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Abstract This paper presents a strategy for field estimation
and informative path planning towards autonomous map-
ping and radiological characterization of distributed gamma
radiation fields within confined GPS-denied environments
using aerial robots. First, an online distributed radiation field
estimation and spectroscopic analysis framework is presented
which combines sequentially acquired measurements to es-
timate both the field intensity and gradient and propagate
the belief over the initially unknown map, while simultane-
ously classifying each map region with respect to its domi-
nating isotope. As such a process depends on the quality of
the acquired measurements and given the limited endurance
of small flying robots, we further contribute an informative
path planner responsible for iteratively guiding the robot
towards the next-best radiation measurement location such
that high estimation confidence is achieved in short time. A
divided global and local planning architecture is proposed
enabling the robot to guide itself towards the radiologically
most interesting areas quickly and acquire sufficient mea-
surements within those. We further develop a tailor-made
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collision-tolerant micro flying robot that is equipped with a
lightweight scintillator and silicon photomultiplier combina-
tion, alongside GPS-denied localization and mapping capa-
bilities. A set of experimental studies are presented involv-
ing the autonomous characterization of distributed radiation
fields containing live uranium ore and radium sources within
GPS-denied industrial settings.

Keywords Radiation Mapping · Path Planning · Aerial
Robots

1 Introduction

In this work, autonomous robotic technologies are devel-
oped in order to facilitate the monitoring and characteri-
zation of nuclear sites. A history of research, development
and utilization of nuclear technology, alongside the natu-
ral occurrence of radioactive materials calls for the need to
develop new and advanced means to autonomously survey,
map and characterize complex and distributed gamma radi-
ation fields. Nuclear technology is used in a multitude of
applications including—but not limited to—nuclear power
generation, nuclear weapons, medical applications (e.g., med-
ical radiography), industrial use (e.g., industrial radiogra-
phy), commercial applications (e.g., smoke detectors), and
food processing (e.g., insect control). The effect is that the
world is now host to a complex set of facilities that require
careful monitoring and maintenance. Considering the effect
of nuclear waste alone, it is estimated that more than a quar-
ter million metric tons of highly radioactive waste is de-
posited in storage facilities near nuclear power plants and
weapons production facilities worldwide. The U.S. accounts
for over 90,000 metric tons of nuclear waste alone [19].
Such nuclear waste is stored in complex facilities, either in
near-surface disposal at ground level or in caverns below
ground level (at depths of tens of meters), or deep geological
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disposal at depths between 250− 1000 m for mined repos-
itories or 200− 50000 m for boreholes [39]. Similarly, the
importance of automated and robotized radiation character-
ization is further emphasized by looking at the number of
nuclear reactors closed across the world [38] (with more to
close soon) as shown in Figure 1. These are all examples of
complex nuclear facilities for which robotic systems capa-
ble of delivering comprehensive monitoring and surveying
would have a major impact and improve our ability to reduce
risks of contamination, respond to possibly catastrophic nu-
clear accidents, and characterize settings presenting natural
or artificially introduced radioactive materials.

Damage

Political

End-of-Life

Fig. 1 An indicative application of robotized radiation characteriza-
tion is to perform inspections in decomissioned nuclear power plants.
Across the world, a set of reactors are already closed and more are
to be decommissioned soon. The figure presents the number of re-
actors closed for the following reasons: following damage in an ac-
cident or serious incident, prematurely by political decision or con-
sideration, or having fulfilled their purpose and being no longer eco-
nomic to run across 21 countries, namely: Armenia (AM), Belgium
(BE), Bulgaria (BG), Canada (CA), France (FR), Germany (DE), Italy
(IT), Japan (JP), Kazakhstan (KZ), Lithuania (LT), the Netherlands
(NL), Russia (RU), Slovakia (SK), South Korea (KR), Spain (ES),
Sweden (SE), Switzerland (CH), Taiwan (TW), United Kingdom (UK),
Ukraine (UA), and USA (US).

In the literature, multiple efforts of the research commu-
nity can be identified with the majority relating to the teleop-
erated use of ground robots [4, 13, 20] including specialized
crawlers that entered the reactor buildings of the Fukushima
Daiichi Nuclear Power Station [32] or are capable of char-
acterizing miles of contaminated pipes installed in enrich-
ment facilities [15], deployment of unmanned aerial vehi-
cles in open-ended environments [4, 34], underwater robots
for pipe inspection [25] and more. Despite the significant
efforts and the pioneering contributions of the community,
autonomous mapping and characterization of distributed nu-
clear radiation fields especially within complex facilities is
far from achieved. Iconic examples of environments of inter-
est include the “sarcophagus” of Chernobyl’s Unit 4, the re-
actors of the Fukushima Daiichi nuclear power plant requir-
ing continuous inspection for years to come, the Plutonium
Uranium Extraction Plant (PUREX) tunnels at the Hanford
site, the McArthur River mine in Canada representing the

world’s largest uranium producing mine, and a collection of
other facilities and buildings of larger or smaller scale.

Motivated by the importance of automating radiological
surveys of key infrastructure and aiming to enable seamless
robotic deployments, in this work we present a new method
and a prototype system realization for autonomous survey-
ing, mapping, and distributed gamma radiation field estima-
tion inside confined and possibly GPS-denied settings us-
ing aerial robots. The method departs from prior works on
single- or individual-source localization, or contributions in
2D/3D field intensity estimation, and provides a fully 3D
strategy for the estimation of intensity, gradient, and spec-
troscopic properties of complex distributed gamma radiation
fields, alongside a next-best-radiation-measurement path plan-
ning algorithm capable of commanding the aerial robot so
that the estimation of the gamma radiation field is achieved
efficiently within complex facilities.

Fig. 2 An instance of the prototype RMF-γ aerial robot performing an
autonomous radiological surveying mission inside a GPS-denied envi-
ronment based on the proposed radiation field mapping and informative
path planning method.

In particular, the proposed strategy first contributes an it-
erative distributed gamma radiation field mapping and spec-
troscopic analysis technique that combines a field estimation
step based on the measurements gathered so far, followed by
a field propagation step, with a classification scheme iden-
tifying which isotope dominates every subset of the map.
To enable reliable distributed gamma field estimation, the
method introduces a metric based on spatial entropy to char-
acterize the level of confidence attributed to the estimated
field intensity and gradient at any map location. As the qual-
ity of the field mapping depends upon the quality of the ra-
diological measurements acquired by the robot, we further
contribute an informative path planner that is responsible for
guiding the flying robot through a sequence of points and
collision-free paths that at any instance maximize the likeli-
hood to map the—generally distributed—radiologically ac-
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tive areas of the map. To achieve this task in a manner that
respects the limited endurance of small flying robots, the
planner classifies the different areas of the map with respect
to how confident the robot is regarding the quality and spa-
tial distribution of the data sampled in each region. Impor-
tantly, the overall strategy runs onboard a tailor-made fly-
ing robot called the Resilient Micro Flyer-gamma (RMF-γ).
RMF-γ is a micro-sized aerial robot capable of autonomous
GPS-denied navigation that further integrates a Thallium-
activated Cesium Iodide CsI(Tl) scintillator combined with
a silicon photomultipler in order to acquire gamma radiation
measurements, enabling field intensity estimation and spec-
troscopy. The radiation measurements are associated with
the real-time estimates of the robot’s trajectory to effectively
deliver, in real-time, 3D maps that are annotated with the
estimated radiation intensity, gradient, and dominating ra-
dioisotope in each region. Figure 2 presents an instance of
the robot conducting one such autonomous radiological sur-
vey in a GPS-denied and confined environment.

Towards a thorough evaluation of the proposed approach
and prototype system realization, a set of studies were con-
ducted using the developed RMF-γ aerial robot deployed
in realistic environments containing real nuclear radiation
sources such as uranium ore and radium. As demonstrated,
the contributed strategy delivers reliable and efficient au-
tonomous radiation field estimation and spectroscopic char-
acterization using micro-sized flying robots with constrained
endurance operating inside complex, GPS-denied and con-
fined environments.

