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2

3

4

5 The industrialization process in China has resulted in the fast growth of the country’s energy 

6 consumption and CO2 emissions. Examining the effects of industrial structural change on the emissions 

7 pathways in the mid-term future would help advance understanding of how industrial policy choices 

8 affect the fulfillment of the strategic climate targets of emissions peaking and carbon neutrality. This 

9 study couples index decomposition analysis (IDA) with an additive nonparametric regression model to 

10 project the possible emissions pathways with different industrial structures. A set of scenarios are 

11 developed following the storylines of shared socioeconomic pathways (SSPs) to examine these effects in 

12 an uncertain environment towards 2040. The results show that structural change has played an 

13 increasing role in curbing carbon emissions of China’s industrial sectors since 2000. The emissions 

14 reductions attributable to this effect were 686 million tons (Mton) between 2000 and 2013, and these 

15 contributions to emissions mitigation rose to 798 Mton between 2014 and 2019. The scenario results 

16 suggest that the aggregated effect of energy efficiency and structure upgrade will decrease emissions by 

17 43% in 2040 relative to the level in 2019 in the ideal case. Regardless of the uncertainties in scenario 

18 settings, heavy industries will continue to dominate China’s industrial emissions through 2040. 

19 Nevertheless, a significant structural change with the increased share of high-tech industries, e.g., 

20 information and communication technology, could lead to more than 30% reduction in emissions 

21 compared to the case with minor change. 

22

23

24 - A rapid expansion of heavy industry was the primary factor driving the rapid growth of China’s 

25 industrial CO2 emissions since 2000. Industrial structural change is the second most significant 

26 factor curbing emissions growth, and the influence of this factor is increasing. 
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27 - Keeping up the momentum of structural change and technological upgrades in the industrial sector 

28 would make it possible for industry emissions to decrease in the mid-term future, therefore 

29 contributing substantially to the China’s goal of peaking emissions by 2030.

30 - Realizing carbon neutrality in the longer term needs not only structural change in industry but also 

31 a fundamental transformation of the energy supply system. 

32

33

34 Industrial CO2 emissions; structural change; nonparametric additive model; decomposition analysis; 

35 uncertainty

36

37

38 China has pledged to peak its CO2 emissions by 2030 and strive to realize carbon neutrality by 2060. 

39 Realizing the goals indicates a fundamental transition in every aspect of the economy. A large body of 

40 studies has examined the driving factors behind the rapid increase in China’s CO2 emissions in the past 

41 decades (Fatima et al., 2019; Zhang et al., 2019). Since the early 2000s, China’s fast economic growth 

42 features rapid expansion of heavy industries, such as iron and steel making, cement production, 

43 chemicals production, among others, resulting in rapid increases in fossil fuel consumption and CO2 

44 emissions. In more recent years, a structural change has been taking place as high-tech industries, such 

45 as information and communications technology, are emerging and burgeoning, and the expansion of 

46 heavy industries seemingly is coming to a halt. 

47 Some studies observe that a clear structural break in China’s emission pattern around 2015 is led by 

48 industrial structure upgrades and energy system transitions between 2013 and 2016; it is believed that 

49 this decline is structural and likely to be sustained if the nascent industrial and energy system transitions 

50 continue (Guan et al., 2018; Zheng et al., 2019). However, the latest data of energy statistics and CO2 

51 emissions estimates appear to contradict the optimistic conclusion, implying that the structural change 

52 faces a highly uncertain environment. This structural change, compounded with other factors such as 

53 energy efficiency and clean energy development, would significantly affect the overall emissions 

54 profiles. As China enters the post-industrialization era, decoupling emissions from economic growth 

55 necessitates a continued upgrading of the industrial structure. Therefore, a deep understanding of how 
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56 this effect would unfold in an uncertain future is crucial to policy-making, notably to development of 

57 emissions mitigation strategies and sustainable industrial development. 

58 The industry sector accounts for approximately two-thirds of China’s total energy use and carbon 

59 emissions (China National Bureau of Statistics, 2021). In the near-term future, it is expected that 

60 emissions from the service sector will keep growing, indicating that the emissions of China’s industry 

61 sector are supposed to decline faster to fulfill the goal of peaking the country’s total emissions by 2030. 

62 However, uncertain structural change in China’s industry sector remains largely unexplored, particularly 

63 with respect to emissions mitigation scenarios that examine futures for reaching China’s ambitious 

64 climate goals. 

65 This study aims to bridge this knowledge gap. It constructs an additive nonparametric regression model 

66 coupled with index decomposition analysis (IDA); it is based on the latest energy statistics and emissions 

67 data of China’s industry sectors from 2000 to 2019 to project the possible emissions pathways with 

68 different industrial structures. By the means of the modeling approach, a set of scenarios is developed 

69 following the storylines of shared socioeconomic pathways (SSPs) for four divided groups of sub-industry 

70 sectors to examine the uncertain effects of structural change on the emissions pathways of China’s 

71 industry sectors towards 2040. 

