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Abstract

Fatigue is the most common failure mode for engineering materials in various

industrial applications. Generally, designing new products and components

based on typical deterministic fatigue design approaches is slow and expensive.

Although numerous investigations have been carried on this topic over

decades, there still lacks a robust and efficient method to design a super-

fatigue-resistant and testless structure. In this investigation, a novel data-

driven approach based on the deep learning algorithm is applied on designing

a fatigue-resistant notched structure under different loading via numerical

simulations and deep learning. The notches with various shapes are designed

by employing the same material. Then finite element (FE) simulations are per-

formed to obtain the mechanical behaviors of notched structures under differ-

ent loading conditions. The deep learning algorithm is applied to predict

mechanical behaviors of unknown notched structures based on input training

set of simple notched geometries and relative lower computational cost. It is

demonstrated that deep learning on the fatigue-resistant structure is a promis-

ing approach of fatigue design. This work offers an alternative design strategy

of fatigue-resistant structure and cost-effective solution to accelerate the design

of engineering components under different loading conditions.
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1 | INTRODUCTION

Notched features such as holes, fillets, shoulders, grooves,
and welded joints are widely present in structural compo-
nents, and this geometric discontinuity can cause local-
ized stress concentration at the notches during the
structural loading process, which in turn initiates fatigue
cracks.1 The initiation and propagation of cracks lead to
a reduction in the fatigue life of the structure under cyclic
loading. Compared with cracks and sharp V-notches,

blunt V-notches and U-notches are usually chosen as
transition parts in structures because they are more effec-
tive in reducing stress concentration to achieve higher
fatigue life. However, due to the fatigue size effect,2 the
fatigue life of notches is limited by notch opening angle,
notch radius, and notch depth. The influence of size
effect on fatigue has been evaluated through some experi-
mental and numerical studies; for instance, critical dis-
tance theories and stress gradient were applied to predict
fatigue life of samples with different depths and root
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radii.3–5 The relationship between fatigue life and fatigue
region can be well described by correlating with the
notch depth based on stress field intensity approach.6

With the aim to study the effects of notch size on the
fracture behavior of the specimens, different hole radii
were analyzed through finite fracture mechanics theory.7

The strain energy density (SED) was utilized to analyze
the influence of notch radius and opening angles on
fatigue life.8–10 Although the fatigue assessment
approaches mentioned above have been devoted to pro-
viding some unified methods for assessing the fatigue
limit of notch features, they are all based on commonly
utilized notches containing simple constituents, such as
crack, V-notch, U-notch, and holes. The higher fatigue
resistance of structures with notch components is limited
by the notch shape design method, and there is still a
lack of notch design approach that can be widely used
and significantly improve the notch fatigue resistance.

In our previous work, a biomimetic fatigue design
concept has been proposed to reveal that local topology
of the structure can enhance the fatigue resistance.11 The
core concept is that materials cannot be immune from
fatigue, but structures can. Filippo demonstrated that a
variable radius notched joint has higher fatigue resistance
than a commonly used constant edge radius specimen.
The nonconstant radii notch consists of several separated
curves, and the shape of which is related to the number
of consisting curves and their corresponding radii. There
does not exist, and also it is hard to build a theoretical
fatigue assessment solution for nonconstant radii notched
structures. Therefore, energy-based approach for fatigue
assessment is still a good option. The SED is an advanced
approaches for fatigue life assessment of notched struc-
tures under static conditions and fatigue failure.12,13 The
one main advantage of SED is that the method can use
coarse mesh quality in FE simulations to identify the
structural topology changes according to the critical vol-
ume in the notch vicinity.14,15 In addition, the SED
method is suitable for the application of different mate-
rials16 and structures17 under low cycle fatigue,18 high
cycle fatigue,19 low temperature,20 high temperature,19

uniaxial21 and mixed conditions,22 which fully demon-
strate the wide applicability and high performance of the
SED method. However, the number of nonconstant
notches generated in the design space is astronomical,
and the SED fatigue assessment based on FE simulations
quickly reaches its computational limits. In addition to
the drawback of being computationally expensive and
time-consuming, this computational simulation method
is always related to limited design space and loading con-
ditions, which makes it difficult to be generalized.

