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a b s t r a c t

Fast and robust computation for population balance models is a crucial requirement for

simulating particulate systems. Despite all the recent advances in developing relevant

computational algorithms, either efficiency or robustness can only be achieved at the

expense of the other. However, optimal compromise is possible by having prior estimates

of the system's internal length and time scales. Thus, an approximation technique is

introduced in this study to extract equilibrium and transient behaviors for a particulate

system considering coalescence and breakage phenomena. The approximation method is

developed by simplifying assumptions on the available analytical solution for a spatially

homogeneous population balance equation with simple kernels. The derived equilibrium

and transient equations suggest that the system is governed by a dimensionless group

that can describe the equilibrium distribution of the system as well as the rate and the

direction that the system is likely to evolve. The method is applied to two different sets of

complex breakage and coalescence kernels used for liquid-liquid dispersed systems. The

approximated time and length scales were validated with numerical results; thus, the

approximation can be used to generate targeted element-based orthogonal collocation

grids for fast and robust computation of transient and steady-state particulate systems.

This approach can significantly decrease the computation time, typically by 40–70 % for

steady-state conditions.

© 2022 The Authors. Published by Elsevier Ltd on behalf of Institution of Chemical

Engineers. This is an open access article under the CC BY license (http://creative-

commons.org/licenses/by/4.0/).

1. Introduction

Population balance modeling has been widely used
throughout past decades as the main backbone to describe
particulate systems via evolution of the particle size dis-
tribution as well as functions of system operating conditions
and physicochemical properties (Ramkrishna, 2000). Such
models are used frequently in different areas such as

crystallization, microbial cell growth, granulation, poly-
merization, and multiphase fluid systems to support process
design, optimization, and control (Falola et al., 2013; Qamar,
2014). Notably, the population balance equation (PBE) is the
primary tool to simulate separation and transport processes
involving multiphase fluids by applying fundamental
knowledge regarding coalescence and breakage phenomena.
Such simulations aim to predict the evolution of droplet size
distribution (DSD) formed by breakage and coalescence
phenomena that might significantly impact equipment
performance.
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One powerful class of methods for solving PBE is the
weighted residue methods (MWR). They have the so-called
infinite order of accuracy comparing to other methods such
as class methods, finite volume method, and finite element
method (FEM) (Mantzaris et al., 2001a), as well as better
convergence behavior (Solsvik and Jakobsen, 2012). These
properties can increase the computational efficiency as
normally coarser grids can adequately provide the same ac-
curacy compared with other methods (Dorao and Jakobsen,
2006). Here, the dependent variable (i.e. DSD) is approxi-
mated with a truncated series of so-called trial function over
the entire computational domain subject to minimization of
the product of the governing equation with the test function
(Mantzaris et al., 2001a). Several spectral methods have been
proposed based on the choice of trial and test functions,
namely Galerkin, Tau, collocation, and least square. In col-
location methods, the test function is a Dirac delta function,
assuring exact satisfaction of equation at the collocation
points (Mantzaris et al., 2001a). Moreover, the collocation
method provides the simplest and most computationally
efficient scheme with accuracy and stability similar to the
Galerkin method (Mantzaris et al., 2001a; Solsvik and
Jakobsen, 2013). To add more flexibility to these methods,
several researchers have also used MWR in an element-
based framework (Costa et al., 2018; Gelbard and Seinfeld,
1978; Mahoney and Ramkrishna, 2002; Mantzaris et al.,
2001b; Nicmanis and Hounslow, 1998, 1996; Rigopoulos and
Jones, 2003; Zhu et al., 2009).

The current study is part of a bigger effort in which a
modular C+ + model library (PBmulib) is being developed
based on a population balance modeling approach for se-
paration and transport of multiphase fluids in the form of
crude oil and water emulsions. According to the level of
complexity in the systems as well as the physics involved,
these models are developed for 0, 1, and 2 spatial dimen-
sions. These three modules can cover wide applications
ranging from multiphase pipe flow to batch settlers/skim-
mers and 3-phase separators. The structure of the library
facilitates a modular design and development for building
more complex processes fast. Additionally, leveraging a C+ +
core ensures fast computation speeds on modern platforms.
The library will allow the PBE models to be readily in-
corporated into common general-purpose or specialized si-
mulation software environments such as MATLAB, Python,
and HYSYS.

The main challenge for developing such a library is the
ability to perform fast and robust computations to solve
equilibrium and transient population balance models. This is
compromised by the inherent numerical challenges asso-
ciated with the PBE. A good description of such challenges is
presented by Rigopoulos and Jones (2003); Zhu et al. (2008),
which can be summarized as follows:

• Proper choice for truncation of the PBE internal domain.

• Internal consistency of the numerical schemes.

• Efficient computation of equilibrium distributions.