72 The remainder of this paper is structured as follows. Section 2 presents a brief summary of the literature 

73 and highlights the contributions of this study. Section 3 describes the details of the methodological 

74 framework, including the decomposition method, the additive nonparametric regression model, 

75 scenario settings, and data collection in this study. Section 4 presents the results of decomposition, 

76 regression, and scenario analysis, interprets the effects on the four industry groups as well as the 

77 aggregated total and explains the implications of a large variety of emissions pathways under each 

78 scenario. Section 5 summarizes the policy implications of the results and concludes with reflections on 

79 the need for further research.

80

81

82 Studies assessing sectoral emissions and the socioeconomic driving forces fall into two categories (Ang 

83 and Goh, 2019). One is retrospective analysis focusing on disentangling crucial driving factors behind the 

84 historical development of energy consumption and energy-related CO2 emissions. The other domain, 

85 referred to as prospective analysis, aims to extends the method to investigate the development and 
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86 analysis of future emissions scenarios (Ang, 2015; Ang and Goh, 2019). Traditionally IDA has been used 

87 to analyze historical changes in energy consumption or CO2 emissions. There are a large number of 

88 retrospective analysis examples on different regions, sectors, and time scopes, in which structural 

89 decomposition analysis (SDA) and IDA are widely adopted (Chen et al., 2013; Ouyang and Lin, 2015; 

90 Wang and Feng, 2017; Yu et al., 2015). In fact, an exhaustive overview of these studies would be 

91 prohibitive. Some examples in China’s industry sectors include  power generation, iron & steel 

92 production (Xu and Lin, 2016), cement manufacturing (Zhang et al., 2015), etc. Common findings can be 

93 drawn from these studies, particularly for those focusing on the rapidly increasing period since 2000. For 

94 instance, it is argued that industrial output exerted significant positive impacts on the change in energy 

95 use and emissions; however, the negative component in this change could be attributed to energy 

96 intensity improvement driven by technology advancement and optimization of capacity scale. The 

97 economic effects of carbon emission transfers were also assessed across China’s industries or global 

98 supply chains  (Jiang and Green, 2017; Sun et al., 2017). The prospective analysis deals with emissions 

99 scenarios using various IDA-based frameworks and has become a nascent application area (Ang and 

100 Goh, 2019). Table S1 in the Supplementary Material (SM) summarizes some basic features of selected 

101 studies of this kind. The targeted regions and sectors cover a wide range. It is interesting to find that the 

102 time scopes set by these studies are around 2030, partly because of the emissions peaking goal 

103 announced by the government. A few studies take the industry sector as a whole to analyze future 

104 emissions trajectories (Wang et al., 2019). Some studies attempt to investigate the potential role of 

105 different factors in achieving particular national emissions targets (Zhu et al., 2015), or the crucial 

106 factors in determining China’s industrial emissions peaking time (Zhang et al., 2017).

107 There is another strand of research addressing uncertain scenario analysis of emissions pathways 

108 through energy system models that feature a detailed representation of the energy supply side. Many 

109 studies in this domain assess the potential contributions of emissions mitigation from the perspectives 

110 of technological innovation or climate policy. These modeling works or integrated assessment model-

111 based studies tend to treat structural change in the economy implicitly (Lefèvre et al., 2022). For 

112 instance, projections are based on aggregated relationships between energy use and income per capita 

113 without reference to explicit structural change assumptions (Bauer et al., 2017; Lefèvre et al., 2022). A 

114 few studies use energy system models to conduct scenario analysis for China’s industry sectors as a 

115 whole, lacking a detailed representation of individual sub-sectors (Zhou et al., 2018). However, the 

116 uncertain effect of industrial structure change is absent from these studies.
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117 Despite the important insights gained from the previous research, there is a need for a deep 

118 investigation into structural change in the industry sectors and how it would impact the emissions 

119 profiles in an uncertain future.  To fill this knowledge gap, we attempt to couple an additive 

120 nonparametric model with IDA and use an updated the dataset of the industry sectors categorized into 

121 four groups based on their emissions characteristics. We further use this hybrid modelling framework to 

122 perform scenario analysis consistent with the narratives of shared socioeconomic pathways (SSPs) to 

123 examine the impacts on emissions pathways through 2040 under uncertainty. A detailed description of 

124 the SSP narratives and a summary of the latest applications can be found in (O’Neill et al., 2020, 2017; 

125 Riahi et al., 2017).  

126

127

128

129 The overall research framework of the modeling approach is illustrated in Fig.1. This approach starts 

130 with linking an additive nonparametric model with the widely used IDA method, namely LMDI, to 

131 examine the contributions of the critical driving forces as well as their impacts on emission scenarios. 

