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Outline

In brief, the thesis is concerned with the application of topological data analysis
(TDA) tools in studying firing rate activity of experimentally recorded neurons. We
use and develop computational frameworks based on persistent cohomology for
finding topological structure in the collective computations of neural ensembles.
Specifically, we uncover the toroidal topology in grid cell population activity. The
thesis opens with an introductory chapter describing TDA, data preprocessing and
neural representations. This gives background and context for the main body of
work, namely, the three articles which subsequently follow. These are briefly sum-
marized below.

Article I

Uncovering 2-D toroidal representations in grid cell ensemble activity during 1-D be-
havior, Erik Hermansen, David A. Klindt and Benjamin A. Dunn. 2022. bioRxiv [1]
We describe a novel framework combining a fuzzy topological representation of a
point cloud (based on the uniformity assumption underlying UMAP) with persist-
ent homology, to reveal topological structure in datasets. This allows uncovering
the toroidal topology of grid cells in head-fixed mice during one-dimensional run-
ning tasks.

Article II

A topological perspective on the dual nature of the neural state space and the cor-
relation structure, Melvin Vaupel, Erik Hermansen and Benjamin A. Dunn. In this
paper, we discuss the duality of two approaches to finding topological structure of
neural ensemble representations, via the population vector complex and the cor-
relation complex. We propose a framework which combines the complementary
information held in each approach to refine the topological inference of either.
Furthermore, we suggest that a neural ensemble is identified when the two ap-
proaches coincide and provide examples of applications in different datasets.

Article III

Toroidal topology of population activity in grid cells, Rich Gardner*, Erik Hermansen*,
Marius Pachitariu, Yoram Burak, Nils Baas, Benjamin A. Dunn, May-Britt Moser

v



vi Erik Hermansen: Finding topological structure in neural ensemble activity

and Edvard Moser. *Equal contributions. 2022. Nature, 602(7895), pp.123-128
[2]. The toroidal topology of grid cell population activity in rats is demonstrated
for the first time in experimental data. The structure is seen to be preserved both
during different wake conditions, and sleep, suggesting the activity arises from
intrinsically structured circuitry.
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Introduction

0.1 Topology in data

It is common to think of data as a sample of some underlying space. Consider,
for instance, the typical predator-prey cycle (Fig. 1). When the number of prey
increases, more food is available for the predator. This leads to an increase in
predators, taking the lives of more prey. In turn, the prey population decreases,
leading to a decrease in number of predators until the balance again flips. Regu-
lar observations of the number of animals in each population results in a circular
point cloud (Fig. 1a). However, as predators need many prey to survive, the pred-
ator population is usually smaller than that of the prey. Moreover, other factors,
such as climate, may lead to seasonal variations, and the population observations
may be made irregularly and unreliably. This will lead to a noisy, non-uniform,
oval point cloud (Fig. 1b). Thus, while characterizing the relationship as circular
leaves out details of the population balance (namely, its geometry), it gives an in-
terpretable description of the relationship. The concept that the underlying shape
is informative about the source from which the data originates is essentially the
driving force of topological data analysis (TDA).

TDA utilizes mathematical tools from (algebraic) topology to describe data
by computing topological invariants of algebraic structures associated to it. This
allows describing the topological properties of the underlying space and distin-
guishing it from other spaces. The main algorithm used in this thesis is persistent
cohomology [3–6]. Persistent cohomology defines a barcode of the data, a topolo-

Fig. 1: The prey-predator feeding relationship is circular. a. Idealized prey-
predator cycle. Left, the prey (blue) and predator (orange) population numbers
follow each other in a cyclical manner. Dashed lines indicate observations. Right,
plotting the number of prey vs. predators depicts the circular phenomenon. b. A
hypothesized more realistic depiction of the cycle described in a.

3



4 Erik Hermansen: Finding topological structure in neural ensemble activity

gical signature colloquially describing the evolution of n-dimensional holes in the
point cloud across increasing volumes of balls centered at each point in the data.
This captures the notion of observing a circular relationship in the above example
and extends it to higher-dimensional spaces and features. In this thesis, we will
describe some of the shortcomings of this method and how to address these, but
also see its formidable advantages. Prominently, we study the "most intriguing
application of TDA" (Oct. 2022, Scientific American [7]), namely the shape of rep-
resentations in the brain, and specifically, of the grid cell network (Fig. 2).

0.2 Contributions and outline

The main contributions in this work concern applications of TDA in neuroscience.
We will describe the relevance of topology and the implications of our findings
in neuroscience. Moreover, the analysis tools used and developed enabling these
results are detailed.

In Section 1, we introduce the relevant concepts in TDA, describing the the-
oretical background of persistent (co)homology and coordinatization. In practice,
the presence of noise in TDA may be detrimental. Hence, we discuss the influence
of noise and the necessity to preprocess data in data analysis in Section 2. We also
describe the theory and intuition behind the construction of a fuzzy topological
representation of the data motivated by the dimensionality-reduction tool UMAP.
This provides a well-founded denoising step for persistent cohomology and the
combination is, in Article I, coined UMAPH, where we showcase its usefulness in
neuroscience. Section 3 starts by describing neural representations, elucidating
the importance of understanding shape in neural data. We discuss spatial repres-
entations and mention previous work in TDA analyzing the structure of these.
Next, the two main approaches to infer the topology of neural representations are
described. These are based on the dual constructs termed the population vector
and correlation complexes in Article II. We describe how they may elicit different
information and provide topological insights of the data, giving examples in both
simulated and real neural data sets. In Section 4, we elaborate on the main finding
of Article III. The characteristics of grid cell populations are first discussed, giv-
ing a background for the hypothesized shape of the network, before describing the
results. Employing the pipeline detailed in the previous sections, we demonstrated
in unprecedented recordings of the entorhinal cortex in rats, that the activity of
populations of grid cells resides on a toroidal state space. Surprisingly, the analysis
showed the toroidal description to be preserved across different environments and
tasks and even during sleep. This portrays the significance of the topological ap-
proaches conveyed in this thesis. Finally, we summarize and give an outlook on
TDA and neuroscience in Section 5.
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Fig. 2: A three-dimensional embedding of neural activity states of an ensemble of
grid cells. Credits: Kavli Institute for Systems Neuroscience, NTNU and Helmet.
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1 Persistent homology and cohomological coordinatiza-
tion

Usually, data is given as a discrete set of points, X , with no inherent, interest-
ing topology. However, the dataset often permits a relationship (such as pairwise
distance or correlation), d, to be defined between the points. This allows estim-
ating the underlying space of which the data is sampled from. We give a brief
description of the main algorithm in TDA, persistent homology [3, 4, 8], assess-
ing the shape of the underlying space through characterizing its n-dimensional
(n-D) holes. The exposition draws from [9–12]. Next, we outline a circular co-
ordinatization scheme based on persistent cohomology introduced in [13], which
is used in Sections 3 and 4 to decode neural representations.

1.1 Persistent homology

Simplicial complex. In TDA, the underlying space is commonly approximated as
a simplicial complex [14]. A simplicial complex, K , is a set of vertices VK and a set,
SK , of non-empty finite subsets of VK called simplices, such that for every τ ∈ SK ,
all non-empty subsets σ ⊆ τ also belong to SK and every vertex is a simplex
(Fig. 3a,b). The dimension of σ ∈ SK is given as |σ| − 1. The dimension of K is
given as the maximum of its simplices. A graph is a one-dimensional simplicial
complex with vertices and edges (0- and 1-simplices) representing points and
pairwise relations. A higher-dimensional complex additionally describes higher-
order relations via its n-simplices. In fact, we may define a higher-dimensional
complex (called the clique complex) from a graph by defining the sets of vertices
in each clique as a simplex.

Rips and Čech complex. For all computations in this thesis we use the Rips
complex, Rε. Given a point cloud X embedded in some metric space (M , d), we
choose a radius ε > 0 and form balls around each point x ∈ X , Bε(x) = {x ′ ∈
M | d(x , x ′) ≤ ε}. Each set of points with pairwise intersecting balls defines a
simplex of the Rips complex, i.e.:

SRε = {σ ⊆ X ; Bε(x)∩ Bε(y) ̸= ;, ∀x , y ∈ σ}.

This may be seen as the clique complex of the graph formed by adding edges
between points whose pairwise distance is less than ε. The Rips complex is said to
approximate the Čech complex, Čε, in that any topological feature present across
the Rips complexes of scales ε and

p
2ε, is also a topological feature of Čp2ε. The

simplices of the Čech complex are the sets of points whose balls intersect, i.e.,

SČε
= {σ ⊆ X ; ∩x∈σBε(x) ̸= ;}.

If we assume X is nicely sampled from its underlying space, Y , and the radius
ε is chosen such that B := ∪x∈X Bε(x) = Y , we say that B forms a good cover of
Y . The Nerve lemma then gives us that the Čech complex has the same homotopy
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Fig. 3: a. Geometrical realization of simplices, σp, of dimension p, (top) and
their respective boundaries, ∂ σp (bottom). b. Example of a simplicial complex.
c. Different topological spaces (from left-right, top-bottom: a plane, a circle, a
sphere and a torus) and the three first Betti numbers, β , associated to the spaces.

type as Y , i.e. the simplicial complex carries similar topological properties as the
underlying space – in particular the same homology.

Homology. Homology is motivated by the observation that a topological space
may be described by its n-dimensional holes. For instance, a 0-D hole describes
a connected component, a circle additionally carries a 1-D hole and a sphere a
2-D hole, while a torus one 0-D, two 1-D and one 2-D hole (Fig. 3c). Notably, the
homological signature of a torus and two circles attached to a sphere is the same.
We will in the following describe simplicial homology with coefficients in some
field F. In all computations we used the coefficient field Z47 = {0, 1,2, . . . , 46}.

Chain complex. Given a simplicial complex K , a simplicial p-chain is defined
as the weighted sum of p-dimensional simplices:

∑

i aiσ
p
i , where ai ∈ F and

σ
p
i ∈ SK . We denote σp = (v0, v1, . . . vp), for vi ∈ VK , and note that the or-

dering matters - swapping vi and v j (for any choice of i, j) produces the op-
posite oriented simplex, −σp. The group of all p-chains with the p-simplices in
K as basis is denoted Cp(K). The boundary operator is defined on a p-simplex
as ∂p(σ) =
∑p

i=0(−1)i(v0, . . . ,Òvi , . . . , vp). This extends linearly: ∂p(
∑

i aiσ
p
i ) =

∑

i=1 ai∂p(σ
p
i ). One may then see that ∂p+1∂p = 0 for any p ≥ 0. This induces a

chain complex:

. . . Cp+1(K) Cp(K) Cp−1(K) . . .
∂p+1 ∂p

,

The kernel and image of ∂p are subgroups of Cp(K) called the cycle and boundary
groups and we say the boundary operator takes a simplex to its boundary.

