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ABSTRACT 
       Decision support systems in offshore vessels utilize wave 

parameters in combination with physics-based vessel models to 

predict the vessel behavior prior to the initiation and execution 

of a marine operation. These predictions are, usually, 

accompanied by significant uncertainties inherent in the 

estimation of wave statistical parameters, idealized parametric 

spectra, and system variables. Consequently, the predictions 

may deviate considerably from the real behavior of the vessel. 

Therefore, this study uses numerical wave spectra 

corresponding to a site in the North Sea in conjunction with a 

hydrodynamic model adapted to measurements to make more 

accurate intermediate-term response predictions. Considering a 

weather-restricted marine operation, the intermediate-term 

predictions involve simulating the responses for any time 

window within the upcoming 72 hours. The vessel model's 

uncertainty is minimized by calibrating the influential 

parameters utilizing the full-scale response measurements 

within an optimization framework. The subsequent Roll 

predictions based on calibrated parameters exhibit better 

alignment with the measured Roll motions. The application of 

recursive optimization showed a significant reduction in 

prediction errors in an actual marine operation. 

 

Keywords: Decision support systems, intermediate-term 

predictions, numerical wave spectra, calibrated hydrodynamic 

model 

NOMENCLATURE 
ECMWF       European Center for Medium-Range Weather 

         Forecasts 

FD         Frequency Domain 

FFT         Fast Fourier Transform 

HFM          High-fidelity model 

LFM         Low-fidelity model 

JONSWAP    Joint North Sea Wave Project 

MADS          Mesh Adaptive Direct Search 

NDBC           National Data Buoy Center 

PCE         Polynomial Chaos Expansion 

QoI         Quantity of Interest 

WAM         Wind-Wave model 

𝑀               Vessel mass 

𝐼44              Roll moment of inertia 

𝐼55               Pitch moment of inertia 

𝐼66               Yaw moment of inertia 

𝛽33              Additional linearized Heave damping coefficient 

𝛽44              Additional linearized Roll damping coefficient 

𝛽55              Additional linearized Pitch damping coefficient 

𝛽33,𝑐𝑟          Critical Heave damping coefficient 

𝛽44,𝑐𝑟          Critical Roll damping coefficient 

𝛽55,𝑐𝑟          Critical Pitch damping coefficient 

CoG            Center of Gravity 

𝑋𝑐𝑔                Longitudinal coordinate of CoG 

𝑌𝑐𝑔               Transverse coordinate of CoG 

𝑍𝑐𝑔               Vertical coordinate of CoG
 

 

  

1. INTRODUCTION 
The safe execution of any marine operation is a 

challenging task in the presence of harsh ocean conditions. 

Proper planning prior to the operation is crucial for decision 

making, thereby saving considerable costs and human efforts. 

Decision support systems onboard a vessel can greatly aid the 

vessel operators in performing planned actions. Customarily, 

the vessel owners plan the execution of an operation by 

deducing the operational limits based on the environmental 

conditions [1] [2]. The point often stressed is that the 
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operational limits derived based on the vessel responses can be 

more dependable than those based on the environmental 

conditions [3] [4]. The former is called the response-based 

decision-making methodology. This study mainly focuses on 

reducing the uncertainties associated with the response-based 

decision-making methodology; thus, the resulting vessel 

responses predictions can closely mimic the actual vessel’s 

behavior. The uncertainties originate from the idealizations in 

the parametric spectra, ocean wave modeling, and 

hydrodynamic system parameters. Of these, the measures to 

eliminate the uncertainties arising from the parametric spectra 

and vessel system properties are addressed in this work.  

The wave information issued from the weather-service 

providers is utilized for making intermediate-term predictions. 

The prediction of vessel responses for any time window within 

the upcoming 72 hours comes under the intermediate-term 

response prediction category. The traditional approach is to 

procure sea state parameters like significant wave height, peak 

period, and mean wave direction of wind sea and swell. 

Followingly, the parametric wave spectra such as the 

JONSWAP, Pierson-Moskowitz, Ochi-Hubble spectrum can be 

constructed by applying the wave parameters [5]. Moreover, 

directional nature can be imparted to these 1-dimensional 

spectra using formulations involving cosine-spreading 

functions [6]. However, such 2-dimensional parametric spectra 

provide only an idealized energy spread of ocean waves, and 

their application is site-dependent. Due to such shortcomings, 

they may not reflect the exact energy distribution of ocean 

waves at our location of interest. On the contrary, the numerical 

spectra offer complete information on the energy spread of the 

wind sea and different partitions of swell at any geographic 

location. Thus, the wave energy spread can be obtained at a 

high resolution than what usually is available from parametric 

spectra. Therefore, the numerical wave spectra issued by 

weather-service providers have been utilized in this work.  The 

numerical spectra are directly obtained from the third-

generation wave models. The wave models are based on 

solving the balance equation of the wave energy or wave action 

density.  For instance, the Wind-Wave (WAM) model is based 

on the energy balance equation [7], while the Wave Watch III 

model uses the action balance equation [8].  

 

The ocean wave parameters can also be measured at a site using 

moored buoys or remotely from space using Altimetry 

Satellites and Synthetic Aperture Radars. Mostly, the weather 

service providers calibrate the numerical weather models using 

the wave observations from satellites. As a supplement the 

buoy data is, predominantly, employed for validating the 

satellite data and numerical models. 