The remainder of this paper is organized as follows. Sec-
tion 2 outlines related work, followed by the description of
the developed RMF-γ robot and the properties of the asso-
ciated system’s radiation measurement, mapping, and sur-
veying capabilities in Section 3. Subsequently, Section 4
presents the proposed radiation mapping and spectroscopic
analysis method, while Section 5 details the contributed in-
formative path planner for radiation field characterization.
Evaluations are presented in Section 6, followed by conclu-
sions in Section 7.

2 Related Work

A multitude of research efforts have considered the prob-
lem of radiation field characterization, with a subset of them
specifically considering the case of nuclear sources [2, 3, 5,
14, 36]. Notably, the majority of published work in the do-
main has focused on the detection and estimation of discrete
sources. Relevant examples include contributions on source
localization through maximum likelihood estimation [2, 5],
numerical adjoints combined with Bayesian formulations [14]
and those based on particle filter estimation [36]. At the
same time, an extensive literature is available on the gen-
eral problem of distributed field estimation that primarily

focuses on non-nuclear sources and utilizes either networks
of wireless sensors [21, 37] or mobile robots [18]. Similarly,
the community has examined the problem of active source
localization, whereas “active source” implies radiological,
chemical and other types [24, 30, 40]. Nuclearized robotics
research [4, 6, 12, 20, 27, 28, 31, 34, 35] has grown to be an
important subdomain and several contributions have been
proposed. The authors in [31] present a method for adaptive
source seeking through successive-elimination. The paper
in [6] details an approach on distributed guidance by means
of information gradients to estimate the radiation distribu-
tion tested using a “radiation analog” source. The authors
in [27, 28] handle multiple sources but only evaluate their
methods in simulation. Aiming to better inform the informa-
tion gathering paths of a ground robotic system, the authors
in [4] employ scene segmentation based on aerial views. Fo-
cusing on large-scale environments, the work in [35] uses a
helicopter UAV to map radiation over large environments.
Tailored to post–disaster radiation mapping, the contribu-
tion in [34] presents a grid-based Bayesian estimator for
single source localization and contour analysis for multiple
sources.

Considering a different aspect of the problem, the work
in [12] incorporates radiation sensing in order to enable a
robot to navigate an environment with ionizing radiation,
while avoiding areas of high field intensity in order to en-
sure its safety. Exploiting new compact Compton camera
technologies, the authors in [32] present a system for radia-
tion imaging using a crawler robot inside the reactor build-
ings of the Fukushima Daiichi nuclear power station. In an
analogous manner, the work in [1] demonstrates the use of
a Compton event camera onboard a micro aerial vehicle for
the purposes of gamma radiation source localization. Em-
ploying a team of small aerial robots, the contribution in [33]
presents a method for the localization of ionizing radiation
sources using onboard pixel detectors, while the work in [16]
details plug-and-play radiation sensor components for un-
manned aerial vehicles. Emphasizing field demonstration,
the authors in [11] present a heterogeneous robotic system
capable of performing radiation surveys.

In addition to this body of research, our prior work in the
domain has contributed three distinct capabilities, namely a)
single-source localization with an aerial robot [8] using a
single detector and dwelling at each measurement location,
b) distributed radiation field estimation in 2D using ground
robots with a specialized detection apparatus involving three
scintillators [23], and c) distributed 3D radiation field esti-
mation using a micro aerial vehicle equipped with a scin-
tillator [22]. As compared to these works, this paper con-
tributes five significant advances. First, the presented method
makes no assumptions with respect to the source strength or
its distribution within the environment and can map complex
3D radiation fields. This contribution highlights the real-



4 Frank Mascarich et al.

world applicability of the method and its ability to map dis-
tributed radiation sources. Such distributed sources may be
made of a variety of isotopes placed closely together such
that there does not exist a span of background radiation in-
tensities between them. Second, the method requires only
a single, low-cost radiation sensor, and like [22] does not
require an explicit “dwelling“ behavior. “Dwelling“, in this
context, refers to commanding the platform to remain at a
given position for a given amount of time in order to reduce
measurement uncertainty of radiation field intensity at a par-
ticular point. Third, the field mapping strategy is not limited
to intensity and gradient estimation but also performs spec-
troscopic analysis and thus characterizes every region of the
radiation field with respect to its dominant isotope. Fourth,
the presented novel planning algorithm iteratively guides
the robot to the next-best-radiation-measurement location
both from a local and a global standpoint. The presented
planning algorithm allows the radiological mapping of con-
fined and complex environments in 3D, thereby rendering it
applicable to real-world contaminated environments. Fifth,
the method is deployed and experimentally verified using a
custom-made micro-sized and collision-tolerant aerial robot
enabling the seamless operation in confined environments
not limited by any terrain.

3 The RMF-γ Aerial Robot for Radiation Surveying

This section presents the developed robotic system for dis-
tributed radiation field surveying and characterization, and
focuses on the integrated gamma radiation detector and the
associated measurement principles.

3.1 The RMF-γ aerial robot for radiation surveying

The design of the RMF-γ aerial robot—its first version pre-
sented in [22], and presented in Figure 3—is tailored to the
need of autonomous estimation of distributed gamma radi-
ation fields in GPS-denied and confined environments. The
RMF-γ quadcopter features a carbon-balsa sandwich frame,
an mRo X2.1 Rev. 2 autopilot running the Ardupilot firmware,
as well as a Realsense T265 stereo visual-inertial system
and a Realsense D435i RGB-Depth sensor interfaced with a
Khadas VIM3 Pro single board computer (SBC). The SBC
is also responsible for running all the 3D occupancy map-
ping, distributed gamma radiation field estimation, spectroscopy,
and informative path planning for autonomous surveying in
GPS-denied and confined environments. The total weight of
the system including its battery is 639 g.

Fig. 3 RMF-γ views and main electronic components.

3.2 Radiation Sensing

In this section we detail both the sensing and processing
components alongside the underlying measurement princi-
ples that facilitate gamma radiation detection onboard the
RMF-γ aerial robot.

3.2.1 Onboard Radiation Detection

The selection of radiation detection principle and specific
device was driven by the need for a) high sensitivity, b) low
weight and power consumption, alongside c) spectroscopic
resolution. Optimizing for these criteria, we integrated a Scionix
V10B10 Thallium-activated Cesium Iodide CsI(Tl) scintil-
lator combined with a Silicon Photomultipler (SiPM) and
associated counting and spectroscopy electronics (depicted
in Figure 4) with a total weight of 41 g. In further detail, the
radiation detector consists of a) the Scionix V10B10 CsI(Tl)
scintillation crystal, b) a small SiPM, and c) a custom-designed
pulse counting and spectroscopy circuit that weighs only
23 g. The Scionix detector is a cylindrical package (66 mm
long, 16 mm wide) which provides analog voltage pulses
that correspond to incident gamma photons colliding with
the scintillation crystal. The amplitude of each pulse is pro-
portional to the energy released by the corresponding gamma
photon. Different isotopes emit gamma photons with a unique
set of energies which allows spectroscopic analysis. There-
fore, to implement spectroscopy, the processing electron-
ics must not only count the number of pulses present on
the scintillator’s output, but also log the amplitude of these
pulses. Accordingly, our custom-built scintillator process-
ing electronics consists of a series of 32 comparators com-
paring reference voltages that are generated by a resistor
ladder against the output signal from the scintillator’s pre-
amplifier. The outputs of the comparators are read by a 32-
bit, 180 MHz ARM microcontroller and the system can dis-
cern between 32 different pulse amplitudes, therefore offer-
ing low resolution spectroscopy and separate counting of
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gamma radiation at different energy levels. Updated mea-
surements are reported by the microcontroller at 10 Hz.

Fig. 4 The Scionix V10B10 Thallium-activated Cesium Iodide CsI(Tl)
scintillator combined with a Silicon Photomultipler (SiPM) and inter-
faced by our custom-built counting and spectroscopy electronics.

3.2.2 Radiation Counts

The previously described radiation detector that is integrated
onboard the RMF-γ is used to detect high-energy particles
emitted by radioactive materials. In particular, the gamma
radiation intensity is evaluated by measuring radiation counts
received by the detector which in turn may be modeled as a
composition of the signal from radiation sources and the ef-
fect of the natural background radiation [9, 17].

