
LIST: Lightweight Solutions for Securing IoT
Devices against Mirai Malware Attack

1st Pallavi Kaliyar
Department of IIK

NTNU
Gjøvik, Norway

pallavi.kaliyar@ntnu.no

2nd Laszlo Erdodi
Department of IIK

NTNU
Trondheim, Norway

laszlo.erdodi@ntnu.no

3rd Sokratis Katsikas
Department of IIK

NTNU
Gjøvik, Norway

sokratis.katsikas@ntnu.no

Abstract—Recently, the number of Internet of Things (IoT)
devices has increased significantly, as they have become af-
fordable to most people. This spread has highlighted a critical
security threat, namely the increasing number of Distributed
Denial of Service (DDoS) attacks. As these resource-constrained
IoT devices are built to be cost-efficient, their security measures
are limited. Moreover, most users are not aware of the security
measures that they must apply. Nowadays, almost every IoT
device (e.g., fridge, air conditioner, thermostat, toaster) is able
to connect to the internet, and this allows the user to access
and control it with its own smartphone application. The lack of
security measures in these devices was highlighted in September
2016, when a large-scale DDoS attack was launched using a
botnet of compromised IoT devices. This type of attack has been
since used in different forms and has been classified as Mirai
DDoS Botnet Attack. This paper presents a detailed analysis of the
Mirai attack and of the source code of the Mirai malware, reports
on the implementation of the attack in a controlled environment,
and proposes possible solutions that could help in mitigating the
attack.

Index Terms—Mirai Attack; Authentication; Internet of
Things; malware; security.

I. INTRODUCTION

Since its discovery in 2016, the Mirai’s diffusion has been
rapid and dramatic at the same time [1]. In August 2016,
a new trojan that preyed on Unix Operating System’s Exe-
cutable and Linkable Format (ELF) files was discovered by a
“MalwareMustDie” whitehat group [2]. The trojan aimed to
send telnet attacks to other systems. During 2016 only, Mirai
infected thousands of IoT devices. The power of this malware,
which works with BASHLITE to carry out a DDoS attack,
was clear to everyone in September 2016, when a huge DDoS
attack took down Brian Krebs’s [3] website with traffic of 620
Gbits/s. The attack was carried out with a huge number of bots
that were located all around the world. In the same month,
the French cloud and web hosting company OVH [4] became
victim of another DDoS attack with a bigger traffic than the
previous attack, i.e., 1 Tb/s. In this case, it was reported that
the botnet was composed of 145,607 different devices from 8
different regions around the world, and they mainly were IoT
devices like IP cameras and Digital Video Recorders.

In October 2016, the code of the Mirai was released so
anyone can retrieve it from the internet [5] for analysis
purposes. This inevitably led to a bigger diffusion of the code

that other parties modified and improved. Due to this, the
number of compromised Internet of Things (IoT) devices in
2016 varied from 213,000 to 493,000. In the same month, Dyn
[6], a core ISP was hit by a massive DDoS attack against its
DNS (Domain Name Server) infrastructure on the east coast
of America, and this brought down some of the websites
for which it provided services such as Twitter, Spotify, and
Reddit. In November 2016, the Mirai took down almost all
of Liberia’s [7] websites, as the African state has only one
internet cable, which provides a single point of failure for
internet access. In the same month, a botnet of 400,000 IoT
devices was up for rent on the deep web. The price was $2,000
for 20,000 compromised nodes. Furthermore, in December
2016, the British ISP TalkTalk [8] reported that Mirai had
targeted customers using its Dlink DSL-3780 router.

In February 2017, Kaspersky Lab [9] researchers found that
a hacker had created a variant of Mirai based on the Windows
operating system. The researchers claim that the ability of this
malware to spread across different Operating Systems is very
limited. However, it was a sign that the Mirai power increased
after releasing its source code. Later, in December 2017, two
suspects admitted their guilt in developing and deploying the
Mirai botnet. Obviously, this is not the end of Mirai’s history
as the vulnerabilities of the IoT devices that the malware uses
are still present. If we cannot address this threat, the Mirai will
become more powerful as vulnerable devices increase. Some
other variants of Mirai are listed in Table I.

