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Going beyond the Chandrasekhar-Clogston limit in a flatband superconductor
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The Chandrasekhar-Clogston limit normally places stringent conditions on the magnitude of the magnetic
field that can coexist with spin-singlet superconductivity, restricting the critical induced Zeeman shift to a
fraction of the superconducting gap. Here, we consider a model system where the spin-singlet Cooper pairing
in a dispersive band crossing the Fermi level is boosted by an additional flat-band located away from the
Fermi level. The boosting of the pairing in the dispersive band allows for nontrivial solutions to the coupled
gap equations for spin-splitting fields considerably larger than the superconducting gaps at zero field. Further,
the additional Cooper pairing in the flat-band, away from the Fermi level, can increase the superconducting
condensation energy without affecting the paramagnetic susceptibility of the system, making the free energy
favor the superconducting state. This opens up the possibility for spin-singlet superconductivity beyond the
standard Chandrasekhar-Clogston limit.

DOI: 10.1103/PhysRevB.105.L060501

I. INTRODUCTION

Coexistence of superconductivity and magnetism is es-
sential within the field of superconducting spintronics [1–8],
which relies on stabilizing superconductors in proximity
to magnetic materials and realizing phenomena such as
spin-polarized supercurrents [9–11]. Moreover, spin-split su-
perconductors can give rise to very large thermoelectric
effects [12–17], which can be used to convert excess heat into
useful energy.

Magnetism is, however, usually detrimental to supercon-
ductivity. Orbital effects induced in a superconductor due to a
magnetic field can be suppressed by making the superconduc-
tor sufficiently thin and applying the magnetic field in-plane
[16,18,19]. The critical magnetic field is then determined by
the Zeeman-splitting that the superconducting state can sur-
vive [20,21]. As the normal state of the system has a nonzero
density of states at the Fermi level, the free energy can be low-
ered in the presence of a spin-splitting field by spin-polarizing
the system. A spin-singlet superconductor with a gap around
the Fermi level [22], however, has no zero-temperature para-
magnetic susceptibility and is unable to lower its energy in the
same way. When the Zeeman energy gain in the normal state
becomes as large as the superconducting condensation en-
ergy, the system therefore transitions to the normal state. This
places an upper bound on the spin-splitting field that a conven-
tional superconductor can coexist with h = �0/

√
2 ≈ 0.7 �0

[20,21], referred to as the Chandrasekhar-Clogston limit.
Here, �0 is the superconducting gap at zero field. Bypassing
the Chandrasekhar-Clogston limit requires, e.g., spin-triplet
or Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) pairing [23,24],
introduction of spin-orbit coupling in the system [25], or an
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applied voltage bias driving the superconductor out of equi-
librium [26].

Fermionic flat-band systems are systems containing one or
more fermionic energy bands with weak or no dependence on
momentum [27,28]. Such bands can be generated by realiz-
ing particular tight-binding models [29–35] in, e.g., artificial
electronic lattices [36–39] or optical lattices filled with ultra-
cold fermionic atoms [40,41]. For instance, spin-imbalanced
superfluidity in lattices featuring flat bands, such as Lieb
and kagome lattices, have been studied in Refs. [42,43].
Flat-bands can also be realized in twisted or lattice mis-
matched multilayers such as twisted bilayer graphene [28,44–
47], where the flat-bands are defined in a mini-Brillouin zone
corresponding to a long-wavelength superlattice arising from
the mismatch between the periodic structures in the separate
layers. Flat-band systems are appealing for superconductivity
as a larger density of states at the Fermi level normally leads to
a larger superconducting transition temperature. Early studies
identified that the presence of a flat-band could in fact give
rise to a linear dependence of the transition temperature on
the strength of the attractive interactions [48,49], generating
hope of achieving high critical temperatures. With the dis-
covery of superconductivity in magic-angle twisted-bilayer
graphene [45], interest in flat-band superconductivity rocketed
[50–54]. Recently, it has also been shown that superconductiv-
ity in twisted trilayer graphene can survive in-plane magnetic
fields beyond the Chandrasekhar-Clogston limit [55], which
has been interpreted as an indication of spin-triplet pairing
[55,56].