Given a distributed radiation field of intensity S(M)

over the environment mapM, and assuming that the effect
of the distributed radiation field can be modelled as the ad-
ditive effect of Ns small point sources si, i = 1, ...,Ns, then
the mean radiation Counts Per Second ( CPS), denoted as y,
received at a position pκ takes the form [10, 17]:

E(ypκ

S ) =
Ns

∑
i=1

Aevsi

4π||pκ −psi ||2
, (1)

where A and e are the area and the efficiency of the de-
tector, vsi is the si source intensity, and ||pκ −psi ||2 denotes
the Euclidean distance from the detector to the source si lo-
cated at psi . Given that the detector is set to sample data at
a fixed rate Fd and considering the general case that dur-
ing the time interval between the κ − 1 to κ sample Td =

1/Fd (1 sample) the robot is moving along some curve Cκ
κ−1,

then the resulting radiation CPS measurement, denoted as
Y , reported at time κ , with the robot arriving at position pκ ,
E(Y pκ ) takes the form:

E(Y pκ

S ) =
∫
Cκ

κ−1

Ns

∑
i=1

Aevsi

4π||pκ (r)−psi ||2
dσσσ = (2)

∫
κ

κ−1

Ns

∑
i=1

Aevsi

4π||pκ (r(t))−psi ||2
|r′(t)|dt,

where r is a parameterization of the curve Cκ
κ−1 such that the

values it takes at κ − 1 and κ are the extremes of Cκ
κ−1. At

the same time, the detector also receives radiation from the

natural background (also following the Poisson distribution)
that takes the form:

E(Y pκ

b ) = TdAevb, (3)

where vb is the background intensity. Since the signal due
to the distributed radiation field S(M) and background are
independent, the total radiation count continues to follow
the Poisson distribution and the expected value ζκ reported
at time κ takes the form:

ζκ = E(Y pκ ) = E(Y pκ

S +Y pκ

b ) = (4)

TdAevb +
∫

κ

κ−1

Ns

∑
i=1

Aevsi

4π||pκ (r(t))−psi ||2
|r′(t)|dt.

The quantities A and e of Eq. (4) are determined by the cal-
ibration of the detector in a pre-characterized chamber. The
signal intensities vsi are determined by the distributed ra-
dioactive source field which is initially unknown. The back-
ground intensity rate vb can be derived through preliminary
measurements away from the expected radiation field (ex-
ploiting the fast decay of the inverse square law).

3.2.3 Spectral Readings

The aforementioned radiation detection module is also equipped
with spectroscopy capabilities, allowing it not only to count
instances of gamma rays impacting the detector crystal, but
also to measure their energy. Any source of gamma radi-
ation emits rays at a particular set of energies which are
related to the specific decay process for that isotope. For
example,137Cs emits gamma radiation at primarily 662 keV.
This energy level will be reflected as the amplitude of the
voltage pulse emanating from the scintillator’s pre-amplifier.
Using the comparator array that is described in Section 3.2.1,
this pulse height will result in all comparators between the
comparator connected to the lowest reference voltage and
comparator connected to the reference voltage immediately
below the incoming pulse voltage, changing the state of their
output. The microcontroller maintains an array of 32 inte-
gers and upon the receipt of an interrupt signal indicating
this state change, increments the value of the array at the
index corresponding to the comparator that was triggered.
At a rate of 10 Hz, the microcontroller calculates and re-
ports the detected spectrum of channel counts, Qκ . Given
the counting array described above and denoted by Gκ , the
correct spectral count for each channel is calculated by the
following:

Qκ
i = Gκ

i −Gκ
i+1, i ∈ [0,31], Qκ = {Qκ

i }, ∀ i = {0...31}, (5)

where Gκ
i is the originally obtained value from the counting

array at time κ in channel i, and Qκ
i is the resulting number

of pulses detected in channel i at time κ .
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3.2.4 Detector Calibration

The onboard integrated Scionix V10B10 is a miniaturized
Thallium-activated Cesium Iodide CsI(Tl) SiPM scintilla-
tion detector integrating a Silicon Photomultiplier and hav-
ing built-in temperature compensated bias generator and a
preamplifer. Its voltage output consists of pulses with a width
of 2.2 µs and an amplitude that is proportional to the energy
of the gamma photon that triggered the pulse. The frequency
of the pulses, generally reported in Counts Per Second, is
proportional to the gamma ray field intensity incident upon
the detector. It is noted that various factors such as the size
of the crystal, the shielding from the scintillator’s enclosure,
and properties of the SiPM determine what proportion of
gamma emissions a scintillator will detect.

Calibration of such a scintillator consists of four com-
ponents: a linearity evaluation, an orientation evaluation, a
count calibration, and an energy calibration. The first three
components utilize a calibration chamber which contains
a radioactive source of known activity. The chamber uti-
lized in this work contains a 137Cs source with an activity
of 6.66 MBq. However, due to various complex factors such
as the shape of the calibration chamber, the materials from
which it is constructed, and the various windows and attenu-
ation surfaces between the source and the chamber, the char-
acteristic used for calibration is the dose rate. Using the time
since the last chamber calibration, the present-day dose rate
at various distances can be calculated using the half-life of
137Cs.

The first step, a linearity evaluation, is used to evalu-
ate the count rate response of the detector and its interfac-
ing electronics when exposed to sources of increasing in-
tensity. First, due to the design of the electronics and of
the scintillator itself, at some radiation intensity, the detec-
tor’s output will be saturated. This intensity level was not
found after exposing the detector to dose rates as high as
10 mRem/hr, which greatly exceeds the anticipated radia-
tion exposure levels. Second, we expose the scintillator to a
field of known intensity at various distances from the source
to confirm that the scintillator has a dose rate response in
agreement with the inverse square law of radiation propa-
gation. These results are shown in subplots (a) and (b) of
Figure 5.

The second step of the calibration process, an orientation
evaluation, is necessary given that the detector will be used
on a mobile platform, in an unknown environment. This pro-
cess concerns determining the directionality of the scintilla-
tor in response to its shape and the position of the integrated
electronics. For the purposes of this calibration, we define
the roll axis of the scintillator to be the cylindrical axis of
the detector, the pitch axis to be parallel to the line connect-
ing the interface pins on the rear of the detector, and the
yaw axis to be perpendicular to the roll and pitch axes. The

scintillator is placed at a single distance from the source in
the calibration chamber, and is rotated around its yaw axis.
Variation around its roll and pitch angles is not required due
to the symmetrical nature of the scintillation crystal. The
results of this calibration procedure on our scintillator are
shown in subplot (c) of Figure 5. As shown, the scintillator
has a mostly symmetric response with an approximate 50%
decrease in detected counts over a small arc of orientations
when its back faces the source (due to the interfacing elec-
tronics inducing a shielding effect). This step yields the fact
that the detector has a narrow cone of reduced sensitivity to
sources located directly behind the crystal.

The third step of the calibration process, the count cal-
ibration, is to determine the scintillator’s efficiency. For ac-
curate radiation field estimation, it is necessary to determine
the relationship between a scintillator’s count rate, and the
true dose rate of the field. This step takes place by collecting
data from the lowest channel of the counting circuit. Due to
the design of the counting circuit, this channel is the sum
of pulses counted at its reference and all channels above it,
and is therefore a measure of all counts on all channels. The
scintillator is fixed in one position and oriented in an ideal
direction, directly facing the source. The detector is exposed
to three field intensity levels, 0.1 mRem/hr, 1 mRem/hr, and
10 mRem/hr. This allows for the calculation of the linear re-
lationship between the measured Counts Per Second and the
dose rate as presented in subplot (a) of Figure 5.

The final step of a scintillator calibration determines the
energy response of the scintillator when exposed to differ-
ent radioactive sources. While sources of a particular isotope
produce pulses of varying amplitude due to back-scattering
and other effects, a set of dominant amplitudes are produced,
characteristic to the exposed isotope. Figure 6 shows results
of this calibration for 137Cs, 60Co, 238U, 226Ra, 232Th, and
22Na.

