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Quasiclassical boundary conditions for spin-orbit coupled interfaces with spin-charge conversion
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The quasiclassical theory of superconductivity provides a methodology to study emergent phenomena in
hybrid structures comprised of superconductors interfaced with other materials. A key component in this theory is
the boundary condition that the Green functions describing the materials must satisfy. Recently, progress has been
made toward formulating such a boundary condition for interfaces with spin-orbit coupling, the latter playing
an important role for several phenomena in spintronics. Here we derive a boundary condition for spin-orbit
coupled interfaces that includes gradient terms, which enables the description of spin-Hall-like effects with
superconductors due to such interfaces. As an example, we show that the boundary conditions predict that a
supercurrent flowing through a superconductor that is coupled to a normal metal via a spin-orbit interface can
induce a nonlocal magnetization in the normal metal.
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I. INTRODUCTION

Superconductors [1] carry charge currents without
resistance in their natural state but can also be made to
transport spin currents without resistance. This happens
when the spinless Cooper pairs in a superconductor are
transformed to so-called triplet Cooper pairs [2] that carry
spin. Such a transformation has been predicted [3,4] to take
place in two ways: either by placing the superconductor
in contact with a ferromagnetic material or by placing it
in contact with spin-orbit coupled materials or impurities
[5]. Besides making the superconductivity spin-polarized
[6,7], such hybrid structures also give rise to odd-frequency
superconductivity [8,9], where electrons are nonlocally
correlated in time. Although transport of charge is already
dissipationless in superconductors, it is both of fundamental
and practical interest to study dissipationless transport of spin
via superconductors [10]. Indeed, lossless spin transport can
offer new types of functionality in solid-state devices when
combining superconductors with magnetic materials that
charge-based transport is not capable of. Examples of this
include magnetization switching and domain wall/skyrmion
motion with very low dissipation of energy [11]. In addition,
triplet superconductivity can provide novel means of probing
quantum materials [12], as well as giving rise to functional
material properties that are unique to the superconducting
state, without any counterpart in conventional spintronics—
such as quantum phase batteries [13].

Several experiments have confirmed theoretical predictions
in the case of hybrid structures comprised of superconductors
and ferromagnets [14–20]. On the other hand, experimental
studies of triplet superconductivity in hybrid structures of
superconductors and spin-orbit coupled materials have started
to appear mostly in recent years [21–25]. There exist several
predictions [26–30] on emergent phenomena in structures
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combining superconducting and spin-orbit coupled materials
which remain to be tested experimentally, where the main
theme is that spin-orbit interactions exist in a material due to
the lack of inversion symmetry or due to impurities.

Spin-orbit coupling can be amplified at interfaces involving
heavy metals such as Pt or W. Such interfaces are known
to play an important role in conventional spintronics [31].
Generally speaking, the Rashba effect at interfaces, even with-
out inserted heavy metals, is expected to be present simply
because structural inversion symmetry is broken [32]. This
makes the description of spin-orbit coupled interfaces of gen-
eral interest in any type of hybrid structures comprised of two
or more materials.

When it comes to describing quantum phenomena emerg-
ing at superconducting interfaces, the quasiclassical theory of
superconductivity [33–35] has proven useful and to a large
degree consistent with experimental results. This theory is
capable of treating nonequilibrium phenomena both in the bal-
listic and diffusive limit by obtaining the quasiclassical Green
function ǧ in Keldysh space. To achieve this aim, it is nec-
essary to supplement the theory with boundary conditions at
interfaces. For the case of interfaces with significant spin-orbit
coupling, we have recently derived such boundary conditions
in the diffusive limit [36]. These boundary conditions for ǧ
correctly predict the appearance of triplet superconductivity
in superconductors with spin-orbit coupled interfaces but fail
to capture the effect of motion parallel to the interface. While
these contributions often cancel in the diffusive limit due to
the momentum averaging brought on by frequent impurity
scattering, an important special case when it does not is when
a supercurrent is flowing parallel to the interface. In this case
gradient terms in the boundary conditions are required in order
to capture the possible existence of spin-Hall-like phenomena
involving supercurrent flow and spin accumulation.
Whereas such effects are of high interest experimentally,
an accompanying theoretical description requires a derivation
of boundary conditions that includes such gradient terms.
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Here we derive a boundary condition for spin-orbit coupled
interfaces in the quasiclassical theory of superconductivity
that includes precisely such gradient terms. This enables the
description of spin-Hall-like effects with superconductors due
to interfaces with Rashba-like spin-orbit coupling. After de-
riving these boundary conditions, we apply them to predict
that a supercurrent flowing through a superconductor that is
coupled to a normal metal via a spin-orbit interface can induce
a nonlocal magnetization in the normal metal. This constitutes
a superconducting equivalent of the conventional, resistive
spin-Hall effect where a charge current induces a transverse
spin accumulation. The boundary conditions derived here en-
able the exploration of quantum phenomena that emerge in
superconductors due to spin-orbit coupled interfaces, both in
and out of equilibrium.

II. DERIVATION OF BOUNDARY CONDITIONS

We split the derivation of the boundary conditions into two
parts: one part that takes into account the effect of tunneling
through the interface and one part that takes into account
reflection at the interface.