132 Decomposition analysis has proved an effective tool for investigating the effects of typical driving factors 

133 such as gross domestic product (GDP), population and fuel mix, etc. Decomposition results based on 

134 historical data provide valuable information, which, however, should be complemented by reasonable 

135 assumptions about the future. The extrapolative analysis offers such an approach (Ang and Goh, 2019; 

136 Mahony, 2014), whereas the specific method to implement the concept varies. 

137

Additive LMDI

Driving factors:
• Value added
• Industrial structure
• Energy intensity
• Energy mix
• Emission rate

Additive nonparametric 
regression model

• Extended-STIRPAT 
form

Sector disaggregation
• 36 industrial sectors
• 4 sub-sector groups

Scenario analysis 
under uncertainty

• Narratives of 
shared 
socioeconomic 
pathway

• Monte Carlo 
simulations

138 Fig. 1 Schematic diagram of the modeling approach in this study.

139
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140 To investigate the structural change of these sectors, 36 industry sectors are categorized into four 

141 groups, namely, heavy industries with high energy intensity (HHE), new emerging industries (NEM), 

142 traditional light industries (TLI), and others (OTH). The detailed composition of each group is provided in 

143 the SM. The four groups represent the specific industry sectors with distinct characteristics.  HHE refers 

144 to those process industries that are highly carbon-intensive and have more substantial environmental 

145 impacts, such as iron and steel making and cement production. On the contrary, NEM includes those 

146 high-tech manufacturing industries with considerable development potential, such as information and 

147 communication technology (ICT), medicine production, etc. TLI represents the traditional industries with 

148 relatively minor resource requirements and environmental impacts than HHE, including food processing, 

149 tobacco, textile, etc. OTH mainly consists of utility sectors. 

150 We start by examining five key factors, namely, value added, industrial structure, energy intensity, 

151 energy mix, and emission rate. Following a conventional LDMI method, decomposition analysis is 

152 performed at both the sub-sectoral and the aggregated levels, through which the most influential 

153 factors are identified, selected and adopted in a nonparametric additive regression model. This 

154 regression model is constructed from extending a conventional STIRPAT model by retaining the linear 

155 part and incorporating the nonlinear effects from the critical driving factors selected from the 

156 decomposition analysis. The obtained regression form of the model is employed to project the 

157 emissions from the four groups of sub-sectors. The scenario settings for emissions projections, 

158 represented by a set of change rates of the crucial variables, are designed in line with the five narratives 

159 of SSPs (SSP1-SSP5). The time range for scenario analysis is set from 2020 to 2040, considering that this 

160 range covers and extends the horizon for reaching the emissions peak envisioned by the climate target. 

161 This setting allows to better illustrate how the uncertain structural change affects the emissions peaking 

162 target. Moreover, Monte Carlo simulations are performed to reflect the uncertain range of parameters 

163 in each SSP scenario.  The following sub-sections describe the details of each component in this 

164 framework.

165

166 We follow a standard additive LMDI approach and conduct a year-by-year decomposition and 

167 attribution analysis in order to closely trace the changes of key factors in specific sub-sectors.  The total 

168 industrial emissions can be formulated as Eq. (1):
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169  (2)ij iji i
ij i i ij ij

ij ij iji i ij

E CQ EC C Q QS I M R
Q Q E E

= = =∑ ∑ ∑

170 where C is the total amount of industrial CO2 emissions, Cij is carbon emissions from the use of fuel j in 

171 industrial sector i, Q is total industrial output measured by value added, Qi is the output of industrial 

172 sector i, Ei is the total amount of energy consumed in sector i, Eij is the amount of fuel j consumed in 

173 sector i, S in industrial structure, measured by the output share of sector i in industrial output Q, I is 

174 energy intensity, measured by energy consumption for per unit output, M is energy mix, measured by 

175 the share of fuel j in total energy consumption of sector i. 

176 The total changes of emissions in year T relative to those in the base year can be written in an additive 

177 form, as Eq. (2):

178  (3)0T
tot act is ei em erC C C C C C C CΔ = − = Δ + Δ + Δ + Δ + Δ

179 where subscripts tot, act, is, ei, em, er denote the effects associated with overall activity level, industrial 

180 structure, energy intensity, energy mix, and emission rate, respectively. The detailed description of the 

181 calculation for all the components can be found in the SM.