The main goal of this work is to suggest lightweight
solutions for securing IoT devices against the Mirai malware
attacks. We propose three lightweight solutions that can be
used to secure resource-constrained vulnerable IoT devices
with negligible overhead on the manufacturing cost. The key
contributions of this work are:

• First, we present a detailed analysis of the Mirai source
code, which is publicly available on the git repository
[5] at GitHub since 2017. This analysis is important as it
provides a more detailed description of the Mirai attack
source code, i.e., what is the role of each Mirai source
file in the execution of the Mirai attack.

• Our second contribution is the implementation of the
Mirai code in a controlled environment, to show that
although the Mirai attack has been long known, it is

63Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

 75 / 106

TABLE I
DIFFERENT VARIANTS OF MIRAI

No. Name First Appearance Exploit
1 Mirai original [5] August 2016 Telnet 23/2323, brute force
2 Satori [10] December 2017 Telnet 23/2323, Port 37215/52869, 2 exploits CVE-

2014-8361 and CVE-2017-17215
3 Hajime [11] March 2017 Telnet 23/2323, brute force, later closes the open

ports
4 IoTroop [12] October 2017 Vulnerability scanning instead of password brute-

force
5 Okiru [13] January 2018 IoT with RISC architecture, telnet default passwords

4 types of router exploits
6 Masuta, PureMasuta [14] January 2018 EDB 38722 D-Link exploit
7 Jenx [15] January 2018 2 exploits, CVE-2014-8361 and CVE-2017–17215
8 OMG [16] March 2018 Make IoT a proxy server
9 Wicked [17] June 2018 Port 80,81,8080,84433, new exploits, router exploits,

cctv rce, CVE-2016-6277 command injection
10 Satori / 2018 [18] July 2018 Android Debug Bridge (ADB) commands
11 Torii [19] September 2018 Rich set of features for exfiltration of (sensitive)

information, modular architecture capable of fetching
and executing other commands and executables

12 Hakai, Yowai [20] January 2019 Several hard coded exploits, ThinkPHP
13 Covid Mirai [21] March 2020 TeamSpeak, Huawei default passwords
14 Satori – 2021 [22] February 2021 Vantage Velocity field, Python script
15 Matryosh [23] February 2021 Android Debug Bridge, TOR network is used

still very relevant, as a large number of devices are still
vulnerable to it.

• Our third contribution is to propose three lightweight
solutions to improve the security of IoT devices against
Mirai and Mirai-like attacks. Contrary to previously pro-
posed, state-of-the-art solutions, our solutions are ap-
plicable to both new and existing IoT devices, they
do not require increased computational power, storage
capability, or battery capacity, and they do not add any
extra manufacturing cost to the devices.

The rest of the paper is organized as follows: Section II
briefly discusses Mirai’s evolution and analyzes related works
that propose solutions to mitigate it. Section III describes how
the Mirai attack works, focusing in particular on the Mirai
source code. This is followed by the description of a real-world
experiment that we conducted to gain remote access to an IoT
device by launching a Mirai attack. The last part of Section III
discusses three proposed solutions to limit the damage caused
by the lack of security measures in IoT devices. Finally, we
conclude our work in Section IV.

II. BACKGROUND AND RELATED WORK

In this section, first we briefly present (in sub-section II-A)
different variants of the Mirai malware that have appeared in
the last six years. Next, we briefly summarize (in sub-section
II-B) security solutions proposed by other researchers.

A. Background: Evolution of the Mirai malware

The first variant of the Mirai that appeared in 2016 had
separate loader and scanner modules. First it looked for open
telnet ports and then used the default username, passwords,
and password brute-force on port 23/2323. After this first
variant, many other variants of Mirai appeared in the last six
years. A list with a few of these key variants is shown in Table

I. Below we list some of the changes identified in the working
methodology of these different variants.

• The bot is able to do the scanning too, no separate
scanning module is needed anymore.

• Several new exploits, such as router http interface vulner-
abilities, Android Debug Bridge remote code execution,
are added, in addition to the telnet as default.

• Some variants (e.g., IoTroop [12]) can do vulnerability
scanning besides finding predictable credentials.

• In addition to being capable of carrying out DDOS
attacks, some variants provide extra functionality, such as
providing proxying functionality (using IoTs to forward
packets in order to hide the source of the packet origin)
[16].

• The number of devices involved has been increased, e.g.,
RISC processors [13].

