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Abstract—Software Defined Networking (SDN) has emerged
as a popular paradigm for managing large scale networks.
The traditional single controller architecture has limitations in
managing the entire network: it can become a bottleneck when
it comes to exchanging large volumes of data and it implies
overhead as the number of user increases. Additionally, the
single controller acts as a single point of failure because all
the forwarding decisions depend directly on the controller. Once
the SDN controller or the switches-to-controller links fail, the
entire network may collapse. Therefore, scalability, reliability,
interoperability, and fault tolerance remain as challenges in
centralized network architectures. On the other hand, multiple
controller architectures exhibit faster response and a more flexi-
ble network structure. Additionally, they can improve scalability
and they avoid a single point of failure. In order to synchronize
the network state between different controllers, a consensus
protocol is required. In this paper, we propose a consensus
mechanism, based on the Raft algorithm, which provides a stable,
consistent, and efficient network in which all the controllers
have the same network state. The proposed mechanism supports
high throughput, dynamic view changes, fault tolerance, and
controller synchronization. The performance of the proposed
mechanism has been experimentally assessed and found to be
very satisfactory compared to existing alternatives.

Index Terms—Software Defined Networking; multiple con-
trollers; Consensus Algorithm; fault-tolerance.

I. INTRODUCTION

Single controller approaches are the main paradigm used
to support SDN networks, but it fails to serve a number of
critical domain requirements. Firstly, the efficiency of such
centralized approaches is limited upon the resources of the
single controller. Scalability is an issue, as is high availability,
and security is of high importance as, if an attacker compro-
mises the controller, management capability over the network
is completely lost. Redundancy is one of the most significant
aspects of any design. One controller could fail at anytime
and, leave the network without a control plane. Multiple
controllers can minimize the consequences of such a situation.
Controllers operating normally could even collaborate to detect
that another one is misbehaving and even isolate it from the
network. Thus, having multiple controllers running at the same
time and collaborating with each other enables the network to
improve in terms of scalability, persistency, workload sharing
and availability.

Consensus is the central protocol behind services replicated
for fault tolerance. Consensus protocols are the foundation for
building many fault tolerant distributed systems and services.
A number of solutions have been proposed in this context.

In this paper, we introduce a novel mechanism that supports
the operation of multiple controllers in an SDN network.
The mechanism achieves network flexibility and enhances
network management; it also synchronizes the network state
between different controllers, while addressing single point of
failure, fault tolerance and scalability issues. To demonstrate
the practicality of the proposal, we present an implementation
with the Raft algorithm [1] for state machine replication,
whose performance we evaluated and compared to that of an
existing alternative by means of experimentation.

The contribution of this paper is:
• The analysis of the existing mechanisms and protocols

for SDN networks
• The definition of the consensus problem for distributed

SDN controllers.
• The introduction of a mechanism that supports high

throughput, dynamic view changes, fault tolerance, and
controller synchronization in multiple SDN controllers
setups.

The remaining of the paper is structured as follows: In
section II, we briefly review necessary background knowledge
on SDN and on the Raft consensus algorithm. In section III, we
discuss related work. In section IV, we present our proposal for
a mechanism supporting multi-controller SDN architectures. In
section V, we present the experimental setup that we used for
evaluating the performance of the proposal and we discuss the
results. Finally, section VI summarizes our conclusions.

II. BACKGROUND

This section presents a review of the architecture of SDN
and Raft Algorithm.

A. SDN Architecture

SDN has emerged as a new networking paradigm for
implementing flexible network management solutions. Figure
1 depicts SDN architecture [2]. SDN is a network architecture
where the forwarding state in the data plane is managed by
a remote control plane decoupled from the former. The key
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principle of SDN is the separation of the control and data
planes. The control plane is logically centralized and provides
programmable application programming interfaces (APIs) for
managing the physical layer. The data plane specializes in
forwarding packets according to the instructions received
from the controllers. In SDN, the controllers enable flexible
management and unified control via programmable interfaces
with a global view of the network status.

Fig. 1. Software Defined Networking.

The SDN is also defined as a network architecture:
• The control and data planes are decoupled. Control

functionality is removed from network devices that will
become simple (packet) forwarding elements.

• Forwarding decisions are flow-based, instead of
destination-based. A flow is broadly defined by a set of
packet field values acting as a match (filter) criterion
and a set of actions (instructions). In the SDN/OpenFlow
context, a flow is a sequence of packets between a
source and a destination. [2].