In this Letter, we consider a two-band model system for a
spin-split superconductor, in which a dispersive band crosses
the Fermi level and a flat-band is located in the vicinity of the
Fermi level. We consider both attractive intra- and interband
scattering, giving rise to two coupled self-consistency equa-
tions for the spin-singlet pairing amplitudes associated with
the two bands. The additional Cooper pairing in the flat-band
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gives rise to an increase in the condensation energy, without
affecting the zero-temperature paramagnetic susceptibility of
the system as long as the flat-band does not cross the Fermi
level. The free energy is therefore minimized by the super-
conducting state beyond the Chandrasekhar-Clogston limit.
Moreover, as the flat-band is located away from the Fermi
level, quasiparticle excitations associated with the flat-band
are energetically costly also for large spin-splitting, making
the flat-band contributions to the gap equations more resilient
to spin-splitting fields than the contributions from the dis-
persive band. We therefore find that the spin-singlet pairing
in this system can survive spin-splitting fields significantly
larger than the superconducting gaps at zero field. We close
by discussing how the physics captured by our model can be
realized in experiments.

II. MODEL

Our system is described by an interacting two-band Hamil-
tonian on the form

H =
∑
i,k,σ

εi,k,σ c†
i,k,σ

ci,k,σ

− 1

N

∑
i, j,k,k′

Vi j (k, k′) c†
i,k,↑ c†

i,−k,↓ c j,−k′,↓ c j,k′,↑. (1)

Here, ci,k,σ is an annihilation operator for an electron in band
i with momentum k, and spin σ . The noninteracting part of
the Hamiltonian describes the dispersive band with energies
ε1,k,σ = −2t[ cos(kx ) + cos(ky)] − μ − σh and the flat-band
with energies ε2,k,σ = −μ0 − σh. The strength of the spin-
splitting field is still h, the number of lattice sites is denoted
by N , and μ is the chemical potential. Further, μ0 is the shift
of the flat band away from the Fermi-level, where a positive
μ0 corresponds to the flat-band being located below the Fermi
level. With this parametrization, the Fermi level is moved
relative to the dispersive band when μ is varied, while the
separation of the flat-band and the Fermi level is fixed. The
band structure in the absence of spin-splitting is illustrated
in Figs. 1(a) and 1(b). The Hamiltonian in Eq. (1) is similar
to the one used in Ref. [48], which discussed boosting of
the pairing in a dispersive band through the presence of a
flat-band. However, no spin-splitting field was considered in
Ref. [48].

The interaction term in the Hamiltonian allows for attrac-
tive BCS-type intraband and interband scattering [57]. The
interaction is taken to be attractive in a thin shell of width
2h̄ωc around the Fermi level

Vi j (k, k′) =
{

Vi j > 0, |εi,k|, |ε j,k′ | � h̄ωc,

0, otherwise.
(2)

Here, εi,k is defined from εi,k,σ = εi,k − σh, and Vi j is the
band-dependent attractive interaction strength. In the follow-
ing, we neglect any hybridization between the bands or other
changes to the normal state band structure arising from the in-
teraction, and investigate up to what values of h the attractive
interaction can give rise to superconductivity.

Performing a standard mean-field theory, defining spin-
singlet gaps �i(k) = 1

N

∑
j,k′ Vi j (k, k′)〈c j,−k′,↓c j,k′,↑〉, and

FIG. 1. (a), (b) Illustration of the band structure of the two-
band model in the absence of spin-splitting. Dashed lines represent
three different values of the chemical potential μ = −0.2t , −2t ,
and −3.8t . The flat-band is fixed μ0 below the Fermi level, which
is illustrated by the blue line 2 in panel (b) for a specific choice
of the chemical potential. (c) Superconducting gap versus the ra-
tio between the strength of the spin-splitting field and the gap at
zero field for the three different chemical potentials in (a). The
Chandrasekhar-Clogston limit is indicated by the vertical dashed
line. The parameters have been set to T = 0, V11 = V12 = V21 =
V22 = 0.01t , μ0 = 0.00495t , and h̄ωc = 0.05t .