3.2.5 Sources of Error and Noise

For any given radiation detector, a number of reasons can
lead to fluctuation in the response. Those include—but are
not limited to—the following a) possible drift of the operat-
ing characteristics, b) sources of random noise within the
interfacing electronics, c) dead times due to the time re-
quired to separate two interaction events, and d) statistical
noise arising from the discrete nature of the measured sig-
nal (which follows the Poisson distribution) [17]. Among
those, the latter is typically the most significant and rep-
resents an irreducible minimum amount of fluctuation that
will necessarily be present in the detector output signal de-
spite the quality of the scintillator and interfacing circuitry.
This arises from the fact that the charge generated within
the detector by a quantum of radiation is not a continuous
variable but rather represents a discrete number of charge
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Fig. 5 Subplot (a) depicts the identified linear relation (red line) be-
tween the utilized scintillator measured in Counts Per Second (CPS)
and the field dose rate, measured in mRem/hr. The scintillator is placed
in a calibration chamber with its head directly facing the source. The
data gathered (black ‘+’) allows to relate the measured CPS to the ac-
tual field dose rate which is essential for radiological characterization.
Subplot (b) shows the calibration of average CPS value ( ¯CPS) to dis-
tance by placing the scintillator at distances of 19 cm to 31 cm from
the source. The scintillator is positioned inside the calibration chamber
with its head facing the source. The data presented complies with the
inverse square law. Subplot (c) depicts the

calibration of the average CPS value against various orientations of
the scintillator as compared to the source. As shown the scintillator is

largely symmetric with the exception of a small narrow cone of
reduced sensitivity which appears when the scintillator faces exactly

away from the source.

carriers. The Poisson distribution models this effect, and for
a mean value λ , the variance is λ and the standard deviation√

λ . For multiple measurements acquired at a certain point,
the Poisson distribution can be approximated by a Gaussian
distribution.

The issue of spectral noise is significantly different. While
a particular isotope will emit gamma radiation at a particu-
lar energy level, the resulting spectra covers a large number
of channels measured by the detector circuit. For example,
referring to Figure 6, the 137Cs plot clearly shows its char-
acteristic peak at 0.6617 MeV in channel 7, as well as a
significant number of counts in lower channels. This noise
is mainly due to two factors: Compton scattering and back-
ground noise. Compton scattering is the effect of a particle
collision occurring before being detected by the scintillator
which results in a loss of some proportion of the original
emission’s energy, while the noise from background sources
of radiation, especially in the presence of weak sources, also
contributes additional noise to the resulting spectra. Fortu-
nately, the characterization approach presented in this work
does not rely on a precise energy calibration or peak channel
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Fig. 6 Plot showing the results of the energy calibration in which the
scintillator’s energy response to different gamma sources was evalu-
ated. Specifically, the cases for 137Cs, 60Co, 238U, 226Ra, 232Th, and
22Na are shown and the different characteristic energy results per chan-
nel are presented.

detection at the level of each individual channel but rather
exploits the relative response captured in each channel against
the remaining channels, and thus is robust to such sources of
noise.

3.3 Environment Mapping and Representation

To enable the association of the estimated radiation field
with the environment within which a survey takes place,
and to offer the necessary representation for autonomous
path planning, RMF-γ fuses the onboard Realsense T265
and D435i sensor data. The Realsense T265 sensor offers
highly compact visual-inertial odometry estimation—and when
desired, loop closure capabilities—with a power-efficient ASIC
implementation. The Realsense D435i sensor provides point-
clouds with a maximum range of 3 m and a field of view
equal to 87◦× 58◦. The odometry updates—and associated
pose transformations—provided by the T265 stereo visual-
inertial system are associated with the RGB-Depth point-
clouds of the D435i thus allowing to reconstruct a dense
pointcloud of the explored environment and also populate a
3D occupancy map based on Voxblox [29]. Voxblox utilizes
voxel hashing for fast lookups of voxel information from
its 3D coordinate and allows for incrementally constructing
the Euclidean Signed Distance Field (ESDF) maps from the
Truncated Signed Distance Field (TSDF) maps, and occu-
pancy maps.
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3.4 Autonomous Radiological Surveying

In the subsequent sections, the overall algorithmic approach
that enables the autonomous distributed radiation field char-
acterization based on the RMF-γ aerial robot equipped with
a CsI(Tl) SiPM gamma radiation detector is presented. In
particular, Sections 4 & 5 present the two core functional-
ity modules of a) real-time distributed radiation field esti-
mation (“rad-mapping”) given onboard radiation measure-
ments without the need for dwelling, and b) the uncertainty-
aware curiosity-driven informative path planning that is re-
sponsible for planning paths towards the measurement lo-
cations that allow the fast and high-fidelity estimation of the
gamma radiation field (“rad-sniffing”). The solution exploits
the localization and mapping capabilities onboard the aerial
robot, enabling it to reconstruct detailed 3D and occupancy
maps, alongside estimating its pose, in GPS-denied environ-
ments. A block diagram of the key functionalities onboard
RMF-γ is depicted in Figure 7.

Fig. 7 Overall block diagram depicting the core functional elements
running onboard the prototype RMF-γ aerial robot capable of au-
tonomous radiological surveying in GPS-denied and confined environ-
ments.

4 Distributed Radiation Field Characterization

The presented work addresses the problem of autonomous
distributed 3D radiation field estimation and spectroscopic
characterization proposing both an algorithm for field esti-
mation given a set of sequentially collected measurements,
and an informative path planner responsible for selecting the
next-best radiation measurement point for a robot to go in
order to best support the field mapping process in deriving
a high-quality and high-confidence result in a short period
of time. The underlying motivational scenario is that a small
aerial robot enters a large-scale but GPS-denied and geo-
metrically confined environment within which it performs
accurate radiation mapping and spectroscopic analysis. In

this section we present the radiation mapping and spectral
characterization algorithm. Figure 8 presents the mapping
strategy from a high level perspective.
Problem Definition Let the robot configuration at time tκ
be the flat state ξξξ κ = [pκ |ψκ ] that combines the vehicle’s
position pκ = [xκ ,yκ ,zκ ] and heading ψκ . The problem of
distributed gamma radiation field estimation and spectro-
scopic characterization, as considered in this work, is that
of identifying the intensity, dominant isotope, and locations
of a large number of point sources, with each of them obey-
ing the inverse square law for their intensity and a Poisson
model for the noise of each measurement.

To enable addressing this problem, the method makes
the assumption that spatial variations in gamma radiation in-
tensity are locally smooth, which in turn permits approach-
ing the problem of field estimation through the combination
of multiple local regressions. This assumption, given suf-
ficient sampling density, renders the method applicable in
a variety of environments. With respect to the spectroscopy
problem, this work further makes the assumption that sources
of different isotopes are spatially distributed, reporting the
isotope whose characteristic spectra dominates the set of
measurements in a local area.

In reference to the notations listed in Table 1, the method
spatially discretizes a bounded volume into a 3D grid M of
cells with a resolution DDDM = [DDDx

M,DDDy
M,DDDz

M]. Each Counts
Per Second (CPS) measurement ζκ acquired by the robot (at
a fixed rate of 10 Hz) is pose-annotated using the robot’s
onboard odometry, and such pose-annotated measurements
λλλ κ = [ξξξ κ |ζκ ] are added to a list of readings maintained by
the corresponding cell. Constructing this representation is
essential for one of the algorithm’s most critical functional-
ities, that of running gradient estimation, propagation, and
spectral characterization at a rate independent of that of data
collection.

Provided this underlying field representation, the pro-
posed method for distributed gamma radiation field mapping
consists of two stages, namely a) field estimation and b) field
propagation. In the estimation stage, the set of spatially dis-
tributed readings are utilized over the discretized 3D grid
EM in order to co-estimate the field’s mean radiation inten-
sity and an associated field gradient estimate. In the field
propagation phase, the estimated gradient of each cell—in
combination with a confidence metric based on the spatial
entropy of the cell’s neighboring measurements—is propa-
gated to unknown neighboring cells using a weighted aver-
age. Subsequently, the measured and propagated gradients
are used in order to propagate an estimated gamma radia-
tion mean intensity for each cell. A visualization of the key
steps of the method is provided in Figure 8.