• Control logic is moved to an external entity, the so-
called SDN controller or Network Operating System
(NOS). The NOS is a software platform that runs on
commodity server technology and provides the essential
resources and abstractions to facilitate the programming
of forwarding devices based on a logically centralized,
abstract network view. It is similar to that of a tradi-
tional operating system [2]. The network is programmable
through software applications running on top of the NOS,
that interacts with the underlying data plane devices. This
is a fundamental characteristic of SDN, and is considered
to be its main value proposition.

• The network is programmable through software appli-
cations running on top of the NOS that interacts with
the underlying data plane devices. This is a fundamen-
tal characteristic of SDN, considered as its main value
proposition.

B. Raft Algorithm

Consensus is a fundamental problem for distributed systems.
It pertains to getting a group of participants to reliably agree

on some value used for a computation. Several protocols have
been proposed to solve the consensus problem [3], and these
protocols are the foundation for building fault tolerant systems,
including the core infrastructure of data centers [1]. For
example, consensus protocols are the basis for state machine
replication [4], which is used to implement key services.

The Raft algorithm, depicted in Figure 2 [1] is a significant
consensus algorithm for managing a replicated log. At the core
of Raft lies a replicated log that is managed by a leader. Writes
are funneled to the log and replicated throughout the cluster,
through the leader. A leader election algorithm is integrated
into the Raft algorithm to ensure consistency.

Raft separates the key elements of consensus, such as leader
election, log replication, and safety, and it enforces a stronger
degree of coherency to reduce the number of states that have
to be considered in order to reach consensus. It also includes a
mechanism for changing the cluster membership, which uses
overlapping majorities to guarantee safety. There are three
different node states, namely leader, candidate, and follower.
Raft divides time into terms with arbitrary duration. Terms
are monotonically increasing integers, where each term begins
with an election. If a candidate wins an election, it serves as
the leader for the rest of the term. Terms allow Raft servers
to detect obsolete information such as stale leaders. Current
terms are exchanged whenever servers communicate. When a
leader or a candidate learns that its current term is out of date,
then it immediately reverts to the follower state. Servers reject
vote requests from the leader and replicated log entries with
a stale term number.

A leader sends periodical heartbeats to all followers. If a
follower receives no heartbeat messages over a predefined
period of time (election timeout), it assumes there is no leader
and starts a new election. It increments its current term, votes
for itself, and moves to candidate state. Then, it sends request-
to-vote RPCs to other servers. If it receives votes from a
majority, it sends heartbeats to all servers to prevent new
elections and establish its authority for its term. While waiting
for votes, the candidate server may receive a heartbeat message
from another server claiming to be the leader.

Raft is typically used to model replicated state machines.
Leaders receive state machine commands and write them to a
local log which is then replicated to followers in a batching
approach. Once a command submitted to a leader has been
logged and replicated to a majority of nodes of the cluster,
the command is considered committed, and the leader applies
the command to its own state machine and responds to the
client with the logs. In the event of a server restart, the server
replays the committed entries in its logs to rebuild the state
of the server state machine.

According to the Raft algorithm a set of nodes can maintain
a consistent shared data record. Each node can be a Master
or a Candidate, and it sends messages to system nodes. If
the Master fails, a new Master controller is chosen, following
the process prescribed by Raft. Data records are funneled to
the memory and then replicated throughout the cluster, and
then through the leader. The leader checks all the data records
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Fig. 2. Raft Consensus Algorithm.

and uses the election algorithm to ensure consistency.In our
network we use Raft, so each node has a role either Master,
Controller or Worker.

III. RELATED WORK

The use of a single SDN controller offers flexibility and
efficiency in network management, but leads to problems such
as single points of failure and scalability issues. Existing stud-
ies propose multiple SDN controller architectures to address
the above issues. The synchronization of the network state
information among controllers is a critical problem, known as
the controller consensus problem. To synchronize the network
information between controllers, a proper consistency model
should be chosen. Strong consistency and eventual consistency
are two consistency models commonly used in distributed
systems.

Many papers have proposed systems for SDN. The authors
of [5] introduce a multicontroller SDN architecture, which
employs a Fast Paxos based Consensus (FPC) algorithm to
handle the consensus between multiple SDN controllers. The
concept of leader election is also supported, as three roles,
namely Listener, Proposer, and Chairman are applied to
different controllers. The proposal was tested on a small-scale
multicontroller architecture. In this research the evaluation of
the performance was conducted in an ODL (OpenDaylight)
Clustering on 3-node clustering. The FPC is composed of
four phases, namely Propose, Accept, Update, and Adjust. A
controller maintains a table that records its current controller
state.