Nomenclature

c Constant coalescence rate in analytical so-
lution (m s3 1).

cest Estimated constant coalescence rate (m s3 1).
C C,1 2 Tuning parameters used in approximation of

transient time.
fn r, Radius-based number density function (m 4).

fn v, Volume-based number density func-

tion (m 6 ).
fv r, Radius-based volume density function (m 1).

f̂v r, Dimensionless radius-based volume density
function ( f rv m).

g Breakage frequency (s 1).
k Coalescence rate m s( 3 1).
k k,c c1 2 Tuning parameters used in coalescence

model.
k k,b b1 2 Tuning parameters used in breakage model.
k1 Time-dependent coefficients used in the

analytical solution (m 6).
k2 Time-dependent coefficients used in the

analytical solution (m 3).
k kˆ , ˆ1 2 Dimensionless time-dependent coefficients

used in the analytical solution.
m0 0th order moment equal to number of dro-

plets per unit volume (m 3).
m3 3rd order moment.
M Dimensionless group number.
N Number of droplets per unit volume (m 3).
n̂ Dimensionless time-dependent coefficient

used in the analytical solution.
r Droplet radius (m).
r̂ Dimensionless droplet radius (r r/ m).

rm Upper bound of droplet radius internal do-
main (m).

s Parameter used in breakage frequency
kernel (m s3 1).

sest Estimated parameter used in breakage fre-
quency kernel (m s3 1).

t Time (s).
t̂ Dimensionless time (t t/ c).
tc Characteristic time (s).
v Droplet volume (m3).
vm Upper bound of droplet volume internal do-

main (m3).

r Radius-based daughter distribution (m 1 ).

v For volume-based daughter distribu-
tion (m 3 ).
Gamma function.

1 Inverse gamma function.
Dirac delta function.

µr Average droplet radius (m).
µ̂r Dimensionless average droplet radius.

r Droplet radius standard deviation (m).
ˆr Dimensionless droplet radius standard de-

viation.
Volume fraction.
Turbulent energy dissipation rate (m s2 3).
Dispersed phase surface tension (Nm 1).

c Continuous phase density (kgm 3).

d Dispersed phase density (kgm 3).

E Collision efficiency used in coalescence rate
model.
Coalescence efficiency used in coalescence
rate model (m s3 1).
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• Strong non-linear behavior introduced by the coalescence
terms resulting in a complex convergence behavior.

Mathematically, the internal coordinate of the PBE ex-
pands to infinity. Thereby, for numerical computation, the
upper bound of the internal coordinate should be truncated
by a finite value. Choice of truncation point can drastically
affect the accuracy of the solution as well as the stiffness of
the equations. If underestimated, solution methods would
fail to produce correct results. Whereas, in the case of over-
estimation, it would lead to poor results as wider domain
ranges demand finer grids. Additionally, a stiffer system of
ODEs would be expected, which consequently results in low
computational efficiency. This takes place as tiny values in
the tail region can attain large particle volumes, making the
numerical convergence computationally costly (Nicmanis
and Hounslow, 1998). Furthermore, in cases where the
system of interest is in equilibrium, the equilibrium dis-
tribution is often obtained indirectly by allowing the tran-
sient system to evolve over time until it reaches equilibrium.
This is usually the case when the equations are highly non-
linear and a steady-state solution cannot be obtained directly
(Rigopoulos and Jones, 2003). For such problems, having a
rough estimation for system transient time can be extremely
valuable since many of the available numerical schemes can
suffer from accumulated error and lack of internal con-
sistency in excessive numerical time integration.

Reviewing the available literature, the solutions for this
challenge can be categorized into two main approaches
(Rigopoulos and Jones, 2003):

• Adopting a fixed grid technique, monitoring the solution,
and changing the domain bound if required.

• Applying an adaptive or moving grid by remeshing algo-
rithms.

The conventional fixed grid techniques require firm re-
liance on the user post interpretation of the results and re-
selection of the domain bound in case of unphysical results.
Attarakih et al. (2004) developed a technique to estimate the
total finite domain error. In their approach, the error is
checked at each integration step; once the tolerance is vio-
lated, the calculations are stopped and restarted again with
improved estimation of lower and upper bounds of the do-
main. However, in this method, the grid is preliminarily
generated according to the initial and/or inlet distributions,
and for cases with the equilibrium distribution located away
from those known distributions, it requires multiple trial and
error iteration to modify the grid. Such an approach can be
computationally expensive.

The other alternative is to track the changes in the dis-
tribution function via a moving grid technique. Several
techniques with such a strategy have been proposed by dif-
ferent researchers (Attarakih et al., 2002; Briesen, 2009;
Duarte and Baptista, 2007; Lee et al., 2001; Sewerin and
Rigopoulos, 2017). However, despite the robustness these
techniques offer, the extra computational overhead can be
high compared to their counterpart fixed grid techniques due
to the required interpolation step involved.