As a prevalent data-driven approach, deep learning
has caught increasing attention in recent years. It has been

widely applied to many fields, such as computer vision,
natural language processing, and fault diagnosis, and
remarkable success has been reported.23–25 Compared
with traditional methods, deep learning offers the benefits
of simplifying the computational process and generalizing
the application fields with less exhaustive algorithms and
sensitive parameters in structure design. It explores the
implicit relationship between the input and its target
through the back-propagation algorithm and multi-layer
hidden neurons. The aim of deep learning is to automati-
cally build implicit patterns in complex data, which can be
applied to predict unknown data. The major advantage of
deep learning is that no significant human intervention or
prior knowledge of the system is required. Therefore, it
can automatically learn the relationships relative to
the input design space and, thus, be generalized to differ-
ent systems such as pattern recognition,26,27 system health
management and monitoring,28,29 design for additive
manufacturing,30 and mechanical properties' prediction of
complex structures and materials.31,32

The present paper is devoted to proposing an effective
methodology to enhance the fatigue resistance of notched
components. The main contributions of this work are
summarized as follows:

1. A novel notched structure design method was pro-
posed according to the stress concentration phenome-
non and a biomimetic fatigue design concept, which
provided a universal design idea regarding different
notch features and in wide application spaces.

2. The convolutional neural network (CNN) was utilized
to build the relationship between designed novel non-
constant notched structures with SED. In addition,
this relationship is able to predict the SED of
unknown notches and feedback the notch fatigue
resistance optimization.

3. The comparison with commonly used blunt V-notch
and U-notch exhibits the designed nonconstant
notches have higher fatigue resistance.

The rest of this paper are organized as follows: The
methods used in this work are detailed in Section 2. The
simulation process and results are presented and dis-
cussed in Section 3. Finally, the conclusions of this work
are summarized in Section 4.

2 | METHODS

2.1 | Notched structure design

Most structural components contain notch features such
as holes, fillets, shoulders, grooves, and welded joints.

2 WANG ET AL.
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These materials' defects and geometrical discontinuities
are the most loaded and dangerous places under working
loadings,1 which is also denoted as “stress concentrators”;
that is, the greatest strains and stresses always occur in or
around these places, which can lead to the initiation and
propagation of fatigue cracks.33 In order to reduce the
stress concentration caused by geometric discontinuity,
most of the optimized design notched structures are
introduced with transition sections, such as the U-notch
and blunt V-notch.34–36 However, these notches are based
on the constant radius, and the notch tip curvature or
radius is the key parameter to governing the stress con-
centration and failure. The higher fatigue resistance of
notched structures is limited by these empirically-based
notch design methods. Currently, there is still no notch
design concept that has been tested in practice and can
be widely applied in fatigue resistance area.

However, some natural structures have been discov-
ered with practically fatigueless.11 For example, the joint
between the peduncle and receptacle in sunflowers shows
excellent fatigue resistance under cyclic wind loading
conditions owing to the non-constant radius of curvature.
Inspired by this fatigueless natural structure, a mathe-
matical method is utilized to design the shape of notch
with nonconstant radii in this paper, since the changes in

radii inside the notch will cause local geometric disconti-
nuity and, thus, generate stress concentration. We pro-
posed that this stress concentration can be prevented
through several connected arcs that tangent to each
other. The tangent effect between the two arcs can be
achieved by moving the center of the second arc to the
extension of the radius of the first arc and sharing a part
of the radius. The shape of the notch geometry consisting
of these smoothly connected arcs can be changed by
adjusting the position of the center of these arcs.

As shown in Figure 1A, the curve of the designed
notch contains several small arcs, and the adjacent arcs
share one part of the radius which is the way to keep arcs
tangent to each other. It is worth noting that the design
space does not have the limitation of units and the design
approach can be applied to any scale of macrostructure
and microstructure. In addition, another advantage of
this method is its wide applicability, which is not limited
by the manufacturing method. Both additive manufactur-
ing and traditional manufacturing methods can custom-
ize the notches according to the design size. However, to
facilitate analysis, the unit is set as 1 in this paper, and
each arc occupies the same or the different units
horizontally. Thus, the notch depth of the designed non-
constant notch is equal to the sum of units of all arcs in

FIGURE 1 Nonconstant radii notch design:

(A) design schematic, (B) the number of design

notches, and (C) six designed nonconstant radii

notches [Colour figure can be viewed at

wileyonlinelibrary.com]
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the horizontal direction. The center point, starting point,
and ending point are the key information of each arc.
And the ending point of the previous arc is the starting
point of the latter arc. As a result, the position of the lat-
ter arc will change with the adjustment of the previous
arc. Eventually, the shape of the designed nonconstant
notch will also change. In Figure 1A, P0, P1, R1, and O1

are the starting point, the ending point, radius, and cen-
ter of the first arc, respectively, in the Cartesian coordi-
nate system. The starting point P0 and the abscissa of the
ending point P1 are fixed. The abscissa of the center point
O1 is limited in the range of (Ox0 –Ox1), and the Ordinate
is also fixed. Then the Ordinate of the P1 can be
calculated based on the known information of the first
arc. Finally, the Numel (Ox0 : a1 :Ox1) arcs are generated
in the position of the first arc. The a1 is the increment
between Ox0 and Ox1, which is also a custom value.
The generation of the second arc is based on the first
arc. The center point O2 of the second arc can be found
on the extension of P1 to O1. In the meantime, the
starting point of the second arc is the ending point P1 of
the first arc, and the abscissa of the ending point P2

is fixed. After selecting the abscissa of the center of
the second arc in the range (Ox1 : a2 :Ox2), the a2 is simi-
lar to the custom value a1, which is the increment
between Ox1 and Ox2. The Ordinate of the center point
and the ending point can be calculated through a
straight-line equation and circle equation, respectively.
The Numel Ox0 : a1 :Ox1ð Þ : a2 :Ox2½ � arcs are generated in
the position of the second arc. Likewise, the other latter
arcs can be generated in the same way. The number of
custom-designed nonconstant notches is calculated in
Equation (1).

Nn ¼numel Ox0 : a1 :Ox1ð Þ : a2 :Ox2½ � : � � �an :Oxnf g ð1Þ

where Nn is the number of designed nonconstant notches
consisting of n arcs. Oxn is the abscissa of the center of
the nth arc. an is the increment between Oxn and the
abscissa of the previous center.

In this work, for comparison with the most normally
used U-notch and blunt V-notch, since they have similar
shapes to our designed nonconstant notch, that is, consist-
ing of an arc and a tangent line. Therefore, the design space
is defined as a square, and its size is related to the number
of consisting arcs. In the deep learning model, it is always
difficult to find a “one size fits all” answer on how to
determine the required minimum number of training data
sets to construct the model, because the amount of the
training data is dependent on many different aspects of the
training process. Based on our preliminary study and
parameters analysis of the deep learning model, tens of
thousands of data are enough for training the deep learning

model in this study. According to our notch design strategy,
in the Cartesian coordinate system, when the starting point
of the first arc is P0 (2,0) and each arc occupied 2 units in
the horizontal direction, as shown in Figure 1B, the
number of notches is 27,056 when the notch consists of
five arcs. When the notch is composed of six arcs, the
number of notches can significantly increase to 269,710.
Therefore, five arcs are chosen to generate the noncon-
stant notch, under the design space of 12*12. Figure 1C
shows six designed nonconstant notches.

2.2 | Fatigue analysis approach

Brittle failure of components weakened by material
defects and geometrical discontinuities is widely exist-
ing.12 These crack-like defects can be simplified to sharp
or blunt V-notches. According to the Williams' V-notch
stress field theory, the stress levels at the tip of the notch
can be characterized using notch stress intensity factors
(NSIFs).37,38 However, the calculation of NSIF requires
the stresses near the notch tip. The notch tip stress needs
a large amount of calculations because a very fine mesh
is required in the FE simulations to obtain sufficient
accuracy of the notch tip stress.39

In contrast to the NSIFs, the SED method does not
require fine mesh quality. Due to its high performance in
combining microcosmic phenomena and macrocosmic
experimental evidence, the SED method has been demon-
strated to use coarse mesh quality in FE simulations to
identify the structural topology changes.12 Moreover, the
SED method is an energetic local approach, which has
been proved as a method to investigate both fracture fail-
ure in static condition and fatigue failure.15,40 The SED
method is based on the knowledge that the structure fail-
ure occurs when the SED averaged over a given control
volume reaches a critical value, W =WC. The WC is
related to the material itself. Therefore, it has the unique
advantage to combine the energy-based criterion with the
material-dependent structure.