Betti numbers. Because ∂ 2 = 0, all boundaries are also cycles. The cycles
which are not boundaries represent to the p-dimensional holes. The homology
groups of K are then defined as the quotient groups

Hp(K) =
Ker∂p

Im∂p+1
=

cycles
boundaries

.

An element of Hp(K) is a class of homologous cycles in Cp(K), i.e., [z] = [x] ∈
Hp(K) if z − x ∈ Cp(K) is a boundary. The dimension of Hp(K) is called the p-
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th Betti number of K . Homology has the functorial property that a map of sim-
plicial complexes, f : K → J , induces a map on homology [15]. I.e., we get
a map of chain complexes fp : Cp(K) → Cp(J) by extension, fp(

∑

i=1 aiσ
p
i ) =

∑

i=1 ai fp(σ
p
i ). This commutes with the boundary map, fp∂p+1 = ∂p fp+1, giving

rise to the map f ∗p : Hp(K)→ Hp(J) by f ∗p [z] = [ fp(z)].
Rips filtration. A filtration is a nested sequence of subcomplexes of K , e.g.,

; = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K . In the constructing of the Rips complex, increasing
the radius around each point will only give rise to more simplices in the complex,
hence, there is a natural chain of Rips complexes, called the Rips filtration:

Rε0
⊂ Rε1

⊂ . . . ⊂ Rεn
,

where ε0 < ε1 < . . . < εn corresponds to values of ε in which new simplices are
formed.

Persistent homology. The inclusion maps i l : Kl → Kl+1, induces maps on
homology (i l

p)
∗ : Hp(Kl)→ Hp(Kl+1) (denoted jl in the following). Hence, we get

a sequence of homology groups and maps called the p-th persistent homology of
K:

Hp(K0) Hp(K1) . . . Hp(Kn)
j0 j1 jn−1

The induced maps track which classes are preserved in consecutive steps of the
filtration. We then consider the longest composition of maps for which this holds
true. E.g., if [z] ∈ Hp(Kb) is not in the image of jb−1, we say [z] was born at b. If
jb jb+1 . . . jd([z]) = 0 is the shortest composition that does not preserve [z], we say
it died at d. The lifetime of the class is then d − b [16]. The idea behind persistent
homology is that classes which live the longest are considered more significant,
while those that quickly disappear are considered noise (Fig. 4a).

It is possible to summarize this structure formally as a persistence module,
PHp(K) [17]. Moreover, there exists a correspondence between the persistence
modules over F and graded modules over a graded polynomial ring, F[t], and a
classification theorem which allows us to decompose the persistence module into
a sum of persistence intervals I([bi , di)):

PHp(K)∼=
⊕

k

I([bk, dk)).

Here, k loops over all p-dimensional classes in PHp(K) and (bk, dk) denotes the
filtration steps at which the classes are born and die. Thus, persistent homology
may be given as bars starting at bk and ending at dk. The collection of bars for all
dimensions is known as the barcode.

1.2 Cohomological coordinatization

In [18], De Silva et al. use persistent cohomology to extract circle-valued maps,
giving a projection from the data to a (lower-dimensional) toroidal space. This will
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Fig. 4: Persistent homology describes the persistence of n-dimensional holes
across increasing filtration scales. a. Example barcode of a figure-eight point
cloud. Top, placing balls of increasing radii around each point and connecting
points whose pairwise balls intersect gives rise to the Rips filtration of the point
cloud (note, only the 1-skeleton is shown). Bottom, the lives of 1-dimensional
persistent homology classes are described as bars starting at time of birth, εi ,
with lengths representing the lifetime, li . The noisy circular feature (red) in a is
described by the short-lived bar, while the two long-lived bars (cyan and green)
depict the prominent circles of the point cloud. b. The circular feature in the
point cloud of Fig. 1b may be measured and parametrized through persistent co-
homology and cohomological coordinatization. The barcode (left) shows a single
long-lived bar, whose cocycle representative may be used to obtain circular co-
ordinates of the point cloud (right).
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provide well-suited coordinates of the neural representations studied in later sec-
tions. Here, we describe cohomology and the coordinatization algorithm, closely
following the mentioned study.

Cohomology is a dual notion to homology, reversing all maps. I.e., a cochain
complex:

. . . C p−1(K) C p(K) C p+1(K) . . .δp−1 δp

,

consists of groups of simplicial p-cochains, C p(K) = {αF : Sp
K → F} and coboundary

maps, δp. The function, αF, assigns to each simplex, σp ∈ Sp
K , a coefficient value

ai ∈ F, with coboundary defined by δp(αF(σp)) = αF(∂p(σp)). The notions of
cocycles, coboundaries and (persistent) cohomology follow as above. Due to the
universal coefficient theorem [19], the resulting barcodes are identical when work-
ing over a field.

The following result [19] motivates using cohomology to obtain circular co-
ordinates:

H1(X ;Z)∼= [X , S1].

This says that the classes in the first cohomology group of a topological space X
with coefficients in Z, [αZ], are in bijection with classes of homotopy equivalent
maps from X to the circle, [θ : K → S1]. Intuitively, the desired circle-valued
map is given by smoothing the coefficient edge values of the representative of the
chosen cohomology class across the edges of the simplicial complex and defining
the resulting values on the vertices as the coordinates of the point cloud. The
algorithm is briefly described below [18]:

1. Given a cohomology class with coefficientsZp (for some prime p), we lift the
cocycle representative αZp

to an integer cocycle by replacing the coefficient
values with the corresponding integers in {−(p−1)/2, . . . ,−1,0, 1, . . . , (p−
1)/2}. θ may then be defined through extension on the vertices and edges:
θ (σ0) = 0 and θ (σ1) goes around S1 with winding number αZ(σ1).

2. However, the vertices of the simplicial complex are the points in the data set,
and as these are all mapped to zero, we rather replace the integer cocycle by
αR = αZ + δ0 bR, for bR ∈ C0(K) with real coefficients. Then, θ sends each
edge to an interval of length αR(σ1) and vertices θ (σ0) = bR(σ0) mod Z.

3. To get a smooth map, we choose the cocycle which minimizes the variation
over edges, |αR(σ1)|2, solved by least-squares optimization.

Persistent cohomology gives an indication of the most prominent circular fea-
tures in the dataset, and it is common to compute circular coordinates for only the
features which are deemed the most relevant (Fig. 4b). For instance, if the barcode
suggests a 2-D toroidal topology of the dataset, we may choose to coordinatize the
two longest-lived classes found, thought to represent the two circles of the torus.
However, we must first fix a simplicial complex for which the relevant features
exist, and usually pick a scale close to the death of these, defining the coordinates
on as large complex as possible.
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2 Data preprocessing

While persistent (co)homology has been shown to be a robust tool in the sense
that small perturbations of the data give small changes in the barcode [20], noise
in data is often in the form of outliers or skewed sampling, which may distort the
topological signature. For instance, a densely sampled circular point cloud with
one noisy point appearing in the middle will cut the lifetime of the 1-D persist-
ent homology class in half (Fig. 5). Another issue is the computational complex-
ity, computing high-dimensional persistent homology has severe consequences on
both the running time and memory usage of the algorithm [21]. Neural data is
notoriously noisy, and with potentially hour-long recordings and kHz-sampling
covering multiple brain regions and different neural ensembles, it is necessary
to process the data in order to extract the underlying topology using persistent
(co)homology.

First, we discuss some of the common approaches of preprocessing in data
analysis. We see how a different sets of tools were used prior to detecting the ring
topology of the head direction cell network in mice during wakefulness and REM
sleep [22, 23] with persistent (co)homology [24–26]. We emphasize the work
in [24] which we are inspired by in the analyses in this thesis. Next, we sketch
the theoretical justification of the construction of the ’UMAP complex’, based on
the theory of Spivak [27], McInnes and Healy [28], Barr [29] and Jardine [30–
32]. This serves as a noise-robust approximation of the underlying space, and we
discuss its practical benefits and show how it can be combined with persistent co-
homology to detect the ring topology in the above-mentioned dataset also during
SWS sleep.

2.1 Common techniques

Clustering and dimensionality reduction

One of the first decisions to be made in analyzing data is whether all dimensions
of the data matrix are informative of the intended study. E.g., when predicting
the weather in region 1 for the next day, including weather measurements in the
far-away region 2 can lead the experimenter to infer conclusions about the other
region or a mean of the two. Hence, we would like to separate the measurements
of the regions into two clusters and analyze them independently. This may be done
in various ways. Either the geographical locations of the measurements and the
lack of information contained for the intended prediction may be known, and the
irrelevant dimensions are naturally discarded. Alternatively, if we do not possess
this information, but have historical information about the weather outcome, we
may infer the information contained in each instrument by assessing its previous
predictive power and keep only the dimensions which explain the most. In both
these settings, the clustering is supervised by the experimenter’s prior knowledge.
However, in the shortage of such information, one may consider the correlations
between the measurements. We expect all instruments predictive of the weather
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Fig. 5: Preprocessing of data is necessary to extract interesting shape information
in the barcodes. a. Example circular point cloud with two outliers, p1 and p2. b.
First three dimensions of an embedding in R202 of the point cloud in a, where 200
dimensions with small Gaussian noise have been appended (top). Applying per-
sistent cohomology to the high-dimensional embedding (using Euclidean metric)
gives an ambiguous barcode (bottom). c. Projecting the embedding to its two first
principal components recovers the structure of the original point cloud (top). The
corresponding barcode suggests a prominent circular feature in the barcode. d.
Using ’fuzzy downsampling’ to remove 5 points (top), leaves a ’denoised’ point
cloud. This denoising is seen in the barcode (bottom), where the additional H1-
bar and the two long-lived H0-bars (caused by the two outliers, p1 and p2) seen
in c are no longer present. e. The variance explained for the first 10 principal
components after applying PCA to the point cloud in b.

in region 1 will have measurements which are more correlated with each other
(implicitly through their correlation to the common weather) than they are with
the measurements of region 2. This may guide the experimenter to find two groups
of instruments with high inner group correlation.