introducing the necessary Bogoliubov-de Gennes transforma-
tion, the coupled gap equations take the form

�i(k) = 1

N

∑
j,k′

Vi j (k, k′)
� j (k

′)
2Ej,k′

× 1

2

[
tanh

(
β

2
Ej,k′,↑

)
+ tanh

(
β

2
Ej,k′,↓

)]
. (3)

Here, Ei,k =
√
ε2

i,k + |�i(k)|2, the quasiparticle energies are
Ei,k,σ = Ei,k − σh, and β = 1/(kBT ) is inverse temperature.
The free energy, which determines whether the superconduct-
ing state minimizes the free energy, is expressed as

F = 1

4

∑
i,k,σ

�2
i (k)

Ei,k
tanh

(
β

2
Ei,k,σ

)

+
∑
i,k

(εi,k − Ei,k) − 1

β

∑
i,k,σ

ln(1 + e−βEi,k,σ ). (4)
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The first term in this expression is simply a generalization of
the term N�2/V , which it reduces to for the case of a single
electron band.

III. RESULTS

For simplicity, we start with the case where all the interac-
tion strengths are equal (V11 = V12 = V21 = V22 = V ). In this
case, the two coupled gap equations in Eq. (3) reduce to a
single self-consistent equation for the gap � = �1 = �2. By
numerically solving this gap equation and ensuring that the
free energy in Eq. (4) is minimized, we determine the value of
the gap as a function of the strength of the spin-splitting field
h. The results at zero-temperature are presented in Fig. 1(c)
for different values of the chemical potential μ. As displayed
in this figure, a nonzero superconducting gap can exist for
spin-splitting fields significantly larger than the gap at zero
field �0.

In the more familiar case of a superconductor with a
single dispersive band crossing the Fermi level, the super-
conducting gap vanishes when the field strength reaches the
Chandrasekhar-Clogston limit and the normal state minimizes
the free energy. In Fig. 1(c), this limit is indicated by a vertical
dashed line. The mechanism for this transition is easily seen
from the expression for the free energy in Eq. (4) if we limit
ourselves to the contributions from i = 1, corresponding to
the dispersive band. For the superconductor, as long as the
spin-splitting is smaller than the gap, all the quasiparticle
energies are positive and the last term in the free energy
vanishes at zero temperature. For the normal state, however,
there is no gap in the excitation spectrum and the energies
E1,k,σ = |ε1,k| − σh can turn negative, giving rise to negative
contributions from the last term in the free energy. This corre-
sponds to a lowering of the normal state free energy through
the system becoming spin-polarized. Comparing the rest of
the free energy for the two phases gives rise to the conden-
sation energy, favoring the superconducting state. When the
strength of the spin-splitting field is increased, the lowering of
the free energy of the normal state eventually dominates over
the condensation energy, and the normal state prevails.

In the present case, there are additional contributions to the
free energy arising from the flat band. As long as the quasipar-
ticle energies E2,k,σ are shifted away from the Fermi level by
|μ0| > h, these energies will always be positive even without
a gap. At zero temperature there are then no contributions
from the last term in the free energy arising from the flat-band,
regardless of whether the system is in the superconducting or
normal state. The effect of the flat-band on the free energy
is then simply to significantly increase the condensation en-
ergy due to its large density of states. We therefore find that
having a nonzero gap minimizes the free energy also beyond
the Chandrasekhar-Clogston limit. Moreover, considering the
dispersive band, when the spin-splitting becomes larger than
�0, the gaps in the separate spin-bands no longer overlap and
the superconducting state is able to lower its free energy by
spin-polarizing the quasiparticles as discussed in Ref. [58].
Such “gapless” superconductivity arises from time-reversal
symmetry breaking [59,60] and has been encountered in, e.g.,
systems with magnetic impurities [61,62] and in the presence
of a magnetic field [63,64]. For a model with two bands

crossing the Fermi level, the state where the spin-splitting is
larger than the superconducting order parameter of both bands
was discussed, but not found to be stable, in Ref. [65].