In this work, various 2D designs of notched structure
were compared in plane stress condition. Since the
designed nonconstant notches have similar features (arc
and the line or arcs tangent to it) with blunt V-notch and
U-notch, therefore, the SED calculation of the noncon-
stant notches is referenced to the calculation of the blunt
V-notch. The control volume is a crescent shape, and the
R0 is the maximum width as measured along the notch
bisector line, as shown in Figure 2A.

R0 ¼ 5�3vð Þ
4π

Kc

σt

� �2

ð2Þ

4 WANG ET AL.
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where v represents the Poisson's ratio, KC denotes frac-
ture toughness, and σt is the ultimate tensile strength.

The SED W is expressed as

W ¼H 2α,
R0

R

� �
�K2

1ρ

E
� 1

R2 1�λ1ð Þ ð3Þ

where 2α denotes the opening angle, R represents the
notch radius, and H 2α, R0=Rð Þ depends on the previously
defined parameters as listed in reference.13 K1ρ is the
notch stress intensity factor under mode 1, E stands for
Young's modulus, and λ1 stands for the Williams'
eigenvalue.13,41

However, the designed notched structure in this
work has nonconstant radii; as the result, the opening
angle 2α and notch radius R both need to be modified
according to the Equation (3). In order to represent the
difference in the control volumes of all nonconstant
radius notches, as shown in Figure 2B, the notch radius
R is the radius of the first arc. The opening angle consists
of a tangent line of the fifth arc that can avoid generating
the same r0.

2.3 | Data-driven approach

Here, the deep learning approach is served as the data-
driven approach owing to its capability to establish a
deep network architecture to discover the deep informa-
tion embedded in huge data. The CNN model42 is
employed in this work. Inspired by the biological pro-
cesses in that the neurons connected to the images are
similar to the animal visual cortex, it is initially designed
to analyze the visual imagery.43–46 A typical CNN
includes three building blocks: (1) convolutional layers,

(2) pooling layers, and (3) fully connected layers. The
procedure that transfers the input data through these
pre-designed layers is known as forward propagation.
The functionality of the layers is presented below.

2.3.1 | Convolutional layer

The convolution is the fundamental process in CNN, which
is a specialized linear operation where the kernel overlays
and slides through the entire input map with a pre-set
stride. The stride represents a parameter of the kernel that
defines the amount of movement over the input map. For
each stride, the element-wise product between each ele-
ment of the kernel and the overlaid input region is calcu-
lated and summed. Then, the summed output is fed into a
nonlinear activation function. The final output of each
stride forms a new feature map with a size smaller than
input data. Extracted features are calculated as follows:

ak ¼Activ bkþZð Þ ð4Þ

Z¼
X inMap

i¼1
Conv W ck, X ið Þ ð5Þ

where “Activ” and “Conv” represent the nonlinear activa-
tion function and the convolution process, respectively.
Xi and Wck are the input map and kernels, and bk is the
bias. The kernel is a randomly initialized small array of
numbers that would be updated in the back propagation
step. Generally, the convolution process can repeat with
multiple kernels to generate more feature maps. There-
fore, the subscript k defines the number of kernels as well
as the output maps of this convolutional layer and the
input maps of the next layer. ak stands for the final
extracted feature map.

FIGURE 2 Critical volume (red

area) for (A) blunt V-notch12,17 and

(B) nonconstant radii notch. Distance

r0 ¼R� π�2αð Þ= 2π�2αð Þ [Colour
figure can be viewed at

wileyonlinelibrary.com]
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2.3.2 | Pooling layer

The pooling layer is also called the subsampling layer; it is
usually placed next to the convolutional layer. The pooling
process represents a special type of the convolution pro-
cess whereby the kernel slides through the entire input
map, and instead of doing element-wise product, the maxi-
mum element or the average value of the overlaid input
region is extracted; this quantity is the so-called “max
pooling” or “average pooling,” respectively. The pooling
layer is used to merge similar features to reduce the num-
ber of parameters and achieve translation-invariant char-
acteristics. The stride of the kernel in the pooling layer is
usually equal to the size of the kernel.

2.3.3 | Fully connected layer

The main function of the fully connected layer is to merge
the feature maps learned by different kernels. The convo-
lutional layer and the pooling layer are stacked one by
one. Finally, the extracted feature maps are to be flattened
and concatenated into a vector at the fully connected
layer. Let A denotes the concatenated feature vector.
The output of last fully connected layer Y is given by

Y ¼Activ bþW f �A
� � ð6Þ

where A = [flattened(a1), flattened(a2), …, flattened (ak)]
and ak is the feature map of the last convolutional or
pooling layer. W f represents the weights that connect
two layers of the neural network.