Hyperflow [6], [7] is described as a flat design. It is a dis-
tributed event-based control plane for OpenFlow. HyperFlow
is logically centralized but physically distributed: it provides
scalability while keeping the benefits of network control cen-
tralization. By passively synchronizing network-wide views of
OpenFlow controllers, HyperFlow localizes decision making
to individual controllers, thus minimizing the control plane’s
response time to data plane requests. HyperFlow is resilient to
network partitioning and component failures. It also enables
interconnecting independently managed OpenFlow networks,
an essential feature missing in current OpenFlow deployments.
The network is structured into several domains, where each
domain is controlled by a controller situated within its own
local network view. Controllers communicate with others

through their east-westbound interfaces to get the global view
of the network. Each controller only processes flow requests
sent from the switches that belong to its local domain. Net-
work events (e.g., flow information, routing information) are
transmitted based on specific publish/subscribe mode among
controllers [6].

Onix uses Paxos Consensus [8]. It is a multiple SDN
controller architecture that provides a control application with
a set of general APIs to facilitate access to the network state. It
adopts a distributed architecture approach to offer the program-
matic interface for the upper control logic and uses Network
Information Base (NIB) to maintain the global network state.
In Onix, the controller stores network information in key
value pairs by utilizing the NIB, which is the core element of
the model. It synchronizes the network state by reading and
writing to the NIB, thus it provides scalability and resilience
by replicating and distributing the NIB across multiple NIB
instances. Once a change of a NIB on one Onix node occurs,
the change will be propagated to other NIBs to maintain the
consistency of the network.

ONOS [9] stands for Open Network Operating System. It
uses Raft, it provides the control plane for a SDN, managing
network components such as switches and links, and running
software programs or modules to provide communication ser-
vices to end hosts and neighboring networks. ONOS applica-
tions and use cases often consist of customized communication
routing, management, or monitoring services for SDNs. [9].

Kandoo [10] is a typical hierarchical controller structure.
The root controller communicates with multiple domain con-
trollers to get the domain information, but the domain con-
trollers do not contact each other.

DISCO (DIStributed multi-domain SDN COntroller) [11]
is a distributed SDN controller scheme, implemented on top
of Floodlight. It was introduced to partition a wide area
network (WAN) into constrained overlay networks. A DISCO
controller manages its own domain and communicates with
other controllers via a lightweight and manageable control
channel to provide end-to-end network services.

Akka [12] is a toolkit used in ODL Clustering and is
responsible for communication and notification among con-
trollers. In the default clustering scheme, switches connect
to all controllers, and these controllers coordinate among
themselves to choose a master controller. The ODL uses the
Raft algorithm to reach controller consistency [2]. The Raft
consensus algorithm periodically elects a controller as a leader
controller, and all data changes will be sent to the leader
controller to handle the update.

As observed from the existing distributed controller archi-
tectures, the problem of single point of failure of the SDN
controller was solved using multiple distributed controllers.
The Copycat project is an advanced, feature-complete imple-
mentation of the Raft consensus algorithm that diverges from
recommendations. For instance, Raft dictates that all reads and
writes are executed through the Master Controller (node), but
Copycat’s Raft implementation supports per-request consis-
tency levels that allow clients to sacrifice linearizability and
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read from followers. Similarly, the Raft literature recommends
snapshots as the simplest approach to log compaction, but
Copycat prefers an incremental log compaction approach to
promote more consistent performance throughout the lifetime
of a cluster. Copycat’s Raft implementation extends the con-
cept of sessions to allow server state machines to publish
events to clients.

IV. OUR PROPOSAL

The proposed mechanism implements a novel network of
multiple controllers using the Raft consensus algorithm. It
supports the connection and coordination of multiple dis-
tributed SDN controllers to serve as backup controllers in
case of a failure. Moreover, multiple controllers allow data
load sharing when a single controller is overwhelmed with
numerous flow requests. In general, our approach can reduce
latency, increase scalability, and fault tolerance, and provides
enhanced availability in SDN deployments.