B. Related work

The increasing number of botnets created using the Mirai
attack has motivated cybersecurity researchers to develop
efficient solutions to this problem. The solution used in the
past proposes to analyze the Mirai traffic to find specific
patterns that will allow the identification of the attack. This
is the typical procedure that is used to analyse a malware,
and it is done by using a honeypot. This strategy has been
used in [24] [25]. A honeypot works as an IoT device and
accepts all the attacker requests and replies with the intended
commands. In particular, the honeypot used in [25] is made
of two parts, as shown in Figure 1. The front-end part, which
interacts with the Mirai malware, replies with the intended
telnet commands. The back-end part records all the commands
used by the malware to compromise the fake device and all
the incoming traffic. The authors discovered that in the initial
phase, the Mirai executes many telnet commands intended to

64Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

 76 / 106

gain control of the device’s shell. The possibility to discover
if the Mirai malware is attacking a device is an interesting
solution, but it does not offer any protection against this type
of attack. It would be very difficult to store information for all
different IoT devices and the pattern that identifies the malware
on the devices, and instruct them to check each access attempt.
This approach is infeasible, as we know that most IoT devices
have very low computational power and even lower storage
capability and battery capacity.

Fig. 1. Multi-component honeypot structure [25]

Another security solution to the Mirai botnet builds a
whitelist-based intrusion detection technique for IoT devices
[26]. This solution uses a gateway router which acts as a
firewall for a set of IoT devices belonging to the local network
that the router serves. The proposed mechanism is called
Heimdall. It uses the gateway router to build a profile for
each responsible device. A profile contains mainly a whitelist
of the destinations (IP addresses) that a specific device can
legitimately reach to perform its functions. Moreover, the
profile also stores the typical traffic pattern of that device,
including some statistics, e.g., number of TCP, UDP packets
of the incoming and outgoing traffic. This is useful to prevent
both the device from being attacked by Mirai (incoming
traffic) and carrying out the attack (outgoing traffic). The
profile is dynamic, so it is continuously updated, increasing
the traffic pattern’s precision. This approach seems attractive,
as it does not require additional resources from the IoT device,
because the Heidmall router does all the work. However, the
solution faces some serious problems: First, the list of a single
device’s destinations may change very frequently, as usually
the backend services of IoT devices are hosted on some public
cloud infrastructure due to the devices’ limited capabilities.
Accordingly, the IP address of the destination servers may
change very often. Secondly, this mechanism can become
victim of a DNS poisoning attack. An attacker modifies the IP
address from which the traffic is coming into a malicious one,
so that the gateway router will reject some legitimate traffic.

After the public release of the Mirai source code, another
countermeasure was developed, in the form of a worm called
Hajime [11] [27]. This piece of ”benign” malware works
basically as Mirai; it uses the default logins to control IoT
devices. It even uses the same username-password dictionary
of Mirai. The purpose of Hajime is to gain access to the

vulnerable devices to close their open ports, e.g., ports 23,
7547, 5553, and 5358, so that an attacker will not be able to
use them. Thus, this code is like an anti-Mirai, as it hacks
the devices to secure them. The problem with this approach is
that the code is not persistent, as it is loaded on the device’s
RAM, and therefore it is deleted after each reboot.

Later in [28], the authors employed a static analysis to
audit firmware of IoT devices to check its susceptibility
against Mirai, which is not a feasible solution considering all
scenarios of IoT applications. The authors in [29] propose a
model made of a transformer-encode and use a hierarchical
structure to extract semantic features from the information and
functions to classify the malware. In [30], the authors proposed
a Fog Computing-based IoT-DDoS defense framework for
contemporary real-time IoT traffic to identify the presence of
Mirai malware in the network. The authors in [31] proposed a
Machine Learning (ML)-based mechanism for detecting Mirai
Botnet attacks in IoT-based networks. The ML-based detection
mechanism was detecting the attack using a real traffic dataset
of IoT devices.

Having considered all these existing solutions [11], [24]–
[31] with their advantages and drawbacks, we propose three
new lightweight solutions against the Mirai attack that use
an external device to authenticate the user to the IoT device,
without the need to increase the capabilities of the device itself.

III. PROPOSED APPROACH

In this section, we first analyze the Mirai source code and
discuss the Mirai attack on vulnerable, resource-constrained
IoT devices. We then propose our solutions for securing the
IoT devices against Mirai-like attacks.

