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Abstract—Accurate segmentation of the parasternal long axis
(PLAX) ultrasound view of the heart is essential for automating
the many clinical measurements performed in this view.

In order to efficiently annotate all the important structures
in the PLAX view in a standardized way, a new specialized
annotation tool was developed. Using this tool, the left ventricle
(LV) lumen, myocardium, left atrium (LA), aorta, right ventricle
(RV) and left ventricular outflow tract (LVOT) were annotated
in images from 53 subjects and used for training a fully-
convolutional encoder-decoder neural network.

Using cross-validation, the Dice score, mean absolute differ-
ence (MAD), and Hausdorff distance were measured for each
structure. The results show varying accuracy for the different
structures with mean Dice between 0.80 and 0.95, and MAD
between 0.9 and 1.8 millimeters. The myocardium and LVOT
seems to be most difficult to segment (Dice: 0.80, 0.84, MAD: 1.3,
1.2), while the LV, aorta and RV achieves quite good accuracy
(Dice: 0.93-0.95, MAD: 0.9-1.3). Overall, the accuracy of the LV,
LA and myocardium seem similar to that achieved in previous
studies on images from apical views of the heart. However, more
data is needed to increase the robustness of the method and to
validate the method further.

I. INTRODUCTION

The parasternal long axis (PLAX) ultrasound view of the
heart is one of the most important standard views for clinical
decision-making and is used for several ultrasound measure-
ments such as wall thickness and diameters of the left ventricle
(LV), aorta and LV outflow tract (LVOT). To automate such
measurements, accurate image segmentation of this view is
crucial.
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Fig. 1. Screenshot of the web-based PLAX annotation tool developed in
Annotation Web. Annotations outside of ultrasound sector were not included.
The colored lines are: Green: Endocardium, Blue: Epicardium, Red: Left
atrium, Yellow: Right ventricle, Purple: Aorta, Cyan: left ventricular outflow
tract, White (dashed): Aorta annulus plane, Yellow (dashed): mitral annulus
plane.

While the segmentation of apical views have been widely
studied, especially with deep learning in recent years ( [1]–
[4]), only a few studies on PLAX view segmentation exists.
Filho et al. [5] used self-organizing maps to segment a section
of the posterior myocardium in the PLAX view. Zhang et al.
[2] used convolutional neural networks to segment the LV, left
atrium (LA), right ventricle (RV), myocardium and aorta, but
not the LVOT from PLAX views.

Another approach to automatic diameter measurements in
the PLAX view is to automate the caliper placements directly
by predicting their location in the image as done by Gilbert et
al. [6]. However, we believe a segmentation approach has the



advantage that a segmentation can be used to measure diam-
eters at multiple location instead of just one single diameter
measurement, thereby making the measurements more robust.

Measurements can also be estimated directly from the
images without performing segmentation using deep learning.
Such black-box measurements, however, have very limited
explainability, while automatic segmentation-based measure-
ments can be easily visualized, explained and corrected man-
ually if needed.

The goal of this study was to achieve accurate segmentation
of the LV, LA, RV, aorta, myocardium and LVOT using a single
deep convolutional neural network.

II. METHODS

A. Dataset and annotation

In order to efficiently annotate the 6 structures, LV, LA,
RV, aorta, myocardium and LVOT, in a standardized way, a
specialized PLAX annotation method was developed in the
open-source Annotation Web system [7]. Annotation Web
enables clinicians to efficiently annotate large amounts of
ultrasound recordings in a regular web browser without any
manual installation or transfer of data. The PLAX tool enables
experts to delineate the endocardial and epicardial borders of
the LV, as well as the LA, aorta, LVOT and RV using cubic
Hermite splines. The annotator places the control points for
the splines, which can be moved afterwards, for each structure.
The tool ensures that the mitral valve plane is well defined
and connected to the LA, and similarly the aortic valve plane
is connected to the aorta and the LVOT region as shown
in Fig. 1. Using this annotation tool, two clinical experts
annotated ultrasound recordings from 53 subjects from the
HUNT population dataset. For each recording, 5 time points
of the cardiac cycle were annotated consisting of one end-
diastolic (ED) frame, one systolic frame, one end-systolic (ES)
frame, one diastolic frame, and finally a new ED frame to mark
the end of the cycle.

B. Neural network architecture

The neural network architecture used in this study was the
fully-convolutional encoder-decoder network described in [1]
which was created for real-time segmentation of apical views.
This architecture has six levels and uses max pooling in the
encoder and 2×2 repeat upsampling in the decoder. Two 3×3
convolution layers are used at each level, together with ReLU
activation. The final layer uses softmax activation. Network
input is an ultrasound image of size 256× 256 pixels, and the
output segmentation has the same size. The network has about
2 million parameters.