The proposed mechanism, as shown in Figure 3, consists
of a set of independent controllers (nodes), each one of which
stores the required data in its memory. Each controller (node)
is assigned with a unique id. In our implementation and
test scenario we used a number of nodes in different states.
Each one can be in one of three different states, namely
Master, Candidate or Worker. In the Master state the node
manages and controls the network while it can also process
data and send update information to the other controllers. In
the Candidate state the node can send and receive data to/from
the other nodes. A Candidate node with the updated data can
potentially transit to Master state if the current Master node
fails. Finally in the Worker state the node passively receives
data from Master or Candidate nodes.

If a Master node fails, the Raft election process is initiated
to elect a new Master node and avoid single point of failure
effects. In this process a node in Candidate state will be elected
and will act as Master node, while the previous Master node
will switch to Candidate state. Through this process the system
maintains its stability and fault tolerance.

Fig. 3. Proposed mechanism.

Inputs are introduced to the SDN multiple controllers net-
work by clients (nodes). When new data are introduced in
the mechanism by a node, according to the Raft protocol,
such data is forwarded to the Master Controller. Once the
Master Controller receives a series of information, it logs and
replicates these to all the mechanism controllers, which store
such data in their memory.

When the Master Controller receives a series of data, a
broadcast process is initiated to send such data to all nodes
in the network and update information in all controllers
accordingly. Information is stored in the memory of the Master
controller and its initial state is defined as not read. The
Master node sends data to all Candidate nodes and the latter
forward such data to their neighboring Worker nodes. The
Master node monitors if all Candidate nodes have received
and stores the new data to ensure that all of them have an
updated memory. Each Candidate node makes sure that it
records newly sent data, while it also monitors data records
to avoid duplicate ones. Consequently, each Candidate node
sends data to attached Worker nodes. During this process the
same approach is followed to ensure successful delivery of
data to all nodes.

When all nodes have successfully forwarded all data, the
mechanism transits to an ”OK” state when all controllers have
the same data stored in memory. If a controller receives new
data, then it stops being in the “OK” state and data shall be
sent to the other controllers and workers (neighbor nodes) of
the mechanism according to the procedure which has been
described previously.

In the proposed mechanism the main entity is the Raft node
which shall be deployed along with each SDN controller in an
SDN setup. Each node keeps in its memory a set of records
which adhere to the structure record (data, send). The variable
data holds the information to be exchanged and the variable
send is Boolean and is used to flag whether a specific record
has been successfully forwarded to the network. Nodes are
identified by a unique id.

The Raft consensus algorithm is used to coordinate the shar-
ing of information between nodes. It defines the creation of a
group of controllers (candidates) and the required processes to
elect one leader the Master controller. The Master is the one
who manages the data flow in the mechanism and leads the
group if it is active.

If the Master node fails, then a new Master node must be
elected through the mechanism process. Specifically, a time
is defined in which the Master sends a message to the other
controllers. If the message does not arrive in time, a Controller
node sends a message requesting to become the Master node.
In this case the other controllers respond, and the specific node
is designated as the Master node.

The main processes that nodes operate upon to maintain
consistency, stability, and availability are the following:

• The read process, that reads from the mechanism memory
and checks records and if those have been successfully
distributed to others.

• The send process that sends data to other controllers.

38Copyright (c) IARIA, 2022.     ISBN:  978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

                           50 / 106



• The send-to-all process, that is responsible for iteratively
sending data to all neighboring controllers.

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed mechanism
we conducted a network simulation. Also we compare it with
other mechanisms in terms of consensus time, distribution
time, data access time and presenting test results.

A. Experimental Setup

Table II shows the main simulation parameters.The system
on which the simulation was performed was based on an AMD
Ryzen 5, 4500 U CPU and the goal was to evaluate the time
required for the main functionalities of the proposed design.

TABLE I
SIMULATION PARAMETERS

Parameters Value
Consensus algorithm Raft

Data In all node types
Number of controllers 10

Number of Workers per Controller 2
Test environment Windows 10

Hardware AMD Ryzen 5, 4500 U
Compiler NetBeans 8.2

Code Java

To evaluate the proposed approach, we have run an ex-
periment to assess the time response of the algorithm. We
first run an experimental simulation of a failure scenario in
which the proposed algorithm is executed for 100 sec for a
mechanism with 30 controllers, 10 of which run as Master
nodes and 20 run as Worker nodes. We check that data is
being transferred correctly between nodes. In this scenario we
assume that at a specific time point, around 20 sec after the
start, the master node fails. The main objective is to maintain
mechanism stability at all times and avoid the effects of a
single point of failure.