In [26] and [24], both studies use cells from both the anterodorsal thalamic
nucleus (ADn) and postsubiculum (PoS), while [25] only focuses on ADn, stating
that PoS is a different brain area with a separate structure. Notably, in [24], the
topological inference is done twice, where in the second iteration only neurons
which are best explained by the decoded representation in the first iteration are
kept, giving a much clearer predicted topology.

Nonetheless, even if the weather measurements are only from one region,
some instruments may either be redundant (e.g., if they are located close to each
other) and lead to overfitting, or be describing noisy or non-informative measure-
ments (e.g., a broken instrument) leading to lower predictive performance (Fig.
5b). Additionally, working with high-dimensional data is inherently more diffi-
cult due to a statistical phenomenon known as the curse of dimensionality [33].
For instance, as the volume of a hypersphere in Euclidean space grows exponen-
tially for increasing dimensions, the difference between the largest and smallest
in a randomly generated point cloud will approach zero, and distinguishing noise
from signal becomes impossible [34]. Hence, a common step is to try to project
the data to a lower dimension whilst retaining the most relevant features (Fig.
5c). Principal component analysis (PCA) finds orthogonal linear combinations of
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the dimensions, called components, which maximizes the amount of variance cap-
tured in each component such that the first component explains most variance,
the second the second most and so on. The user may then determines how many
components (dimensions) to keep based on the variance explained (Fig. 5e).

In [24], PCA is used to project the n-dimensional data set (where n is the num-
ber of neurons) to its six first principal components. Chauhuri et al. use Isomap
[35] to reduce the number of dimensions to 10 [25], whle in [26] two iterations of
Laplacian Eigenmaps [36] is used to obtain a three-dimensional point cloud. Both
are non-linear dimensionality reduction tools constructing a lower-dimensional
embedding by optimizing the global and local distances, respectively, based on a
neighborhood graph (connecting each point to its k nearest neighbors).

Downsampling

While dimensionality reduction is a way of denoising data, noisy or false meas-
urements may still be mapped to outliers in the projection or may influence the
performance of the dimensionality reduction tool (Fig. 5c,d). The dataset may
also contain irrelevant or redundant measurements. Yet another problem is the
computational cost of analyzing large amounts of data. Thus, one may try to re-
duce the number of points whilst preserving the critical information in the point
cloud.

Rybakken et al. [24] simplified the point clouds to 100 points using both ra-
dial (distance) downsampling [37] and topological denoising [38]. Radial down-
sampling starts by picking a single point in the point cloud and removing the points
within radius ε. The remaining closest point is then chosen, and the process re-
peated until no distances are less than ε. Topological denoising first chooses a
random subset X0 ⊂ X and then moves the chosen points towards a topologically
relevant region by recursively maximizing

Dn(x) =
1
|X |

∑

y∈X

exp−
||x−y||2

2σ2 −
λ

|Xn|

∑

y∈Xn

exp−
||x−y||2

2σ2 ,

where n = 0, 1, . . . , N (for some user-defined N) is the iteration step, λ and σ
hyperparameters and Xn given by (for some learning parameter a)

Xn+1 =







x + a
∇Dn(x)

max
x ′∈X0

(|∇D0(x ′)|)
| x ∈ Xn







.

Dn(x)may be understood as the difference between two kernel density estimators
– the first term representing the whole data set X , moving the sampled points
towards dense regions, and the second representing Xn, repelling the sampled
points away from each other. In [25], the local density of each point was used
to remove 5% of the ’sparsest’ points, while Rubin et al. discarded all points for
which the number of active neurons were less than 15 (of the 62 and 41 neurons
in the mice analyzed) [26].
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Note that other more or less well-motivated choices, such as time bin size, 1-
D Gaussian smoothing, square rooting, binarizing etc. were also made to process
the spike times in the different studies. Furthermore, the spike times analyzed
were first sorted semi-automatically based on processed electrophysiological re-
cordings, using the software KlustaKwik[39] followed by manual curation [23]. In
summary, experimental (neural) data requires extensive preprocessing carefully
designed to preserve the information contained in the data.

2.2 UMAP construction

Since its introduction in 2018, UMAP [28] has become a popular dimensionality-
reduction method in neuroscience [40] and other fields [41]. The motivating idea
behind UMAP is that the data are uniformly sampled from a low-dimensional
manifold, but that this is not reflected in the distances given by the associated
metric in the (high-dimensional) ambient space. UMAP tries to reconstruct the
geodesic distances of the low-dimensional manifold by constructing local metrics
for which the points in the dataset are uniform and then merge these to a global
metric. However, the local metrics are usually incompatible. To solve this, UMAP
converts the local metric spaces to fuzzy simplicial sets, for which there exists a
natural way of merging the objects into a ’global’ fuzzy simplicial set called the
’UMAP complex’ [42]. While UMAP uses this construction to optimize the repres-
entation of a low-dimensional point cloud, we convert the UMAP complex back to
an (extended pseudo-)metric space and apply persistent cohomology to the Rips
filtration of the so-obtained geodesic distances. This may be seen as analyzing the
UMAP complex directly and understanding its topological features through per-
sistent cohomology. Thus, we circumvent the problem of initializing and optimiz-
ing a low-dimensional embedding [43, 44]while providing a useful preprocessing
tool for persistent cohomology based on the uniformity assumption. In the follow-
ing, we give a theoretical description of the construction of the UMAP complex,
drawing largely from the work in [27] and [28].

Uniformity assumption. The main assumption behind UMAP is that a data-
set is uniformly sampled on a (low-dimensional) manifold embedded in ambient
space. This motivates the construction of a metric, dg , for which this is true. In-
tuitively, this means the volume of a ball containing a fixed number of points,
k, should be the same independent of where it is centered. Hence, the ambient
distances are normalized,

dg(x , y) =
d(x , y)
d(x , xk)

,

where d is the ambient space metric and xk its k-th nearest neighbor.
Ep-metric space. However, this may give incompatible distances. Letting dx(x , y) =

dg(x , y) for y ∈ Nx , the neighborhood set of x , and infinite otherwise, (X , dx)
defines an extended pseudo-metric space for each point x ∈ X . Here, ’pseudo’ means
that if d(x , y) = 0, x and y are not necessarily the same, and ’extended’ that we
allow for infinite distances. A morphism between two ep-metric spaces (X , dx) and
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(Y, dy) is a function f : X → Y such that dy( f (x), f (y)) ≤ dx(x , y). This defines
a category of ep-metric spaces, EPMet.

Fuzzy set. Classically, a fuzzy set is defined in terms of a set X with a function
µ : X → I , where I = (0,1], assigning to each x ∈ X a ’probability’ of the point
being an element of X . The fuzzy sets form a category Fuzz with morphisms ( f , h) :
(X ,µ)→ (Y,ρ) consisting of functions f : X → Y and a relation h : µ ≤ ρ f such
that µ(x) ≤ ρ( f (x)) for all x ∈ X . A sheaf S on I is a functor S : Iop → Sets
with restriction maps, rb,a : S([0, b))→ S([0, a)) for a ≤ b ∈ I , satisfying certain
conditions [45]. Barr [29] shows that the category of fuzzy sets are in equivalence
with the subcategory of sheaves on I where the restriction maps are injections.
We may then think of a section S([0, a)), corresponding to (X ,µ), as the set of
elements x ∈ X with probability greater than a, i.e., µ(x)≥ a.

Simplicial set. The simplex category ∆ has objects [n] = {1, . . . , n} for n ∈
N, and morphisms order-preserving functions. A simplicial set is then a functor
X s : ∆op → Sets. This may be seen as a sequence of sets Xn with maps di : Xn →
Xn−1 and s j : Xn → Xn+1 satisfying certain relations [46]. The elements of Xn are
called the n–simplices. The standard simplicial set∆n is the functor hom∆(−, [n])
with m-simplices f : [m] → [n] ∈ ∆. By the Yoneda lemma, x ∈ Xn is uniquely
described as a natural transformation x :∆n→ X .

Fuzzy simplicial set. A fuzzy simplicial set is a simplicial object in Fuzz, i.e., a
functor X f :∆op→ Fuzz. We may also define this as a sheaf X f : (∆× I)op→ Set.
The set X f ([n], [0, a)) may then be seen as the n-simplices with probability ≥ a.
Denoting ∆n

<a as the functor hom∆×I(−, ([n], [0, a))), we may write the fuzzy
simplicial set X f as the colimit

colim
∆n
<a→X f

∆n
<a

∼=→ X f .

X f can thus be thought of as a simplicial set for which every simplex has probab-
ility less than or equal to its boundary simplices. The category of fuzzy simplicial
sets and natural transformations is called sFuzz.

UMAP complex. The UMAP construction is defined as the (global) fuzzy sim-
plicial set constructed from a family of ep-metric spaces {(X , dx)}x∈X . We will
assume X is finite in the following.

First, we define a (realization) functor Re : sFuzz→ EPMet by setting

Re(∆n
<a) := ({x0, . . . , xn}, da)

where

da(x i , x j) =

¨

−log(a) if i ̸= j

0 otherwise.
(1)

For a ≤ b we have da ≥ db, and the map F : ∆n
<a → ∆

m
<b , induced by f : [n]→

[m],
({x0, . . . , xn}, da) 7→ ({x f (0), x f (1) . . . , x f (n)}, db),
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Fig. 6: Example application of UMAPH compared to UMAP and persistent homo-
logy. a. Two-dimensional projection of 1000 samples from a trefoil knot embed-
ded in 3-D ambient space with added noise. Coloring depicts angular progression
along the knot. b. Depending on different choices in the parameters, a 2-D UMAP
projection unknots the underlying circular feature (i), though with possibly awk-
ward geometry (ii). Using a random (instead of the default Laplacian Eigenmaps
[36]) initialization of the low-dimensional embedding in UMAP breaks the knot
into disjoint pieces (iii). c. Applying persistent cohomology gives a barcode show-
ing three circular features (left). Each feature represents the three ’foils’ of the
knot, as seen in the circular coordinates of each, shown for one example feature
(right). d. Constructing the Rips filtration based on the geodesic distances from
the UMAP construction (using a small number of neighbors, k) and computing
the persistent cohomology (i.e., applying UMAPH), gives a barcode showing an
infinitely-lived circular feature (left). The corresponding angular coordinates de-
scribe the underlying circle of the knot (right).

is then a non-expansive map. This extends to any X f ∈ sFuzz,

Re(X f ) := colim
∆n
<a→X f

Re(∆n
<a).