 

Besides the uncertainties in parametric spectra, the Frequency 

Domain (FD) simulations also suffer from uncertainties related 

to the hydrodynamic system parameters. These parameters 

assume random values and thereby contribute to significant 

variations in vessel rigid body responses during a marine 

operation. Some of these parameters depend on the vessel 

operational conditions, whereas the other variables change with 

the sea states. However, not all these parameters influence the 

vessel responses to a considerable extent. Only a few variables 

are essential for each rigid body response, and it is considered 

vital to update them during the operation. The influential 

variables can be identified by performing a complete 

probabilistic sensitivity study. The variance-based Sobol’ 

indices are highly useful in quantitatively identifying the effects 

of input uncertainties on the output response. Especially, it is 

remarkably cost-effective when such indices are computed 

using Polynomial Chaos Expansion(PCE). Sudret [9], Blatman 

[10], Deman et al. [11], Mai [12], have applied the PCE-Sobol’ 

indices in the uncertainty analysis of problems associated with 

the engineering disciplines such as structural, hydrogeology, 

and earthquake engineering. Radhakrishnan et al. [13] studied 

the uncertainty effects of input parameters on the vessel’s rigid 

body response Root Mean Square (RMS). Based on the 

sensitivity study, the highly influential variables are chosen and 

subjected to calibration using measured responses. Some 

previous studies have tuned certain essential parameters of an 

offshore vessel model using response measurements from lab 

experiments. For instance, Han et al. [14] employed an 

unscented Kalman filtering technique to update the Zcg, inertia, 

and damping parameters. Kaasen et al. [15] applied a gradient-

based optimization approach to tune the mass and stiffness 

matrices. Skandeli [16] used the Golden Section method to 

update the parameters of a semi-submersible. This study aims 

to calibrate the numerical model of an offshore vessel by 

utilizing the full-scale measurements of the actual asset. A 

derivative-free optimization procedure applicable for non-linear 

functions is applied to minimize the error between the 

simulated and measured responses, and determine the optimal 

influential parameters.  

 

The paper is organized as follows. In Section 2, a case study of 

an actual marine operation is introduced. Further, relevant 

theoretical descriptions and practical implementation of the 

methods associated with the model calibration framework are 

presented. Section 3 presents the sensitivity study, calibration 

analysis, and validation of results. Finally, conclusive points are 

provided in Section 4. 

 
2. THEORY AND METHODOLOGY 

 
2.1  Case Study 
        The methodology considers a real case study involving an 

offshore vessel named Olympic Challenger. As shown in Figure 

1, the vessel’s operational site was at a location in the North 

sea, and it was performing a weather-limited crane operation. 

The date, exact location, and other details related to the nature 

of the operation are not mentioned here due to confidentiality 

issues. The vessel motions are measured using the SeaPath 200 

Inertial Measurement Unit (IMU). These measured responses 

were utilized for model calibration and subsequent validation.  

 

The hydrodynamic calculations were performed in Wamit 7 by 
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applying a representative panel model shown in Figure 1. The 

relevant dimensions of the numerical model are provided in  

Table 1. The positive X-axis (x = 0) is at Lpp/2, the positive Y-

axis is towards the port side, and the positive Z-axis is pointing 

upwards with z = 0 in the still water plane. 

 
Figure 1 Left: Numerical panel model of the Olympic Challenger 
applied for Wamit calculations. Right: Geographical position of the 
actual vessel shown using a red-pointer. 

Table 1 Dimensions of the numerical model 

Overall Length, 

LOA 

105.9 𝑚            

Length between 

perpendiculars, 

Lpp 

94.7 𝑚  

Breadth,B 21 𝑚  

Draught, T 6.28 𝑚  

Volume 8999 𝑚3  

Waterplane Area 1842 𝑚2  

Total no.of panels 3232  

 
2.2 Wave Spectra 
       The wave conditions at the relevant site were represented 

through a 2-dimensional numerical wave spectrum in the 

Frequency domain response analysis. The numerical wave 

spectrum was simulated using the WAM model utilizing the 

wind-forcing inputs from ECMWF ERA5 [16]. ERA5 denotes 

a metocean database consisting of reanalysis of environmental 

conditions such as waves, winds [16].  

 

The wave directions in the ECMWF spectra follow the 

Oceanographic axis conventions. The reference 0° is at South, 

and the increase in directions is as per the clock-wise rule. In 

other words, 0° denotes the waves propagating from the South. 

However, the mean wave direction parameter (𝜃𝑚) in the 

ERA5 database follows the meteorological conventions, i.e., 

defined clock-wise from the reference North. 𝜃𝑚 is converted to 

the Oceanographic conventions by deducting with 180°. 

Finally, the relative wave direction (𝜃𝑅) for vessel response 

analysis was calculated by 

 

                   𝜃𝑅 = 𝑉𝜃 − (𝜃𝑚 − 180)   ( 1 ) 

where 𝑉𝜃 is the vessel heading. The 2-dimensional wave 

spectra from ECMWF were constructed using 30 frequencies 

and 24 wave directions. To comply with the directions and 

frequencies used in the computation of transfer functions, the 

numerical spectra were extended to 72 wave directions and 152 

wave frequencies by applying linear interpolation. The ERA5 

database provides directional spectra for the total sea shown in 

Figure 2 a). In Figure 2 b) and c), the total sea spectrum was 

split into wind-wave and swell spectra using the formulation 

proposed by Komen et al. [17]. The wind-wave spectrum is 

usually single modal since local winds drive them specifically. 

However, the swells are caused by distant storms; therefore, the 

swell spectrum has different systems and is multimodal in 

nature.   