To extend the initial scenario, another test was also exe-
cuted, in which the newly elected Master nodes drop at time
points around 20 sec, 30 sec and 60 sec respectively. All nodes
have been monitored to test the read and write performance
in each node (in Master, Controller or Worker states).

In the tests, all the nodes except those of the original Master
node and the Worker nodes connected to it have the same data
after the initially set Master node crashes. Another node is
elected as the new Master node. This is repeated a number of
times during the execution of the experiment.

The proposed mechanism reduces the network overhead.
Moreover, it maintains the proper network operation, even
when there is a controller failure. Moreover, it offers controller
synchronization, as all network controllers have the same
data. In addition, it preserves it’s reliability, scalability, fault
tolerance, and interoperability. In the event of Master node
failure, a new master controller would be selected to take the
control of the network. The mechanism of choosing a new
master is through the Raft consensus algorithm process, so

the proposed mechanism enjoys high availability rates. The
conducted experiment simulates the operation of a distributed
mechanism consisting of remote computers or systems.

B. Results

During the tests we compare the proposed mechanism
and the Paxos-based mechanism [8], in terms of consensus
time, distribution of normalized consensus time, and data
access time. The consensus time is the time that elapses
from when a transaction is created to when the transaction is
committed.According to the research these are closest to our
approach and are implemented according to distributed SDN
multiple controller architecture and consensus algorithms.

TABLE II
COMPARISON OF PROTOCOLS/ALGORITHMS

Feature Proposed CopyCat Raft Paxos
Consensus algorithm Raft Raft Paxos

Controllers 10 1 3
Workers 2/controller 1 client 6 End Users

Time to read data 10 ms 0.20 s 6.425 ms
Time to write/send data 10.4 ms 0.40 s 17.814 ms
Time to elect a Master 10.06 ms 0.060 s 28 ms

Fig. 4. Comparison of Protocols/ Algorithms.

Table II shows the basic features of the proposed mechanism
in comparison to the CopyCat project and a Paxos-based
system [8], that we have tested. All models are using con-
sensus algorithms and a distributed SDN multiple controller
architecture. As is shown in Table II, through the comparison
between the Copycat project and the proposed mechanism
it is clear that Copycat requires more computing resources
than the proposed mechanism and this makes Copycat less
reliable for large scale networks. Also, the time required for
reading, writing and sending data is higher than the other two
mechanisms. The average time that the Copycat system needs
to start and elect a Master Controller is 23.23 seconds.
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Fig. 5. Read and Write Average Time.

The consensus time of the proposed mechanism is stable.
Also, the Write/ Send Data time is stable and low (see Figure
5); the proposed protocol needs 10.4 ms. Low and stable times
for reading and sending data can improve the mechanism
performance and offer a stable and functional mechanism
architecture. Furthermore, all controllers had the same data
even after a controller drop in our simulation environment of
100 seconds; the network maintains its stability.

Fig. 6. Controller election Time with Raft.

The test results have shown that for the proposed mechanism
the average required time for Master node election is 10.06
ms (see Figure 6). It is stable and low, as shown in Fig. 4 and
described in Table II.

VI. CONCLUSION

SDN is a promising paradigm for network management
because of its centralized network intelligence. However,
the centralized control architecture of SDNs raises
challenges regarding reliability, scalability, fault tolerance
and interoperability. The existing solutions which were
analyzed in literature are not offering high-throughput,
fault-tolerance, and controller synchronization. We proposed
a novel implementation, based on the Raft algorithm, that can
efficiently synchronize the network state information among
multiple nodes, thus ensuring good performance at all times
irrespective of the traffic dynamics. Further, the proposed
mechanism supports high-throughput, fault-tolerance, and
controller synchronization. Our simulation results have

shown that the proposed mechanism can support Multiple
Controllers, as it maintains stability (all nodes have the same
data, after a Master node failure) and the average required
times are low. The average time it takes to read, write in
memory, and send data to neighbor controllers is low and
stable. Also, the time it takes to elect a new controller is
also low. In our proposal, multiple controllers maintain a
consistent global view of the network. This is achieved by
employing the Raft consensus protocol to ensure consistency
among the replicated network states maintained by each
controller.

This work has been partly supported by the University
of Piraeus Research Center and also was funded in part by
the Research Council of Norway under project nr. 310105
”Norwegian Centre for Cybersecurity in Critical Sectors”.
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