Conversely, there is a fuzzy singular set functor, Si : EPMet→ sFuzz, defined
through extension on ∆× I :

Si((Y, dY )) : ([n], [0, a)) 7→ homEPMet(Re(∆n
<a), (Y, dY )).

We may thus obtain a global fuzzy representation – the UMAP complex of X – by
converting {(X , dx)}x∈X to fuzzy simplicial sets and taking the fuzzy union,

⋃

x∈X
S((X , dx)).

Computations. In practice, each ep-metric space (X , dx) is converted to a
fuzzy simplicial set with probablity function µx(y) = exp(−dx(x , y)). The UMAP
complex may then be thought of as a simplicial complex with weighted simplices
given by extending the symmetrized edge weights

µ(x , y) = µx(y) +µy(x)−µx(y)µy(x).

To limit the effect of the choice of k in the approximation of the geodesic
distances, dx is defined as d(x , y)/σx (for y ∈ Nx and∞ otherwise), where σx
is determined by enforcing

∑

y∈Nx
µx(y) = log2(k).

In UMAP, a dimension-reduced point cloud is initialized through Laplacian Ei-
genmaps (or randomly initialized, see Fig. 6b) and the cross fuzzy entropy between
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the UMAP complex of the low-dimensional point cloud and the high-dimensional
one is minimized through stochastic gradient descent. This changes the layout of
the low-dimensional embedding to approximate the topological representation of
the original dataset [28].

2.3 Summary of Article I, part 1: Combining persistent homology and
UMAP

Instead of projecting the data, X , to a lower-dimensional representation, we real-
ize the UMAP complex: Re(∪xS((X , dx))) = (X , dg) with

dg(x , y) = −log(µ(x , y)).

This is used in computing the Rips filtration and is equivalent to forming clique
complexes of the 1-skeleton of the UMAP complex, filtering based on decreasing
probability (i.e., the ’least likely’ simplices are added towards end of the filtra-
tion). This assumes the probability of the higher-dimensional simplices is exactly
the minimum of that of its boundary simplices. The persistent (co)homology (PH)
of this filtration allows a visualization of the UMAPH complex beyond three di-
mensions and sidesteps the choice of initializing a low-dimensional embedding,
as well as several hyperparameters used in the optimization, both of which may
radically change the outcome of the method [43, 44]. At the same time, we show
that it can reduce the computational cost of PH and provide an informative de-
scription of the underlying manifold even in the presence of noise. Extending the
method with cohomological coordinatization additionally gives an informed way
of dimension-reducing the data. We call this combination of tools UMAPH (‘Uni-
form Manifold Approximation and Persistent Homology’, Fig. 6).

These benefits are shown in the example of a noisy 83-sample of the three-
torus T3 = S1× S1× S1 (see Extended Data Fig. 5c in the article), where the bar-
code describes the correct homology (βi = (1, 3,3, 1)) and cohomological para-
metrization matches the three circular features sampled. This showcases both how
UMAPH can find and dimension-reduce the embedded (high-dimensional) space
and how it can considerably reduce the computational cost of persistent cohomo-
logy by naturally simplifying the filtration through a limited number of neighbors
(e.g., computing H3 for the full filtration based on Euclidean distances was not
permissible in Ripser with the available computing power due to memory require-
ments).

Furthermore, we introduce fuzzy downsampling based on the geodesic dis-
tance to reduce the point cloud (Fig. 7). Starting with a random initial point, we
iteratively choose the (i + 1)-th point as

max
x∈X−X i

(
∑

y∈X−X i

µ(x , y)),

i.e., x i+1 is the point with the highest mean edge probabilities in the residual point
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Fig. 7: Illustration of fuzzy downsampling technique. a. Example circular point
cloud with two additional ’outliers’. b. Density plot of the objective function.
Light colors indicate high density. c. The ten first iterations of the downsampling
scheme. The sampled points (red) are chosen based on maximizing the density
function in each step.

cloud X − X i . This is equivalent to

max
x∈X
(
∑

y∈X

µ(x , y)−
∑

y∈X i

µ(x , y)).

Inserting µ = exp(−dg(x , y)) we see that this scheme iteratively maximizes two
(unnormalized) kernel density estimators similar to Dn in the topological denois-
ing algorithm.

By applying UMAPH to the downsampled (four first) principal components
of firing rates of a cluster of the recorded head direction cell network previously
described [22], we were able to detect and decode the internal head direction
representation during wakefulness, REM and SWS sleep (see Extended Data Fig.
6 in the article).
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3 Finding topological structure in neural data

External and internal input is somehow perceived and transformed by the neurons
in our brains to elicit an action in the agent. A long-standing question is how this
happens. To gain insight into the inner computations of the brain, neuroscientists
have commonly recorded the electrochemical activity of single neurons and re-
lated it to some observable external variable such as visual or spatial stimuli. The
neural responses to the variable may suggest the function of the recorded neurons
- what piece of information each neuron produces or encodes. Neurons portraying
an explicit response to a specific feature of the stimuli have often been understood
through the representated variable. In 1959, Huber and Wiesel showed that single
cells in the visual cortex of cats became selectively active to a particular orienta-
tion of visual bars presented to the cat [47]. We say these neurons are tuned to
specific orientations. A population of such neurons are then thought to cover the
range of orientations, thus collectively encoding this visual feature. Thus, we may
define a neural ensemble as a group of neurons carrying a specific representation.
Although the brain cannot directly compare the neural responses to the external
feature, it can form relationships to the pattern of responses. For instance, down-
stream neurons are differentially influenced depending on which (and, possibly, to
which degree the) neurons in the network are active. In this way, the information
bestowed in the ensemble activity is conveyed or "read out".

3.1 Neural representations

"Can one hear the shape of a drum?" Similar to asking whether knowing the fre-
quencies made by a drum suggests its shape [48], we ask whether we can infer
the shape of the neural representation through recordings of the neural activity.
Conceptually, both the activity state space (the space of possible activity patterns)
and the correlation structure of an ensemble reflect the variable it holds (Fig. 8).
The neural responses of the orientation network should thus correspond to the
possible orientations and transitions between these. Explicitly, we think of the
collective responses as constrained to a circular manifold and smoothly traversing
this space in alignment with the visual stimulus. Similarly, seeing that the activity
of each neuron is confined to a small set of angles, two correlated neurons should
encode neighboring angles and share a strong ’functional connection’. This illus-
trates how knowing what covariate the network encodes gives us an indication of
how the neurons should behave and what topology best describes this behavior.
Conversely, knowing the topology of the neural activity should tell us something
about what information the activity is storing [49, 50].

Recent breakthroughs in electrophysiological recordings and calcium imaging
have allowed for thousands of cells to be simultaneously recorded over consecut-
ive days [51–53], giving the means to analyze neural ensembles during various
brain states and tasks. For instance, Gallego et al. find the activity patterns of mo-
tor cortical recordings in monkeys to be confined to a low-dimensional "neural
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Fig. 8: The global shape of a neural representation is found in both the state space
and the correlation structure of the neural ensemble. a. Example spike trains de-
scribing the spiking activity of four neurons ni . The population activity described
by the spike trains may be sampled at times t i and arranged in an N × T data
matrix, X , where (N = 4) neurons. b. The columns of X , called population vectors
(black), describe points in an N -dimensional space where each dimension de-
scribes the activity of neuron ni . Time-dependent transitions (indicated by arrow)
between the vectors are thought to describe (smooth) dynamics along the under-
lying manifold of the sampled state space. The colored groups indicate the vectors
for which the neurons are (highly) active. c. The rows of X describe points in a T -
dimensional space where each dimension gives the activity at time t i . Transitions
between neurons (black arrow) describe functional relations. Edges indicate high
correlation between the neurons. Note how the resulting graph describes the over-
lap of the groups in b. d. Correlation diagram of pairwise correlations between
activity traces of each neuron (i.e., between rows of X ). e. The mean activity of
each neuron as a function of an (internal or external) covariate shows peaked
responses, i.e., tuning towards a given angle of the circular representation. f. The
activity described in a-e may be seen as both the product and the cause of a dis-
ctinct behavior in the animal, for instance the head direction of a freely foraging
rodent.
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manifold" preserved across task [54, 55], and one of the first applications of to-
pological data analysis in neuroscience showed that the topology of a population
state space in primary visual cortex (V1) in monkeys is spherical [56]. In the fol-
lowing, we describe neural representations for navigation and localization and
how the methods in the previous sections can and have been used to infer topo-
logical structure in neural data, particularly for studying spatial representations.

Spatial representations

Several spatially-tuned neurons, thought to partake in encoding representations
of an animal’s current whereabouts, have been discovered, such as place cells
[57], grid cells [58], object vector cells [59], border [60] and boundary vector
cells [61] and head direction cells [62] (Fig. 9). In experiments, these are usu-
ally found to describe the planar world of a rodent’s experimental environment.
For instance, the place cells are thought to encode the specific two-dimensional
coordinate of the animal’s location, with each place cell selectively active close
to a preferred position in this coordinate system. The region of elevated activ-
ity is called the cell’s place field. Curto et al. show that the union of place fields
can form a good cover of the environment [9]. The nerve lemma then states that
the simplicial complex formed by replacing n coactive place cells with n-simplices
shares the topology of the physical environment. Moreover, by assuming a stereo-
typical shape of the place fields, they describe geometrical details of the animal’s
simulated trajectory. On the other hand, Dabaghian et al. suggest a purely topo-
logical neural representation [63] of the place cells, observing a preservation of
the relative sequence of recorded place fields visited along a linear track across
changes in the geometry, but not changes in its topology. In [16], Giusti et al. ap-
ply persistent homology to the clique complex of recordings of place cells in rat
hippocampus. Using statistical summaries (Betti curves) of the barcodes they find
a ’geometrical’ organization in the complex. More puzzling, similar organization
is also seen during wheel running and REM sleep, indicating that it is not the
spatial stimulus that forms the network, but rather its intrinsic properties. How
this relates to the re-configuration of map-like representation of place cells as the
animal enters a novel environment [64] is still an open question. This exemplifies
the need to understand the network structure without assuming specific covariate
function [65].