For the regression problems, the mean squared error
(MSE) loss function is widely used in the form:

MSE¼ 1
n

Xn

1
Yi� bYi

� �2
ð7Þ

where n is the total number of data points and Yi and bYi

are actual and predicted values, respectively. The loss
function aims at reducing the discrepancy between Yi

and bYi.

3 | SIMULATIONS

3.1 | FE modeling and data generation

According to the notches design method of nonconstant
notched structure, 27,056 different notches were gener-
ated in total in the initially given 12*12 design space, and
each notch consists of five connected and tangent curves.
Meanwhile, to compare the difference between generated
notches, the depth of all notches was kept the same as 10.

FIGURE 3 Simulation

processes: (A) notched structure

under tension and bending

conditions, (B) generation of

geometric data, (C) elastic-perfectly

plastic material model with contour

plot of Mises stress, and (D) CNN

data preparation which contains

geometric data and SED values

[Colour figure can be viewed at

wileyonlinelibrary.com]
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Since the notches are important parts of structure,
the designed nonconstant notches were considered as
part of a structure in Figure 3A. According to the defi-
nition of the notched components in FKM-Guideline,47

the ratio of the width of plate to the net width of a plate
was set as 1.5, and the ratio of radius to net width of
plate was set as 0.25. The radius is the notch depth and
equals 10. Figure 3B presents the geometrical informa-
tion of nonconstant notch. This illustrates the process
of converting the curve information into a one-
dimensional vector.

The FE modeling was utilized to obtain the SED, and
the calculation processes were implemented in the com-
mercial software ABAQUS 2019. The elastic-perfectly
plastic material model was exploited in simulations. As
shown in Figure 3C and Equation (8), the SED is equal to
the area under the stress–strain diagram, which can be
easily calculated in the elastic-perfectly plastic material
model with 1 unit thickness and compared with different
notched structures. Since there is no permanent deforma-
tion in the elastic-perfectly plastic model when material
is unloaded, no energy is dissipated in the form of heat
during simulations. Therefore, the SED can be utilized to
measure the differences between notched structures.

W ¼
Z ε1

0
σxdεx ð8Þ

where W represents the SED, σx ¼ σ0 is yield stress, and
εx is measured from 0 to ε1. FE simulations were per-
formed in 2D plane stress condition under three different
loading conditions-uniaxial tension, in-plane bending
and out-of-plane bending. (1) Uniaxial tension. To reduce
the computational cost, uniform pressure along y direc-
tion was applied on the quarter geometry with symmetry
boundary condition along x and y directions, as shown in
Figure 4. (2) In-plane bending. The bending moment
under xy plane was applied on the half geometry with
symmetry boundary condition along x direction. (3) Out-

of-plane bending. The bending moment under yz plane
was also applied on the half geometry with symmetry
boundary condition along x direction. To ensure the load
processes reaches the perfectly plastic part in the elastic-
perfectly plastic material model, the applied loads under
three loading conditions are selected and shown in
Table 1. Moreover, the SED increased to the maximum
after the last increment in every single simulation.
The maximum SED values of all simulations were col-
lected as the data set for CNN, as shown in Figure 3D.
The data set also contains the geometrical information of
all notches.

3.2 | CNN implementation details

3.2.1 | CNN structure and parameters
optimization

A CNN architecture based on the AlexNet was con-
structed to solve the regression problems. As shown in
Figure 5, AlexNet is a classic CNN architecture that is
generally consisted of five convolutional layers with Sig-
moid activation function, three average pooling layers,
and one fully connected layer. The first convolutional
layer adopted 16 filters with the size of 7, and the stride
and padding size were set as 1 and 3, respectively. An
average polling layer is attached at the end of the first
convolutional layer with the size of 5 and the stride of
2. Likewise, the second convolutional layer used 32 filters
with the size of 3 and the stride of 1, which is also

FIGURE 4 Three loading conditions: (A) uniaxial tension condition, (B) in plane bending condition, and (C) out of plane bending

condition [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 1 Load in three loading conditions

Loading conditions Load

Uniaxial tension 10 MPa (Pressure)

In-plane bending 5000 N.mm (Moment)

Out-of-plane bending 125 N.mm (Moment)

WANG ET AL. 7
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followed by an average polling layer with the size of
5 and the stride of 2. Then, three stacked convolutional
layers with the same 64 filters were used to extract the
deeper information from input data, the filters size are
3, and the stride and the padding are both 1. The last
average pooling layer with the size of 3 and the stride of
2 was used to downsize the extracted feature from upper
layers. Finally, the extracted features were concatenated
by the fully connected layers, which was fed into the final
regression layer for prediction.