A. Terms related to tunneling through the interface

We consider a Hamiltonian of the form

H = HL + HR + HT , (1)

with

HL =
∑
pp′ss′

HL
ss′ (p, p′)a†

psap′s′ , (2)

HR =
∑
pp′ss′

HR
ss′ (p, p′)b†

psbp′s′ , (3)

HT =
∑
pp′ss′

[Tss′ (p, p′)a†
psbp′s′ + T ∗

ss′ (p, p′)b†
p′s′aps]. (4)

From Heisenberg’s equation one obtains for the operators

ih̄∂t aps = +
∑
p′s′

[HL
ss′ (p, p′)ap′s′ + Tss′ (p, p′)bp′s′ ],

ih̄∂t a
†
−ps = −

∑
p′s′

[[HL
ss′ (−p,−p′)]∗a†

−p′s′

+ T ∗
ss′ (−p,−p′)b†

−p′s′ ],

ih̄∂t bps = +
∑
p′s′

[HR
ss′ (p, p′)bp′s′ + T ∗

s′s(p′, p)ap′s′ ],

ih̄∂t b
†
−ps = −

∑
p′s′

[[HR
ss′ (−p,−p′)]∗b†

−p′s′

+ Ts′s(−p′,−p)b†
−p′s′ ]. (5)

Using Nambu vectors, Ap = (ap↑ ap↓ a†
−p↑ a†

−p↓) and
similarly for Bp, this can be written as

ih̄ρ̂3∂t Ap =
∑

p′
[ĤL(p, p′)Ap′ + T̂ (p, p′)Bp′ ], (6)

ih̄ρ̂3∂t Bp =
∑

p′
[ĤR(p, p′)Ap′ + ˆ̃T (p, p′)Ap′], (7)

where ρ̂3 = diag(1, 1,−1,−1) and

ĤL/R(p, p′) =
(

HL/R(p, p′) 0
0 HL/R∗

(−p,−p′)

)
, (8)

T̂ (p, p′) =
(

T (p, p′) 0
0 T ∗(−p,−p′)

)
, (9)

ˆ̃T (p, p′) =
(

T̃ (p, p′) 0
0 T̃ ∗(−p,−p′)

)
, (10)

where T and T̃ are 2 × 2 matrices in spin space and we have
defined the elements T̃ss′ (p, p′) ≡ T ∗

s′s(p′, p). The tunneling
current from the left to the right side is given as J = e〈∂t N〉,
with N = ∑

ps a†
psaps. From the Heisenberg equation we find

ih̄∂t N = [N, H] = [N, HT ]

=
∑
pp′ss′

[Tss′ (p, p′)a†
psbp′s′ − T ∗

ss′ (p, p′)b†
p′s′aps]. (11)

We note that while we have here written HL,R without su-
perconducting terms, for notational simplicity, the approach
generalizes straightforwardly to superconducting systems by
adding off-diagonal terms to Eq. (8). The following derivation
of the boundary conditions for the Green function is valid
irrespective of whether superconducting terms are included in
ĤL/R or not. Next we define the Green function,

C<
ss′ (p, t ; p′, t ′) = i〈a†

p′s′ (t ′)bps(t )〉, (12)

which gives

〈∂t N〉 = −1

h̄

∑
pp′ss′

[Tss′ (p, p′)C<
s′s(p′, t ; p, t )

+ T ∗
ss′ (−p,−p′)i〈a−psb

†
−p′s′ 〉]. (13)

Notice now that if we define a Nambu Green function
matrix as

Ĉ<(p, t ; p′, t ′) = i〈[[A†
p′ (t ′)]T [Bp(t )]T ]T 〉, (14)

where the angular brackets in the second term of Eq. (13)
become the hole part of Ĉ<. Hence we may write

〈∂t N〉 = −1

h̄

∑
pp′

Tr[T̂ (p, p′)Ĉ<(p′, t ; p, t )]. (15)

For later use, we also introduce the Green function Ĉ> and
Keldysh Green function ĈK as

Ĉ>(p, t ; p′, t ′) = −i
〈
Bp(t )A†

p′ (t ′)
〉
,

ĈK (p, t ; p′, t ′) = −iρ̂3〈[Bp(t ), A†
p′ (t ′)]〉. (16)

To find Ĉ<, we first find its time-ordered equivalent,

Ĉ(p, t ; p′, t ′) = − iρ̂3〈T Bp(t )A†
p′ (t ′)〉

= − iρ̂3θ (t − t ′)〈Bp(t )A†
p′ (t ′)〉

+ iρ̂3θ (t ′ − t )〈A†
p′ (t ′)Bp(t )〉, (17)

where T is the time-ordering operator, which acts as a nor-
mal operator at equal times. Differentiating with respect to t
gives us

ih̄ρ̂3∂tĈ(p, t ; p′, t ′) =
∑

q

[ĤR(p, q)Ĉ(q, t ; p′, t ′)

+ ˆ̃T (p, q)ĜL(q, t ; p′, t ′)], (18)
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where

ĜL(q, t ; p′, t ′) = −iρ̂3〈T Ap(t )A†
p′ (t ′)〉.