We have already mentioned how the authors in [24–26] all expose the ring
topology of the head direction cell network recorded from a population of cells in
mouse thalamus [23]. These are cells specifically tuned to a single direction for
which the animal’s head is facing with respect to the environment [66]. Hence, the
sequence of activity reflects the way the animal’s head turns, confining the activity
states to a ring manifold. While these studies look at the differences in activity
patterns at different time frames to inferring the topology, the above-mentioned
place cell studies look at differences in firing activity per neuron to understand the
underlying representation. The comparison between these two ways of assessing
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Fig. 9: Examples of neural representations for spatially-tuned neurons. a. Tuning
to recorded head direction (’Rec’) and decoded circular representation of cor-
relation structure (’Rows’) and state space (’Cols’), as in Fig. 8a of Article II, of
four head direction cells recorded in the entorhinal cortex [52]. Gray line in-
dicates occupancy of recorded head direction. b. Spike trains of hippocampal
place cells [67] as a mouse runs on a virtual repeating track. The spike trains
are sorted according to the decoded circular representation found in the correla-
tion structure (Fig. 8b of Article II), implicitly showing the repeated progression
along the track. c. Hippocampal place cell recording portray the environmental
structure of the figure-eight task the mice are performing during recording (data
from [68], unpublished analysis). Left, 3-D UMAP projection of the population
vectors. Right, decoding the two longest-lived circular features in the barcodes
of the UMAP projection reveals the coordinates of left and right circles of the
environment. d. Decoding the longest-lived circular features of the correlation
structure of entorhinal/parasubicular population recordings in two mice reveals
border-vector representation (data from [69], unpublished analysis).

topological structure in neural data (Fig. 8) is the basis of Article II.

3.2 Summary of Article II: A topological perspective on the dual nature
of the neural state space and the correlation structure

We try to relate two distinct ways of analyzing population recordings: 1) study-
ing the correlation structure through the pairwise correlations of activity traces,
and 2) understanding population coding by analyzing the neural state space as
sampled by the population vectors. If we regard the population recordings as a
data matrix, X , where the number of rows depict the number of neurons and
the number of columns the time frames, the two approaches respectively corres-
pond to analyzing the matrix row-wise or column-wise. We define the population
vector complex by forming groups of neurons if they are active in the same pop-
ulation vector and connect groups if they overlap. Every group is then given by
the population vector it stems from and the complex corresponds to connecting
sets of k vectors with a k-simplex if they contain the same neuron(s). Dually, the
correlation complex groups population vectors which share an active neuron and
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similarly connects overlapping groups (Fig. 8b,c). Correspondingly, every group
represents a distinct neuron and the complex is given by letting l neurons form
an l-simplex if they are all coactive in the same vector.

If we assume a binarized matrix, X , Dowker duality then says the correspond-
ing correlation and population vector complex are homotopy equivalent [50].
However, these constructs are extremely sensitive to noise, e.g. a single random fir-
ing of a neuron may distort the topology. Hence, we assign to each simplex the cor-
responding number of overlapping neurons or shared vectors and set thresholds
for the minimum number that elicits connecting the groups. We can assess all
thresholds by observing that this gives rise to a filtration of simplicial complexes
in decreasing thresholds – n groups that share λ neurons (vectors) also share
λ′ < λ neurons (vectors), inducing an inclusion of the n-simplex. Computing the
persistent homology of this filtration allows us to assess all thresholds and see
which features are dominant. However, the resulting barcodes for the filtration of
population vector complexes and correlation complexes are now not necessarily
the same as there is no obvious link between the respective weights.

We study two cases in which the barcodes differ: 1) when we have multiple
ensembles and 2) when there are neurons with disconnected (non-convex) recept-
ive fields. In 1), the correlation complex may reveal the presence of each network,
while the population vector complex will not, while in 2) the population vector
complex may carry the shape of the representation, while the correlation complex
gets distorted. Consequently, when both complexes indicate the same topology,
this strongly indicates the true shape of the ensemble representation. We suggest
a framework for how this complementary behavior may guide the analysis and
give a simulated example of extracting the underlying structure from mixed pop-
ulation recordings without relation to an external covariate (Fig. 7 in the article).
Next, we showcase a few examples of how this applies to experimental recordings
(Fig. 2 and 8 in the article), namely: the entorhinal head direction cell network
(Fig. 9a), orientation-tuned neurons in primary visual cortex, place cells during a
recurring VR task (Fig. 9b) and a grid cell module.
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4 The topology of the grid cell network

In this section, we discuss the spatial representation formed by grid cells and see
how it gives rise to a toroidal topology in the ensemble activity. We will then see
how, using the methods previously described, the proposed structure is found in
the state space of recordings of grid cell ensembles.

4.1 Grid cells and the toroidal hypothesis

Grid cells are neurons found in the medial entorhinal cortex (MEC) specified by
their firing pattern in space, each grid cell displaying multiple activity fields form-
ing a 2-D hexagonal lattice in the environment [58, 70]. The pattern is character-
ized by its scale (the distance between fields and the size of a field) and orientation
relative to the borders of the environment (Fig. 10a). These features are shared
across ensembles (or modules) of grid cells, but each cell has its own spatial phase
displaced from the other cells in the module [71]. There is a topographical or-
ganization to the scale of the distinct grid modules and the combination of mod-
ules may encode a vast amount of unique spatial codes [72]. They are therefore
thought to provide the main spatial input to place cells [73, 74]. In contrast to the
remapping of place fields in place cells [75], the functional relationships between
the grid cells are preserved across different environments and in sleep [58, 76,
77]. There are two main theories for how the grid cell activity arises. In continu-
ous attractor network (CAN) models, the network connectivity is a priori designed
to follow the assumed geometry of the manifold of the network and the collect-
ive activity stabilizes to one or more localized bumps which may be translated
smoothly along the state space. Grid cell CANs are shown to accurately integ-
rate velocity and head direction inputs to generate the characteristic hexagonal
responses of grid cells and drive a corresponding flow of the network pattern
[78–80]. A second model hypothesizes a self-organization of the grid-cell pattern,
arising due to interference between a global signal and cell-specific oscillations
modulated by the rat’s velocity [81].

A 2-torus is the Cartesian product of two circles (S1 × S1), allowing the peri-
odic traversal along two dimensions. Hence, it has long been suggested that the
population activity of grid modules should display a toroidal structure [80]. This
may be seen by studying the fundamental rhomboidal tile of the grid cell pattern.
We see that the tile repeats along the two spatial dimensions, and a (single) grid
cell module cannot differentiate which of the tiles the animal is in, but only the
location within each tile. Consequently, the representation of the module is identi-
fied by appropriately gluing the boundaries of the rhombus, giving rise to a torus.
Each grid cell has a single receptive field on the torus (Fig. 11a) [49]. Assuming
all phases are covered, the grid fields define a good cover of the torus, meaning
the activity space should expose a toroidal topology.

However, navigation in natural environments is more challenging than in simple,
familiar, obstacle-free enclosures, and the hexagonal pattern is seen to change de-
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Fig. 10: The spatial specificity of grid cells display a hexagonal pattern in an open
field and divide into ensembles or modules based on the pattern’s grid scale. a.
Nine example neurons of entorhinal grid cells from three modules during open
field foraging (data from [2]). b. The mean firing pattern of the same neurons as
in a during free foraging on a wagon-wheel track.

pending on the geometry of the environment (Fig. 10b). In novel environments, in
environments of different shapes, merged arenas, near boundaries and objects and
during goal-related tasks the hexagonal pattern of grid cells can appear distorted
[82–86]. These distortions challenge the idea of the grid cell network procuring a
precise metric of external space and begs the question whether the internal rep-
resentation is similarly distorted – 1) is the neural representation toroidal and
2) is it so, regardless of the geometry of the environment? With a persistent in-
ternal representation, periodic in two dimensions, the proposed modular grid cell
coding would still be permissible despite the hexagonal symmetry of the grid cell
pattern broken in different environments. Moreover, it would support the con-
tinuous attractor model of grid cells where the pre-defined pairwise connections
in the population may be preserved independent of environmental changes, while
in self-organizing models it would require each neuron to learn a spatial modu-
lation in such a way that the same pattern appears across the whole population
for each new environment and brain state. In articles I (part 2) and III, we give
an affirmative answer, showing that the topological structure of the population
activity of a grid cell module is toroidal and that this structure is preserved across
environments and brain states.

4.2 Summary of Article III: Toroidal topology of population activity
in grid cells

With advances in electrophysiological recording technology [51], we were able
to record a large number of grid cells simultaneously in the medial entorhinal
cortex of three rats during different experimental conditions, with up to ∼ 150
neurons in each of the six modules. Each session lasted up to several hours, giv-
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Fig. 11: The state space of a grid cell module is toroidal. a. The mean firing rate of
a grid cell as a function of the toroidal ensemble representation. Left, the neuron’s
firing response reveals a preferred location on the torus. The red arrows indicate
the two circles of the torus. Middle, unwrapping the toroidal surface may be seen
as a rhombus with periodic boundaries. Right, stacking multiple rhomboidal tiles
reveals the hexagonal firing rate pattern. b. Decoding the toroidal representation
describes two circular coordinates (left and right) for each time frame. Coloring
each spatial position visited by the rat with the simultaneous circular coordinate
reveals a stripe-like pattern depicting the two spatial axes of the firing pattern of
the module.

ing large and noisy datasets, so we used a similar pipeline as described in Section
2. First, excluding time frames of low activity, PCA was applied to each dataset,
projecting the data to a six-dimensional embedding (see Extended Data Fig. 4 in
the article). Next, we used the fuzzy downsampling technique and applied per-
sistent cohomology to the UMAP complex of the reduced point cloud. Despite an
apparent lack of hexagonality in the spatial selectivity of individual neurons in
a wagon-wheel environment and a decoupling of neuronal activity to positional
cues in sleep, we identified toroidal structure of the state space across open field
and a wagon-wheel environments, as well as in sleep (both SWS and REM).

Using the cohomological coordinatization procedure described in Section 1.2,
we obtained time-varying toroidal coordinates from the two most persistent cir-
cular features found in the barcode. Mapping these coordinates as a function of
space displayed the two axes of the hexagonal pattern of the grid cell module
(Fig. 11b). Computing single cell mean firing rate activity in binned toroidal co-
ordinates we observed how each cell had single firing fields on the rhomboidal tile.
This tuning was preserved across the different conditions, with the same preferred
toroidal location, indicating a fixed network structure across each condition. We
additionally tested how well the toroidal coordinates explained the data as com-
pared to recorded physical position. Using both an information content score and
the explained deviance of a GLM model fitted to each coordinate set, the toroidal
coordinates were found to explain the data better.