182

183

184 The standard IPAT model decomposes aggregate environmental pressure such as carbon emissions into 

185 contributions from population growth (P), affluence (growth in per capita income or consumption, A), 

186 and technology advances (T) (Ehrlich and Holdren, 1971). Deriving from this approach, a STIRPAT model, 

187 known as Stochastic Impacts by Regression on Population, Affluence, and Technology, was proposed by 

188 Dietz and Rosa (Dietz and Rosa, 1997) to overcome some limitations of regression in the original IPAT 

189 model. The STIRPAT model has been widely used and adapted to analyze the correlation between 

190 environmental impacts and the abovementioned driving factors. The standard STIRPAT model taking 

191 logarithms is formulated as Eq. (3):

192  (4)ln ln ln lnit it it it itC a b P c A d T e= + + + +

193 where the subscript i denotes cross-sectional units, t denotes time period, the constant a and exponents 

194 b, c, and d are the elasticities of environmental impacts on population (P), affluence (A), and technology 

195 (T), and e is the error term. STIRPAT has been a popular tool for analyzing the influence factors of 

196 regional CO2 emissions (Miao, 2017; Shahbaz et al., 2016; Wang et al., 2013). 
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197 Starting from the standard STIRPAT model, this study first substitutes the key driving factors under 

198 scope with the ones in line with industrial development, then establishes an additive nonparametric 

199 regression model to accommodate the nonlinear relationship between the variables. 

200 The adjustments to the driving factors are presented below. As this model focuses on each industrial 

201 sub-sector, the effects of population and affluence are reflected in the valued added factor, therefore, 

202 the former two factors are replaced by industrial valued added. Second, the effect of technological 

203 advances is divided into two components, namely, energy intensity and energy mix.  The two 

204 components differentiate technology improvements within the industrial manufacturing sub-sectors 

205 (e.g., through energy efficiency measures) from those in energy supply sectors (e.g., through promoting 

206 clean energy share in the supply mix). More details can be found in Section 4 and SM. The model is 

207 therefore formulated as Eq. (4):

208   (5)0 1 2 3ln ln ln lnit it it it itC Q I M eβ β β β= + + + +

209 The variables in the left and right sides of Eq. (4) are explained in Table 1, where Cit, Qit , Iit, and Mit 

210 denote carbon emissions, value added, energy intensity, and energy mix for sector i at year t, 

211 respectively. Particularly, we use the share of coal-class fuels (such as raw coal, raw coal, cleaned coal, 

212 other washed coal, etc.) in total energy use to represent the energy mix. 

213 Table 1 Definitions of the variables in the regression model

Variable Definition Unit
C CO2 emissions Million tons (Mton)
Q Value added Billion yuan
I Energy intensity, energy consumed per unit value 

added
Petajoule/Billion yuan

M Energy mix, the share of coal in total energy 
consumption

Percentage

214 The linear regression form of Eq. (4) can be interpreted as an extension of the LMDI decomposition. The 

215 decomposition clearly illustrates the absolute contributions from each variable, whereas the regression 

216 is employed to demonstrate the direction as well as the independent relative change in the response 

217 variable over the explanatory variable while holding other variables constant. Nevertheless, the 

218 parametric model of Eq. (4) is inclined to oversimplify the unexpected characteristics and unknown 

219 relationships since it presumes the linear relationships between explanatory and response variables 

220 (Wang and Wang, 2011). 

221
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222

223 Nonparametric regression models exclude presumptions on the relationship between variables, which is 

224 considered an advantage over conventional parametric models. Yet they also have limitations such as 

225 the problem of high dimensionality. Nonparametric models in an additive form has been proposed to 

226 provide a compromise between the constrained linear model and the flexible nonparametric regression 

227 model (Buja et al., 1989; Xu and Lin, 2015). It uses a one-dimensional smoother in lieu of p-dimensional 

228 smoother for nonparametric regression models in order to avoid the curse of dimensionality (Buja et al., 

229 1989). As such, they were also adopted to examine the relationship between CO2 emissions and 

230 urbanization and industrialization (Xu and Lin, 2015). Following this approach, we further reformulate 

231 the model by adding the nonparametric components to Eq. (4). The new form is taken as Eq. (5):

232   (6)0 1 2 3ln (ln ) (ln ) (ln )it it it itC f Q f I f Mα= + + +

233 where f(⋅) denotes a nonparametric function, with a shape not restricted to a specific parametric family 

234 such as polynomials, this representation is a key difference between parametric and nonparametric 

235 regression. Many methods such as kernel functions or spline-smoothing can be used for estimating the 

236 nonparametric models. Combining the linear part and the nonparametric part in an additive manner, we 

237 obtain the model formulated as Eq. (6):

238   (7)0 0 1 2 3 1

2 3

ln ln ln ln (ln )
(ln ) (ln )

it it it it it

it it it

C Q I M f Q
f I f M e
α β β β β= + + + + +
+ + +

239 We use a spline approximation to the nonparametric components. With this approximation, each 

240 nonparametric component is represented by a linear combination of spline basis functions. In this way, 

241 f(⋅) is treated as a spline function, which consists of a linear combination of several basis functions. 