From this brief overview, preliminary information about
the equilibrium and transient behavior of the problem
can be valuable. A preliminary estimation of the equilibrium
distribution, together with the initial/inlet distribution in-
formation, can be used to make the fixed grid techniques

more robust. On the other hand, the estimated time scale of
the system can be used to set proper simulation time, which
is vital for robust computation and model parameter esti-
mation particularly for steady-state PBE.

In this study, to address these issues, a new approximation
technique is proposed to estimate the steady and transient
behaviors in the forms of time and length scales for a spatially
homogeneous particulate system considering breakage and
coalescence. Subsequently, these scales are utilized to form an
element-based orthogonal collocation scheme to discretize
and solve both transient and steady-state PBE.

2. Mathematical analysis of spatially
homogeneous PBE

2.1. Radius-based truncated PBE for dimensionless
volume density function

In this study, we consider the population balance equation
for a spatially homogeneous particulate system without in-
flow/outflow. For more ease of derivation, we use the PBE for
a radius-based volume density distribution in dimensionless
form. This will make working with DSD more convenient. To
be able to analyze the problem numerically, the internal
domain is truncated to a maximum droplet radius (rm) which
yields the following equation (for detailed derivation the in-
terested reader is referred to the Supplementary material):
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where the terms on the right-hand side of the equation from
left to right are breakage birth, breakage death, coalescence
birth, coalescence death. r̂ is dispersed phase dimensionless

droplet radius (r r/ m), t̂ is dimensionless time (t t/ c), f r tˆ (ˆ, ˆ)v r, is the

dimensionless radius-based volume density for droplet radius r̂
at time t̂ , g r(ˆ ) is the breakage frequency for droplet radius r̂,

r r(ˆ , ˆ )r is the radius-based daughter distribution of droplet ra-

dius r̂ resultant from breakage of droplet size r̂ , and k r r(ˆ , ˆ ) is
the rate of coalescence between droplet sizes of r̂ and

=r r rˆ (ˆ ˆ )3 3 1/3. tc is the selected characteristic time scale for
the system. vm is the equivalent droplet volume for droplet size
equal to rm. The factor 2 in the breakage birth term appeared as
only binary breakage of droplets are considered in this study.

By truncating the domain, the main uncertainty regarding
the numerical solution of the PBE appears in the problem. It
must be noticed that at this stage, the proper numerical value
of rm is still unknown. Now, in the mentioned PBE framework,
the distribution features can be conveniently computed by:
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where N, , µ̂r and ˆr are the total number of droplets per unit
volume, volume fraction, dimensionless average droplet ra-
dius, and dimensionless droplet radius standard deviation,
respectively.

2.2. A simple kernel with an analytical solution

An analytical solution to PBE subject to simple kernels
( = = =g r sr k r r c r r r r( ) , ( , ) , ( , ) 3 /r

3 2 3 where s and c are
constants) has been proposed by Benjamin and Madras
(2003). They solved transient PBE for the mentioned system
subject to an initial DSD given by an exponential form. The
dimensional analysis of PBE for this system shows that
equilibrium distribution can be characterized merely by one
dimensionless group (details in the Supplementary material).
The analytical solution in the form of dimensionless radius-
based volume density, takes the following form (derivation in
the Supplementary material).

=f r t k t r k t rˆ (ˆ, ) ˆ ( ) ˆ exp( ˆ ( ) ˆ )v r, 1
5

2
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(6)

where k̂1 and k̂2 are as follows:
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where m (0)0 is 0th order moment and equivalent to the total
number of droplets at initial condition. m3 is the 3rd order
moment and related to the volume fraction of the dispersed
phase by 3 /(4 ). n tˆ ( ) is also defined as:
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By setting time in Eqs. 7 and 8 to infinity, equilibrium

distribution yields using k̂1 and k̂2 as follows:
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s
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Eq. 6 describes the dimensionless volume density dis-
tribution at a specific time. However, the focus of this study
is to propose some simple relations that can approximate the
equilibrium and transient behavior of any given kernels. To
do that, it is necessary to derive some key features for the
distributions. Such features are average droplet radius,
standard deviation, peak droplet radius as well as head and
tail of the distributions. The mentioned features are pre-
sented in the Supplementary material for transient dis-
tributions.