 

                  
                                               a) 

 
                        b)                                               c) 
Figure 2 a) Complete 2-dimensional numeric wave spectrum 
representing the total sea in the North Sea region on March 19 2020 
00:00 UTC. b) The spectrum is split into b) wind-wave and c) swell 
spectrum using the formulation proposed by Komen et al. [17]. 

2.3 Hydrodynamic Analysis 

      The complex-valued motion transfer function, 𝑇𝜁𝑍
̅̅ ̅̅ ∈ ℂ𝑞×1, 

relates the wave elevation 𝜁 at a reference point to the motion 

response 𝑍̅ = {(𝑍𝑞), q=1,2,…,6}. The index notation q  is used 

for expressing the six DoFs of vessel motions (Surge, Sway, 

Heave, Roll, Pitch, Yaw).  
 

The motion transfer function(𝑇𝜁𝑍
̅̅ ̅̅ ) is a product of the transfer 

function (𝑇𝐹𝑍
̿̿ ̿̿ ∈ ℂ𝑞×𝑞) between the wave excitation loads and 

the motion response and the wave excitation transfer 

function (𝑇𝜁𝐹
̅̅ ̅̅ ∈ ℂ𝑞×1) 

   𝑇𝜁𝑍
̅̅ ̅̅ (𝜔, 𝜃; 𝒙) =   𝑇𝐹𝑍

̿̿ ̿̿ (𝜔; 𝒙). 𝑇𝜁𝐹
̅̅ ̅̅ (𝜔, 𝜃)   ( 2 ) 

where 𝜔 is the wave frequency, 𝜃 denotes the relative 

directions, and system variables are given by 𝒙 = {(𝑥𝑖), 𝑖 =
1,2, … , 𝐷}. 𝐷 represents the number of input variables. 



 

 4 © 2022 by ASME 

The squared amplitude values of the motion transfer function, 

{𝑇𝜁𝑍𝑞
𝑇𝜁𝑍

∗

𝑟
= |𝑇𝜁𝑍𝑞,𝑟

|
2

, ∀𝑞 = 𝑟, 𝑟 = 1,2, … ,6},are determined 

using a hydrodynamic code [18]. The real-valued auto-response 

spectrum (𝑆𝑍𝑞𝑞
(𝜔, 𝜃; 𝒙) ∈ ℝ+𝜔×𝜃

) is written as 

 𝑆𝑍𝑞𝑞
(𝜔, 𝜃; 𝒙) =  𝑆𝜁(𝜔, 𝜃) |𝑇𝜁𝑍𝑞,𝑟

(𝜔, 𝜃; 𝒙)|
2

, r=q ( 3 ) 

The RMS or standard deviation of the response can be cast as 

        𝜎𝑍𝑞
(𝒙)   =  √∑ 𝑆𝑍𝑞𝑞

(𝜔ℎ , 𝒙)∆𝜔
𝑁𝜔
ℎ=1      ( 4 )  

 𝑁𝜔 is the total number of frequency components.  

 

The simulated response spectrum (𝑆𝑍𝑞𝑞
(𝜔, 𝜃; 𝒙)) is the primary 

Quantity of Interest (QoI) in the model calibration work. The 

Welch’s Fast Fourier Transform (FFT) [19] with ‘Hanning’ 

window was applied to generate the measured response 

spectrum (𝑆𝑍𝑞𝑞,𝑀𝑇) from the time series measurements. The 

information on the measurement noise was not available, thus, 

no noise removal techniques were applied to the measurements. 

 

2.4 Probabilistic Sensitivity Study 
       The system variables are inherently uncertain in nature and 

consequently drive the variation of vessel responses. Thus, it is 

essential to identify the most important parameters influencing 

the vessel responses. For the variable identification, a 

probabilistic sensitivity study using variance-based Sobol’ 

indices was pursued. An efficient Polynomial Chaos surrogate 

model was applied to replace the high-fidelity model while 

performing sensitivity analysis. A concise description regarding 

the Sobol’ indices is given below. The Sobol’ index results and 

the identified most influencing parameters are presented in Sec. 

3.1 for the case study. 

 

The stochastic response of a computational model can be 

written as 𝑌 = ℳ(𝑿), with 𝑌 representing the output QoIs. 

𝑿 = {(𝑋𝑖), 𝑖 = 1,2, … , 𝐷}, denotes the vector of independent 

random variables in the physical probability space. In this 

section alone, the system parameters are denoted by ‘X’, as 

they represent the random variables associated with a 

probability measure. It is assumed that ℳ(𝑿) is square-

integrable in the associated probability measure, has a finite 

variance, decomposition of ℳ(𝑿) satisfies uniqueness and 

orthogonality properties [21].  

 

Then, the variance is decomposed as  

 

𝑉 = 𝑉𝑎𝑟[ℳ(𝑿)] =  ∑ 𝑉𝑖 + ∑ 𝑉𝑖𝑗 + ⋯ + 𝑉1…𝐷 1≤𝑖<𝑗≤𝐷
𝐷
𝑖=1 = ∑ 𝑉𝑙𝑙     

                      ( 5 )  