Similarly, each spectral measurement, Qκ is also pose-
annotated using the robot’s odometry, and is passed to a sup-
port vector machine (SVM) for classification. The SVM is
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Fig. 8 Diagram depicting distributed radiation mapping technique. The blue cubes on the left depict how the environment is discretized into a
grid of cells each containing a set of data members which track measured and propagated properties. The grid in the upper center shows a sparse
representation of readings, estimated means, gradients and a curiosity driven path. The two grids in the lower center depict a group of neighboring
cells deriving a gradient for the center, as well as it’s entropy metric. Finally, the right side of the figure depicts how the propagation ordering is
constructed as well as a set of neighbors contributing measured gradients to a neighbor of another layer.

trained using the characteristic spectra for a number of ex-
pected isotopes collected during calibration. In the experi-
ments described in Section 6, the SVM is trained using the
spectra shown in Figure 6. Given an accumulated unknown
spectrum, the SVM derives the closest characteristic spec-
tra using a linear kernel and a one vs. all evaluation strat-
egy. The isotope with the strongest score is selected as the
most likely isotope. This selection is treated as a vote for the
chosen isotope, which is assigned to the corresponding cell,
where each cell maintains a tally of all votes recorded within
its bounds, denoted as Bm

i jk.

4.1 Field Estimation

For a cell Ci jk ∈M, we define its neighbors as the cells that
share edges or faces with it. The radiation field gradient es-
timation step only considers measurements obtained within
the neighborhood of a cell Ci jk (which includes the cell it-
self and its neighbors). Iterating over each of the cells in the
map Ci jk ∈M, the method first counts the number of read-
ings Ni jk that are available inside a cell Ci jk in order to de-
termine if it is sufficient in order to estimate the field mean
intensity and gradient. If Ni jk is smaller than a set threshold
Nthres then Ci jk is considered unmeasured. Otherwise, Ci jk
is considered sufficiently sampled and the algorithm gathers

all the readings in its neighborhood and runs a linear regres-
sion as in Eq. (6) to find the optimally fitting spatial gradient
vector and mean:

[
δδδ

m
i jk

µm
i jk

]
= (XT

i jkXi jk)
−1XT

i jkSi jk. (6)

These values are then assigned as the measured gradient vec-
tor of the cell δδδ

m
i jk and measured mean intensity µm

i jk. In
the event that the columns of the cell’s measurement po-
sition matrix (Xi jk) are not linearly independent, then the
measured mean intensity is calculated as the average of the
Nnb

i jk radiation readings in the neighborhood of cell Ci jk. It is
noted that this situation is rather rare due to the noise present
in the onboard odometry estimates.

If the measured radiation intensity mean µm
i jk is smaller

than a set threshold that reflects the background radiation
level (µbg

thres), then δδδ
m
i jk is assigned as [0,0,0]T in order to

prevent gradients with very low Signal-to-Noise Ratio (SNR)
from being erroneously propagated.

Finally, the algorithm derives confidence metrics for both
the gradient δδδ

m
i jk and mean intensity µm

i jk over each cell. The
spatial entropy vector of the measurements acquired in the
neighborhood of Ci jk, Hm

i jk, is derived and serves as a confi-
dence metric for δδδ

m
i jk.
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Table 1 Main notations used in this Section

M Discretized Grid Map
i, j,k ∈ Z+ Cell indexes along the x,y,z axes
Ci jk Grid cell at index i, j,k
DM ∈ R3 Grid cell size in meters along x,y,z axes
Ni jk,Nnb

i jk ∈ R Number of measurements γm within Ci jk and
Ci jk’s neighborhood respectively

Xi jk ∈ Rn×4 Matrix of measurement positions within Ci jk’s
neighborhood, offset by the average measure-
ment position, and appended with the column
vector 1 at the end (the number of rows n =
Nnb

i jk)
Si jk ∈ Rn Vector of intensity measurements within

Ci jk’s neighborhood (the number of rows n =

Nnb
i jk)

µm
i jk,σ

m
i jk ∈ R Estimated mean, mean confidence at Ci jk

δδδ
m
i jk,Hm

i jk ∈ R3 Vectors of estimated gradient, gradient confi-
dence at Ci jk

Oµ , Oδ Cell propagation ordering for mean and gradi-
ent over M

µ
p
i jk,σ

p
i jk ∈ R Propagated mean, mean confidence at Ci jk

δδδ
p
i jk,H

p
i jk ∈ R3 Vectors of propagated gradient, gradient con-

fidence at Ci jk
Lµ

i jk,L
δ
i jk ∈ Z+ Ci jk’s Propagation Levels for the mean and

gradient vector
Qκ

i The per-channel array of spectroscopic pulses
recorded in channel i at time κ .

Gκ
i The raw count array of spectroscopic pulses

recorded in channel i at time κ .
Bm

i jk ∈ Re Vector of measured spectral votes for each ex-
pected isotope recorded within Ci jk(e is the
number of expected isotopes)

Bp
i jk ∈ Re Vector of propagated spectral votes for each

expected isotope recorded within Ci jk(e is the
number of expected isotopes)

(ax,ay,az) x,y,z components of vector a ∈ R3

A histogram of measurement positions projected onto
every axis of each cell is constructed employing bh bins and
is constrained by the limits of the neighborhood along each
axis. Subsequently, Shannon Entropy is calculated based on
this histogram as follows:

Hm,h
i jk = −

bh

∑
w=1

P(hw) logP(hw), (7)

Hm
i jk = [Hm,x

i jk ,H
m,y
i jk ,H

m,z
i jk ]

T ,

where hw represents the number of gamma radiation mea-
surements along each axis h, h→ x,y,x, found in bin w. The
term P(hw) is derived as follows:

P(hw) =
hw

∑
bh
i=1 hi

. (8)

Regarding the confidence of the radiation field mean inten-
sity associated with every cell’s location, the following cal-
culation takes place and reflects the number of measure-
ments available locally:

σ
m
i jk = 1− 3

Nnb
i jk

, σ
m
i jk ∈ [0,1]. (9)

The overall steps of the estimation phase used to derive
the mean and gradients over the distributed field are summa-
rized in Algorithm 1.

Algorithm 1 Measured Gradient Estimation
1: for Ci jk ∈M do
2: if Ni jk > 4 then
3: Find neighbors of Ci jk
4: Construct Xi jk and Si jk
5: if det(XT

i jkXi jk)! = 0 then
6: Calculate δδδ

m
i jk, µm

i jk by Eq. (6)
7: Calculate Hm

i jk by Eq. (7), (8)
8: else
9: µm

i jk← Average(Si jk)
10: end if
11: Calculate σm

i jk by Eq. (9)

12: if µm
i jk < background threshold µ

bg
thres then

13: δδδ
m
i jk← 01×3

14: end if
15: end if
16: end for

Spectral characterization during the field estimation stage
simply involves processing any cell which has at least one
spectral vote in its corresponding Bm

i jk, finding the isotope
with the largest vote tally in it, and characterizing this cell
as dominantly containing this isotope.