2.3. Steady-state analysis of general kernels

As mentioned in the previous section, the whole equilibrium
distribution for the simple set of kernels can be characterized

by only one dimensionless group of parameters. The men-
tioned property can also be seen in the main volume-density
distribution features at equilibrium condition as follows:

µ = M Mˆ
4
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where the dimensionless term M is defined as below:

=M
rs

c m
6

1
6

(16)

Accordingly, the significant property of these simple ker-
nels is that all the key features of the equilibrium distribution
have a linear relation to the dimensionless number M. Eqs.
13–15 provides the exact values for the equilibrium behavior
of the simple kernels. However, it is generally possible to
extend this approach to approximate these behaviors for any
other kernels of interest. Such a task requires the extraction
of some values from the kernel function as representative
values for c and s for the equilibrium distribution. In the
system with the analytical solution, the values of c and s are
constants while generally they can have functionality of the
droplet size. For that, we propose averaging these values
weighted by the equilibrium volume density distribution
over the internal domain as follows:

=s f r
g r
r

dr( )
1 ˆ (ˆ, )

( )
ˆest v r0 , 3 (17)

=c f r f r k r r dr dr( )
1 ˆ (ˆ , ) ˆ (ˆ, ) ( , ) ˆ ˆest v r v r2 0 0 , , (18)

The above terms are computationally expensive as the
single, and especially double integrals are expensive to
compute numerically; additionally, they contain the equili-

brium distribution ( f rˆ (ˆ , )v r, ) that is still unknown at this
point, which we aim to estimate. To make the math more
manageable and to avoid the difficulties of evaluating of the
integral, we assume the whole distribution is concentrated at
the average droplet radius. Mathematically, this can be
handled using the Dirac delta function at the average points

as µ=f r rˆ (ˆ, ) (ˆ ˆ ( ))v r r, . It is worth mentioning that other

forms of functions for f rˆ (ˆ, )v r, can still be assumed (e.g. ex-
ponential and log-normal); however, such an assumption
would need directly solving the above integrals. In any case,
the first thing to do is to start from µ̂ ( )r as an initial guess
and solve iteratively.

The mentioned Dirac delta function assumption sig-
nificantly simplifies the Eqs. 17 and 18 to the following ones:

µ
µ

=s
g

( )
( ( ))

( )
est

r

r
3 (19)

µ µ=c k( ) ( ( ), ( ))est r r (20)

Now, the approximated representative values have only
the dependency of the average droplet radius of equilibrium
distribution. At the same time, according to Eq. 13, the
average droplet radius of equilibrium distribution has the
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dependency of dimensionless value M, which can be calcu-
lated by knowing the representative values s ( )est , c ( )est . In
other words, Eqs. 13, 19, and 20 forms a nonlinear system of
equations which can be solved by any numerical technique
to yield the values for s ( )est , c ( )est , and µ̂ ( )r . For that pur-
pose, an illustrating iterative approach is proposed and de-
monstrated in the Supplementary material section.

By knowing the numerical values for s ( )est , c ( )est , it is
now possible to approximate the equilibrium distribution
using Eq. 6. Consequently, the internal domain bound can be
simply specified by calculating the head and tail of the
equilibrium distribution. One possible way to define head
and tail is by obtaining the droplet radius sizes at which the
smaller droplet sizes yield a specific value of volume fraction
(typically 1 % and 99 % for the tail and head, respectively).
This can mathematically be defined as follows:

= =x f r drˆ (ˆ, ) ˆx

r

v r0

ˆ

,

x

(21)

where x is the volume fraction of interest and can have a
value between 0 and and the typical values would be 0.01
and 0.99 for tail and head of the distribution, respectively.

By using this definition (Eq. 21) and substituting f̂v r, using Eq.
6, the following equation is obtained.

= = +
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Rearranging Eq. 22, forms the final equation to calculate
the head and tail of the equilibrium distribution as follows:
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Eq. 23 is a nonlinear equation and can be solved nu-
merically for r̂x for a target value of x. Consequently, for
steady-state PBE, the truncation point for the internal do-
main can be specified as head plus a safety margin. For
transient PBE, this value should be selected considering the
initial distribution and approximated equilibrium distribu-
tion simultaneously. This issue is explained with more de-
tails in Section 3.

2.4. Transient analysis of general kernels

The characteristic time scale for a transient system can be
defined as the transient time required for the system to
evolve from the initial condition to a particular state closer to
the equilibrium state. For our specific case, we approximate
this value according to the transient behavior of the average
droplet radius. That is, the time required for the average
droplet radius to move a fraction of the distance between
initial and equilibrium average radii. This can mathemati-
cally be expressed by:

µ µ µ µ= +t xˆ ( ) [ ˆ ( ) ˆ (0)] ˆ (0)r x r r r (24)

The value of x in Eq. 24 can be selected between 0 and 1. In
this study, we consider x as 0.9. This choice was based on our
observation (the cases that we studied in this work) that

× t3 0.9 can practically be considered as the required time to
reach the equilibrium state. However, it might not be ap-
propriate for other kernels, and the proper choice of these
values (x and the factor of the time scale) can be evaluated
and possibly slightly modified for a specific system under
study to achieve an equilibrium state.