Here, 𝑉𝑖 = 𝑉[𝔼[ℳ(𝑿)|𝑋𝑖]], 𝑉𝑖𝑗 =  𝑉 [𝔼[ℳ(𝑿)|𝑋𝑖 , 𝑋𝑗]] − 𝑉𝑖 −

 𝑉𝑗. 𝔼[ℳ(𝑿)|𝑋𝑖] and 𝔼[ℳ(𝑿)|𝑋𝑖 , 𝑋𝑗] represent the conditional 

expectation of the response QoI with respect to each input 

variable 𝑋𝑖 and any two combinations of input variables 𝑋𝑖  𝑋𝑗, 

respectively.  𝑙 = {𝑖1, … , 𝑖𝑠} ⊂ {1, … , 𝐷} is a generic index set, 

and consequently, 𝑋𝑙,a sub-vector of 𝑿, is composed of 

elements whose indices correspond to the index set 𝑙. The 

sensitivity of the model response is obtained by dividing the 

individual variance terms in Eq. ( 5 )  by the total 

variance. The sensitivity is given by 

 

∑ 𝑆𝐼𝑖 + ∑ 𝑆𝐼𝑖𝑗 + ⋯ + 𝑆𝐼1…𝐷1≤𝑖<𝑗≤𝐷 = ∑ 𝑆𝐼𝑙 =𝑙 1𝐷
𝑖=1    ( 6 ) 

𝑆𝐼𝑖  denotes the first-order indices that quantify the effect of 

each uncertain parameter on the response. The second-order 

indices, 𝑆𝐼𝑖𝑗 , assess the interactions between two variables and 

their consequent effects on the response. Depending on the 

number of input variables, the Sobol’ indices consist of higher-

order terms related to the interactions among larger 

combinations of random variables, i.e., third-order, fourth-order 

indices, and so on. The total sensitivity is the summation of the 

main/first-order effects and all the interaction terms in Eq. ( 6 ) 

. It is computationally demanding to calculate all the higher-

order terms and then the total sensitivity. Therefore, the total 

sensitivity is calculated by a simple statistical expression in Eq. 

( 9 ). 𝑋~𝑖  represents all  input variables other than 𝑋𝑖. The 

formulae for the first, second, and total-order indices are 

provided in Eqs. ( 7 ) – ( 9 ).   

   

                    𝑆𝐼𝑖 =  
𝑉[𝔼[ℳ(𝑿)|𝑋𝑖]]

𝑉[ℳ(𝑿)]
      ( 7 ) 

     

               𝑆𝐼𝑖𝑗 =   
𝑉[𝔼[ℳ(𝑿)|𝑋𝑖,𝑋𝑗]]

𝑉[ℳ(𝑿)]
− 𝑆𝐼𝑖 − 𝑆𝐼𝑗     ( 8 ) 

   

                   𝑆𝐼𝑖
𝑇 = 1 −  

𝑉[𝔼[ℳ(𝑿)|𝑋~𝑖]]

𝑉[ℳ(𝑿)]
    ( 9 )  

Based on the works of Sudret [9], Blatman [10], the 

computation of Sobol’ indices using PCE was performed here. 

The details related to the derivation of Sobol’ indices from 

polynomial coefficients can be found in [9] [10] [11] [12] 

 

2.5 Derivative-Free optimization 
       The model calibration minimizes the error between the 

simulated and the measured response spectra. The calibration 

was conducted as an optimization problem of the form 

 

                        𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝒙),   ∀ 𝒙𝜖ℝ𝐷 

 

𝒙 is a vector denoting the variables from 𝐷 dimensional space, 

and 𝑓(𝒙) represents the objective function. Each variable 𝑥𝑖 

was confined using bounded constraints with upper and lower 

limits denoted by 𝑙𝑜𝑖 and 𝑢𝑝𝑖 , respectively. Therefore, it 

resulted in a restricted search space (Ω)  
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                    Ω =  {𝒙|𝑙𝑜𝑖 ≤ 𝑥𝑖 ≤ 𝑢𝑝𝑖} ⊂ ℝ𝐷 

 

The minimization was carried out through Lipschitz 

optimization. Accordingly, the objective function was 

formulated as  

 

𝑓𝛺,𝑆𝑃𝐸𝐶(𝒙) =  ∑ (∑ |𝑤2((𝑆𝑍𝑞𝑞,𝑀𝑇(𝜔ℎ; 𝒙)∆𝜔)2 −
𝑁𝜔
ℎ=1𝑞

 (𝑆𝑍𝑞𝑞
(𝜔ℎ; 𝒙)∆𝜔)2)|)       ( 10 ) 

where w denotes the optimization weights, and q is the index of 

the rigid body modes as defined in Sec. 2.3. If just one mode is 

calibrated, the weights for the rest of the modes can be assigned 

with zero value. The function uses the absolute value of the 

squared difference due to better numerical stability. The 

objective function was minimized using a derivative-free, non-

linear optimization technique called Mesh Adaptive Direct 

Search (MADS) [20]. The working principle in MADS is that 

the input variable space is discretized using a mesh. 

Simultaneously, the algorithm iteratively evaluates the 

objective function at different points inside the mesh. The 

structure of the mesh can be written as 

 

                   𝑀𝑘 =  ⋃ {𝒙𝑘 + ∆𝑘
𝑚𝐸𝑏, 𝑏 ∈ ℤ+𝐷𝑑𝑖𝑟 }𝒙𝑘∈𝑄𝑘

,   

where 𝑄𝑘 denotes the sample points generated during the 

initiation of iteration 𝑘. ∆𝑘
𝑚 denotes the mesh size parameter. 𝐸 

represents the mesh directions of size 𝐷 × 𝐷𝑑𝑖𝑟 . 𝐷𝑑𝑖𝑟  is the 

number of directions in each dimension D. 𝑏 represents  

positive integer vectors of size 𝐷𝑑𝑖𝑟 . MADS follows the three 

steps – search, poll, and update step, at each iteration [21]. 