Annotations and segmentations outside of the scan sector
were excluded, as many of the structures in the PLAX view are
only partially shown inside the scan sector. Rotation, intensity,
shadow and jpeg augmentations were applied during training
to reduce overfitting. The network was trained with batch size
8 and a Dice loss function.

III. RESULTS

The segmentation accuracy was evaluated using 9-fold
cross-validation. For each structure, the Dice score, mean
absolute difference (MAD) and Hausdorff distance were cal-
culated and are displayed in Table I. For comparison, a row
was added to the table with Dice scores of the LV, LA and
myocardium for apical two- and four-chamber views from a
previous study [4] where a dataset of 500 patients was used.
A row with the results from Zhang et al. [2] was also added
for comparison. Fig. 2 shows best, median and worst case
segmentation results on the entire dataset in terms of Hausdorff
distance. Figures 3 and 4 show boxplots of the Dice scores and
Hausdorff distances respectively for each structure.

IV. DISCUSSION

The new specialized annotation tool enabled the two experts
in this study to efficiently annotate 5 ∗ 53 = 265 images in
a standardized way. This tool is open-source and available on
GitHub for others to use for annotating their own data.

Even though this is considered quite a small dataset in the
world of deep learning, with augmentations the trained neural
networks achieved good accuracy on average in a 9-fold cross-
validation. The results in Table I show varying accuracy for the
different structures with mean Dice between 0.8 and 0.95, and
MAD between 0.9 and 1.8 millimeters. The myocardium and
LVOT seems to be most difficult to segment, while LV lumen,
aorta and RV achieves quite good accuracy. Still, one should
remember that the Dice score is easily affected by the size of
the structure. E.g. small structures get a bigger reduction in
Dice score for an error of fixed size than a large structure. For
instance, the LVOT which is the smallest segmentation region
has the lowest Dice score, but has the smallest Hausdorff
distance of all structures (Table I). The two boxplots in figures
3 and 4 reveal the large spread and number of outliers for each
of the six segmented structures. This shows that the method
can be improved in terms of robustness.

Comparing with the work of Zhang et al. [2], their reported
Dice scores on the PLAX view are quite similar (see bottom
row Table I). However, no information regarding the spread
(e.g. standard deviation) of the results were provided, only an
average score for each of the structures. Thus, it is difficult to
compare the robustness of the methods in these two studies.
They used 130 images for training, however it is not stated
where in the cardiac cycle the images were taken from nor
how many patients were included.

We plan to annotate more data and thereby hopefully im-
prove the accuracy and robustness. Next, we will work towards
using this segmentation method to automate measurements
such as wall thickness and diameters of the LV, aorta, and
LVOT in real-time while scanning.

V. CONCLUSION

A method for automatic segmentation of the left ventricle,
myocardium, left atrium, left ventricular outflow tract, aorta
and right ventricle in the parasternal long axis ultrasound view
was developed. An accuracy comparable to that of previous



TABLE I
RESULT OF 9-FOLD CROSS-VALIDATION ON THE 53 SUBJECT DATASET WITH DICE SCORE, MEAN ABSOLUTE DIFFERENCE (MAD) AND HAUSDORFF

DISTANCE FOR EACH STRUCTURE. THE BOTTOM ROWS CONTAIN SEGMENTATION DICE SCORES ON THE 500 PATIENT APICAL VIEWS CAMUS DATASET
[4], AND DICE SCORES FROM PLAX VIEWS IN THE STUDY OF ZHANG ET AL. [2] FOR COMPARISON.

Metric Left Ventricle Myocardium Left Atrium Aorta Right Ventricle LVOT

Dice 0.95± 0.03 0.84± 0.07 0.91± 0.06 0.94± 0.03 0.93± 0.04 0.80± 0.12
MAD (mm) 1.3± 0.6 1.3± 0.6 1.8± 1.1 0.9± 0.5 1.2± 0.6 1.2± 0.7
Hausdorff (mm) 5.9± 4.1 7.2± 6.0 7.8± 6.2 4.6± 6.9 5.9± 6.1 3.1± 2.0

Dice score on apical views ( [4]) 0.93± 0.05 0.86± 0.06 0.89± 0.09 NA NA NA

Dice score on PLAX from Zhang et al. [2] 0.94 0.86 0.93 0.93 0.92 NA

Fig. 2. Best, median and worst case segmentation results of entire dataset according to Hausdorff distance.

Fig. 3. Boxplot of Dice scores for each of the six structures.

work on segmentation of apical views was achieved. The
segmentation will be further used to automate measurements
and analysis of the parasternal long axis view.

Fig. 4. Boxplot of Hausdorff distances for each of the six structures.
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