242 Denote b(⋅) as the basis function, λk as the unknown parameters, shown in Eq. (7):

243   (8)
1

( ) ( )
K

k k
k

f x b xλ
=

= ⋅∑

244 The regression spline estimator for f(x) can be obtained by solving:

245   (9)2

1 1

ˆ argmin ( ( ))
N K

n k k n
n k

y b xλλ λ
= =

= −∑ ∑

246 The statistical problem is to determine which additive components are nonzero. There are different 

247 ways for variable selection in nonparametric additive models (Huang et al., 2010). Under suitable 

248 smoothness assumptions, the f(⋅) can be well approximated by functions in Eq. (8). In search for the 
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249 estimators, an iterative procedure called the back-fitting algorithm is used to fit an additive model, 

250 which is also employed in this study. A more detailed description of the algorithm can be found in 

251 (Breiman and Friedman, 1985). 

252

253 We collected the raw data with regards to value added and fuel consumption and other variables in the 

254 past two decades between 2000 and 2019, mainly from China’s National Bureau of Statistics (China 

255 National Bureau of Statistics, 2021) and (China National Bureau of Statistics, 2021). Some boundary 

256 issues need to be addressed, where further processing is required. For example, the classification of 

257 industries has been adjusted several times. In the National Standard of Industrial Classification 

258 (GB/T4754-2011), Chinese industrial sectors are classified into three big categories: mining, 

259 manufacturing, and energy (electricity, gas, and water) production and supply. There are 7, 31, and 3 

260 sub-sectors within each category, respectively.  This classification was updated from the 2002 version, 

261 which contained 38 sub-sectors in total. To guarantee data consistency, we adjusted the classification 

262 into 36 sub-sectors throughout the entire period under this study. A detailed description of this new 

263 classification and the associated data processing are presented in the SM.

264 The output data used in this study is sub-industrial value-added at the constant price level. This study 

265 adopted the approach as proposed by  (Chen, 2011) to cope with the reconstruction of statistical data of 

266 sub-industry sectors in China. The final energy carriers considered in this study are raw coal, cleaned 

267 coal, other washed coal, coke, coke oven gas, other gas, other coking products, crude oil, gasoline, 

268 kerosene, diesel, fuel oil, liquid petroleum gas (LPG), other petroleum products, natural gas, heat, 

269 electricity, and other energy carriers. Energy consumption data for the 36 sub-sectors are collected from 

270 (the China National Bureau of Statistics, 2021). Nevertheless, accounting emissions could also suffer 

271 from significant uncertainties with respect to heating value, carbon content, and oxidation rate. CO2 

272 emissions are calculated based on energy consumption and emission factors recommended by (IPCC, 

273 2006; Shan et al., 2020). Moreover, the process-related CO2 emissions, in particular from the cement 

274 industry, is calculated by the cement output and emission factor on an annual basis. 

275 Fig. 2 shows the CO2 emissions and the aggregated value added for the four grouped industry sectors 

276 between 2000 and 2019. The emissions of the four grouped industry sectors peaked at 7155 Mton in 

277 2014 in the past two decades and then dropped by 2.3% in 2015, forming a plateu stage towards 2019. 

278 This drop mainly came from the six heavy sub-industry sectors identified as the key areas to implement 
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279 the policies of “energy-saving and emissions reduction” by the government. Fig. S1 in the SM shows the 

280 largest shares of energy consumption came from the six energy intensive sectors, which collectively 

281 consumed 75% of energy in industry sectors or 51% of the national total.

282
283 Fig. 2 CO2 emissions and value added of the four sub-sector groups from 2000 to 2019. Note: HHE-heavy 
284 industry with high energy intensity, NEM-new emerging industry, TLI-traditional light industry, OTH-
285 others.

286

287

288

289 Decomposition analysis in this study is carried out over the entire time scope. Fig. 3 shows the results of 

290 decomposing the relative changes in China’s industrial CO2 emissions, measured as the change rate of 

291 CO2 emissions for each year relative to the year 2000; this change is decomposed into the contributions 

292 of five factors, i.e., value added, energy intensity, industrial structure, energy mix, and emission rate. 
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293 The decomposition results show that the quick expansion of industrial production, represented by 

294 increasing value added, was the main driving force in the emissions, as its contributions increased by 4.5 

295 times between 2000 - 2019. The energy mix also contributed positively to a small share of the emissions 

296 growth. On the contrary, energy intensity served as the primary factor for curbing emissions, which 

297 indicates a remarkable achievement of energy efficiency gains and technological advancement. The 

298 emissions reduction attributable to this energy efficiency and technological effect increased over time 

299 and are dominant in this period. In addition, industrial structural change also contributes to reduced 

300 emissions: it contributed 686 Mton emissions reductions between 2000 and 2013, and then increased 

301 reductions to 798 Mton between 2014 and 2019.  

302
303 Fig. 3 Contributions of the five factors to the emissions change over time

304 These findings are in line with the conclusions from other studies. In addition, this study also performs 

305 an in-depth attribution analysis to examine the contributions from each of the 36 subsectors to the total 

306 emissions change. Fig. S2 in the SM shows the results of attribution analysis for the 36 sectors regarding 

307 their respective contributions to the emissions change resulting from value added and energy intensity. 