A. Mirai source code analysis

The main idea behind the Mirai attack (see Figure 3 is to
create a botnet made of IoT devices that a BotMaster/attacker
can control to carry out a DDoS attack [32]. Initially, the
Command and Control (CNC) server starts scanning for IP
addresses with port 23 (telnet) open to control the bots. When
such devices are found, the attacker injects the malware code
as it controls the shell, and then the bot’s information (IP
address, port, and authentication credentials) are stored in a
list. Once the malware is installed on the devices, it hides.
The device continues its regular activities without knowing
that it has been infected.

The Mirai malware source code can be found on the git
repository [5] at GitHub. The code is mainly written in
two programming languages, namely Go and C. The Go
programming language is used to implement the part of the
code which is used to control the CNC server [33]. The script
named “admin.go” implements the primary administration
interface that issues commands from the CNC server. The code
script named “clientList.go” keeps track of the data needed
to execute an attack, including a map/hashtable of the bots
which are charged to carry out a specific attack. This code is
also responsible for recording and checking the state of the
bots before and after the attack. The attack requests initiated

65Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

 77 / 106

Fig. 2. Default username and passwords in scanner dictionary

by the CNC server are executed by the code script named
“attack.go”. This part of the code parses and formats the
commands received, and sends them to the appropriate bots
via code script named “api.go”. The code script “attack.go”
can also set the attack duration, and the attack command is
sent to the individual bot through the code script “api.go”.

Fig. 3. Mirai Attack procedure

The most crucial piece of code in the CNC server is
“main.go”, which regularly listens for connections on ports 23
(telnet) and 101 (apibot responses). If a connection to port 23
is found, the device is acquired and its credentials are stored.

In the case of a port 101 connection, the control is handed over
to the code script “api.go” which deals with an individual bot.

The code for the bot is written in the C programming
language. It includes different functions built explicitly for
different types of attack. The script “attack udp.c” is able to
carry out various types of UDP DDoS attacks, such as Generic
Routing Encapsulation (GRE), Reflective Denial of Service
(bandwidth amplification), DNS Flood via Query of type A
record (map hostname to IP address), and Flooding of random
bytes via plain packets, under specific commands. The code
scripts “attack tcp.c” and “attack app.c” work similarly and
can realize different types of attacks. The code script named
“scanner.c” is used by the bots to do a brute force scanning
on a range of IP addresses using a port scan (SYN scan)
and trying to access vulnerable devices using a dictionary of
default usernames and passwords, which is shown in Figure
2. This scanning aims to gain access to other vulnerable IoT
devices and add them to the pool of botnets. If accessing a
new device is successful, the bot reports to the CNC server
information on the victim, i.e., IP address, port number, and
authentication credentials. The Mirai also uses the code script
“killer.c” which is responsible for killing various processes
like telnet and ssh inside the bot. All the executable of the bot
is controlled by the code script “main.c”, which establishes the
connection to the CNC server, starts the attack, kills processes,
and even scans for additional bots to add to the botnet by
making use of the other pieces of code as described above.

B. Experimental setup

We performed a real-world experiment to prove how vul-
nerable are the resource constrained IoT devices which we
are using in our daily lives. This experiment (see Figures 4
and 5) was conducted using the Mirai Botnet DDoS attack
technique. First, IoT device IP addresses were collected from

66Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

 78 / 106

Fig. 4. Mirai scanning code

Fig. 5. Mirai DDoS attacks

an open access database. When such a device is found, we
look on the website shodan.io [34] for the type of device.
We used 20 IoT devices with public IP address; 18 of these
were found on shodan.io database. Based on this, we created
an emulated network with all the devices we collected and
launched the Mirai Botnet attack. In our emulated network,
20 different devices were placed, with open port 23. For
18 of them, we set up default credentials according to the
shodan.io database. Since we chose the devices randomly we
believe this experiment was a small scale but realistic one. We
observed that the botnets were able to carry out the scanning
and infection.

C. Lightweight security solutions to mitigate Mirai Attack

In our proposed approach for addressing the Mirai attack,
we categorize the different resource-constrained IoT devices in
three different levels, which differ with respect to the security
features provided by the manufacturer. The details of these
levels are as follows:

• Level 0: No Security, i.e., no security measures have been
taken or applied to the IoT device.

• Level 1: Medium Security, i.e., few measures have been
taken and applied to the IoT device.

• Level 2: Full Security, i.e., continuous security service
and monitoring through a service provided by a special-
ized service provider or by the manufacturer.