This may be written as∑
q

[ih̄ρ̂3∂tδqp − ĤR(p, q)]Ĉ(q, t ; p′, t ′)

=
∑

q

ˆ̃T (p, q)ĜL(q, t ; q′, t ′). (19)

A solution to this equation is given by

Ĉ(p, t ; p′, t ′) =
∫

dt1
∑
qq′

Ĝ0,R(p, t ; q, t1) ˆ̃T (q, q′)

× ĜL(q′, t1; p′, t ′), (20)

with Ĝ0,R the right-side unperturbed Green function,
satisfying
∑

q

[ih̄ρ̂3∂tδpq − ĤR(p, q)]Ĝ0,R(q, t ; p′, t ′) = δ(t − t ′)δpp′ ,

(21)

as can be seen by direct insertion. Next we deform the time
axis to the Keldysh contour,

Ĉ(p, τ ; p′, τ ′) =
∫

C
dτ1

∑
qq′

Ĝ0,R(p, τ ; q, τ1) ˆ̃T (q, q′)

× ĜL(q′, τ1; p′, τ ′), (22)

to obtain via the following Langreth rules [37]:

ρ̂3Ĉ
<(p, t ; p′, t ′) =

∫
dt1

∑
qq′

[
ĜR

0,R(p, t ; q, t1) ˆ̃T (q, q′)ρ̂3Ĝ<
L (q′, t1; p, t ′) + ρ̂3Ĝ<

0,R(p, t ; q, t1) ˆ̃T (q, q′)ĜA
L (q′, t1; p, t ′)

]
, (23)

ρ̂3Ĉ
>(p, t ; p′, t ′) =

∫
dt1

∑
qq′

[
ĜR

0,R(p, t ; q, t1) ˆ̃T (q, q′)ρ̂3Ĝ>
L (q′, t1; p, t ′) + ρ̂3Ĝ>

0,R(p, t ; q, t1) ˆ̃T (q, q′)ĜA
L (q′, t1; p, t ′)

]
. (24)

Note that the lesser and greater Green functions were defined without ρ̂3, whereas the retarded, advanced, and time-ordered were
defined with. Hence, when going from time-ordered to lesser/greater, there has to be additional ρ̂3 appearing, as shown in the
above equations. The lesser and greater Green functions are further related to the Keldysh Green function as

ĜK (p, t ; p′, t ′t ) = ρ̂3[Ĝ<(p, t ; p′, t ′) + Ĝ>(p, t ; p′, t ′)]. (25)

The same relation also holds if one replaces Ĝ with Ĉ. We also have the relationship

Ĉ<(p, t ; p′, t ) = Ĉ>(p, t ; p′, t ). (26)

By adding Eq. (23) and then multiplying the whole equation with ρ̂3/2, one therefore obtains

Ĉ<(p, t ; p′, t ′) =1

2
ρ̂3

∫
dt1

∑
qq′

[
ĜR

0,R(p, t ; q, t1) ˆ̃T (q, q′)ĜK
L (q′, t1; p′, t ′) + ĜK

0,R(p, t ; q, t1) ˆ̃T (q, q′)ĜA
L (q′, t1; p′, t ′)

]
. (27)

Insertion into Eq. (15) then gives

〈∂t N〉 = − h̄

2

∑
pp′qq′

∫
dt1Tr[ρ̂3(T̂ (p, p′)Ǧ0,R(p′, t ; q, t1)

× ˆ̃T (q, q′)ǦL(q′, t1; p, t ))K ], (28)

where it has been used that T̂ commutes with ρ̂3. The super-
script K means in this context that the Keldysh component
of the matrix product enclosed in the parentheses should be
extracted. Repeating the process by calculating the currents
flowing into the opposite material gives

〈∂t N〉 = + h̄

2

∑
pp′qq′

∫
dt1Tr[ρ̂3(Ǧ0,L(p′, q)T̂ (q, q′)

× ǦR(q′, t ; p, t1) ˆ̃T (p, p′))K ]. (29)

Averaging the two and Fourier transforming then gives

〈∂t N〉 = + h̄

4

∑
pp′qq′

∫
dε

2π
Tr[ρ̂3(Ǧ0,L(p, q; ε)T̂ (q, q′)

× ǦR(q′, p′; ε) ˆ̃T (p′, p))K ]

− h̄

4

∑
pp′qq′

∫
dε

2π
Tr[ρ̂3(T̂ (p′, p)Ǧ0,R(p, q; ε)

× ˇ̂T (q, q′)ǦL(q′, p′; ε))K], (30)

where we defined the 8 × 8 matrix Ǧ in Keldysh space:

Ǧ =
(

ĜR ĜK

0̂ ĜA

)
. (31)

A product ÂB̌ between an Â matrix and B̌ matrix is to be
understood as ǍB̌, where Ǎ = diag(Â, Â). In quasiclassical
theory, the electric current J is computed from a quantity
known as the matrix current Ǐ via the expression

J ∼
∫

dE Tr{ρ̂3ǏK}. (32)

Therefore one may identify the matrix current as

Ǐ ∼
∑
pp′qq′

[ǦL, T̂ ǦR
ˆ̃T ] + traceless terms, (33)

where we has set approximated Ǧ0, j 
 Ǧ j for material j. The
designation “traceless terms” indicates that there may exist
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terms in the matrix current which do not give any contribu-
tion to the charge current, in effect which give zero when
multiplied with ρ̂3 and taken the trace over [38]. In the next
section we identify these terms.