Turning to the gap equation, for a spin-splitting field larger
than the gap, the energies E1,k′,↑ and E1,k′,↓ on the right-hand
side of Eq. (3) can end up with opposite signs, leading to a
cancellation of the contributions. The first contributions to go
are those with the smallest energies E1,k′ , i.e., the most impor-
tant contributions from the dispersive band. For the flat-band,
however, the quasiparticle energies are always positive for
h <

√
μ2

0 + �2. The flat-band contributions to the gap equa-
tion are therefore robust towards spin-splitting. By having the
flat-band sufficiently close to the Fermi level (|μ0| < V/2),
nontrivial solutions to the gap equation can then be guaranteed
as long as the field is not large enough to change the sign of
quasiparticle energies.

Closer investigation of the free energy reveals that, when
contributions from the dispersive band are neglected, the su-
perconducting state is no longer favored for h >

√
μ2

0 + �2−
1
2 �2/

√
μ2

0 + �2. This expression is larger than or equal to |μ0|
and arises from the paramagnetic energy gain of the normal
state compensating the energy gain associated with the su-
perconducting gap. Moreover, the expression is smaller than√
μ2

0 + �2, meaning that at this field strength there still exists
a nontrivial solution to the gap equation if |μ0| < V/2. The
critical field is then limited by the free energy, giving rise
to a first-order transition where the gap suddenly vanishes.
Further, for μ2

0 	 �2, the critical spin-splitting field simply
becomes hc ≈ |μ0|, where the maximum value of |μ0| that can
produce a nontrivial solution to the gap equation is limited by
the interaction strength V .

The dependence of the gap equation on the strength of the
spin-splitting field can be observed in Fig. 1(c), and is most
easily seen by considering the pink curve corresponding to
μ = −0.2t . For h < �0, the curve is flat as the spin-splitting
has no effect on the contributions to the gap equation. Then, as
h > �0, contributions from the dispersive band start canceling
out, leading to a decrease in the gap. This corresponds to
the minimum energy of breaking a Cooper pair becoming
zero, as discussed by Abrikosov in the context of gapless
superconductivity in the presence of magnetic impurities [66].
In the present case, a nonzero superconducting gap exists until
around h > |μ0|, beyond which the free energy favors the
normal state.

Taking μ = −2t as an example, hc/�0 = 5.7 and, calcu-
lating the critical temperature at zero field, �0/Tc = 0.87.
For these parameters, we then obtain hc/μB = 7.4 T/K × Tc,
where μB is the Bohr magneton. For μ = −0.2t , the ratio
�0/Tc becomes larger as the dispersive band contributes more
to the gap equation, and oppositely for μ = −3.8t . Reducing
|μ0| can give rise to higher values for �0/Tc. Further, the
temperature dependence of the results for μ = −2t are pre-
sented in Fig. 2. As displayed in Fig. 2(b), the superconductor
to normal state transition becomes a second-order transition
at higher temperature. The change from a first-order to a
second-order transition is found to take place slightly above
T/Tc = 0.06. This ratio can be increased by moving the flat-
band closer to the Fermi level.

We next demonstrate how our results are influenced
by band-dependence of the interaction strengths. We first
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FIG. 2. (a) Superconducting gap � as a function of temperature
T and the strength of the spin-splitting field h for the parameters in
Fig. 1 with μ = −2t . (b) Curves showing �(h) for a selection of
temperatures.

consider the effect of reducing the interband scattering by
taking V12 = V21 smaller than V11 = V22. Solving the coupled
gap equations and checking the free energy, we obtain the
results in Fig. 3 . As the dominant contributions to the gap
equations arise from the flat-band, we find that �2, which
obtains contributions from V21�1 and V22�2, is not strongly
affected by a reduction of V21. However, �1 obtains contribu-
tions from V11�1 and V12�2, and a reduction of V12 therefore
leads to a significant reduction of �1. Substantial pairing in
the dispersive band crossing the Fermi level therefore requires
a sufficiently large interband interaction strength. In all cases,
the gaps survive until around h > |μ0|, which is considerably
larger than the gaps at zero field.

