector decisions must be verified (with PIS or similar tools) to ensure
that what is detected is the sought damage-induced behaviour. The random noisy pattern
generated at the AE sensor output during the operation of a multi-component rotating
machine is affected by many factors. Thus, it can hardly be explained rationally, giving
rise to multiple possible interpretations and/or misinterpretations. For subsurface crack
detection, one cannot trust non-destructive testing platforms or health indicators if they
are entirely data-driven and lacking a proper verification tool (such as the PIS proposed
here), which is needed to unveil the deterministic knowledge-based information hidden
in noisy data. This is why the significance of a verification method in the data processing
chain cannot be overvalued.
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Figure 9. Typical Pulse Integrated Spectrogram corresponding to one axle revolution divided into
three segments of equal length and marked by vertical red lines (a) and the K-spectrum corresponding
to the middle segment (b) observed during the late stage of the test, at 52.8 × 106 fatigue cycles: two
independent damaging processes evolve in parallel. The black arrows indicate the spectral lines
corresponding to f f ault = 3/rev and the pink arrows highlight the faults appearing at f f ault = 1/rev.
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4.2. Metallographic Examination and Confirmation of Subsurface Cracking

Post-mortem sectioning of the test roller revealed that three parallel cracks developed
close to each other during the durability test. They were identified as one crack by the
regular PAUT inspections. The cracks’ location is approximately 4 mm below the contact
surface, and the distance between the outermost edges of the three cracks is approximately
6 mm in the rolling direction (see Figure 10, for example). The transverse extension of the
cracks, which is believed to be larger compared to the rolling direction, was not examined
using the destructive slicing procedure. The first subsurface crack identified by PAUT was
discovered after 1.1 × 106 fatigue cycles at 2000 MPa. Recall that 2.7 × 107 fatigue cycles
were accumulated at 1800–1900 MPa prior to testing at 2000 MPa. The initial crack width
of the first observed subsurface crack was estimated to be 0.5 mm. After the durability test
was finished, no surface spalling, pitting, or change in surface roughness was identified on
the test specimen contact surface by regular visual inspections.
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Figure 10. (a) Subsurface cracks revealed in metallographic sections of the test roller and (b,c)
magnified views of three subsurface roller-fatigue induced cracks marked 1–3.

5. Final Remarks, Conclusions, and Future Scopes

A durability test was conducted to successfully induce subsurface cracks caused by
rolling contact fatigue in a case-hardened test roller. During testing, subsurface crack
initiation and propagation were systematically monitored using phased array ultrasonic
testing. After the test was completed, the test specimen was sliced perpendicularly to the
axis and microscopically inspected. Several subsurface cracks were found in coherence
with ultrasonic examinations, whereas no surface damage was observed.

AE waveforms of 2 s duration were periodically recorded during the entire fatigue test.
The signal processing scheme proposed here is fundamentally founded on the knowledge
available regarding the rotating mechanical system under consideration. A specific data
exploration algorithm informed by the precise rotation speed and/or axle position was
utilised to extract and verify periodic patterns from AE data. A detector relying on the peri-
odic integration of specifically located AE pulses was developed to detect the appearance
of subsurface cracks at an early stage and follow crack growth behaviour.

The effectiveness of the proposed detector is evident from the simple juxtaposition
of detector decisions with the results of ultrasonic investigations. To avoid false alarms
and to cross-validate the positive detector’s decisions, the Pulse Integrated Spectrogram
verification tool was proposed and used to check whether the detected behaviour originated
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from the sought defect or not. It was demonstrated that subsurface cracks can be reliably
detected in rotating components at the early stage of their evolution, before they reach the
surface and cause serious damage.

Nonetheless, we must reiterate that the high degree of confidence achieved in the
present work relies on the specifically designed data exploration tools using prior knowl-
edge about the particular rotating machine tested. In this sense, the presented technique
differs from a wealth of entirely data-driven approaches including those based on machine
learning principles. However, this does not substantially reduce the applicability of our
“data-inspired” methodology, since the data required for its successful implementation refer
simply to the specific geometry and rotation speed of the rotating components—information
that is usually readily available to designers, engineers, and researchers. Nonetheless, re-
liance on the temporal repeatability of damage-related AE events is admittedly the chief
limitation of our method in its present form. In other words, the entire approach depends
heavily on the rotation stability of all rollers. Therefore, the logical continuation of this
work will be to adapt the proposed detector to a rotating machine with a dynamically
variable rotation speed measured concurrently with AE waveforms. Detector parameters
such as the window length, shape, and overlap can be optimised further; the strategy for
this optimisation has yet to be developed. Another limitation of the present laboratory
work is that the AE sensor was located in close proximity to the test specimen, which is
not always feasible in industrial settings. Thus, for practical implementation of the pro-
posed approach, the challenges associated with AE transmission through specific complex
industrial structures need to be overcome [82].

Despite the concerns raised in the introduction, machine learning or deep learn-
ing is not completely negated, and despite the demonstrated success story, the present
knowledge-inspired approach is not completely supported; their competitiveness and
mutual complementariness can be combined in the future. The synergy from such a
combination is deemed to arise owing to the high confidence provided by the proposed
knowledge-based approach paired with the versatility and adaptability of deep learning.
As a preliminary notice, we can say that in our ongoing research we explore the capacity of
alternative data-driven methods based on artificial intelligence and deep learning strategies
applied to the same dataset. The comparative results will be presented elsewhere.
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