It is well-known that the hyperparameters of neural
network directly impact the training process and model
performance. Thus, it is crucial to adjust the hyperpara-
meters that fit specific data sets with best performance.
The learning rate is one of the most important parame-
ters which controls how much the network weights are
adjusted according to the loss gradient. To increase the
model learning efficiency and avoid suboptimal solution,
an adaptive learning rate method called Adam stochastic
optimization algorithm is applied to update the network
weights with the learning rate of 0.0001; the mathemati-
cal details are expressed as follows:

mt ¼ β1mt�1þ 1�β1ð Þgt ð9Þ

vt ¼ β2vt�1þ 1�β2ð Þg2t ð10Þ

cmt ¼ mt

1�βt1
ð11Þ

bvt ¼ vt
1�βt2

ð12Þ

where mt and vt represent the estimates of the first
moment and the second moment of the gradients, respec-
tively (both are initialized as zero); β1 and β2 are decay
rates, and usually set as 0.9 and 0.99; cmt and bvt are bias-

corrected first and second moment estimates. The param-
eter is updated using the following equation.

θtþ1 ¼ θt� lrffiffiffiffibvtp
þϵ

cmt ð13Þ

where θ stands for the network weights, and lr represents
the learning rate.

3.2.2 | Fatigue-resistance notch structure
prediction

To analyze the effect of training parameters from the
CNN model on the prediction accuracy, the SED was
used to evaluate the regression performance; that is, all
calculated SED values by FE simulations were considered
as the ground truth. The training data-to-entire data set
ratio is a crucial factor that effects the model perfor-
mance. Therefore, the influence of training data-to-entire
data set ratio on prediction accuracy was investigated.
Different training data sets were chosen from the gener-
ated whole 27,056 one-dimensional data set, and the
remaining was considered as testing data. Prediction
accuracies of the CNN model as a function of the differ-
ent ratios of training data ranging from 10% to 90% are
shown in Figure 6A. Other parameters remained
unchanged. At the beginning of the experiment, the SED
value matrices of training data and testing data were nor-
malized using the “z-score” method, a variation of scaling
that represents the number of standard deviations away
from the mean, which transforms features to be on a sim-
ilar scale to improve the performance and training stabil-
ity of the model. In addition, the prediction threshold
was set to be 1% of the normalization interval. Figure 6A
shows that as training data ratio increases, the prediction
accuracy increases up to over 99%. The results show that

FIGURE 5 Architecture of CNN model [Colour figure can be viewed at wileyonlinelibrary.com]
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CNN model can achieve very high prediction perfor-
mance and the prediction accuracy was already higher
than 95% when 40% of data (10,800 data points) was
selected to train the CNN model.

Moreover, the influence on prediction accuracy of the
number of epochs was investigated. An epoch in the
CNN model means one complete pass of the training
dataset through the algorithm. The number of epochs is
an important hyperparameter for the CNN model, gener-
ally, increasing the number of epochs can improve the
model performance on training dataset, but in the mean-
time, consume more computational cost, and sometimes,
even lead to overfitting problem on testing dataset.
Therefore, a suitable number of epochs can guarantee
high model training efficiency and performance. Accord-
ing to the training data ratio analysis experiment, the
CNN model already could achieve high prediction accu-
racy with around 10,000 data. Therefore, to balance the
training performance and computational cost, random
10,800 data were selected in the whole data set to quan-
tify the number of epochs. The CNN model was trained
with a number of epochs ranging from 10 to 150. As
shown in Figure 6B, the CNN model has high prediction

accuracy and efficiency when the epoch number was set
as 100 in three loading conditions.

The loss value of training process was shown in
Figure 6C, as one can see, the loss value gradually con-
verges to zero with the increase of the number of epochs.
The root mean square error (RMSE) is a measure for
evaluating the prediction quality through the error
between predicted value and true value. RMSE of predic-
tion results are shown in Figure 6D. RMSE is very small
under the three loading conditions, which means the pre-
dicted SED values are close to the real SED value.