To compute the boundary conditions specific for an inter-
face with Rashba spin-orbit coupling, we assume an interface
potential of the form

T (r) = T0(r‖)δ(r⊥ − R0) − i{Ti j (r‖)δ(r⊥ − R0)σ j, ∂i}, (34)

where r‖ and r⊥ are coordinates parallel and perpendicular to
the interface. Note that the term involving the differential op-
erator ∂i has been symmetrized in order to ensure hermiticity.
The tunneling Hamiltonian is

HT =
∑
ss′

∫
dr a†

s (r)Tss′ (r)bs′ (r) + H.c., (35)

with a(r) and b(r) the field operators on the left and right
side of the interface, respectively. We may now define as(r) =∑

p apseip·r, and bs(r) = ∑
p bpseip·r, which produces pre-

cisely HT in Eq. (2) with

Tss′ (p, p′) =
∫

dr‖[T0(r‖) + Ti j (r‖)(pi + p′
i )σss′, j]

× e−i(p−p′ )·r‖ . (36)

We now approximate the tunneling matrix element as
follows to describe the effect of interfacial Rashba coupling:

Tss′ (p, p′) 
 T0 + Ti j (pi + p′
i )σss′, j, (37)

where T0 and Ti j are real phenomenological constants. As an
aside, this approximation is equivalent to saying that both T0

and Ti j have a δ(r‖) spatial dependency, which means that the
surface is approximated as a point impurity. Moreover, we
note that from the definition of T̃ (p, p′), it then follows that

T̃ss′ (p, p′) 
 T0 + Ti j (p′
i + pi )σss′, j = Tss′ (p, p′). (38)

Next we need to calculate the integral,

M̌ =
∫

d pd p′dqdq′ T̂ (p′, p)ǦR(p, q) ˆ̃T (q, q′)ǦL(q′, p′),

(39)

which is one of the two main terms appearing in Eq. (30) after
going to the continuum limit in momentum space. Defining

T̂ (p, p′) = T0 + (pi + p′
i )t̂i,

t̂i = Ti j ρ̂3σ̂ j,

σ̂ =
(

σ 0
0 σ∗

)
, (40)

we get

M =
∫

d pd p′dqdq′ [T 2
0 ǦR(p, q)ǦL(q′, p′)

+ T0ǦR(p, q)t̂k (qk + q′
k )ǦL(q′, p′)

+ T0t̂iǦR(p, q)(pi + p′
i )ǦL(q′, p′)

+ t̂iǦR(p, q)t̂k (pi + p′
i )(qk + q′

k )ǦL(q′, p′)]. (41)

We make use of the fact that the Green function ǦL/R(p, q)
is strongly peaked for p 
 q 
 pF , since the aim is to

construct a low-energy theory relative the Fermi level. For
such low energies, the particles have momenta close to pF .
Since both p and q are close to pF , the center-of-mass
momentum (p + q)/2 must also be close to pF . There-
fore we may approximate the individual momenta variables
{pi, p′

i, qk, q′
k} entering the above equation as center-of-mass

variables with magnitude equal to the Fermi momentum.
Making use of the fact that the Jacobian of a transformation
from the momenta of the field operators to a center-of-mass
and relative momentum representation is unity, we find within
the quasiclassical approximation that

M̌ ∼ T 2
0 ǧR,sǧL,s − mRDRT0ǧR,s∂kǧR,st̂k ǧL,s

− mLDLT0ǧR,st̂k ǧL,s∂kǧL,s − mRDRT0t̂iǧR,s∂iǧR,sǧL,s

− mLDLT0t̂iǧR,sǧL,s∂iǧL,s + 2t̂iǧR,st̂iǧL,s. (42)

To obtain this result, we used that

ǧR/L(pF , R = 0) = 1

(2π )3

i

π

∫
dq

∫
dξpǦR/L(p, q) (43)

is the quasiclassical Green function evaluated at the interface,
and q in the equation above is the relative momentum coor-
dinate, whereas p is the center-of-mass momentum. We also
inserted ǧR = ǧR,s + p̂F · ǧR, where ǧR = −τvF ǧR,s∇ǧR,s, as
follows from the Usadel equation, and p is now the center-of-
mass momentum coordinate. For the angular averaging, we
used that

∫
d�p

4π
pF,i pF, j/p2

F = 1

3
δi j .

Here m is the electron mass and we used that pF = mvF

and D = v2
F τ/3. Since the parameters T0 and Ti j will be

treated as phenomenological interface parameters, we absorb
the proportionality constant in Eq. (42) into them. Finally,
we neglected terms in Eq. (42) which were second order in
gradient terms of the Green functions under the assumption
that such terms are small.