However, during SWS, two modules lacked a clear toroidal signature of their
state space. Further investigation of these revealed subpopulations of grid cells
with different spiking statistics and with varying toroidal specificity. Confining
the analysis to the subpopulation with bursty firing and weak theta-modulation
again uncovered a torus for one of the modules.
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4.3 Summary of Article I, part 2: Uncovering 2-D toroidal represent-
ations in grid cell ensemble activity during 1-D behavior

The UMAPH framework (described in Section 2) was first applied to calcium ima-
ging data of the entorhinal cortex of freely moving mice [52, 69]. Without clus-
tering, a toroidal structure was revealed in the whole population recording in
two mice, showing that the locally confined Ca2+-imaging permits recording a
large number of cells from the same grid cell module. In three recording days of
a third mouse, we first found a grid cell module by clustering the neurons based
on their spatial pattern and showed that the toroidal structure in the open field
recording was similarly carried in a head-fixed wheel-running task. That is, we
found a preserved 2-D toroidal representation of the grid cell activity, despite the
1-D non-spatial nature of the task. Head-fixed animals in 1-D environments, often
in combination with a virtual reality task, is a popular experimental setup with
several benefits, allowing experiments with large equipment, easier preparations
and better control of tracking [87]. However, the equipment usually does not al-
low 2-D tracking, making it difficult to assert the spatial tuning of the recorded
neurons [88]. Having found the toroidal representation in a wheel-running task,
motivated using UMAPH in such experiments despite a lack of grid cell identi-
fication. Thus, we studied the data recorded by Campbell et al. [89], where the
head-fixed mice ran on a continuously repeating virtual linear track under dif-
ferent manipulations of the task. The neurons were clustered based on time-lag
correlations of their firing rate activity. Using the largest clusters, we were able
to obtain ensembles which exhibited toroidal representations. Each neuron had
a single receptive field on the hexagonal torus, with preserved toroidal location
across conditions. Furthermore, the decoded internal dynamics revealed smooth
trajectories on the neural manifold evolving in line with the mouse’s progression
along the VR-track. In gain manipulation trials, the gain could be predicted by es-
timating the length of the internal trajectories. This establishes the advantages of
using this approach to study the topological structure of neural ensemble activity
and understand the dynamics and function of the ensemble computation without
reference to external covariates.



28 Erik Hermansen: Finding topological structure in neural ensemble activity

5 Conclusion

5.1 Summary

In this thesis, we study topological structure found in neural data through the
means of TDA. Persistent cohomology stands as a versatile descriptor of the un-
derlying shape of data, and we demonstrate its efficacy in describing neural rep-
resentations in population recordings in animals. However, naïvely applying the
methods to a given dataset (as is) may not identify interpretable structure, and
we have seen how careful preprocessing is often needed to meet the cacophony of
experimental, high-dimensional data. To this end, we described how an intrinsic
uniformity assumption may be helpful, creating a fuzzy topological representation
of the data. Combining such a framework with cohomological coordinatization al-
lows further insight into circular features detected in the given point cloud.

TDA is still an emerging field, also when it comes to practical applications
requiring its adeptness. With its wealth of data and inherent complexity, neuros-
cience needs new ways of seeing and has for some time now been a field of active
interest within the TDA community. We have seen how the topological structure
of neural data may be connected to understanding the functions and computa-
tions of groups of neurons. More so, we observed how information may be found
both in the rows and columns of the data matrix studied, with a neural ensemble
exhibiting the same topology in either. Although this duality of coactivity matrices
has been known and both approaches are used, we emphasize the benefit of their
complementary information, and provide simulated and real examples in neural
data.

We furthermore presented in this thesis the first demonstration of inferring
the toroidal state space of grid cell modules. This serves as a clear example of
the need for topological tools, where other approaches may fail to facilitate easy
interpretation. Moreover, the discovery of a preserved structure during different
behavioral tasks, such as head-fixed wheel running and in sleep, shows how the
methods can reveal unprecedented information about neural ensembles. We end
this thesis with some reflections on the drawbacks of the methods studied and
outline some future directions.

5.2 Discussion and future directions

Pre- and postprocessing. We have already mentioned the sensitivity of persist-
ent homology to the noise and size of experimental data, and while UMAPH may
lessen the burden (by introducing the number of neighbors, k, as a parameter),
it contains the same computational bottleneck. Iteratively computing PH on sub-
samples of a dataset and merging these into a global topological description of
the data [90, 91] could be a way to improve on this. Additionally, the choice of k
may radically change the outcome of UMAPH, and allow for barcodes with bars of
infinite length, which often have a less straightforward interpretation. In general,
it is difficult to know whether a performed analysis not showing the predicted
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results fails to do so because the hypothesis was wrong or because the parameters
were set wrongly. Does this make the analysis a "failed experiment ... producing
data not proving anything" [92]? We maintain that it is possible to make justified
choices but believe a better theoretical reasoning behind parameter tuning is still
needed [93]. Furthermore, the readout of barcodes is in any case difficult and the
statistical properties of barcodes are actively studied [94]. Outlier detection [95],
different statistical summaries [96, 97] and other heuristics [98, 99] have been
used to distinguish signal from noise. In this thesis, we saw how the cohomolo-
gical coordinatization was critical in interpreting the barcodes, and the intrinsic
dynamics and well-behavedness of the decoding may be used to identify which
features are of interest. Moreover, the coordinates may be actively used to uncover
more information in the dataset. For instance, in Article II, we used the receptive
fields on the inferred representation (similar to using information scores of the
tuning as in [24]) to filter the neurons. Another option (as seen in [24, 100]),
is using the coordinates in a GLM model to subtract the contribution of the (de-
coded) covariates from the neural data, to uncover topological information hidden
in the residual activity. Developing the coordinatization scheme to other (higher-
dimensional) spaces and homology groups will allow a more detailed account of
the underlying structure to be revealed [101–103]. In this respect, incorporat-
ing statistical models in fitting the coordinates could give better robustness and
interpretability of the inference.

Other tools. While (persistent) homology gives an important description of a
topological space, it is not the only signature, nor does it fully describe the topo-
logy of the space. As previously mentioned, the homology of a torus and a sphere
with two circles attached is equivalent, but these spaces are not (topologically) the
same. To separate them, one may test different properties [104] and (persistent)
cohomology can for instance be given a product structure which distinguish these
spaces [105]. The homotopy type is a stronger characterization of the topology
[19], but further theoretical and computational developments are needed [106,
107]. However, extensions of persistent homology and other (co)homology the-
ories, such as sheaf cohomology, may refine and extend the topological inference
[19, 108–110]. For instance, in [111] we study the flow of homology generators
between height levels of a simplicial set. This is similar to levelset zigzag [112]
and the MAPPER algorithm [56], and may give rise to a more refined version of
the barcode [113, 114]. Furthermore, we note statistical approaches such as [115]
and [116], where the specific latent space manifold(s) are assumed. Testing the
fit to data for different manifolds allows determining the most likely topology
of the underlying space. Incorporating tools from TDA to initialize the guessed
manifold(s) could replace the assumptions made in these models.

Prospects for neuroscience and neural networks. The computational tech-
nique of grid cells seems to provide a useful representation for encoding spatial
variables (Fig. 12). This may extend to higher-dimensional spaces [117] and non-
spatial dimensions [118], and similar functioning is possibly replicated in other
brain regions and for more conceptual spaces [119, 120]. The methods studied
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Fig. 12: Fantastical illustration of the toroidal spatial representation of the grid
cells. Credits: Kavli Institute for Systems Neuroscience, NTNU and Helmet.
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and developed in this thesis may thus extend to other domains as well, such as in
machine learning where the computational specifics of deep neural networks are
difficult to interpret [121, 122]. For instance, in [123] the authors show that a
recurrent neural network optimized for path integration suggests a toroidal pop-
ulation underlying such computation, but that these do not correspond to the grid
cell population. Essentially, the functional role and the structure of a neural popu-
lation may be hard to pin down, with potentially plastic or conjunctive selectivity
[124–126]. To grasp deeper higher-order relationships in the brain, we believe it
is necessary to start by separating neurons into ensembles (e.g., through a specific
barcode signature as we propose in [127]) and understanding each ensemble indi-
vidually. Topology may help describe the relations between ensembles [128], and
allow studying, for example, the collective readout of the grid cell modules and
how these are orchestrated in a joint network with other ensembles (see ’Peer Re-
view File’ in [2] for combined grid module analysis). Understanding the brain can
have great societal impact and we note that technological advances already allows
large-scale human brain recordings with high resolution [129]. Early diagnostics
of brain pathology [130, 131], leveraging algorithmic insights of the brain in com-
putations [132] or enabling self-governed robotic limb movement for prostheses
[133, 134] are all viable goals in the years to come.
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Abstract

Neuroscience is pushing toward studying the brain during naturalistic
behaviors with open-ended tasks. Grid cells are a classic example, where
free behavior was key to observing their characteristic spatial represen-
tations in two-dimensional environments [1]. In contrast, it has been
difficult to identify grid cells and study their computations in more
restrictive experiments, such as head-fixed wheel running [2–6]. Here,
we challenge this view by showing that shifting the focus from sin-
gle neurons to the population level changes the minimal experimental
complexity required to study grid cell representations. Specifically, we
combine the manifold approximation in UMAP [7] with persistent homol-
ogy [8] to study the topology of the population activity. With these
methods, we show that the population activity of grid cells covers a simi-
lar two-dimensional toroidal state space during wheel running as in open
field foraging [9, 10], with and without a virtual reality setup. Trajec-
tories on the torus correspond to single trial runs in virtual reality and
changes in experimental conditions are reflected in the internal represen-
tation, while the toroidal representation undergoes occasional shifts in
its alignment to the environment. These findings show that our method
can uncover latent topologies that go beyond the complexity of the
task, allowing us to investigate internal dynamics in simple experimental
settings in which the analysis of grid cells has so far remained elusive.