308 In particular, the six highest energy-intensive sectors collectively contributed 68% to the increased 

309 emissions resulted from value added, among which ferrous press accounted for 30%.

310 From 2014 to 2019, The trend of the aggregate industry emissions showed the first-ever consecutive 

311 decline over the last two decades. During this period, the growth of total national emissions also came 
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312 to a halt, which has been discussed by some studies (Zheng et al., 2019). Fig. 4 zooms in the 

313 contributions of the four groups of sub-sectors and illustrates that the heavy industries, particularly 

314 ferrous press and nonmetal production, were the main contributors to this emissions change. It is 

315 interesting to find that although the expansion of heavy industry volume continued, industry structure 

316 upgrade and energy intensity improvement contributed 798 Mton and 2705 Mton emissions reduction, 

317 thereby offsetting the incremental emissions from scale expansion over this period. 

318  
319 Fig. 4 Decomposed contributions to the total emissions reduction between 2014 and 2019. 

320 Note: abbreviations in the x-axis, HHE-heavy industry with high energy intensity, NEM-new emerging 
321 industry, TLI-traditional light industry, OTH-others.

322   

323

324 The estimation results of different linear models compared with the linear part of the nonparametric 

325 model are summarized in Table 2. More details, such as the results of the panel unit root test, are 

326 provided in the SM. The results suggest that the linear part coefficients are consistent with those of the 

327 linear models, despite some minor differences in significance levels. The results also show that the 

328 nonparametric model has a relatively small residual sum of squares (RSS). 

329 Table 2 Estimation results: model comparison

Model Variables HHE NEM TLI OTH

Nonparametric Intercept 0.197*** -0.024 0.047*** 0.140
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lnQ 0.724*** 0.659*** 0.577*** 0.483*
lnI 0.453*** 0.838*** 0.855*** 0.684***

lnM -0.301*** 0.010 -0.007*** -0.245
RSS 1.552 0.837 2.796 2.163

model: linear 
part

R2 0.995 0.99 0.992 0.974
AIC -294 -284 -385 -6.11

Intercept -1.586*** -1.915*** -2.609*** -2.646***
lnQ 1.039*** 0.979*** 1.078*** 1.118***
lnI 0.702*** 0.863*** 0.922*** 1.017***

lnM -0.029 -0.071*** -0.275*** -0.225**
RSS 7.764 1.334 5.144 4.238
R2 0.977 0.982 0.985 0.960

Linear fixed 
effects
model

F-statistic 2286*** 2274*** 4911*** 412***
Observations 180 144 252 72

Intercept -2.073*** -2.030*** -2.097*** 0***
lnQ 0.989*** 1.020*** 1.001*** 0.789***
lnI 0.946*** 0.826*** 0.904*** 0.629***

lnM -0.069** 0.021 -0.129*** -0.076
RSS 0.955 1.166 3.334 3.336
R2 0.975 0.969 0.963 0.849

Linear random 
effects model

F-statistic 2270*** 1437*** 2127*** 129***
Intercept -1.372 *** -2.040 *** -2.328 *** -2.333 ***

lnQ 0.980 *** 1.004 *** 1.026 *** 1.082 ***
lnI 0.744 *** 0.865 *** 0.939 *** 1.012 ***

lnM 0.031 -0.061 ** -0.226 *** -0.142 ***
RSS 8.945 2.084 6.687 5.234
R2 0.976 0.979 0.982 0.954

Pool model

F-statistic 2386*** 2122*** 4389*** 472***

330 Significance level: * p<0.05, ** p<0.01, *** p<0.001

331 The results demonstrate that the established nonparametric model can not only grasp the linear 

332 relationship but also capture the nonlinear contributions from the key driving factors, including 

333 industrial volume, energy intensity, and energy consumption mix, to the sectoral carbon emissions. It 

334 thus functions as a proper tool for performing scenario analysis towards a mid-term future.

335

336 Emission scenarios in the mid-term future largely depend on the change of the three investigated 

337 variables, i.e., value added, energy intensity and energy mix. In this study, the constructed regression 

338 model is used for scenario analysis until 2040. The scenarios are set up following the narratives of the 

339 shared socioeconomic pathways (SSPs) (O’Neill et al., 2017; Riahi et al., 2017). Table 3 briefly describes 

340 the SSPs and summarizes how they are reflected in the scenario setup of this study, more specifically, 
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341 the change of the three driving factors representing relevant policies imposed in China’s industry sectors 

342 under each SSP. A detailed list of parameter settings is provided in Table S5 in the SM. 

343 Table 3 Implementation of the SSP narratives in scenario analysis of this study.

Brief description (O’Neill et al., 2017; 
Riahi et al., 2017)

Implementation in this study

SSP1 Sustainability – Taking the Green Road. 
Inclusive development that respects 
perceived environmental boundaries. 
Consumption is oriented toward low 
material growth and lower resource and 
energy intensity.