The boundary conditions thus become

n · DǧL∇ǧL = T 2
0 [ǧL, ǧR] + 2Ti jTil p2

F [ǧL, ρ̂3σ̂ j ǧRρ̂3σ̂l ]

− mDTi jT0[ǧL, {ρ̂3σ̂ j, ǧR∂iǧR}]
− mDTi jT0[ǧL∂iǧL, {ρ̂3σ̂ j, ǧR}]. (44)

For the special case of Rashba spin-orbit coupling (SOC), we
have Ti j = T1nkεk ji, where nk is component k of the interface
normal. This gives

n · DǧL∇ǧL = T 2
0 [ǧL, ǧR] + 2T 2

1 p2
F [ǧL, σ ||ǧRσ ||]

− mDT1T0[ǧL, {σ||, (ǧR∇ǧR) × n}]
− mDT1T0[(ǧL∇ǧL ) × n, {σ||, ǧR}], (45)

with σ̂ || = ρ̂3[σ̂ − n(σ̂ · n)]. We see that the second term on
the right-hand side of Eq. (45) reproduces the tunneling term
due to spin-orbit coupling derived in Ref. [36]. The third and
fourth terms on the right-hand side are new and involve the
gradient of the Green function. This allows us to describe, for
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d−d 0

L RÂ �= 0
z

FIG. 1. Spin-orbit coupled interface separating left (L) and right
(R) region in the model used to derive the reflection boundary condi-
tion terms.

instance, spin-Hall-like phenomena with supercurrents, as we
will demonstrate below.

B. Terms related to reflection at the interface

Here, we follow a similar procedure as [39,40] to derive
the terms related to reflection at the interface. The Usadel
equation, including antisymmetric spin-orbit coupling, reads

D∇̃(ǧ∇̃ǧ) + i[ερ̂3 + �̂, ǧ] = 0. (46)

Here we have defined

∇̃ · . . . = ∇ · . . . − i[Â, . . .]. (47)

We use the convention that when multiplying a matrix Â (4 ×
4) with a matrix B̌ (8 × 8), that product should be understood
as diag(Â, Â) · B̌. The matrix Â has vectors as elements and
classifies the spin-orbit coupling according to

Â =
(

A 0
0 −A∗

)
, (48)

where A defines the spin-orbit coupling part of the Hamilton
operator via

Hsoc = − 1

m
k · A. (49)

This is a generally valid Hamilton operator for an antisym-
metric spin-orbit coupling that is linear in momentum. For
instance, the Rashba case Hsoc = − α

m (k × σ ) · z for structures
breaking inversion symmetry in the z direction is obtained
using A = α(−σy, σx, 0). Here we will derive boundary con-
ditions valid for any A that satisfies n · A = 0, where n is
the interface normal vector. This includes the Rashba inter-
action as a limiting case. The criterion n · A = 0 is chosen
as to avoid the complication of symmetrizing the spin-orbit
coupling Hamiltonian, as is required for the hermiticity of the
Hamilton operator when the spin-orbit coupling is confined
to a certain spatial region. Nevertheless, the condition n · A
still allows for several interesting new phenomena related to
spin-Hall physics to be predicted.

The underlying assumption is that the region with spin-
orbit coupling is sufficiently thin that we may neglect the
spatial variation of the Green function along the interface
normal n. Let n denote the coordinate along the n axis (chosen

as z direction in Fig. 1). Integrating the Usadel equation from
n = −d to n = d gives

(ǧ∂nǧ)|d − (ǧ∂nǧ)|−d − id∇ǧ[Â, ǧ]|d
− iǧd[Â,∇ǧ] − id[Â, ǧ∇ǧ]|d − d[Â, ǧ[Â, ǧ]]|d = 0.

(50)

Here we made use of the fact that n · A = 0 and approximated
the value of all terms not involving a derivative in the n
direction with their value at n = d . This is consistent with
the assumption that d is smaller than the length scale over
which the Green function varies in the n direction. Now, if
there was no spin-orbit coupling present, the tunneling current
alone derived in the previous section (with scalar tunneling
amplitudes due to the absence of SOC) provides the value
of ǧ∂nǧ|d , constituting the effect boundary condition for the
Green function ǧ. Therefore we may identify

(ǧ∂nǧ)|−d = tunneling current contribution ≡ IT , (51)

and consequently write Eq. (50) as

ǧ∂nǧ|d = IT + id∇ǧ[Â, ǧ]d + idǧ[Â,∇ǧ]d

+ id[Â, ǧ∇ǧ]d + d[Â, ǧ[Â, ǧ]]d . (52)

After canceling some terms, we end up with the final form,
which is generally valid for any SOC at the interface so long
that n · A = 0:

n · ǧ∇ǧ|d = IT + id∇ǧ[Â, ǧ]|d − 2idǧ∇ǧÂd + idǧÂ∇ǧ|d
+ idÂǧ∇ǧd + d[Â, ǧÂǧ]d − dÂ

2
. (53)

This constitutes the boundary condition for the Green function
on the right side of the interface ǧR = ǧ|d . The boundary con-
dition for the Green function on the left side of the interface
ǧL = ǧ|−d is obtained from Eq. (53) by letting d → −d . This
is derived in exactly the same way we did for ǧR except that
we integrate

∫ −d
d instead of

∫ d
−d .