We propose lightweight security solutions for the Level 0
(i.e., No security) IoT devices, as these are most commonly
used in various real-world applications. The following subsec-
tions provide details about our proposed solutions that could
help mitigate the different variants of the Mirai attack. Our
proposals are based on the assumption that the security solu-
tions must not affect the cost of the devices. This is because the
vendors are developing devices that are getting cheaper day by
day to make them affordable to many consumers. Hence, our
solutions must increase the security of these devices without
significantly affecting their cost. Additionally, we provide
security not only to the devices that will be built in the future
but also to those already in use.

1) Secure Authentication: Despite the solutions which are
already presented to mitigate the Mirai attack (refer to Section
II-B), we propose to improve the security of IoT devices by
protecting them with more secure and hardly guessable login
credentials. The malware to control and access these devices is
injected only after the device has been compromised due to its
weak login credentials. To make the prediction of username
& password (authentication process) more complex, an idea
is to generate a periodically random username & password
for accessing the device. These random values must be built
combining more random numbers generated through a pseudo-
random number generator (PRNG) such as Blum Blum Shub
[35].

67Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

 79 / 106

This approach is somewhat complicated and insufficient
because the credentials will be challenging to guess not
only by the attacker but even by the owner of the device.
Because of this, the random values created periodically must
be stored in a different device, such as a smartphone. The
idea is to build an Android application that will store only
the current values for accessing the device, deleting the older
ones, and will keep them secure by using encryption at another
layer, e.g., using a password chosen by the user to access
the application. Obviously, the communication between the
external device and the IoT device for sharing the values must
be encrypted so that an attacker cannot sniff the credentials
during the data sharing. This leads to the necessity of adding
a cryptographic suite to the IoT device. The solution does
not significantly affect the manufacturing cost of the device,
as the only requirement is to build a PRNG application and
cryptographic functions to encrypt the data shared with the
android application in the device; these can be implemented
in hardware or firmware. Furthermore, the proposed solution
is also applicable to existing devices, by means of a firmware
update.

2) Biometric Authentication: The second solution aims to
reduce the cost of the device even more, as it uses some
features that are already present in the externally linked
devices, which again can be a smartphone. We propose to
utilize the biometric features e.g., digital fingerprint of the user
as authentication parameters. Nowadays, it is very common for
all smartphones to offer biometric authentication hence we
can use these already existing mechanisms for IoT devices.
The idea is to link a specific external device to one or more
IoT devices so that we do not have direct communication
between the IoT device and the database where its credentials
are stored. In fact, the external device itself communicates with
the Server with its ID, and provides the biometric authentica-
tion parameters. If such an external device is authorized for
the specific IoT device to which it requires access and the
credentials are the same as those stored in the server database,
the access is granted. This idea is similar to the OAuth (Open
Standard Authorization) concept where the authentication is
provided by a third party component and the IoT device is
only asking for authorization [36].

To better explain how this process works (see Figure 6),
we initially need to define the first part of the authentication
phase. When a new IoT device is booted, it must specify which
external device will be used for authentication. In order to do
this, the IoT device will be provided with some temporary
credentials that the user must use to authenticate in a specific
android application. Once the access has been completed, the
user must create new credentials based on some biometric
parameters used for future authentications. During this phase,
the server to which the IoT device refers will store the device’s
serial number from which the application/ios has been used.
For some specific devices, the serial number is the Unique
Device Identifier (UDID), along with the ID number of the
IoT device and the new authentication parameters. So each
time a user wants to access an IoT device, it will use the

android/ios application that will directly communicate with the
server to check the credentials. If everything is correct, it will
communicate both with the smartphone to notify the success of
the authentication operation and with the IoT device to unlock
it.

Fig. 6. Authentication process

3) Using One Time Password: The third solution is more
convenient and cost-effective than the previous ones, as it does
not inflict any additional cost on the IoT device, because the
external device does all the computational work. The only
weakness in the system is in the first authentication phase, in
which the credentials are default credentials and can be easily
predicted by an attacker. An initial username and password
written in the instruction booklet can be sold with the device to
overcome this problem. These can be used only once and only
for accessing the application. An even more secure approach
is to use a QR code for the first authentication as a One Time
Password (OTP). Moreover, the frequency of the OTP based
authentications could be optimised to improve the usability of
this approach.