For the simple kernels, Eq. 24 can be solved for tx to yield
exact values of transient time; nonetheless, this equation
cannot be directly extended to other kernels as the re-
presentative values s t( )est , c t( )est are not generally constant,
and their time functionalities needs to be considered. To
overcome this, we propose an approximation of the transient
time by integrating the rate of change in the average droplet
radius. Mathematically, the problem can be outlined as:

µ
µ=

µ

µ

µt d
1

( ˆ )
ˆx
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d
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r
ˆ (0)

ˆ ( )

ˆ
r

r x
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(25)

The term µ µd dtˆ / ( ˆ )r r is the rate of change in the average
droplet radius of dimensionless volume density distribution
at any given µ̂r and has the dimension equal to the inverse of
time. A useful property of the analytical solution for the
simple kernels is that initial form of the distribution (Eq. 6) is
always preserved. Taking advantage of it, we can calculate

µ µd dtˆ / ( ˆ )r r by just setting time to zero provided that wemodify
the value for the total number of droplets per unit volume,m0

according to the pertinent µ̂r. Based on the derived equation
for the transient average radius in the appendix section, this
term can be mathematically obtained for the simple kernels
as follows:

µ
µ =

d

dt r n m
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where n̂ (0) is simply equal to one and dn dtˆ / (0) can be calcu-
lated as:

=dn
dt

m c
n
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2

( ˆ ( ) 1)0 2
(27)

By substitution, Eq. 26 takes the following form:
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As also mentioned, m0 in Eq. 28 should be corrected by
taking the change in the initial number of droplets into ac-
count as the distribution evolves. This value can be calcu-
lated by Eq. 2. as follows:
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m
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0
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1 ,
3 (29)

Similarly, to simplify the equation and rectify the need to
calculate the integral numerically, the whole distribution is
assumed to be concentrated at the average radius,

µ=f r t rˆ (ˆ, ) (ˆ ˆ )v r r, . By that simplification, number of dro-

plets per unit volume at every µ̂r is given by:

µ
µ
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By plugging Eq. 30 in 28, it yields:

µ
µ

µ
µ

µ µ
µ

d

dt r

c r s

c
ˆ

( ˆ ) 0.0474
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ˆ
1 8.3776
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m r r
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3 2

6 6

(31)

Eq. 31 describes the key dependencies for the rate of
change in the average droplet radius for a dimensionless
volume density distribution. However, due to the simplifying
assumptions made, Eq. 31 cannot properly predict the time
scales for the simple kernel. To remedy this, we reevaluate
the constant numerical values in Eq. 31 as follows.
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We can make use of the fact that µd dtˆ / (0)r should be equal
to zero at equilibrium distribution, i.e., µ = Mˆ 0.8355r . This
constraint gives the exact value of C2 equal to 2.94.
Additionally, the numerical value of C1 is tuned for the
simple kernels with the available analytical solution using
several test cases by changing different numerical values for
, s, and c. Adjusting C1 was performed by minimization of

the average absolute relative deviation (AARD) of total stu-
died cases using MATLAB unconstrained nonlinear optimi-
zation functionality (fminunc). The deviation was the
calculated between predicted time scale (t0.9) by Eq. 32 and
that obtained from numerical computation. The final equa-
tion takes the following form.
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Having derived the expression of µ µd dtˆ / ( ˆ )r r for simple
kernel, the next step is to extend it to generalized kernels
which can be done by replacing c and s terms with estimated
values similar to the previous section as follows:
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(34)

where sest and cest can be estimated by:

µ
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r
3 (35)

µ µ µ=c k( ˆ ) ( , )est r r r (36)

Moreover, Eq. 34 can also be rearranged based of the di-
mensionless group M as follows:
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According to the derived expression, when both the
breakage and coalescence are present in the system, the rate
of the change in the average radius for a dimensionless vo-
lume density is proportional to the volume fraction of dis-
persed phase, the average value of the coalescence rate at
that state, and inversely proportional to the square of dis-
tribution average radius. This rate is also influenced by the
term µ M(1 2.94 ˆ / )r

6 6 which determines how remote the
system is from equilibrium state. This term can also predict
the direction that the distribution is likely to evolve as:

• When positive (equivalent to µ > Mˆ 0.8355r ), the distribu-
tion evolves toward larger droplet sizes.

• When negative (equivalent to µ < Mˆ 0.8355r ), the distribu-
tion evolves toward smaller droplet sizes.

• When zero (equivalent to µ = Mˆ 0.8355r ), the system is at
equilibrium state.
Furthermore, the following similar dependencies are de-
ducted for the systems with either pure breakage or coa-
lescence as follows:

• For a system with pure coalescence, the rate of the change
in the average radius for a dimensionless volume density
is only proportional to the volume fraction of dispersed
phase, and the average value of the coalescence rate at
that state and inversely proportional to the square of
distribution average radius.

• For a system with pure breakage, the rate of the change in
the average radius for a dimensionless volume density is
only proportional to both average breakage frequency at
that state and distribution average radius.

Now, having the explicit expression for µ µd dtˆ / ( ˆ )r r , the time
scale for the system can be conveniently calculated ac-
cording to Eq. 25.