As an application of these boundary conditions, consider
now a special case. We examine a 2D structure (yz plane)
with a Rashba spin-orbit coupled interface. The z direction
is perpendicular to the interface plane, so that n = ẑ. We
permit not only ∂zǧR �= 0 but also ∂yǧR �= 0 in order to capture
spin-Hall-like phenomena involving motion parallel with the
interface. In the Rashba case, we have as previously men-
tioned A = α(−σy, σx, 0), which gives

ǧR∂zǧR = ǏT + id∂yǧR[Ây, ǧR] − 2idǧR∂yǧRÂy + idǧRÂy∂yǧR

+ idÂyǧR∂yǧR + d[Â, ǧRÂǧR] − dα2. (54)

We define

ρ̂x =
(

σx 0
0 −σ ∗

x

)
, ρ̂y =

(
σy 0
0 −σ ∗

y

)
, (55)

so that Âx = −αρ̂y and Ây = αρ̂x. We then get

ǧR∂zǧR = ǏT + idα∂yǧR[ρ̂x, ǧR] − 2idαǧR∂yǧRρ̂x + idαǧRρ̂x∂yǧR + idαρ̂xǧR∂yǧR

+ dα2[ρ̂x, ǧRρ̂xǧR] + dα2[ρ̂y, ǧRρ̂yǧR] − 2dα2. (56)
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FIG. 2. Two possible experimental setups for observation of supercurrent-induced magnetization via a Rashba interface. In both cases,
current-biasing the superconductor induces a nonlocal spin magnetization in a normal metal without any magnetic elements in the system.
The magnetization points in the direction orthogonal to both the supercurrent flow and the broken inversion symmetry axis, similarly to the
conventional spin-Hall effect.

It is clear from the boundary conditions that any variation in the Green function ǧR in the direction parallel to the interface (y
direction) will now couple directly to variations of the Green function in direction normal to the interface (z direction) due to the
Rashba spin-orbit coupling at the interface.

C. Final form of complete boundary condition for Rashba coupling

In the preceding sections, we have derived the contribution to the boundary condition for the quasiclassical Green function
coming both from tunneling terms and reflection terms at an interface with spin-orbit coupling. Here we give the final complete
form of the boundary conditions for the Green function on both the left and right side of the interface. Let n point from left
to right.

For the quasiclassical Green function matrix ǧL on the left side of the interface, the boundary condition generally reads

n · DǧL∇ǧL = T 2
0 [ǧL, ǧR] − mDTi jT0[ǧL, {ρ̂3σ̂ j, ǧR∂iǧR}] − mDTi jT0[ǧL∂iǧL, {ρ̂3σ̂ j, ǧR}] + Ti jTil p2

F [ǧL, ρ̂3σ̂ j ǧRρ̂3σ̂l ]

− iDd∇ǧL[Â, ǧL] + 2iDdǧL∇ǧLÂ − iDdǧLÂ∇ǧL − iDdÂǧL∇ǧL − Dd[Â, ǧLÂǧL] + DdÂ
2
, (57)

while for the Green function on the right side,

n · DǧR∇ǧR = T 2
0 [ǧL, ǧR] + mDTi jT0[ǧR, {ρ̂3σ̂ j, ǧL∂iǧL}] + mDTi jT0[ǧR∂iǧR, {ρ̂3σ̂ j, ǧL}] − Ti jTil p2

F [ǧR, ρ̂3σ̂ j ǧLρ̂3σ̂l ]

+ iDd∇ǧR[Â, ǧR] − 2iDdǧR∇ǧRÂ + iDdǧRÂ∇ǧR + iDdÂǧR∇ǧR + Dd[Â, ǧRÂǧR] − DdÂ
2
. (58)

For the special case of Rashba spin-orbit coupling and an interface normal n along the z direction with ǧL = ǧL(y) due to
supercurrent flow in the y direction and a thin region to the right of the interface so that ǧR = ǧR(z), as shown in Fig. 2, one
obtains on the left side,

DǧL∂zǧL = T 2
0 [ǧL, ǧR] + T 2

1 p2
F [ǧL, σ̂||ǧRσ̂||] − mDT1T0[ǧL, {σ̂||,x, ǧR∂yǧR}] − mDT1T0[ǧL∂yǧL, {σ̂||,x, ǧR}]

− Ddα2[ρ̂x, ǧLρ̂xǧL] − Ddα2[ρ̂y, ǧLρ̂yǧL] + 2Ddα2, (59)
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while on the right side,

DǧR∂zǧR = T 2
0 [ǧL, ǧR] − T 2

1 p2
F [ǧR, σ̂||gLσ̂ ||] + mDT1T0[ǧR, {σ̂||,x, ǧL∂yǧL}] + mDT1T0[ǧR∂yǧR, {σ̂||,x, ǧL}]

+ Ddα2[ρ̂x, ǧRρ̂xǧR] + Ddα2[ρ̂y, ǧRρ̂yǧR] − 2Ddα2. (60)

In this particular case, one has σ̂|| = (ρ̂x, ρ̂y, 0̂). The derivation of the boundary conditions provided here treats the interface in
a phenomenological manner, in particular when it comes to the reflection terms. A stricter microscopic derivation makes use of
concepts like isotropization zone and ballistic zones near an interface [38]. Nevertheless, the methodology used in this paper to
derive the boundary conditions is known to give the same results as the microscopic derivation in the case of magnetic boundary
conditions [39], a fact which motivates the present approach.