IV. CONCLUSION

We discussed how vulnerabilities of IoT devices can be
exploited by a class of malware called Mirai, which creates
a botnet of IoT devices. We presented a detailed analysis
of the Mirai malware source code, and we implemented the
Mirai attack using the same code, that is available on the
Github. Our conclusion was that the attack is still very relevant
and that resource-constrained IoT devices are vulnerable to
it. We reviewed existing security solutions, whose take up in
practice presents a number of difficulties, and we proposed
three new ones, that provide security without increasing the
manufacturing cost of the devices. Our future research will
focus on validating these solutions by means of extensive
experimentation.

REFERENCES

[1] M. A. et. al, “Understanding the mirai botnet,” in 26th
USENIX Security Symposium (USENIX Security 17). Vancouver,
BC: USENIX Association, 2017, pp. 1093–1110. [On-
line]. Available: https://www.usenix.org/conference/usenixsecurity17/
technical-sessions/presentation/antonakakis

68Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

 80 / 106

[2] “Mmd-0052-2016 - overview of ”skidddos” elf++ irc botnet,”
https://blog.malwaremustdie.org/2016/02/mmd-0052-2016-skidddos-
elf-distribution.html, February 2016.

[3] “Security man krebs’ website ddos was powered by hacked internet
of things botnet,” https://www.theregister.com/2016/09/26/brian
krebs site ddos was powered by hacked internet of things botnet/,
September 2016.

[4] “Inside the infamous mirai iot botnet: A retrospective anal-
ysis,” https://blog.cloudflare.com/inside-mirai-the-infamous-iot-botnet-
a-retrospective-analysis/, September 2016.

[5] “Mirai-source-code,” https://github.com/jgamblin/Mirai-Source-Code,
accessed: 2010-02-20.

[6] “Ddos attack that disrupted internet was largest of its kind in history, ex-
perts say,” https://www.theguardian.com/technology/2016/oct/26/ddos-
attack-dyn-mirai-botnet, October 2016.

[7] “Did the mirai botnet really take liberia offline?” https:
//krebsonsecurity.com/2016/11/did-the-mirai-botnet-really-take-liberia-
offline/, November 2016.

[8] “Uk isp talktalk confirm loss of 101,000 subscribers after cyber-attack,”
https://www.ispreview.co.uk/index.php/2016/02/isp-talktalk-suffers-
sharp-fall-in-broadband-users-to-3-9-million.html, December 2016.

[9] “Kaspersky lab research shows ddos devastation on organizations
continues to climb,” https://usa.kaspersky.com/about/press-
releases/2017 kaspersky-lab-research-shows-ddos-devastation-on-
organizations-continues-to-climb, February 2017.

[10] “Source code of iot botnet satori publicly released on pastebin,”
https://www.trendmicro.com/vinfo/it/security/news/internet-of-things/
source-code-of-iot-botnet-satori-publicly-released-on-pastebin, January
2017.

[11] “Hajime malware: How does it differ from the mirai worm?”
https://www.techtarget.com/searchsecurity/answer/Hajime-malware-
How-does-it-differ-from-the-Mirai-worm, March 2017.

[12] “Iotroop botnet: The full investigation,” https://research.checkpoint.com/
2017/iotroop-botnet-full-investigation/, October 2017.

[13] “Mirai okiru: The first new linux elf malware designed to infect
arc cpus,” https://securityonline.info/mirai-okiru-the-first-new-linux-
elf-malware-designed-to-infect-arc-cpus/, January 2018.

[14] “Mirai-based masuta botnet weaponizes old router vulnerability,”
https://www.securityweek.com/mirai-based-masuta-botnet-weaponizes-
old-router-vulnerability, January 2018.

[15] “Jenx: A new botnet threatening all,” https://www.radware.com/
security/ddos-threats-attacks/threat-advisories-attack-reports/jenx/, Jan-
uary 2018.

[16] “Omg - mirai minions are wicked,” https://www.netscout.com/blog/
asert/omg-mirai-minions-are-wicked, January 2018.

[17] “Wicked botnet uses passel of exploits to target iot,”
https://threatpost.com/wicked-botnet-uses-passel-of-exploits-to-target-
iot/132125/, June 2018.

[18] “Open adb ports used to spread possible satori variant,” https:
//www.trendmicro.com/en gb/research/18/g/open-adb-ports-being-
exploited-to-spread-possible-satori-variant-in-android-devices.html,
July 2018.

[19] “Torii botnet, probably the most sophisticated iot botnet of ever,” https:
//securityaffairs.co/wordpress/76659/malware/torii-iot-botnet.html,
September 2018.