Keywords: grid cells, topological data analysis, neural population dynamics
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Main

Introduction. Recent neuroscience research has pushed for the study of nat-
uralistic open-ended behaviors [11], suggesting the experimental complexity
must be sufficiently high to make novel insights into neural computations [12].
The question, however, is what the minimal complexity is in order to study
the function and ethological relevance of specific neurons [13, 14]. Grid cells
are a canonical example from the brain’s navigational system [15] where the
hexagonal grid patterns in their responses relative to space was first observed
when the animals were allowed to freely move in large open field (OF) arenas
[1, 16]. In contrast, the spatial responses of grid cells in one-dimensional (1-D)
environments and head-fixed recordings are not yet well understood [17–19]:
In 1-D linear tracks, these are speculated to be cross-sections of the 2-D pat-
terns [6, 20], although recent results suggest that grid cells in 1-D tracks are
tuned to integrated distance [21, 22]. Casali et al. even argued for ‘the necessity
of identifying grid cells from real open field environments’ [2], thus implying
that 2-D OF arenas are the minimal experimental complexity required to fully
understand grid cell computations.

However, the brain performs computations not merely at the single-neuron
level but also in populations of neurons (or neural ensembles) [reviewed in 23–
25]. The internal representations encoded by neural ensembles often carry a
distinct topology [26–29] which can be studied without reference to external
covariates [30, 31]. The concept of understanding this topological structure
is beginning to change the way we think about certain classes of neurons
[32, 33], such as head direction cells where the 1-D ring structure of the network
represents the encoding of an internal head direction system [34, 35]. In the
case of grid cells, their population representation has been found to be toroidal,
describing the two periodicities of the grid cell pattern in 2-D environments
[10]. Therefore, in this study we asked whether focusing on the topology of grid
cell representations would allow us to study their computations in experiments
of lower complexity where it has so far been impossible to give a convincing
classification of grid cell populations [2].

Population analysis. A common pipeline in population analysis starts by
reducing the dimensionality of the neural activity, e.g., using uniform manifold
approximation and projection (UMAP) [7], t-distributed stochastic neighbor
embedding (t-SNE) [36] or (deep) latent variable models [37–39], with the
goal of extracting a low-dimensional representation of the population activ-
ity at each time point. However, dimensionality-reduction requires specifying
a range of parameters [40, 41], and in particular, choosing a dimensionality
for the embedding space, often chosen as 2- or 3-D for interpretability [42, 43]
which allows visualization but potentially discards crucial information [44].
Topological data analysis offers an alternative approach by characterizing high-
dimensional point clouds through persistent homology (PH) [8, 45]. Specifically,
we can compute a topological invariant called a barcode quantifying the pres-
ence of holes in representations of the data. This characterization helps to
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discern underlying topological structure, such as circular features [46, 47]. How-
ever, the method is sensitive to outliers (Extended Data Fig. 5b) and has a
computational bottleneck, with polynomial growth of run-time and memory
requirements in the number of points in the point cloud [48]. Therefore, prepro-
cessing (noise removal and downsampling) of the data is necessary to uncover
shape information from the barcodes [10, 34, 35]. Here, we propose uniform
manifold approximation and persistent homology (UMAPH), which resolves
these issues by applying persistent homology to the topological representation
constructed in the first step of UMAP, thus eliminating the potentially prob-
lematic projection step of UMAP [44], while providing a topology-preserving
[7] noise model for PH (Fig. 1a and Extended Data Fig. 5a, b).

The UMAPH algorithm. We first compute geodesic distances of the
data based on the assumption that a dataset is uniformly sampled from an
underlying manifold (e.g., the grid cell torus), but is presented as a non-uniform
distribution embedded into an ambient space with observational noise (e.g.,
neural population activity). This motivates obtaining the intrinsic distances
by enforcing the volume of a ball containing a fixed number of points to be
constant independent of which point in the dataset it circumscribes [7]. How-
ever, this creates local irregularities – the distance between two neighboring
points will depend on the local neighborhood of each – so these are averaged
to be symmetric (Fig. 1a.ii). UMAP then proceeds with an approximation
of the same distances on a lower-dimensional point cloud. In UMAPH, we
instead, apply PH to the high-dimensional data using the geodesic distances
to compute the barcode of the manifold. PH first constructs a combinatorial
description of the proximity between points. By forming balls of a common
radius around each point, it lists the sets of balls with pairwise intersections.
Increasing the radius forms a sequence of such descriptions, called a filtration
(Fig. 1a.iii). The n-dimensional homology captures how unions of balls form
n-dimensional holes. Thus, applying homology to the filtration describes the
evolution of holes for increasing volumes, and the collection of radial intervals
(or bars) when different holes appear and disappear is called a barcode (Fig.
1a.v). Optionally, in a last step, we perform cohomological coordinatization
[49], to derive a low-dimensional description of the data (decoding the time-
varying internal state [34], Fig. 1a.vi). Based on the selected 1-D holes in the
barcodes, we compute circle-valued maps, assigning to each population vector
angular coordinates corresponding to the circular features represented by the
bars.

In summary, the intuition behind UMAPH is that we apply homology to a
filtration constructed by forming balls containing the same number of points,
but of potentially different sizes in the ambient space (Extended Data Fig.
5). This is advantageous because the metric is then locally adaptive to data
density. Comparing the results when applied to head direction data previously
studied with PH [30, 34, 35], gives an example of the benefit of this construction
(Extended Data Fig. 6). With UMAPH, we found the resulting barcodes to
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be more interpretable with clear head direction rings maintained across states,
even during slow-wave sleep where this structure was previously not recovered.

Toroidal tuning of mouse entorhinal cells in open field calcium
recordings. Zong et al. (2022, [50]) and Obenhaus et al. (2022, [51]) per-
formed two-photon calcium imaging of the medial entorhinal cortex (MEC) in
freely moving and head-fixed mice (Fig. 1b, c). In two mice (in 4/6 and 2/6
recording days), applying UMAPH to the activity of all recorded cells during
OF firing resulted in barcodes with distinct toroidal signatures (one clear H0-
bar, two H1-bars and one H2-bar, all exceeding corresponding longest bars in
100 random perturbations of the data, Fig. 1d and Extended Data Fig. 1a). In
a third mouse, we clustered the OF autocorrelograms to obtain a single grid
cell ensemble (or module [9]), exhibiting similar toroidal expression in the bar-
code (in 4/7 OF recordings studied), also when an object was inserted (1 out
of 3 object session recordings) (Fig. 1d and Extended Data Fig. 1a). The pair
of circular coordinates attained from decoding of the two longest circular fea-
tures in the barcode revealed stripe-like patterns in the OF corresponding to
the two periodicities of the grid pattern (Fig. 1d and Extended Data Fig. 1a).
Moreover, the internal dynamics displayed a clear relation to spatial move-
ment (Video 1). We next studied each cell’s tuning to the torus by fitting a
generalized linear model (GLM) to the calcium activity, comparing the per-
formance when using either the toroidal positions or the recorded positions as
covariates. The activity was better modeled by the torus than physical space
(P ∈ [1.4 ·10−34, 0.0076], W ∈ [7694, 168511], Wilcoxon signed-rank test), and
we observed that cells with the best fit had a clear grid pattern and single
tuning fields on the torus (Fig. 1e, f and Extended Data Fig. 1e and 7).

Linking toroidal grid cell tuning between open field and head-
fixed treadmill recordings. We next performed the same analysis of grid
cell module activity while the animal was running on a wheel. A 2-D toroidal
topology as in the OF sessions was seen (in 3 out of 4 wheel recordings), despite
the 1-D nature of the task (Fig. 1g and Extended Data Fig. 1a). Decoding
the positions on the torus revealed mostly unidirectional trajectories in line
with the spatial behavior (Fig. 1g and Video 2). This shows that internal
position integrates over the animal’s locomotion, even though the animal is
not moving in space, supporting the idea of path integration. Each neuron
had a single toroidal tuning field in the same location on the torus in OF
foraging and wheel running (toroidal rate map correlations higher than shuffled
comparisons, n = 1000 shuffles, P < 0.001, Fig. 1h, i and Extended Data Fig.
1c).

Stable toroidal tuning of mouse grid cells in virtual reality with
Neuropixels recordings. Campbell et al. (2021, [22]) used Neuropixels
probes to record extracellular spikes in the MEC of head-fixed mice engaged
in a virtual-reality task on a running wheel under different conditions: base-
line, dark, gain (wheel slowed down with respect to virtual reality (VR)) and
contrast (reduced visual contrast) sessions (Fig. 2a) [22]. We first studied one
exemplary recording day (mouse I1 day 0417) with a good experimental yield
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(having 75 ‘distance’/‘putative grid’ cells out of 225 cells recorded in the MEC
using the classification given by Campbell et al.), before repeating our anal-
ysis for the remaining available data. Neuron ensembles were first clustered
by their cross-correlation (maximized over < 0.9s time lags, Fig. 2b), thus
avoiding any prior assumption about the spatial tuning of the studied neu-
rons. We found two prominent clusters (henceforth termed ‘M1’ and ‘M2’,
n = 44 and 41 neurons). Applying UMAPH to the firing rates of these clus-
ters revealed barcodes with four long-lived bars (one H0-, two H1- and one
H2-bar) indicating toroidal structure (P < 0.01 in all conditions, except M2
baseline: P = 0.06, Fig. 2c). Decoding revealed primarily unidirectional tra-
jectories on the toroidal manifold (Fig. 2d). The activity of most cells in both
M1 and M2 was confined to a specific location on the toroidal surface (Fig.
2e) and each neuron’s preferred location on the torus was preserved across the
experimental conditions (P < 0.001 for toroidal rate map correlations com-
pared to n = 1000 shuffles, Fig. 2e and Extended Data Fig. 8), consistent with
grid cell populations in rats [10]. Lastly, to allow for unbiased comparison with
the VR spatial track, we used the toroidal description found during the dark
session to decode baseline trials and found the toroidal coordinates to have
higher explained deviance than the VR positions during baseline trials (M1:
P = 3.8 · 10−9,W = 990; M2: P = 1.2 · 10−8,W = 861, Wilcoxon signed-rank
test; Fig. 2h). Taken together, our findings suggest that the neurons analyzed,
a majority of which were classified as distance cells, were in fact, grid cells.

We then clustered the remaining (88) MEC recording days and classified
ensembles as grid cell modules if the cells’ toroidal tuning matched an idealized
point source distribution on a hexagonal torus [52] (Extended Data Fig. 3b),
as expected for grid cells [53] (Extended Data Fig. 3a)). We observed similar
toroidal (grid cell) characteristics as for M1 and M2 in 6 more ensembles (Fig.
2h and Extended Data Fig. 2, 3b, c and 9 – 11).