III. APPLICATION: SUPERCURRENT-INDUCED
MAGNETIZATION VIA RASHBA INTERFACE

We here show how the boundary conditions can be used
on a concrete system and that they predict that a supercurrent
can induce a nonlocal magnetization via structural inversion
symmetry breaking. The polarization of the induced mag-
netization is perpendicular to both the current flow and the
direction of inversion symmetry breaking and can be viewed
as a type of superconducting spin-Hall effect. We consider a
superconductor in contact with a normal metal through a thin
heavy metal interface. Two possible experimental realizations
of this is shown in Fig. 1. When a supercurrent runs through
the superconductor, a nonlocal magnetization appears in the
normal metal, despite the absence of any magnetic elements
in the system. To show this analytically, we consider the
weak proximity effect regime where the Usadel equation is
linearized in the anomalous Green function.

The quasiclassical retarded Green function in a
supercurrent-carrying superconductor is given by

ĝS =
(

c seiJyiσy

se−iJyiσy −c

)
(61)

for a current density J well below the critical supercur-
rent density. Here, c = cosh(θ ), s = sinh(θ ), where θ =
atanh(�/ε) where � is the superconducting gap. In the nor-
mal metal, the retarded Green function matrix reads

ĝN =
(

1 f
− f̃ −1

)
(62)

in the case of a weak proximity effect where the anomalous
Green function matrix has the form

f =
(

f↑ ft + fs

ft − fs f↓

)
. (63)

The ˜. . . operator denotes reversal of energy (ε → −ε)
and complex conjugation. In the normal metal, the Usadel
equation then takes the form

D∂2
z fs,t,σ + 2iε fs,t,σ = 0 (64)

and has a general solution

fs,t,σ = As,t,σ eikz + Bs,t,σ e−ikz (65)

where k = √
2iε/D. The boundary condition at the vacuum

edge z = L of the normal metal is

∂z fs,t,σ = 0 (66)

in order to ensure that no current flows into vacuum. The
boundary condition between the normal metal and the super-
conductor at z = 0, which are connected via an atomically thin
Pt layer, is the key ingredient for achieving the superspin-Hall
effect. In the weak proximity effect regime, we obtain

D∂z fσ + 4iσDJT0T1csmeiJy0 − 2T 2
0 c fσ

− 4iσDmT1Js2T0 fs − 4(Ddα2 + 2cT 2
1 p2

F ) fσ = 0,

D∂z ft − 8α2Ddft − c(T 2
0 + 4T 2

1 p2
F ) ft = 0,

D∂z fs − 8cT 2
1 p2

F fs − 4iDT1T0s2Jm( f↑ − f↓)

− 4cT 2
0 fs + 4seiJy0 (T 2

0 + 4T 2
1 p2

F ) = 0. (67)

Here y0 is the position along the y axis, where the normal
metal is coupled to the superconductor.

From these boundary conditions, one obtains the solu-
tion for the unknown coefficients As,t,σ and Bs,t,σ . With the
anomalous Green function in hand, one may compute the spin
magnetization induced in the normal metal:

M = M0

∫ ∞

−∞

dε

εTh
ReTr{σĝK}, (68)

where εTh = D/L2 is the Thouless energy, and M0 is a nor-
malization constant of the same dimension as M.

The solution for the coefficients As,t,σ and Bs,t,σ are given
in the Appendix and show that the anomalous Green function
ft is zero whereas f↑ = − f↓. Therefore the only component
of the induced magnetization that exists is Mx, which is deter-
mined by the product of the singlet anomalous Green function
fs and the x component of the triplet d vector [2], ( f↓ −
f↑)/2. From the expressions in the Appendix, it then follows
that

Mx ∼ JT0T1�
2. (69)

Therefore the induced magnetization only exists in the
presence of a supercurrent (J ) and in the presence of
both normal tunneling (T0) and a Rashba-like tunneling
(T1). We note that spin-orbit impurity scattering [41] can
cause a similar effect due to supercurrent flow. Moreover,
we note that the effect predicted here is different from
Ref. [40], since no exchange field is required anywhere in the
junction.

IV. CONCLUSION

In summary, we have derived a set of quasiclassical
boundary conditions for spin-orbit coupled interfaces. The
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boundary conditions contain both terms related to transmis-
sion and reflection of particles and are valid both in and out of
equilibrium. As an application, we have shown that a
supercurrent flowing in a superconductor that is coupled
to a normal metal through a Rashba interface will induce
a nonlocal magnetization in the normal metal. The
magnetization is polarized in the direction perpendicular
to both the supercurrent flow and the interface normal.
These boundary conditions may prove useful to predict

new spin-Hall-like phenomena in superconducting hybrid
structures and to model experimental data.

ACKNOWLEDGMENTS

E. H. Fyhn is thanked for useful discussions. This work was
supported by the Research Council of Norway through Grant
No. 240806 and its Centres of Excellence funding scheme
Grant No. 262633 “QuSpin.”