During the search step, the sampling points are generated on the 

mesh using Latin Hypercube (LH) sampling. Then the objective 

function is evaluated at these points. 

 

The poll step is executed if the search step could not provide an 

improved mesh point(𝒙𝑘+1: 𝑓𝛺(𝒙𝑘+1) < 𝑓𝛺(𝒙𝑘))than the 

current best point. The poll trial points can be represented using  

 

                           𝑃𝑘 =  {𝒙𝑘 + ∆𝑘
𝑚𝑒: 𝑒𝜖𝐸𝑘} ⊂ 𝑀𝑘     

where 𝐸𝑘 signifies the poll directions, whose columns form a 

set of positive basis vectors.  The outcome of the poll step 

dictates the mesh refinement. If there is a success (𝑓𝛺(𝒙𝑘+1) <
𝑓𝛺(𝒙𝑘)) during the poll step of the current iteration, the mesh 

size is either increased or remains the same (∆𝑘+1
𝑚 ≥  ∆𝑘

𝑚) for 

the next iteration 𝑘 + 1; however, the mesh size is decreased 

(∆𝑘+1
𝑚 < ∆𝑘

𝑚) if an iteration fails. The poll size parameter, 

defined at this step, is also updated, ∆𝑘
𝑝

=  √∆𝑘
𝑚. The mesh 

refinement concept is illustrated in Figure 3. Thin black lines, 

spaced at ∆𝑘
𝑚 from each other, denote the mesh discretization. 

The poll trial points 𝑃𝑘  are present on the thick blue frame at a 

distance of ∆𝑘
𝑝
 from the current point 𝒙𝑘. The optimization can 

be terminated using any of the stopping criteria such as the 

maximum number of function evaluations, maximum number 

of iterations, or minimum function value [22].  

 

There are two types of MADS – LTMADS and OrthoMADS 

based on the generated poll directions 𝐸𝑘. LTMADS generates 

the directions using a random seed, while the OrthoMADS 

applies a deterministic sequence for generating the directions 

[25]. 

 
Figure 3 The principle of adaptive mesh refinement is illustrated for a 
two-variable case (D=2) using three mesh configurations. 𝑃𝑘 denotes 
the poll trial points. The figure is shown for the OrthoMADS 
subroutine with 2D directions. 

2.6 Analysis Procedure 
      The vessel system variables and their respective uncertainty 

ranges are listed in Table 2. The sensitivity analysis necessitates 

that the random variables must conform to a probability 

distribution. As the variables were constrained with upper and 

lower bounds in the optimization framework, the search space 

resembled an Uniform distribution. Therefore, the uncertain 

variables were assigned with Uniform distributions with the 

assumption of statistical independence between the variables, 

for the sensitivity analysis.  
 
Table 2 Uncertain system variables in the hydrodynamic model. The 
acronym of the variables is mentioned in the Nomenclature section. 

  𝛽𝑓𝑓,𝑐𝑟  = 2√(𝑀𝑓𝑓 + 𝐴∞,𝑓𝑓)𝐶𝑓𝑓 , ff = 3,4,5  

 

The first 7 variables in Table 2 are characterized as operational-

dependent parameters, whereas the remaining three variables 

𝑿𝒄𝒈(𝒎)      Uniform(𝑙𝑜1 = −6.74% 𝐿𝑝𝑝,     𝑢𝑝1 = 3.82% 𝐿𝑝𝑝) 

𝒀𝒄𝒈(𝒎)      Uniform(𝑙𝑜2 = −11.9% 𝐵,         𝑢𝑝2 = 11.9% 𝐵) 

𝒁𝒄𝒈(𝒎)      Uniform(𝑙𝑜3 = 19.1% 𝑇,             𝑢𝑝3 = 50.9% 𝑇) 

𝑴(𝒌𝒈)      Uniform(𝑙𝑜4 = 𝑀 − 5% 𝑀 ,       𝑢𝑝4 = 𝑀 + 5% 𝑀 ) 

𝑰𝟒𝟒(𝒌𝒈𝒎𝟐)      Uniform(𝑙𝑜5 = 𝐼44 − 5% 𝐼44,    𝑢𝑝5 = 𝐼44 + 5% 𝐼44) 

𝑰𝟓𝟓(𝒌𝒈𝒎𝟐)      Uniform(𝑙𝑜6 = 𝐼55 − 5% 𝐼55,      𝑢𝑝6 = 𝐼55 + 5% 𝐼55 ) 

𝑰𝟔𝟔(𝒌𝒈𝒎𝟐)      Uniform(𝑙𝑜7 = 𝐼66 − 5% 𝐼66,    𝑢𝑝7 = 𝐼66 + 5% 𝐼66 ) 

   𝜷𝟑𝟑(
𝒌𝒈

𝒔
)      Uniform(𝑙𝑜8 = 0% 𝛽33,𝑐𝑟,           𝑢𝑝8 = 14% 𝛽33,𝑐𝑟) 

𝜷𝟒𝟒(𝒌𝒈
𝒎𝟐

𝒔
) 

     Uniform(𝑙𝑜9 = 5% 𝛽44,𝑐𝑟,           𝑢𝑝9 = 35% 𝛽44,𝑐𝑟) 

𝜷𝟓𝟓(𝒌𝒈
𝒎𝟐

𝒔
) 

     Uniform(𝑙𝑜10 = 0% 𝛽55,𝑐𝑟,         𝑢𝑝10 = 14% 𝛽55,𝑐𝑟) 
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represent the additional viscous damping coefficients and are 

considered sea state-dependent. The operational-dependent 

parameters could not be measured accurately during the course 

of an operation. Additionally, the hydrodynamic analysis based 

on potential flow theory cannot resolve the viscous damping. 