3. Numerical analysis of the PBE

The orthogonal collocation method (Villadsen and
Michelsen, 1978) is used to discretize the internal domain in
an element-based form. The primary strategy for generating
the grid is to use the least number of elements while keeping
the order of the polynomials high enough to have proper
error decaying properties. However, it is still helpful to spe-
cify a certain number of elements to make the technique
more flexible. Collocation points are selected according to
the roots of the Jacobi polynomials, and quadrature weights
are calculated accordingly. The monotone piecewise cubic
Hermite interpolation technique was used (Fritsch and
Carlson, 1980) to map the grid points to collocation points
(which is essential to calculate the integrals in the coales-
cence and breakage birth rates). The orthogonal collocation
points (Gauss-Radau and Gauss-Lobatto) are not uniformly
distributed over an element but more concentrated closer to
the edges. As a result, in the case of applying the full spectral
technique, the described interpolation technique would not
be accurate enough. Additionally, a full spectral technique
cannot numerically capture narrow DSDs. The element-
based grid can be advantageous in addressing these issues.

For a steady-state problem, four elements are used and
selected according to specific locations of the estimated
equilibrium distribution. This issue is graphically demon-
strated in Fig. 1. Accordingly, the first element is from zero to
the tail of the distribution; the second element from the tail
to the average radius of the distribution; the third element is
from the average radius to the head of the distribution, and
the last element is from the head of the distribution to the
truncation point (200% of the head).

For transient PBM, a 5-element grid is generated con-
sidering two distributions, namely, initial distribution and
estimated equilibrium distribution. The element boundaries
are selected as:

• zero

• minimum of tails of both distributions;

• average radius of initial distribution;

• average radius of estimated equilibrium distribution;

• maximum of heads of both distributions;

• truncation point (200 % of the maximum of heads of both
distributions)

equilibrium distribution can be either right, left, or over-
lapping with the initial distribution. Therefore, the locations
of the boundary elements need to be specified by sorting
these boundary points. Moreover, for severe cases where
initial and equilibrium distributions are distant from each
other, it is wise to add more than one element between the
average radii of the two distributions or alternatively more
collocation points for this region. Comparison of the DSD
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standard deviation (which gives an idea about the width of
the distribution) with this range can also be an excellent
criterion for determining the proper number of elements. In
this work, for all the studied cases, only one element is used
for this region. Overall, four different grid sizes were eval-
uated with number of collocation points per element equal to
5, 10, 15 and 20 in Section 4.3.

Discretization of the steady-state problem forms a non-
linear set of equations, which were solved iteratively (detail
in the Supplementary material). For the transient case, the
discretized system of ODEs was integrated using the adaptive
Gear’s backward differentiation scheme. The iteration and
time integration tolerances were both set to 10−6. The

simulation time was also set as × t3 0.9 to calculate the
equilibrium distribution.

4. Results and discussion

To evaluate the technique, two sets of kernels for liquid-li-
quid dispersions are used. The kernels are relevant to tur-
bulent systems. The kernel relations together with their
parameters are summarized in Table 1.

The breakage and coalescence models show de-
pendencies to system physiochemical properties, namely,
phases’ densities and interfacial tension as well as hydro-
dynamic properties like turbulence energy dissipation rates.

Fig. 1 – Elements used for numerical computation; top: steady-state PBE; bottom: transient PBE.

Table 1 – Kernels used for case studies.
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Another influential parameter for the system behavior is
dispersed phase volume fraction, which can significantly
affect the system equilibrium and transient behavior. In this
study, the two most influential parameters, namely, dis-
persed phase volume fraction as well as turbulence energy
dissipation rate, are studied. The studied system is a typical
water-in-oil emulsion, and the physiochemical parameters
were kept constants for all the studied cases with numerical
values as follows: dispersed phase density= 1000 kg m/ 3,
continuous phase density= 900 kg m/ 3, interfacial surface
tension: 30 mN m/ .

The dynamic simulation results for the two extreme cases
are depicted in the Figs. 2 and 3 for both sets of kernels. For
all the simulations, the same initial distribution with an
average point at 285 µm and standard deviation of 40 µm
were used. The approximation technique is evaluated by
comparing it with the results of the element-based

orthogonal collocation technique with 20 collocation points
per element (5-element fine grid for transient problem). It is
worth noting that the estimated equilibrium distributions
(dashed red curves) in the following figures are not the final
result of the proposed technique but a starting point to per-
form more efficient computations for the PBE.

In Figs. 2 and 3, the evolution of the distribution is plotted
from initial to equilibrium distribution and compared to the
estimated equilibrium distribution. The estimated distribu-
tions almost always show tilting of the distribution peaks
toward the left. It is worth noting that the estimated equili-
brium distribution is inexact and deviates slightly from the
simulated equilibrium distribution for Kernels #1 and #2.
Nevertheless, in the case of a simple kernel, the estimated
and simulated equilibrium distributions would be identical.
This matter has been explained in more detail and used to
verify the numerical technique in Section 4.3. Dimensionless

Fig. 2 – Comparison of estimated equilibrium distribution with numerical results for kernels #1, volume fraction = 0.2 and
turbulence dissipation rate = 0.5 m s2 3.