4.2 Field Propagation

The second essential component of the proposed distributed
radiation field mapping methodology is that of mean and
gradient propagation. This process is implemented using a
carefully dictated cell ordering (Figure 8) that starts with
cells whose means and gradients have been estimated us-
ing Algorithm 1 and continuing onto their neighbors. After
the gradient estimation step is conducted, a cell has a valid
mean as long as the condition set in line 2 of Algorithm 1
is satisfied, whereas a cell has a valid gradient vector if both
conditions in lines 2, 5 of Algorithm 1 are satisfied. To pro-
duce the appropriate propagation orders for each cell, the
proposed method defines separate propagation levels for the
intensity mean (Lµ

i jk) and gradient vector (Lδ
i jk) using a re-

cursive method. Specifically, the derivation of the level val-
ues for Lµ

i jk is detailed in Algorithm 2, while the derivation
of Lδ

i jk is similar. Accordingly, distinct propagation orders
Oµ , Oδ , are derived for the intensity mean propagation and
gradient propagation processes provided the incremental or-
dering of Lµ

i jk and Lδ
i jk.
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Algorithm 2 Cell Mean Level Derivation Lµ

i jk

1: NextLayer,CurrentLayer← /0 . (Empty Set)
2: for Ci jk ∈M do
3: Lµ

i jk← NaN
4: if Ni jk > 4 then
5: Add Ci jk to CurrentLayer
6: end if
7: end for
8: i← 0
9: while CurrentLayer ! = /0 do

10: for Ci jk ∈CurrentLayer do
11: Lµ

i jk = i
12: for Ci′ j′k′ ∈ Neighbors(Ci jk) do
13: if Lµ

i′ j′k′ = NaN then
14: Add Ci′ j′k′ to NextLayer
15: end if
16: end for
17: end for
18: CurrentLayer← NextLayer
19: NextLayer← /0
20: i← i+1
21: end while

Once the propagation ordering sequences have been de-
rived then the field gradients are propagated first. For each
grid cell Ci jk that is within the gradient propagation ordering
Oδ , the method acquires its neighbors. For every cell with
level Lδ

i jk = 0, the cell’s propagated gradient vector, δδδ
p
i jk, and

gradient confidence vector, Hp
i jk, are assigned to the corre-

sponding estimates δδδ
m
i jk and Hm

i jk of the cell, respectively.
Otherwise, the cell’s δδδ

p
i jk is derived as the weighted average

of the δδδ
p
i jk values of its neighbors using only neighbors with

Lδ
i jk less than that of the cell in question, and weighted by

the neighbor’s confidence metric Hp
i jk.

Once gradient propagation is complete, mean propaga-
tion takes place as outlined in Algorithm 3. In particular,
we iterate over cells in the mean propagation order, Oµ .
For cells whose Lµ

i jk = 0, their propagated mean (µ p
i jk) and

mean confidence (σ p
i jk) are assigned to the corresponding

estimated values µm
i jk and σm

i jk of the cell, respectively. For
cells of all other levels, the method finds neighbors (Ci′ j′k′ )
of the cell whose Lµ

i′ j′k′ is less than that of the cell in ques-
tion (Ci jk), and calculates their corresponding contribution
following the equations:

µ
p
i′ j′k′→i jk = µ

p
i′ j′k′ +

 (i− i′)Dx
M

( j− j′)Dy
M

(k− k′)Dz
M


T

δδδ
p
i′ j′k′ , (10)

DM = [Dx
M,Dy

M,Dz
M],

where µ
p
i′ j′k′→i jk is the contribution of the neighboring cell

Ci′ j′k′ to the cell Ci jk (Lµ

i′ j′k′ < Lµ

i jk). The cell’s µ
p
i jk is as-

signed as the average neighbor contribution (µ p
i′ j′k′→i jk) and

weighted by the neighbor’s σ
p
i′ j′k′ . The cell’s σ

p
i jk is assigned

as the average of the neighbors’ σ
p
i′ j′k′ .

Algorithm 3 Mean Propagation
Given derived mean propagation ordering, Oµ

1: for Ci jk ∈Oµ do
2: if Lµ

i jk = 0 then
3: µ

p
i jk,σ

p
i jk = µm

i jk,σ
m
i jk

4: else
5: Contributions← /0 . (Empty Set)
6: Weights← /0
7: for Ci′ j′k′ ∈ Neighbors(Ci jk) do
8: if Lµ

i′ j′k′ < Lµ

i jk then
9: Calculate µ

p
i′ j′k′→i jk by Eq. (10)

10: Add µ
p
i′ j′k′→i jk to Contributions

11: Add σ
p
i′ j′k′ to Weights

12: end if
13: end for
14: µ

p
i jk← WeightedAverage(Contributions, Weights)

15: σ
p
i jk← Average(Weights)

16: end if
17: end for

Within the propagation phase, the propagation of the es-
timated dominant isotopes throughout the map follows a pro-
cess similar to that of mean propagation. The process fol-
lows the mean propagation ordering, Oµ . For each Ci jk whose
Lµ

i jk is equal to 0, Ci jk’s propagated spectral vote tally, Bp
i jk

is assigned to that of its measured spectral vote tally, Bm
i jk.

Otherwise, the cell’s Bp
i jk will be calculated as the sum of

vote tallies of all of its neighbors belonging to a lower prop-
agation level, Lµ

i jk. The cell then finds the isotope with the
most votes, and is labelled with this isotope.

5 Next-Best-Radiation-Measurement Path Planning

Motivated by the above-described scenario, that of a small
aerial robot entering a complex, GPS-denied, and geometri-
cally confined environment in order to obtain a gamma ra-
diation map of the environment, we address the problem of
path planning seeking to guide the robot towards the next-
best-radiation-measurement (NBRM) location.
Problem Definition The path planning problem described
here faces two opposing constraints. First, given the limited
endurance of aerial robots and the scale of the environments
considered, an efficient path must be found that leads the
robot to cover as much volume as possible, without wast-
ing endurance in uninteresting, background radiation dom-
inant areas of the environment. Second, and in opposition
to the first, given the noise associated with gamma radiation
measurements, the robot must obtain a) a sufficient num-
ber of measurements in locally contaminated areas to cor-
rectly estimate the mean, as well as b) sufficiently spatially
distributed measurements to correctly estimate the gradient.
To address these opposing factors, the planner (called “Rad-
Sniffer”) is split into two components, a global planner re-
sponsible for leading the robot to the next most interesting
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location, and a local planner designed to guarantee that the
robot collects sufficient measurements that are appropriately
spatially distributed. To promote the spatial distribution of
measurements, the local planner introduces a metric based
on the spatial entropy of the collected measurements. This
metric is chosen given the assumption that more measure-
ments with a greater spatial distribution provide more cov-
erage and therefore a better sampling of the gradient to be
estimated as described in Section 4.

To accomplish both planning tasks, the environment is
spatially discretized into a grid of 3D cells, with a resolution
DP = [Dx

P,D
y
P,D

z
P]. This grid is completely separate from the

grid used in the field estimation process and contains cells
of larger dimension. While the grid cell size in the field es-
timation process dictates the resolution of the derived field
intensity map, the grid cell size in the planning process dis-
cretizes the points of the map which the robot should visit
to best characterize the map. The choice of planning grid
resolution is therefore a balance between coverage and en-
durance, where a fine resolution will force the robot to visit a
large number of cells, and a coarse resolution will cause the
robot to execute long paths and will require more measure-
ments to correctly classify a given cell. In the presented ex-
periments, the mapping cells and planning cells are cuboids
with edges of length 1 m and 2 m respectively.

The planner is updated at a frequency of 10 Hz. At each
iteration, the planner first checks to see if the previously
calculated path is complete. If so, the planner plans a new
path depending on the state of the currently occupied plan-
ning cell. If the current path is not complete, the method
will check for collisions on the current path. In the event the
current path will cause a collision, the planner will stop the
platform and plan a new path, in the same manner as in the
case in which the current path has been completed. Figure 9
outlines the basic steps of the proposed planning strategy.

Table 2 Notations used in this Section

MP Discretized Planning Grid Map
i, j,k ∈ Z+ Cell indexes along the x,y,z axes
Ti jk Planning grid cell at index i, j,k
DP ∈ R3 Planning grid cell size in meters along x,y,z

axes
CDFp Background cumulative distribution function

probability threshold
CDFt Background cumulative distribution function

radiation threshold
b Background radiation level
Imult Minimum background intensity multiplier
dmin Minimum source intensity distance
Hp̂

i jk ∈ R3 Maximum possible planning entropy
Hp

i jk ∈ R3 Planning cell entropy
Hk

i jk ∈ R3 Planning cell entropy multiplier
Ht

i jk ∈ R3 Planning cell entropy threshold

5.1 Statistical Testing

To plan a new path, the planner classifies cells into six in-
dependent states using three statistical tests: a background
distribution test, a within range of background test, and an
entropy test.