Thus, these parameters were included as uncertain parameters.  

The acronym of the variables is presented in the Nomenclature 

section. 
 

The steps involved in the practical implementation of the 

proposed methodology in Figure 4 are described below. 

a) The 2-dimensional ocean wave spectra, corresponding 

to the geographic vessel position and time, were 

procured from the metocean database. 𝜃𝑚 was 

converted to Oceanographic conventions to conform 

with the numerical vessel response analysis.  

The complete effects of each uncertain parameter on 

the response variation were studied using the PCE-

Sobol’ indices. Variables with noticeable sensitivity 

values were regarded as influential parameters (𝑥𝑖𝑛 ⊂

𝒙), while the rest were considered as non-influential 

parameters (𝑥𝑛𝑖𝑛 ⊂ 𝒙). The sensitivity analysis was 

conducted using the High-fidelity FD model (HFM). 

The HFM simulates the response QoI when provided 

with directional wave spectra, 𝑉𝜃,𝜃𝑚, 𝒙 as inputs. The 

HFM executes every simulation by calling the Wamit 

hydrodynamic code. The sensitivity analysis can be 

performed once, prior to the start of the operation. 

b) As listed in Table 2, the influential system 

parameters(𝑥𝑖𝑛) were assigned with proper upper and 

lower limits. The optimization routine considers the 

mean value (𝑥𝑖𝑛
𝜇

) of the influential variables as initial 

starting points. On the other hand, a deterministic 

value (𝑥𝑛𝑖𝑛
𝜇

) was accounted for the non-influential 

variables and applied directly in the FD analysis. 

c) A separate low-fidelity FD model (LFM) was created 

for performing cost-effective optimization. The LFM 

uses multi-dimensional interpolation on an extensive 

6-dimensional vessel RAO database. The RAO 

database was prepared beforehand by running the 

Wamit code for a range of influential system variables, 

wave frequencies, and directions.   The LFM model 

simulates the response QoI when provided with 

directional wave spectra, 𝑉𝜃,𝜃𝑚, 𝑥𝑖𝑛 as inputs.  

d) The OrthoMADS subroutine with 𝐷𝑑𝑖𝑟 = 2D 

directions were employed for the optimization. 

Further, Latin-Hypercube sampling was utilized to 

generate the search points in the mesh. The number of 

LH points for the first and each subsequent iteration 

were 𝑙0= 12 and 𝑙𝑘= 12, respectively. Unit weight was 

assigned to the objective function. The optimization 

was conducted using a Python package that establishes 

an interface to the Nonlinear Mesh Adaptive Direct 

Search (NOMAD) c++ library [24].  In the 

optimization routine, the objective function was 

evaluated iteratively to minimize the discrepancies 

between the measured and the simulated QoI. Finally, 

the obtained optimum parameters (𝑥𝑖𝑛
∗ ) were applied 

in the HFM model for predicting improved responses 

(𝜎𝑍𝑞,𝐻𝐹𝑀
+ , 𝑆𝑍𝑞𝑞,𝐻𝐹𝑀

+ ).  

 

 

 
Figure 4 Flowchart showing the practical implementation of the 
proposed model calibration methodology. 

e) The parameters must be updated again by recursive 

optimization to account for changes in the vessel’s 

operational conditions and sea states.  

 
3. RESULTS AND DISCUSSIONS 

 
3.1  Sensitivity Study 

       The sensitivity of the Roll RMS and spectrum, due to the 

uncertainties in the input parameters, was evaluated considering 

the sea states between 07:00 – 08:00 AM. In Figure 5 a), the 

Roll RMS is clearly sensitive to the CoG and 𝛽44 variation. The 

complete effect of 𝛽44 seems to cause 51% of the total RMS 

variation. The CoG variables display interactive behavior and 

cause considerable variability to the Roll RMS. For instance, 
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the total effect of Ycg is 24%, with the first-order/main effects 

constituting almost 18%, while the remaining 6% arises from 

the interaction of Ycg with the Xcg(5%) and Zcg(1%) 

parameters. The Zcg and 𝛽44 parameters are also faintly 

interacting. The sensitivity of the complete Roll spectrum, 

shown in Figure 5 b), also displays similar behavior. The CoG 

variables and 𝛽44 are responsible for maximum variation in the 

wave frequency region. Specifically, Zcg and 𝛽44 exerts more 

influence close to the Roll natural period (11.5 s). Therefore, 

the CoG and 𝛽44 were regarded as influential variables in the 

model calibration. 

 

             
                                                 a) 

                                   

  
                                                 b)  
Figure 5 a)  Sensitivity of the Roll RMS due to changes in the input 
variables. The diagonal elements denote the first-order indices, the 
off-diagonal elements represent the second-order indices, and the 
total-indices are presented on the top of the first-order indices.   b) 
Sensitivity of the Roll spectra at each frequency.  

3.2 Wave spectra comparisons 

       The effectiveness and accuracy of the numerical spectra 

over the parametric spectra are illustrated using Figure 6 a) and 

b). Using the JONSWAP formulation, the parametric spectrum 

was constructed by procuring the relevant sea state parameters 

for the wind sea and total swell from the ERA5 database. Here, 

the JONSWAP spectra were constructed for wind sea and swell 

separately. Subsequently, the response spectra were computed 

individually for each sea and then combined together. 