[20] “Thinkphp vulnerability abused by botnets hakai and yowai,”
https://malware.news/t/thinkphp-vulnerability-abused-by-botnets-
hakai-and-yowai/26724, January 2019.

[21] “Mirai “covid” variant disregards stay-at-home orders,”
https://www.f5.com/labs/articles/threat-intelligence/mirai-covid-
variant-disregards-stay-at-home-orders, March 2020.

[22] “Satori: Mirai botnet variant targeting vantage velocity field unit rce
vulnerability,” https://unit42.paloaltonetworks.com/satori-mirai-botnet-
variant-targeting-vantage-velocity-field-unit-rce-vulnerability/, March
2021.

[23] “Satori: Mirai botnet variant targeting vantage velocity field unit rce
vulnerability,” https://unit42.paloaltonetworks.com/satori-mirai-botnet-
variant-targeting-vantage-velocity-field-unit-rce-vulnerability/, Febru-
ary 2021.

[24] Y. M. P. P. et. al, “Iotpot: Analysing the rise of iot compromises,” in 9th
USENIX Workshop on Offensive Technologies (WOOT 15). Washington,
D.C.: USENIX Association, 2015. [Online]. Available: https://
www.usenix.org/conference/woot15/workshop-program/presentation/pa

[25] H. Šemić and S. Mrdovic, “Iot honeypot: A multi-component solution
for handling manual and mirai-based attacks,” in 2017 25th Telecommu-
nication Forum (TELFOR), Nov 2017, pp. 1–4.

[26] J. Habibi, D. Midi, A. Mudgerikar, and E. Bertino, “Heimdall: Mitigating
the internet of insecure things,” IEEE Internet of Things Journal, vol. 4,
no. 4, pp. 968–978, Aug 2017.

[27] H. Tanaka, S. Yamaguchi, and M. Mikami, “Quantitative evaluation of
hajime with secondary infectivity in response to mirai’s infection situ-
ation,” in 2019 IEEE 8th Global Conference on Consumer Electronics
(GCCE), 2019, pp. 961–964.

[28] Z. Ahmed, I. Nadir, H. Mahmood, A. Hammad Akbar, and G. Asadul-
lah Shah, “Identifying mirai-exploitable vulnerabilities in iot firmware
through static analysis,” in 2020 International Conference on Cyber
Warfare and Security (ICCWS), 2020, pp. 1–5.

[29] X. Hu, R. Sun, K. Xu, Y. Zhang, and P. Chang, “Exploit internal
structural information for iot malware detection based on hierarchical
transformer model,” in 2020 IEEE 19th International Conference on
Trust, Security and Privacy in Computing and Communications (Trust-
Com), 2020, pp. 927–934.

[30] M. Snehi and A. Bhandari, “Apprehending mirai botnet philosophy and
smart learning models for iot-ddos detection,” in 2021 8th International
Conference on Computing for Sustainable Global Development (INDI-
ACom), 2021, pp. 501–505.

[31] A. R. S. Araujo Cruz, R. L. Gomes, and M. P. Fernandez, “An intelligent
mechanism to detect cyberattacks of mirai botnet in iot networks,” in
2021 17th International Conference on Distributed Computing in Sensor
Systems (DCOSS), 2021, pp. 236–243.

[32] J. A. Jerkins, “Motivating a market or regulatory solution to iot insecurity
with the mirai botnet code,” in 2017 IEEE 7th Annual Computing and
Communication Workshop and Conference (CCWC), Jan 2017, pp. 1–5.

[33] “Mirai (ddos) source code review,” https://medium.com/@cjbarker/
mirai-ddos-source-code-review-57269c4a68f, February 2016.

[34] “Shodan,” https://www.shodan.io/, accessed: 2010-02-20.
[35] D. Boneh, Blum–Blum–Shub Pseudorandom Bit Generator. Boston,

MA: Springer US, 2005, pp. 50–51. [Online]. Available: https:
//doi.org/10.1007/0-387-23483-7 37

[36] “Oauth 2.0,” https://nordicapis.com/why-oauth-2-0-is-vital-to-iot-
security/, March 2017.

69Copyright (c) IARIA, 2022. ISBN: 978-1-68558-007-0

SECURWARE 2022 : The Sixteenth International Conference on Emerging Security Information, Systems and Technologies

 81 / 106