Finally, we consider the case where we also increase the
intraband interaction in the dispersive band compared to the
intraband interaction in the flat-band. The results for �1 are
displayed in Fig. 4, showing that significantly increasing V11

only leads to a moderate increase in �1 as the dominant
contributions to the gap equations still arise from the flat-band
due to its large density of states. A moderate increase in �1

has little impact on the results for �2 which therefore varies
little when we increase V11. The gaps once again survive until
around h > |μ0|, where the magnitude of |μ0| that can still

FIG. 3. (a) �1 (b) �2 as a function of the strength of the spin-
splitting field h for four different ratios of V12/V11. The parameters are
set to T = 0, μ0 = 0.00495t , V11 = V22 = 0.01t , V12 = V21, h̄ωc =
0.05t , and μ = −2t .

FIG. 4. The gap �1 as a function of the strength of the
spin-splitting field h for four different ratios of V11/V22. The pa-
rameters are set to T = 0, μ0 = 0.00495t , V22 = 0.01t , V12 = V21 =
0.005t, h̄ωc = 0.05t , and μ = −2t .

provide a nontrivial solution to the gap equations is deter-
mined by how large we take V22.

IV. OUTLOOK

We have presented a mechanism for how a spin-singlet su-
perconductor can survive beyond the Chandrasekhar-Clogston
limit. The mechanism relies on having a sufficiently disper-
sive band crossing the Fermi level, an additional flat-band
nearby, sufficient intraband interaction in the flat-band, and
some interband scattering. Experimental realization would
typically be through a thin-film superconductor with a, prefer-
ably tunable, induced spin-splitting. The spin-splitting can be
achieved by exposing the superconductor to a strong in-plane
magnetic field, or to a combination of a ferromagnet and an
external field where the additional external field provides the
tunability of the strength of the spin-splitting [26]. The nec-
essary band structure could be realized in twisted multilayers,
artificial electronic lattices or alternatively in optical lattices.
The especially relevant case of a dispersive band on top of a
flat-band corresponds to the limiting case where the chemical
potential in Fig. 1 is taken almost down to the bottom of
the band, e.g., μ = −4t + μ0. Importantly, the flatness of the
flat-band should be stable in the presence of spin-splitting. Fi-
nally, the interactions could originate with phonons in twisted
multilayers or be engineered in artificial systems. The choice
of interactions in Fig. 1 could, e.g., in principle correspond
to the electrons in both bands coupling similarly to Einstein
phonons. As shown in Figs. 3 and 4, the results for the critical
field are, however, quite robust to band-dependence of the
interaction strengths, allowing for reduction of the interband
scattering as well as for a much larger intraband scattering in
the dispersive band than in the flat-band.

More exhaustive studies of realistic systems with similar
properties as our model system, taking into account the details
of the band structure and the interactions, should be performed
to more closely relate the results to experiments. Special
attention should be paid to the theoretical approach when a
flat-band is present and when the Fermi energy is not dominat-
ing the other energy scales in the system, which, e.g., can be
the case when the chemical potential is close to the bottom of
the conduction band. Future work could also include analysis
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of the stability of other superconducting phases such as FFLO
states, or investigation of, e.g., single-band models featuring
bands that are partially flat and partially dispersive [67], where
our mechanism in principle also could be applicable.

V. SUMMARY

Our results demonstrate that spin-singlet superconductivity
beyond the Chandrasekhar-Clogston limit could be possible

in flat-band systems. Future studies should perform more
detailed calculations for realistic systems to more closely con-
nect the findings to experiments.
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