 

The JONSWAP formulation is affected by uncertainties related 

to the calculation of peak shape factors(𝛾) and peak 

periods(Tp). Considerable differences can be seen between the 

two wave spectra in Figure 6 a). There were two swell 

partitions at 19.00-20.00 hours; the exact energy spread of 

different swell partitions is present in the numeric spectrum, 

whereas such information is absent in the parametric spectrum.  

 

Figure 6 b) shows the Roll responses simulated based on 

ECMWF and JONSWAP spectra. The ECMWF spectrum-based 

Roll simulation exhibit better agreement with the measured 

Roll response at 19:00-20:00 hours. This is especially visible at 

the second response peak because considerable wave energy is 

concentrated in the frequency regime between 0.65-0.95 rad/s. 

The ECMWF spectrum accounts for that spectral energy, 

whereas the parametric spectrum does not. Thus, the ECMWF 

numerical spectra were applied in the subsequent calculations. 

 

 
                                              a) 

 
                                              b) 
Figure 6 a) Comparison between JONSWAP and ECMWF numeric 
wave spectra corresponding to a sea state occurring at 19:00-20:00 
hours. b) Compares the measured response spectrum with the 
response spectra simulated using JONSWAP and ECMWF wave 
spectra.  

3.3 Model Calibration 

       Using measured responses between 15.00–16.00 PM, the 

derivative-free MADS optimization was applied to update the 
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influential parameters. The low-fidelity model was applied for 

the optimization on account of its computational efficiency. 

Figure 7 a) and b) clearly distinguish between the pre-and post-

calibrated Roll simulations. The Roll prediction before the 

calibration possesses maximum deviation from the 

measurements. Alternatively, the post-tuned predictions show 

better agreement with the measurements. The influential 

parameters corresponding to pre-and post-calibrated cases are 

presented in Table 3. After the calibration, there is a  60% and 

17.8% increase in Zcg and 𝛽44 values, respectively, that 

influences the response spectrum. 

 

 

   
                                           a)  

  
                                            b) 
Figure 7 a) Comparison between the Roll measurements and 
simulations before calibration. b) Comparison between Roll 
measurements and Post-calibrated simulations 

Table 3 Values of the influential variables before and after the 
calibration 

 Xcg(m) Ycg(m) Zcg(m) 𝛽44 

Pre-

calibration 

-1.3805 0.0 1.7 6% 𝛽44,𝑐𝑟 

Post-

calibration 

-1.2958 0.86 2.65 23.8% 

𝛽44,𝑐𝑟 

 

Plots in Figure 8 indicate the post-calibrated Roll predictions at 

other sea states. Figure 8 a) and b) correspond to the first day of 

the operation, while the other figures correspond to the second 

day. In all the cases, the numerical response spectra exhibit 

superior agreement with the actual Rolling of the Olympic 

Challenger. The first peak in Figure 8  is the Roll resonance 

peak, while the second peak is caused due to excitation 

moment. In Figure 8 a) and d), the second peak is higher than 

the primary resonance peak. The reason could be that the 

change of CoG parameters varies the natural period of Roll, 

thereby affecting the radiation part of the transfer function. 

 
a)  

 
                                                b) 

 
                                                c) 

 
                                                d) 
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                                                 e) 

 
                                                 f) 
Figure 8 List of figures comparing the measured Roll spectra and post-
calibrated predictions for different sea states. 

3.4 Response Prediction Considering a Real Operational 

Case 

       The practical applicability of the calibration tool was tested 

considering an operational case in the month of March 2020 

that spanned for 72 hours. The sea states were mostly 

dominated by swell conditions with 2-3 separate swell systems. 

The calibration was performed at the k-1 step, and four 

different prediction cases were made for k+24, k+12, k+6, k+3 

hours. k stands for the operational hours.  

 

The measurements corresponding to 07:00-08:00 AM were 

considered in the 0th step for calibration. Initially, in Case 1, the 

calibrated variables at the 0th step were employed in the 

predictions for the next 24 hours. Then, the calibration and 

prediction cycle was repeated every 24 hours. In the other 

cases, the prediction horizon was reduced to every 12, 6, and 3 

hours. The measurements and various cases of post-calibrated 

RMS predictions are presented in Figure 9. The post-calibrated 

predictions in Case 1 exhibit a noticeable deviation from 7-24 

hours. The predictions improve considerably between 7-24 

hours in other cases. Specifically, minor deviations from the 

measured RMS are seen for Case 4 compared to the other 

cases. The reasons could be attributed to frequent changes in 

the vessel operational conditions and sea states. Therefore, 

frequent calibration might be necessary to update the CoG 

parameters and 𝛽44.  On the contrary, from 50-72 hours, the 

post-calibrated predictions are roughly the same for all cases, 

indicative of minor variations in the operational conditions, roll 

damping coefficient, and presence of mild sea states. The 

variations of the vessel parameters are further illustrated using 

Figure 10 a) and b). 

 

 

 

 
Figure 9 Recursive optimization and predictions for four cases with 
different time horizons. i.e., the calibration was performed at the k-1 
step, and the same variables were applied for predictions in k+24, 
k+12, k+6, k+3 hours. k denotes the operational hours. Case 1: k = 
1,25,49; Case 2: k = 1, 13,25,..,61; Case 3: k = 1,7,13,…,67; Case 4: k = 
1,4,7,…,70. 
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In Case 4, the vessel model was updated every 3 hours during 

the operation. The calibrated parameters, vessel heading, and 

vessel’s relative direction with respect to swell are presented in 

Figure 10, for various time instants. The calibrated system 

parameters include the operational-dependent CoG variables 

and the sea-state dependent 𝛽44. It is seen from Figure 10 a)  

that the variation profile of Ycg and Zcg looks similar, 

indicating that they might be mutually interacting. These 

parameters vary considerably between 7-30 hours, which 

explains the need for frequent calibration at this time span, for 

better RMS prediction. Changes in vessel conditions might 

have triggered this variation. Specifically, between 20-30 hours, 

there is a peculiar coincidence between the changes in vessel 

heading (𝑉𝜃), 𝜃𝑅 for swell and the variation of system 

parameters. This leads to the inference that the change of 𝑉𝜃, 

during a marine operation, may drive the CoG variation.  