Fig. 3 – Comparison of estimated equilibrium distribution with numerical results for kernels #2, volume fraction = 0.05 and
turbulence dissipation rate = 2 m s2 3.
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group M versus droplet size is also depicted in Figs. 2 and 3.
This curve shows a minimum commonly close to the esti-
mated average droplet radius.

4.1. Approximated equilibrium length scales

The approximated equilibrium length scales are depicted in
Figs. 4 and 5 for kernels #1 and #2.

The technique provides less accurate estimations for ex-
treme conditions with low volume fractions for the case of
kernels #1. However, for the other more moderate condi-
tions, the deviation is typically less than 20 % for heads, tails,
and averages. Here, the tail is overpredicted while the head is
underpredicted. Although it is not satisfactory to be used
directly to analyze the system, this still suffices for gen-
erating element-based grids. Another important issue is the
truncation point. Based on the mentioned results, a 100 %
safety margin over the head seems a reasonable choice for

truncation of the internal domain. Moreover, all the ap-
proximated length scales follow the same trend as that of the
numerical simulation. The average droplet size for more
moderate cases shows a deviation of around 12 %, while the
approximation results for the standard deviation are not as
satisfactory, having an average deviation of approximately
58 %.

Overall, the results for kernel #2 show much better
agreement between the estimated and simulated length
scales. Like the previous case, the estimated standard de-
viation shows the least agreement with an average deviation
of 14 % ranging from 8 % for lower volume fractions to 25 %
for higher volume fraction values. The average droplet is
slightly overpredicted, with an average deviation of around 7
%. The distribution tail is well estimated with an average
deviation of around 5 %. However, the deviation for the head
ranges from 2 % for low volume fractions to about 20 % for
high volume fractions. The estimated length scales

Fig. 4 – Comparison of estimated length scales with simulation results, kernels #1.
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completely follow the trend of the simulated length scales.
Same as Kernel #1, the results support the 100 % safety
margin value over the estimated head for the truncation of
the internal domain.

4.2. Approximated transient time scale

The estimated timescales based on the t0.9 are compared
with the simulation results in Fig. 6 for both sets of kernels.

According to Fig. 6, for kernel #1, the deviation for cases
with initial and equilibrium distributions distant from each
other is typically less than 30 %. However, the prediction
accuracy can be influenced in cases with the initial and
equilibrium distributions very close, with a deviation as high
as 100 %. Similarly, for kernel #2, this deviation for most
cases is less than 40%, while for severe cases, with close in-
itial and equilibrium distributions can be as high as 150%.
The mentioned issue makes direct usage of the estimated
time scales limited. However, technique results can still be
used for consequent cumbersome numerical computation by

applying a safety margin. Practically, after a time equal to
× t3 0.9, the system can be assumed in its equilibrium state.

This value ( × t3 0.9) provides an excellent choice to terminate
the time integration for cases where the equilibrium dis-
tribution is desired.

4.3. Evaluation of the numerical technique

In this section, the element-based numerical grids are eval-
uated. The numerical scheme used for the transient PBE is
verified versus the available analytical solution for the
simple kernel (Benjamin and Madras, 2003) in Fig. 7. This
figure has considered two different cases with various values
for volume fraction and kernel constants. The grid with 20
collocation points per element perfectly agrees with the
analytical solution. In contrast, similar cases with 10 collo-
cation points indicate a slight deviation from the analytical
solution.

Weighted residue methods (including orthogonal collo-
cation technique), contrary to a method of classes (Kumar

Fig. 5 – Comparison of estimated length scales with simulation results, kernels #2.
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and Ramkrishna, 1996a,b) and finite volume method (Filbet
and Laurençot, 2004) are not a conservative, meaning that
the moment properties like volume fraction are not con-
served. For our current problem, the volume fraction is an
excellent criterion to check the accuracy of the solution as it
should be constant, and the deviation from it reveals the
overall imbalance in the numerical solution. Hence, verifying
the different grid sizes has been achieved using the deviation
of the equilibrium volume fraction from its correct value.
Both steady-state and transient solvers were evaluated for
different cases using kernel #2 as well as the transient solver
for the simple kernel. The results are presented in Table 2.

From Table 2, the numerical grid with 20 collocation
points per element for the transient PBE can accurately pre-
dict the equilibrium distribution with a numerical imbalance
close to a fraction of a percent. Similar grids with 15 collo-
cation points can still provide an acceptable solution for a
transient problem. However, by decreasing the number of
collocation points to less than 10 per element, the accuracy
of the solution drastically drops. The iterative scheme for
steady-state PBE does not provide sufficient accuracy for the
equilibrium distribution. Specifically, it seems that this
iteration solution technique for PBE possesses some intrinsic
errors that do not eliminate by refining the mesh. Hence, this

Fig. 6 – Comparison of estimated time scales (t0.9) with simulation results.