Finally, the optimized training parameters are
selected based on the above experiments. The regression
performance of the CNN model is shown through the
comparison between true SED values and predicted SED
values. The distributions of the randomly selected 10,800
normalized SED values during training process of the
CNN model in each of the three loading conditions are
shown in Figure 7A. And the distribution is also demon-
strated to be relevant to the notch design strategy. Most
SED values are in the right half of the distribution range,
which correspond to lower fatigue life. The rest 16,200
SED values are ground truth for verifying the predicted

FIGURE 6 Training parameters

optimization of CNN model:

(A) prediction accuracy as a function of

the training data ratio, (B) prediction

accuracy as a function of the number of

epochs, (C) evolution of loss value in

training process of CNN, and (D) RMSE

of prediction results [Colour figure can

be viewed at wileyonlinelibrary.com]
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performance of the CNN model under three loading con-
ditions separately. The SED values of the corresponding
testing nonconstant notched geometries were predicted
through the trained CNN model. Then the predicted SED
values against true SED values are shown in
Figure 7B–D. One can see that they all show similar dis-
tribution to training data. The X-axis and Y-axis represent
the predicted and true SED values, respectively, in
Figure 7B–D. If the predicted SED values are the same as
the true SED values, the scatter points shall locate exactly
on the red dotted diagonal line. Therefore, the closer the
prediction is to the true SED value, the closer the scatter
is to the diagonal line. It can be seen that when the
threshold is set to 1% of the data range size, the predic-
tion accuracies are all higher than 95%. And the predic-
tion accuracies under the three loading conditions are
around 96.8%, 97.4%, and 97.1%, respectively.

Since each predicted SED value is related to a
designed nonconstant notched geometry, and according
to the fatigue data in terms of SED value,13 the lower SED
value is corresponding to the higher fatigue resistance.
Hence, the desired fatigue-resistant notched structure
could be selected according to the SED value. And the
superiority of the nonconstant notched geometry design
approach and deep learning method can be demonstrated
by comparing with conventional notches. As shown in
Figure 7B, the nonconstant notched geometries “1” and
“2” are corresponding to the lowest and highest SED

values in the uniaxial tension condition. The SED values
of commonly utilized blunt V-notch “a” (the arc part has
same radius as the first arc in “1” geometry) and U-notch
“b” (it has the biggest radius in design space) are both
higher than the SED value of geometry “1.” Likewise,
geometries “3” and “5” also have the smallest SED values
for their respective loading conditions in Figure 7C,D.

4 | CONCLUSION AND FUTURE
WORK

In this paper, the CNN was applied to predict the SED
value of notched structure and identify the fatigue resis-
tance of nonconstant notched structure in a generalized
design space. First, a novel nonconstant notched geometry
design approach was proposed, and it can be applied to
design spaces of different sizes and fully avoid local stress
concentration. Then, the SED, which does not require very
refined mesh in the FE modeling process, was utilized to
measure the fatigue resistance of notched structure.
Finally, The CNN model was adopted to predict the SED
values. The FE simulations results have shown that the
CNN model is able to achieve high prediction accuracy,
and the designed nonconstant notched structure has
higher fatigue resistance than conventional notches.

Future work includes applying this fatigue resistance
notched structure design approach to complex mixed

FIGURE 7 Training data

distributions, predicted results of

CNN model, and contour plot of

Mises stress of blunt V-notch

and U-notch: (A) SED

distributions of uniaxial tension,

in plane bending and out of

plane bending, (B) CNN

prediction of uniaxial tension

condition, (C) CNN prediction

of in plane bending condition,

and (D) CNN prediction of out

of plane bending condition

[Colour figure can be viewed at

wileyonlinelibrary.com]

10 WANG ET AL.

 14602695, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/ffe.13893 by R

eadcube (L
abtiva Inc.), W

iley O
nline L

ibrary on [15/11/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://wileyonlinelibrary.com


loading conditions and validating the designed structures
through the additive manufacturing and fatigue tests. In
addition, the method can be expanded to assist in the
local and global fatigue resistance design and optimiza-
tion of components containing notch features such as
holes, fillets, shoulders, grooves, and welded joints.
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