 

The profile of 𝛽44 ratio, in Figure 10 b), increases drastically 

after 15 hours, which could be connected with the changes in 

𝑉𝜃. Suddenly, there is more than 17 % decrease in 𝛽44 after 30 

hours owing to negligible wind-sea conditions. Overall, the 𝛽44 

profile follows the profile of the wind-sea significant wave 

height in Figure 9, which is indicative of its dependent nature 

on sea states. 

 

 
                                     a) 

 
                                       b)   
Figure 10 a) Ycg and Zcg parameters corresponding to Case 4 
calibration are presented. Additionally, the vessel heading (𝑉𝜃) and 
vessel’s relative direction (𝜃𝑅) with respect to incoming swell, 
calculated using Eq. ( 1 ), are shown. b) Ratio of linearized Roll 
damping coefficient to critical Roll damping for Case 4 calibration. 

The quantitative error analysis based on Root Mean Squared 

Error (RMSE) and Mean Absolute Error (MAE) in Table 4  

suggest that Case 4 has the lowest error compared to other 

cases. Moreover, Figure 11 shows the absolute error between 

the measurements and predictions at each sea state.  Pre-

calibrated and Case 4 predictions are considered in Figure 11. 

Apparently, the prediction errors are significantly minimized in 

Case 4. On average, there is a 91% reduction in the prediction 

errors compared to the case without calibration. This trend 

signifies the importance of performing recursive onboard model 

calibrations for superior response predictions. 

 
Table 4 Root Mean Squared Errors(RMSE) and Mean Absolute 
Error(MAE) values for different prediction cases 

  RMSE(deg) MAE(deg) 

Case 1 k+24 0.19 0.13 

Case 2 k+12 0.10 0.07 

Case 3 k+6 0.099 0.073 

Case 4 k+3 0.096 0.070 

 

 

 
Figure 11 Error Indices to represent the absolute error between the 
measurements and predictions. Blue bars represent the pre-calibrated 
prediction errors, while the orange bars present the Case 4 prediction 
errors.   

4. CONCLUSION 
A holistic model calibration framework was presented that 

systematically identifies the most influential variables, followed 

by the calibration of those variables utilizing full-scale 

measurements.  

 

The sensitivity analysis based on PCE-Sobol’ indices indicated 

that the CoG and additional viscous damping coefficient had 

the strongest influence on the Roll response variation. Since the  

CoG parameters were interacting among each other, it was 

considered important to tune all of them together. The changes 

in the mass and stiffness of the actual vessel can be accounted 

for in the numerical model through tuned CoG parameters. The 
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optimum influential parameters, obtained after calibration, 

resulted in response predictions that closely matched the 

measurements. The MADS optimization algorithm appeared to 

be quite effective for non-linear and noisy functions. In this 

study, no noise cancellation procedures were applied to the 

measurements since there was no information on the relevant 

measurement noise for the vessel response quantities.  

Therefore, the attributes of MADS were highly useful in this 

calibration work. 

 

It was quantitatively shown that the numerical spectrum 

provides a more realistic representation of the wave energy, as 

the Roll simulations based on this spectrum produced superior 

results than the one based on the parametric spectrum.  

 

Recursive optimization with shorter time horizons appeared to 

produce minimal prediction errors at times when there were 

frequent changes in vessel conditions and sea state 

characteristics during the operation. Therefore, it is proposed 

that the system parameters can be updated at least every three 

hours or possibly every hour during intense operational 

procedures.  

 

Wamit analyses the wave-body interaction problem using 

potential flow theory. The potential flow solutions do not 

consider the viscosity of the fluid, and thereby the estimation of 

the viscous part of the Roll damping is significantly 

underpredicted. Thus, a linear additional damping coefficient 

was identified through calibration and added to the potential 

flow calculations to account for the viscous effects.  Further, 

the model was calibrated based on FD formulations that could 

solve only steady-state responses and not transient effects. 

Therefore, the proposed framework cannot calibrate the 

numerical model when transient effects are present in the 

signal. 

     
Figure 12 Compares the HFM and LFM simulation results during 15:00 
-16:00 PM 

The low-fidelity model was utilized inside the optimization 

routine. Though uncertainties might be associated with the 

interpolations applied in the LFM, it offers cost-effective 

optimization, thereby saving tremendous computational time. It 

is postulated that the discrepancies between the HFM and 

LFM-based Roll responses may be inconsequential. Thus, the 

associated uncertainty due to interpolations can be ignored. To 

support the argument, the result of an analysis is presented in 

Figure 12, which compares the HFM and LFM simulations. 

 

The methods to address the uncertainties in the system 

variables were described in this paper, but it neglects the 

uncertainties in the numerical wave prediction. The proposed 

methodology employs numerical spectra derived from the 

ERA5 reanalysis database, which are less uncertain than 

forecasts. So, the methodology must be extended to include 

forecasted spectra along with the wave forecasts uncertainty.  
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