To determine whether or not a group of measurements
belongs to the background distribution, a background test is
employed using the Poisson Cumulative Distribution Func-
tion (CDF). The method constructs the CDF for a Poisson
distribution whose mean is equal to the background level b,
by:

CDF(x,b) =
x

∑
i=0

e−bbi

i!
. (11)

Then, using a given probability threshold, CDFp, the method
calculates the mean radiation intensity level CDFt below which
will be considered to belong to the background distribution.
If the mean of the readings present in a given planning cell
is less than CDFt , the cell is classified as belonging to back-
ground. Similarly the method uses Eq. (11) to calculate a
number of measurements threshold Nthresh, using the given
CDFp, to classify background cells as measured or unmea-
sured.

In the interest of rapid exploration and to avoid wasting
critical endurance in areas of background-dominant radia-
tion, the method conducts a second test, the within range
of background test. This test calculates a distance threshold,
dmin, based on the inverse square law, by Eq. (12), and is
a factor of the minimum intensity multiplier, Imult , and the
CDFt calculated in Eq. (11). Any cell whose center is less
than dmin from a background cell is considered within range
of background. In short, the method assumes that no source
greater than b× Imult is within

dmin =

√
b× Imult

CDFt
(12)

of any cell confirmed to be dominated by background. Fi-
nally, to determine whether or not the collected measure-
ments within a given cell are sufficiently spatially distributed
to accurately estimate a gradient, an entropy test is performed.
The positions of readings within a planning cell are collected
and their spatial entropy, Hp

i jk (where i, j,k correspond to
the x,y,z axes respectively), is calculated using Eq. (7). The
planner then calculates the maximum possible spatial en-
tropy, H p̂

i jk, within the cell. This calculation is performed
by first sampling points within the cell which are collision
free, and constructing a graph where edges connecting ver-
tices are also collision free. Second, a connected compo-
nents labeling procedure finds the subset of the free space
samples which are connected to the current robot position.
Eq. (7) is again calculated on this set of free space samples
to render the theoretical maximum possible entropy, Hp̂

i jk.
Finally, the test calculates an entropy threshold, Ht

i jk as the
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Fig. 9 Figure illustrating the “rad-sniffing” Next-Best-Radiation-Measurement (NBRM) planning process. A decision diagram is shown high-
lighting the various stages of the overall planning process, while drawings illustrate the discretization of the planning space, the process of global
planning, as well as local planning within a single cell. The zoom component of the diagram highlights the process of local planning taking place
within a single planing cell against the global planning process which takes place within a multitude of cells. The cell classification Unknown, or
U, colored red, denotes that the current cell the robot is in, is Unknown.

element-wise product of a given multiplier, Hk
i jk, and H p̂

i jk,
by Eq. (13):

Ht
i jk = Hk

i jk�H p̂
i jk. (13)

If any element of a cell’s Hp
i jk is less than Ht

i jk’s correspond-
ing element, the cell is considered unmeasured.

5.2 Cell Classification

Using the above statistical tests, the proposed Next-Best-
Radiation-Measurement (NBRM) planner classifies each of
the cells into six independent states: Measured Above Back-
ground (MAB), Measured Below Background (MBB), Un-
measured Above Background (UAB), Unmeasured Below
Background (UBB), Within Background Range (WBR), and
Unknown (U). Cells whose Hp

i jk is above the entropy thresh-
old, and whose measured mean is greater than the back-
ground threshold are classified as MAB. Cells which have
more than Nthresh measurements whose measured mean is
less than the background threshold are classified as MBB.
Cells whose propagated mean is above the background thresh-
old, but do not pass the spatial entropy test are classified

as UAB. Cells whose propagated mean is below the back-
ground threshold but do not have more than Nthresh measure-
ments are classified as UBB. Finally, any remaining cell is
checked for proximity to a cell which is classified as MBB.
Cells below the dmin threshold from such cells are marked as
WRB, while remaining cells above dmin are marked as U.

Based on this cell classification, the NBRM planner de-
cides which of the two distinct planning methods should
be engaged. If the currently occupied cell’s state is MAB,
MBB, or WRB, the global planner will be initiated. If the
currently occupied cell’s state is UAB the local planner will
be engaged. Finally, if the cell’s state is UBB or U, the robot
will wait at the current position until sufficient measure-
ments have been collected to correctly classify the current
cell. The planning behavior can be considered as follows:
if the robot is currently within a cell which has not been
sufficiently measured, as dictated by the tests described in
Section 5.1, it will execute a local planning step to better
characterize the current cell. Otherwise it will invoke the
global planner to continue to explore the map and classify
new cells.
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5.3 Global Planning

The global planner mode seeks to lead the robot to more
radiologically interesting parts of the map while avoiding
areas which have already been mapped or have been deter-
mined to belong to the background areas of the environment.
Global planning begins by building a planning graph. The
planner first samples vertices in free space, and connects
vertices with edges which are also collision-free. Second,
the planner finds a destination cell by following a priority
ordering of cells: UAB, UBB, WBR, U. Within each class,
cells are sorted by their distance to the current position. The
closest cell belonging to the highest priority class is selected.
The planner then runs Dijkstra’s Shortest Path Algorithm to
find the shortest path from the current position to the free
space sample closest to the center of destination cell.

5.3.1 Genetic Algorithm Path Improvement

Once again, given the aforementioned motivational scenario,
the robot is expected to operate in confined spaces. The noise
in the position estimate from the onboard odometry solution,
coupled with the noisy depth estimates from the onboard
mapping solution, as well as discretization errors which oc-
cur when building the TSDF map reveal real-world prob-
lems associated with simply choosing the shortest path be-
tween two points. For example, given a path which traverses
a corner and sufficient free space sampling, Dijkstra’s Short-
est Path will find the path closest to the obstacle. This fre-
quently causes collision detections as the robot follows the
path given the noise sources described above.

To address this problem, global paths are augmented us-
ing a Genetic Algorithm (GA). The open source framework
OpenGA [26] is used to optimize the derived path with re-
spect to four fitness metrics: minimizing the average dis-
tance to a given target TSDF distance, minimizing the change
in heading angle of the robot, minimizing the overall path
length, and finally, minimizing the distance to a target z.
This process returns short, straight paths, which attempt to
maintain a given distance from obstacles, as well as a tar-
get height above the starting position. The implemented GA
utilizes random point mutation, single point crossover, and
Non-Dominated Sorting to iterate over generations to find a
solution which optimizes the multi-objective problem. A ge-
netic algorithm was chosen for three reasons: first, they are
well suited to multi-objective problems, second, GA’s fol-
low simple rules making them intuitive to tune and utilize,
and third, the described problem does not require the opti-
mal solution, and therefore given endurance constraints, a
GA based optimization process can be stopped after a given
amount of time and is guaranteed to return a solution no
worse than the initial solution. In this implementation the

GA is limited to a total processing time of 500ms, and there-
fore consumes limited amount of the robot’s overall endurance.

A GA is typically described by five operations: initial-
ization, mutation, crossover, evaluation, and selection. The
initialization operation generates a number of individuals to
be inserted into the initial population by randomly mutat-
ing the initial path given by Dijkstra’s Shortest Path. The
mutation operation involves iterating through each point in
the path. For each point, with a random probability, the GA
will move the point by a random displacement vector. The
crossover operation begins by randomly selecting two indi-
viduals, called parents, in the current population, then ran-
domly selecting a point in each path. Two new individuals,
called children, are generated by combining the vertices of
the first parent between the starting vertex and the randomly
selected vertex with the vertices of the second individual
between the randomly selected vertex and last vertex. The
other child is constructed with the remaining components of
each parent. Evaluation takes place by calculating the fitness
metrics for each path and sorting the individuals in the popu-
lation using Non-Dominated Sorting. Non-Dominated sort-
ing is a well described procedure [7], placing individuals in
a number of pareto-optimal fronts. Finally, the selection pro-
cedure follows an elitist strategy selecting the members from
the first pareto front, followed by the second front, up to the
Nth front until a target number of individuals has been se-
lected for the next generation. The GA procedure terminates
when a maximum number of generations has been reached,
or a stall count is exceeded indicating that there is marginal
improvement between generations.