Innovation-oriented industrial development 
decoupled from environmental pollution. 
Fast growth of NEM, in contrast with a rapid 
decline of HHE, significant improvement in 
energy intensity. 

SSP2 Middle of the Road. Technological 
trends do not shift markedly from 
historical patterns. Slow progress in 
achieving sustainable development 
goals.

Continuation of the current trend. Average-
speed growth of NEM, along with a gradual 
decline of HHE. Slow progress made in 
energy intensity improvement.

SSP3 Regional Rivalry. Concerns about 
competitiveness and security, 
Consumption is material-intensive.

Slow growth of NEM, along with a continued 
growth rate of HHE as well as other industry 
sectors. Slow improvement of energy 
intensity.

SSP4 Inequality. Increasing disparities 
between an internationally-connected 
society that contributes to knowledge- 
and capital-intensive sectors of the 
global economy and a fragmented 
collection of lower-income, poorly 
educated societies.

Medium-speed growth of NEM and TLI, a 
continued slow expansion of HHE and OTH. 
Moderate improvement of energy intensity.

SSP5 Fossil-fueled Development-Taking the 
Highway. Economic and social 
development is coupled with the 
exploitation of abundant fossil fuel 
resources and the adoption of resource 
and energy-intensive lifestyles.

Relative high-speed growth of NEM, along 
with a medium-speed expansion of other 
sectors. Increasing trend of energy intensity.

344 Following these storylines, the evolving trends of the three key driving factors are calculated and 

345 illustrated in Fig. S3 in the SM. A substantial difference can be observed between these scenarios. For 

346 instance, the aggregated value added of all the 36 sub-sectors increases at the highest rate in SSP1 and 

347 at the lowest rate in SSP3, mainly driven by different development patterns of the four industry groups. 

348 The gap of value added between NEM and HHE expands significantly in SSP1. The volume of NEM was 

349 approximately 2.8-fold the size of HHE in 2019. This ratio increases to 17.5 in 2040 in SSP1, whereas it 

350 shrinks to 2.2 in SSP3, which assumes a positive growth rate of HHE as opposed to the negative rate in 

351 SSP1. Change of energy intensity is relatively moderate. Nevertheless, the disparities across sectors and 
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352 scenarios are also striking. In 2040, SSP1 has half of the energy intensity for HHE compared to SSP5 

353 where the development relies on fossil fuel consumption. 

354 Emissions pathways in the five scenarios are presented in Fig. 5, where Panels A and B show the total 

355 emissions of the whole industry and the emissions of the four groups, respectively. The shaded areas 

356 represent the results of a 95% confidence interval. The total industrial emissions follow absolute 

357 declining trajectories in three scenarios, that is, SSP1, SSP2, and SSP4. SSP1 features the lowest level of 

358 emissions, dropping by 43% from 6723 Mton in 2019 to 3770 Mton in 2040. In contrast, SSP5 sees the 

359 highest emissions with an increase of two-thirds at the end of this period. The overall trend of the other 

360 scenario with an upwards trend, SSP3, is at a much more modest slope compared to SSP5. However, its 

361 uncertainty range shows a small possibility that the emissions might also decrease. Emissions peaking 

362 strongly relies on the evolvement of key driving factors such as energy intensity and energy mix. 

363 Regarding structural change, another interesting finding is that even in the most optimistic scenario of 

364 SSP1, HHE still accounts for the largest share of the total industrial emissions. However, the contribution 

365 from HHE declines across all five scenarios. This share in 2040 ranges from 47% in SSP1 to 70% in SSP3, 

366 all of which is lower than the share in 2019. The most significant structural change in terms of value 

367 added occurs in SSP1, where NEM increases from 54% to 77% between 2019 and 2040, and HHE 

368 declines from 18% to 5% over the same period. SSP3 is characterized by a relatively stable structure, 

369 HHE and NEM make up 21% and 51% of the total value added in 2040, respectively. A comparison 

370 between these scenarios suggests that a significant structural change could slash emissions by 30-45% in 

371 2040. 
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372

373 Fig. 5 Projected emission pathways of the industry sectors in the five scenarios.  Note: HHE-heavy 
374 industry with high energy intensity, NEM-new emerging industry, TLI-traditional light industry, OTH-
375 others.
376

377

378

379 Our analysis shows that rapid increases in energy use and carbon emissions between 2000 and 2019 can 

380 be mainly explained by the expansion of heavy industries. Improvements in energy intensity (including 

381 industrial technology changes) and industrial structure became the dominant factors in curbing the 
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382 increasing emission trend, in particular since 2014. More recent structural changes in China’s industrial 

383 composition and development have significantly reduced the associated energy consumption and 

384 carbon emissions. These improvements can be partly attributed to the implementation of the “energy-

385 saving and emissions reduction” policies over the last decade, in which the six highest energy-consuming 

386 subsectors were targeted by the government as the key areas for improvement. Energy consumption 

387 per unit GDP dropped by 19.1% and 18.2% over the periods of the 11th five-year-plan (FYP, 2005-2010) 

388 and the 12th FYP (2010-2015).  Further, a target of a 15% decrease in this indicator between 2015 and 

389 2020 was set by the 13th FYP (China State Council, 2016).  In this context, a few studies analyzed the 

390 possible turning point in recent years for China’s coal use and its impact on CO2 emissions. Qi et al. 