APPENDIX

The coefficients determining the anomalous Green functions are obtained as

Bs,t,σ = As,t,σ e2ikL, (A1)

and A↓ = −A↑ where e± ≡ e±ikL and

A↑ = 4iT1DT0mJeiJy0 s
[

e+
((

−4T 2
0 −16T 2

1 p2
F

)
c2+4s2

(
4T 2

1 p2
F +T 2

0

))
+iDce−k

]
(
−
(

T 2
0 +4T 2

1 p2
F

)2

c2−2Dα2d
(

T 2
0 +4T 2

1 p2
F

)
c−8D2m2T 2

0 T 2
1 p2

F J2s4
)

8e2++4i
((

3T 2
0 /2+6T 2

1 p2
F

)
c+Dα2d

)
ke−De++D2e2−k2

,

As = 4eiJy0 s
[(

−16D2J2T 2
0 T 2

1 cs2m2−4α2d
(

4T 2
1 p2

F +T 2
0

)
D−2c

(
T 2

0 +4T 2
1 p2

F

)(
4T 2

1 p2
F +T0

))
e++i

(
4T 2

1 p2
F +T 2

0

)
kDe−

]
e2+

(
−8

(
T 2

0 +4T 2
1 p2

F

)2

c2−16Dα2d
(

T 2
0 +4T 2

1 p2
F

)
c−64D2m2T 2

0 T 2
1 J2s4

)
+4ikDe+e−

(
Dα2d+3c

(
T 2

0 +4T 2
1 p2

F

)
/2

)
+D2e2−k2

. (A2)

Note that the value of the interface location along the y axis (the coordinate y0) does not affect the value of physical observables
such as the induced nonlocal magnetization.
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Lett. 115, 116601 (2015),

[28] I. V. Bobkova and A. M. Bobkov, Phys. Rev. B 95, 184518
(2017)

[29] V. Mishra, Y. Li, F.-C. Zhang, and S. Kirchner, Phys. Rev. B
103, 184505 (2021)

[30] A. Costa and J. Fabian, Phys. Rev. B 104, 174504 (2021)

064506-8

https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1103/RevModPhys.75.657
https://doi.org/10.1103/RevModPhys.77.1321
https://doi.org/10.1103/RevModPhys.77.935
https://doi.org/10.1103/PhysRevB.89.134517
https://doi.org/10.1038/nphys3242
https://doi.org/10.1088/0034-4885/78/10/104501
https://doi.org/10.1103/RevModPhys.91.045005
https://doi.org/10.1063/1.5138905
https://doi.org/10.1038/nmat3311
https://doi.org/10.1038/s41563-019-0456-7
https://doi.org/10.1038/nphys3742
https://doi.org/10.1103/PhysRevLett.86.2427
https://doi.org/10.1103/PhysRevLett.86.304
https://doi.org/10.1038/nature04499
https://doi.org/10.1103/PhysRevLett.104.137002
https://doi.org/10.1126/science.1189246
https://doi.org/10.1103/PhysRevLett.116.097001
https://doi.org/10.1038/nphys3681
https://doi.org/10.1103/PhysRevB.97.184521
https://doi.org/10.1103/PhysRevB.97.214509
https://doi.org/10.1103/PhysRevB.99.174519
https://doi.org/10.1103/PhysRevApplied.13.014030
https://doi.org/10.1103/PhysRevB.102.020405
https://doi.org/10.1103/PhysRevB.92.134512
https://doi.org/10.1103/PhysRevLett.115.116601
https://doi.org/10.1103/PhysRevB.95.184518
https://doi.org/10.1103/PhysRevB.103.184505
https://doi.org/10.1103/PhysRevB.104.174504


QUASICLASSICAL BOUNDARY CONDITIONS FOR … PHYSICAL REVIEW B 105, 064506 (2022)

[31] V. P. Amin, P. M. Haney, and M. D. Stiles, J. Appl. Phys. 128,
151101 (2020).

[32] J. Linder and T. Yokoyama, Phys. Rev. Lett. 106, 237201
(2011).

[33] J. W. Serene and D. Rainer, Phys. Rep. 101, 221 (1983).
[34] W. Belzig, F. K. Wilhelm, C. Bruder, G. Schön, and A. D.

Zaikin, Superlatt. Microstruct. 25, 1251 (1999).
[35] J. Rammer and H. Smith, Rev. Mod. Phys. 58, 323 (1986).
[36] M. Amundsen and J. Linder, Phys. Rev. B 100, 064502

(2019); 103, 059902(E) (2021).

[37] H. Haug and A. P. Jauho, Quantum Kinetics in Transport and
Optics of Semiconductors (Springer, Berlin, 1996).

[38] A. Cottet, D. Huertas-Hernando, W. Belzig, and Y. V. Nazarov,
Phys. Rev. B 80, 184511 (2009).

[39] F. S. Bergeret, A. Verso, and A. F. Volkov, Phys. Rev. B 86,
214516 (2012).

[40] M. A. Silaev, I. V. Bobkova, and A. M. Bobkov, Phys. Rev. B
102, 100507(R) (2020).

[41] F. S. Bergeret and I. V. Tokatly, Phys. Rev. B 94, 180502(R)
(2016).

064506-9

https://doi.org/10.1063/5.0024019
https://doi.org/10.1103/PhysRevLett.106.237201
https://doi.org/10.1016/0370-1573(83)90051-0
https://doi.org/10.1006/spmi.1999.0710
https://doi.org/10.1103/RevModPhys.58.323
https://doi.org/10.1103/PhysRevB.100.064502
https://doi.org/10.1103/PhysRevB.103.059902
https://doi.org/10.1103/PhysRevB.80.184511
https://doi.org/10.1103/PhysRevB.86.214516
https://doi.org/10.1103/PhysRevB.102.100507
https://doi.org/10.1103/PhysRevB.94.180502