5.4 Local Planning

While the global planning mode seeks to maximize the global
spread of the robot’s trajectory, the local planning stage of
the NBRM planner is engaged to ensure that the robot col-
lects a sufficient number of measurements with sufficient
spatial distribution in areas of strong radioactivity. From a
high level, the local planner strives to find the location within
the current cell which will maximize the planning cell’s sam-
pling entropy if the robot were to navigate to that point. To
accomplish this objective, the local planner starts by ran-
domly sampling free space points within the bounds of the
current cell, and constructs a graph from these samples, con-
necting vertices with edges which are collision free. The
planner then performs a brute force search of all of the col-
lected samples. For each sample, the planner calculates the
entropy of the set of points including the current measure-
ment points, as well as points on the Dijkstra’s Shortest Path
from the current position to the sampled point. The best sam-
pled point is the point which yields an anticipated entropy
greater than the entropy threshold calculated in Eq. (13), on
all three axes. The robot is then commanded to follow the
Dijkstra’s Shortest Path to this point.
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Exp.
#

#
Sources

Radiation Mapping
Cell Size (m)

Dx
M×Dy

M×Dz
M

Radiation Planning
Cell Size (m)
Dx

P×Dy
P×Dz

P

Background
Radiation Level (CPS)

b

Entropy
Multiplier

Hk
i jk

CDF
Threshold

CDFp

Minimum Background
Intensity Multiplier

Imult

1 9 1.0x1.0x1.0 2.0x2.0x2.0 6 0.45 0.95 1.5
2 2 1.0x1.0x1.0 2.0x2.0x2.0 12 0.45 0.95 2.5
3 8 1.0x1.0x1.0 2.0x2.0x2.0 12 0.45 0.95 2.5

Table 3 Table describing the configuration employed for each of the presented experiments.

6 Evaluation Studies

To evaluate the proposed system, including the platform (RMF-
γ), the RadMapper radiation mapping and spectropic anal-
ysis framework, and the RadSniffer planning method, a set
of real-world experiments are presented. In each experiment,
the environment is completely unknown. The robot constructs
its volumetric map of the environment in real time on board
the robot in parallel with the radiation mapping, spectroscopy
and planning framework presented in this work.

6.1 Experimental Evaluation

Three experiments were conducted to evaluate the system
as a whole under real-world conditions. First, several radi-
ation sources were placed in a machine shop environment.
These radiation sources consisted of uranium tailings col-
lected from an abandoned uranium mine outside of Reno,
NV. The tailings are placed in several plastic containers iso-
lated in two groups with a region of background between
them. RMF-γ conducted a flight lasting approximately 5 min,
successfully isolating and estimating both radiation sources.
Figure 10 depicts the mission in several stages showing the
progression of the exploration process, as well as the con-
structed voxel map of the occupied parts of the environment
colored by the nearest cell’s propagated mean. A linear color
scale is applied where green indicates areas dominated by
background radiation determined to be 6 CPS, and red indi-
cating areas whose propagated mean exceeds 45 CPS.

The second and third experiments took place within a
laboratory environment containing numerous sources of ra-
diation. Specifically, in the second experiment (Radiation
Lab #1), a 226Ra source, measuring approximately 550 µRem/hr
at a distance of 1 m, is placed at the location indicated by
the letter B in Figure 12. A set of assorted, partially shielded
sources, including primarily 226Ra, but also including 137Cs
and 232Th, measuring approximately 310 µRem/hr at a dis-
tance of 1 m, are present in a cabinet located at the point in-
dicated by the letter A in Figure 12. In a single flight lasting
approximately 5 min, RMF-γ successfully derives a radia-
tion map of the contaminated environment. In the third ex-
periment (Radiation Lab #2), a number of sources are placed
throughout the environment indicated by labels A, B, C, D,
E, F, G, and H in Figure 13. The previously described strong
226Ra source is placed at the location indicated by the label

B, containers of raw uranium ore are placed at the positions
indicated by labels C and D. Finally, several assorted low
intensity sources, primarily 226Ra, but also including 137Cs
and 232Th, are placed at the locations indicated by A, E, F,
G, and H. Again, in a single flight lasting 5.5 min, RMF-γ
successfully derives a map of the radiation field present in
the environment. Table 5.4 details the environmental condi-
tions, as well as the settings employed for the mapping and
planning components.

Figure 11 depicts the spectral mapping results for the
three experiments. The first experiment in the machine shop
is the most successful, clearly identifying the sources cor-
rectly as 238U. The second experiment, Radiation Lab #1,
shows that the environment is dominated by 226Ra, with
false detections of 238U, 137Cs and 232Th in areas of weak
fields, especially at the borders of regions dominated by back-
ground. The third experiment, Radiation Lab #2, shows that
the environment is dominated by both 238U and 226Ra, as
well as false detections of 232Th, similarly in regions with
intensities near background.

7 Conclusions

This paper contributes a complete method for autonomous
distributed gamma radiation field characterization through
the combination of a field estimation and spectroscopy al-
gorithm and an informative path planning strategy. The ap-
proach enables efficient estimation of the distributed radioac-
tivity within complex and confined environments, alongside
spectroscopic analysis identifying the radioisotope dominat-
ing each region of the map, using small aerial robots respect-
ing their limited endurance capabilities. A prototype real-
ization is then demonstrated using a tailor-made micro fly-
ing robot called RMF-γ which integrates a scintillator and
photomultiplier combination enabling accurate radiological
measurements at a small form factor. The overall technique
is evaluated through a set of experimental studies involving
the autonomous surveying, radiation mapping and charac-
terization of narrow GPS-denied environments involving di-
verse real nuclear radioactive sources.
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Fig. 10 A figure depicting an experiment within a machine-shop environment. Three buckets of uranium ore are placed in the environment at the
locations indicated by A,B,C in the bottom map. The buckets are further supplemented by small boxes of uranium ore as depicted in the map. The
upper portion of the figure depicts the 15 individual planning steps performed by RMF-γ platform while mapping the environment. In each step
the occupied voxels of the environment are colored by their propagated field intensity. The blue lines indicate the positions of the pose annotated
measurements, the orange arrows depict the propagated radiation gradient, and the pink line depicts the path calculated at that iteration. As shown
in planning step #3, the first cell above the background radiation level is found after planning step #2, 55 seconds into the mission, at which point
the local planner is engaged to estimate the radiation field map in this cell. This local planning step yields a new cell which has been labeled as
Unknown Above Background (UAB) to which RMF-γ plans a new path towards in planning step #4. This source, at location C, has been identified
and mapped after planning step #7, and therefore the robot continues its exploration deeper into the unknown parts of the map by engaging the
global planner in planning step #8. This process continues until planning step #15 at which point the system’s battery is depleted and RMF-γ is
forced to land.
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Fig. 11 Figure depicting the spectral characterization obtained at the end of each of the three experiments presented. Machine shop: The vast
majority of the environment is classified as background, while the two uranium source positions are correctly identified as uranium. Radiation Lab
#1: The environment is dominated by radium. Several false detections of uranium, thorium and cesium are also found in areas of weak intensity
and in areas bordering regions of background radiation. Radiation Lab #2: The environment is dominated by radium and uranium, reflecting the
strongest sources present. False detections of thorium are found in few locations due to the fact that the planner does not plan local paths for the
purposes of identifying isotopes and the combination of a large number of different isotopes as present in this environment may lead to incorrect
classification without a significant number of samples.
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Fig. 12 A figure depicting the first of two experiments performed within a laboratory environment. A very strong radium source is placed at the
location indicated by B in the lower map, while a partially shielded set of assorted sources is stored in a cabinet at the position indicated by A. The
maps above depict 15 of the planning steps executed while conducting the mapping mission. The orange arrows indicate the propagated radiation
gradient, while the occupied voxels are colored by the propagated mean of the nearest mapping cell.
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Fig. 13 A figure depicting the second of two experiments performed within a laboratory environment. In this experiment a number of sources are
distributed throughout the environment with variable intensities indicated by the labels A,B,C,D,E,F,G, and H. The maps above depict 18 of the
planning steps executed while conducting the mapping mission. The orange arrows indicate the propagated radiation gradient, while the occupied
voxels are colored by the propagated mean of the nearest mapping cell.
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