391 argued that China’s economic growth seems to have decoupled from an increase in coal consumption, 

392 thanks to a structural shift away from heavy industry, and more proactive policies on air pollution and 

393 clean energy have caused China’s coal use to peak (Qi et al., 2016).  Jackson et al. pointed out rapid 

394 growth in global CO2 emissions from fossil fuels and industry ceased in 2014 and attributed this to 

395 decreased coal use in China (Jackson et al., 2016). The year 2014 also marks a watershed in the 

396 transition of China’s industrialization process. Before 2014, the expansion rates of the six emission-

397 intensive sectors outpaced their improvements in energy efficiency, resulting in increased industrial 

398 energy consumption and emissions.  However, structural changes seemed to speed up after 2014, as 

399 many heavy industry sectors faced overcapacity. For example, the average capacity factor of crude steel 

400 and coal production in China both dropped even below 70% in 2015 (China Iron and Steel Association, 

401 2019). At the same time, their energy use for per unit production kept decreasing, implying a continuing 

402 trend of energy efficiency and emissions reduction in both sectors.  

403

404 A deep understanding of the driving forces behind the historical changes will improve the future 

405 projection of energy consumption and carbon emissions. The scenario results in this study suggest that 

406 regardless of the uncertainty reflected in scenario settings, heavy industry will continue to be the largest 

407 share of total industrial emissions across all the five scenarios through 2040. This indicates that 

408 mitigating emissions from these industry sectors through multiple measures is pivotal to reaching the 

409 ambitious targets. Transitioning towards innovation-driven industrial development is thus one of the 

410 most important mitigation measures to be taken. Our study suggests a significant structural change in 

411 sub-industry sectors could lead to a 30-45% emissions reduction in 2040 compared to the cases with 

412 minor structural improvements. 

Page 19 of 40

URL: https://mc.manuscriptcentral.com/cpol Email:TCPO-peerreview@journals.tandf.co.uk

Paper Submitted to Climate Policy - Not for circulation or citation.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Review Only

413 As China enters an era of post-industrial development, the share of industry sectors in the economic 

414 outputs has been shrinking. In 2019, industrial value added comprised approximately 33% of the total 

415 GDP, decreasing from the share of 40% in 2001 (China National Bureau of Statistics, 2021). The central 

416 government also launched the so-called “supply-side structural reform” in 2015 by focusing on five key 

417 tasks: cutting overcapacity, destocking, deleveraging, lowering costs, and improving weak links (China 

418 National Bureau of Statistics, 2021). To achieve excessive capacity reduction, the government launched 

419 a supply-side structural reform and met the yearly target of reducing 45 Mton of steel and 250 Mton of 

420 coal production capacity ahead of schedule before the end of 2016 (China National Bureau of Statistics, 

421 2020).  Although the development of these emissions-intensive sectors remains uncertain in the future, 

422 it is more likely that innovation-driven manufacturing sectors will take the lead in powering the new 

423 economic engine. 

424 In pursuit of sustainable development, China’s government seeks to continually upgrade its industrial 

425 structure by proposing measures such as emissions trading schemes and financing green development. 

426 These measures anticipate the need to shape to a large extent patterns of energy consumption and CO2 

427 emissions in the future. If this trend continues, the government’s target of peak emissions by 2030 

428 would be achievable. Nevertheless, reaching carbon neutrality depends not only on industrial structural 

429 change but also on other factors such as low-carbon or zero-emission energy systems and the 

430 implementation of negative emissions technologies.

431

432 This study attempts to address uncertainty in future structural change by employing a combination 

433 method of scenario analysis and Monte Carlo simulations to cover a wide range of possibilities. Despite 

434 these efforts, the results from this study are also reflect methodological limitations, limitations in the 

435 accuracy of energy statistics, and of carbon emissions accounting methods. In addition, a detailed 

436 bottom-up model for examining a disruptive energy system transformation could be developed to 

437 perform cost-benefit analysis of more decarbonization pathways for industry sectors. Moreover, how 

438 specific policy instruments would impact both supply-side and demand-side of each industry sub-sector 

439 could provide more granular information for a further deepened analysis. 

1 This share excludes construction. In the national economy accounting categories, “the secondary industry” 
includes both industry and construction, whereas in this study, industry comprises those sub-sectors belonging to 
mining, manufacturing and electricity, water and gas supply, more detailed description of these sectors can be 
found in Supporting Information. 
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