Fig. 7 – Comparison of the calculated equilibrium
distribution using various grid sizes with the analytical
solution.

11Chemical Engineering Research and Design xxx (xxxx) xxx–xxx



technique is not recommended for calculating the equili-
brium distribution. Alternatively, a transient solution from
the initial distribution as the estimated equilibrium dis-
tribution is recommended. The mentioned approach can
significantly decrease the computational time required for
the solution of the steady-state PBE. The percentage of re-
duction in the computational time obtained by this tech-
nique is summarized in Table 3 for various studied cases
using kernel #2. The values are calculated by comparing the
computation times of the cases with the initial conditions
the same as that in Fig. 3 and the estimated equilibrium
distribution. The final simulation time was set as × t3 0.9 with
t0.9 calculated using the case with the initial condition de-
picted in Fig. 3. The same absolute final simulation time was
also used for the counterpart cases with the initial condition
as estimated equilibrium distribution.

Accordingly, this approach has decreased the required
computational time by around 40–70%. It must be noted that
the decrease in the computation time can be enormously
influenced by the distance between the initial and equili-
brium distributions. For cases with higher distances, one can
expect better improvement in computation efficiency.

5. Conclusion

Based on extrapolating the available analytical solution for
the spatially homogeneous PBE with simple breakage and
coalescence kernels, a new approach was developed to esti-
mate the equilibrium and transient properties of the problem
in the form of the length and time scales of the system.
Furthermore, this approach was generalized to any general-
ized form of breakage and coalescence relations.

All the approximated equilibrium distribution properties
have a linear relation with respect to a dimensionless group.
In other words, the equilibrium distribution of the system is
mainly governed by this dimensionless group. This group
shows dependency only on the breakage and coalescence
kernels as well as the volume fraction of the dispersed phase.

Similarly, the derived relation for the transient time of the
system only shows simple explicit relation concerning ker-
nels and volume fraction and influenced by a term which
determines how remote the system is from equilibrium
state. This term can predict the direction that the distribu-
tion is likely to evolve.

The derived relations for time and length scales were
compared with the numerical results of the orthogonal col-
location method. The test cases were selected according to
two available sets of kernels used for liquid-liquid dispersion.
The most influential system parameters were studied,
namely, turbulence dissipation rate and volume fraction.
Overall, the approximation technique provides satisfactory
preliminary information about the time and length scales of
the system for the purpose of numerical grid generation and
numerical computation.

The derived approximate equilibrium length scales of the
system were used to generate element-based orthogonal
collocation grids for both transient (5 elements) and steady-
state (4 elements) PBE. Grids of different sizes were evaluated
by comparing them to the available analytical solution as
well as checking the numerical value for the volume fraction
deviation.

The results suggest that number of collocation points
between 10 and 20 can be selected by a trade-off between
the desired accuracy and computation time. The iterative
scheme for steady-state PBE does not provide sufficient
accuracy. Alternatively, a transient solution from the initial
distribution as the estimated equilibrium distribution is
recommended. This approach has decreased the required
computational time by around 40–70% for the studied
cases.

The above evidence suggests that the technique has high
potential to address the well-known computational effi-
ciency and robustness challenges associated with the nu-
merical solution of PBEs. In our future publications, we will
address these issues for more complex systems.

Table 2 – Percentage of the volume fraction deviation.

Studied cases Collocation points per element

5 10 15 20

Kernel #2, transient solver = 0.1, = 1 12.03 1.73 0.33 0.08

= 0.1, = 2 5.10 1.06 0.15 0.02

= 0.2, = 1 20.53 2.59 0.47 0.04

= 0.2, = 2 17.71 1.71 0.22 0.07

Kernel #2, steady-state solver = 0.1, = 1 28.16 15.20 14.91 14.86

= 0.1, = 2 52.41 21.99 19.12 18.43

= 0.2, = 1 39.53 -13.79 -11.43 -11.49

= 0.2, = 2 31.62 17.13 16.47 15.43

Simple Kernel, transient solver = 0.1, =s c/ 1020 84.60 6.02 1.12 0.33

= 0.1, =s c/ 1021 55.87 3.55 0.66 0.48

= 0.2, =s c/ 1020 93.70 6.65 0.72 0.33

= 0.2, =s c/ 1021 60.43 3.71 2.23 0.85

Table 3 – Percentage of the decrease in the
computation time.

Turbulence dissipation rate (m2/s3) Volume fraction

0.05 0.10 0.15 0.20

0.5 67.8 43.5 45.9 57.9
1 56.1 61.3 59.2 65.0
1.5 65.2 64.8 59.6 63.4
2 62.8 68.1 63.7 59.9
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