Alignments of the toroidal representation in VR are unsta-
ble but follow (gain/contrast) manipulations. Usually, decoding of the
internal state space dynamics is linked through the tuning to an external,
known covariate (e.g., spatial position, [22, 54]). By contrast, our method per-
forms unsupervised inference of state space dynamics derived directly from
the population activity, allowing unbiased comparison with external covari-
ates. Coloring the 1-D VR trajectories with the 2-D toroidal coordinates, we
observed a clear, time dependent relation between spatial and toroidal coor-
dinates (Fig. 2j, Extended Data Fig. 4 and Video 3). At times, the movement
on the torus was aligned with the spatial movement (visible in the figures as
segments with a stable horizontal pattern), but would occasionally shift or
drift, supporting findings by Low et al. [19]. For ensembles M1 and M2, this
seemed to happen in coordination, in line with recent work [54]. However, gain
and contrast manipulations clearly elicited a shift in the alignment between
the torus and virtual space. When the contrast changed from high to low, an
aligned representation quickly disappeared until the contrast was reset, upon
which the mapping returned to the former representation. During strong gain



6 Uncovering 2-D toroidal representations in grid cell ensemble activity during 1-D behavior

manipulation (gain < 0.8 and contrast either 10 or 100%), the toroidal path
length was longer than baseline sessions (P < 0.04, Z > 4 for six ensembles;
Fig. 2i). This conjunctive influence of self-motion and visual cues is in line
with Campbell et al. (2021).

Discussion. By combining UMAP and PH, we obtained a powerful and
noise-robust method that revealed toroidal topology of grid cell population
activity in mice without reference to an external covariate, both in calcium
imaging and with electrophysiology. Remarkably, this 2-D structure was found
during head-fixation and 1-D wheel running, where it had so far not been
observed... We observed a clear relation of the internal dynamics to movement,
suggestive of path integration. While the toroidal structure was preserved
across sessions, the alignment to the VR-track was affected by gain and
contrast manipulations, and underwent shifts also during baseline trials.

Our results provide a proof-of-principle, demonstrating how a topologi-
cal perspective on population coding allows us to study neural computations
that go beyond the dimensionality of the task. This contributes to debates
about whether simple, artificial stimuli are sufficient [e.g., in visual neuro-
science 13, 14, 55] Thus, these results have the potential to shift the way
we think about neural population coding, unlocking exciting possibilities for
future studies of various neural systems using ideas from topology [32, 56]. As
we have seen, the internal representation of grid cells can look distorted when
mapped onto space, making spatial responses difficult to study. We propose
grid cells and other cell types (e.g., head direction cells, see Extended Data
Fig. 6) are best understood through their activity state space and not their
external modulation.

By using an unsupervised state space discovery approach, we can study
and compare population dynamics, not easily available at the single-cell level.
This will be needed to understand recordings where the relevant covariates are
of lower dimension than the neural representation, as in this study. Moreover,
our approach is also useful when covariates are not known, for instance, in
cognitive spaces [56], or where we have reason to assume higher-dimensional
features in neural data (e.g., three- or higher-dimensional tori expected for
conjunctive grid cells and combinations of modules [57, 58], Fig. 5c).

We look forward to future studies that embrace the toroidal (rather than
2-D spatial) nature of grid cells, which can be studied with a vast array of
experimental methods in head-fixed 1-D and virtual environments [59, 60].
These simple task settings come with a number of benefits such as high-
throughput experiments with large or movement-sensitive equipment, detailed
animal tracking and permit trial-based, stereotyped analyses [11, 14]. We
believe these findings open the path to new insights beyond what has been
expected from such artificial settings [3, 4, 14], also in other brain regions and
cognitive tasks [61, 62].
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Methods

Preprocessing of entorhinal recordings

Calcium events found in the ‘NAT.mat’-files of mouse 97045 days 20210305,
20210307, 20210308, 20210317 (renamed #1-4) and mouse 97046 days
20210308 (#1) and 20210312 (#2) were accessed from [63]. Duplicate cells
listed in variable ‘RepeatCell’ of the corresponding ‘NeuronInformation.mat’-
file were removed. As the neurons were recorded in two separate planes with a
temporal offset, the activity was interpolated at similar frames using the pack-
age ’scipy.stats.interp1d’. Activity values less than 10−10 were subsequently
set to 0 and neurons with average activity above 10 were excluded in the anal-
ysis. This resulted in 1-hour recordings of n = 228, 350, 293 and 428 (#1-4)
neurons for mouse 97045 and 50- and 70-min. recordings of n = 635 and 637
(#1 and #2) neurons for mouse 97046. The data were speed-filtered at mini-
mum 5 cm s−1, so to remove moments of inactivity. Population vectors with
no activity were excluded.

PCA whitening was next applied to the data, to denoise and standardize
the n-dimensional data (n being the number of neurons), projecting the z -
scored population vectors to its d = 6 first principal components and dividing
by the square root of the eigenvalues (see [64] for a thorough discussion of
PCA as a preprocessing tool).

Due to computational complexity of computing barcodes, the size of the
point cloud was reduced. First, a radial downsampling scheme was performed
(as in [34]). The point with maximum absolute summed value was chosen as
initial landmark point, and the Euclidean distance to the rest of the point
cloud computed. Points closer than ε = 0.5 were discarded and the remaining
closest point to all sampled landmark(s) (defined as the maximum distance to
all landmarks) was then picked. This process was iterated until exhaustion,
vastly reducing the size of the point cloud (leaving approx. 30 − 50% of the
points). While this method preserves the spread of the data, it is prone to
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keeping outliers. Thus, a second, density-based downsampling method was
used (setting κ = 1000, see ‘Fuzzy Downsampling’), keeping m = 1000 points.
Finally, UMAPH was applied to the reduced point cloud, using cosine metric,
k = 1000 and Z47-coefficients (47 is chosen to not likely divide the torsion
subgroup [49]).

The calcium events of Mouse 88529 were found in the ‘ filtered spikes’
database table derived from the MySQL-dump file ‘dump.sql’ (available in
[65]). The following sessions were used (and renamed): ‘419c1c6b319d0ddf’
(#1 W), ‘5b92b96313c3fc19’ (#1 OF), ‘d5a06b6a7630bb11’ (#2 W),
‘7e888f1d8eaab46b’ (#2 OF), ‘26fd0fbe1e205255’ (#3 W), ‘1f20835f09e28706’
(#3 OF), ‘59825ec5641c94b4’ (’#4 OF’), ‘c43d9bd004db772b’ (#4
Obj1),’9190f2fccd52497e’ (#4 Obj2). The ‘filtered cells’-table was used to get
cell IDs with a signal-to-noise ratio above 3.5 (see Supplementary Information
in [51]). Grid modules were extracted by using agglomerative clustering, with
average linkage, based on the ‘Manhattan’ distance between spatial auto-
correlograms (in each recording day) found in the ‘ grid score’-table (signal
type ‘spikes’ and parameter set ‘B’). The largest cluster found, when setting
a distance threshold of 2000 r, were analyzed, giving n = 126, 160, 113 and
162 neurons (recording days 1 – 4) with sessions lasting 18-24 minutes. The
events were temporally convolved with a Gaussian kernel of σ = 0.27 ms and
square rooted, before speed-filtering the time frames using a threshold of 10
cm s−1. The same pipeline as described above was subsequently applied, with
ε = 0.7 in recording days 1 – 3 and ε = 0.55 in #4.

Neuropixels recordings in the MEC were performed by Campbell et al. of
20 mice in a total of 90 sessions and retrieved from [66]. Each spike time was
replaced by a delta function (valued 1 at the time of firing; 0 otherwise) and
temporally convolved with a Gaussian kernel with σ = 60 ms, before summing
over all spike times (for each neuron), giving a continuous firing rate function.
Firing rates were sampled every 10 ms and square rooted, before speed-filtering
at minimum 10 cm s−1. Neurons not determined as ‘good’ (based on “con-
tamination, signal to noise ratio and firing rate”, see Method details in [22])
in one recording or neurons with mean firing rates below 0.05 Hz or above 10
Hz were excluded. The remaining neurons were then clustered (see ‘Unsuper-
vised clustering’), giving 65 clusters and a similar pipeline as described above
was used, with d = 7, ε = 0.9, m = 800 and κ = 800 for all ensembles.

UMAPH pipeline

Given a dataset X ⊆ RN , UMAPH first computes geodesic distances for a
uniform manifold approximation of the data from which topological informa-
tion is then studied using persistent homology. This approach was first used
to find topological structure in grid cell population activity [10] and has simi-
larities with concurrent work in [67], computing persistent homology based on
geodesic distances.

Let X be a dataset and d : X × X → R a dissimilarity measure of the
points inherited from the ambient space.
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1. Choose a number k and define for each x ∈ X its neighborhood set
Nx = {x1, x2, . . . , xk}, such that for any y ∈ X \Nx, d(x, y) ≥ d(x, xk)
and ordered by d(x, x1) ≤ d(x, x2) ≤ . . . ≤ d(x, xk). The extended-
pseudo-metric, dx, is defined as

dx(y, z) :=

{
d(y, z) if y = x and z ∈ Nx t {x} or z = x and y ∈ Nx t {x}
∞ otherwise.

2. Next, for each x, define the (membership) function (or fuzzy set) µx :
X → I, for I = [0, 1] by

µx(y) = exp

(
−dx(x, y)

σx

)
,

where σx is found by letting
∑

y∈Nx
µx(y) = log2(k). The value µx(y)

may be seen as the probability of the point y being a member of the
neigbourhood of x.

3. Construct a global membership function µ : X ×X → I:

µ(x, y) = µx(y) + µy(x)− µx(y)µy(x)

This operation is the fuzzy set union and defines the fuzzy topologi-
cal representation of the data. This choice of union operation reflects
the probabilistic sum, which describes the probability of the union of
two independent events, and assigns probabilities to the edges of the
neighbourhood graph of X. Other choices of fuzzy union operators
are possible, and in [68] it is suggested that the fuzzy intersection,
µ(x, y) = µx(y)µy(x), should be used for clustering. The standard fuzzy
union is given by µ(x, y) = max(µx(y), µy(x)) [69] and is equivalent
to taking the shortest path distance in merging the extended pseudo-
metrics. This is used in [70] to describe the representation (or ‘UMAP
complex’) as an iterated pushout of Vietoris-Rips systems.

4. Translate µ to a distance measure, dX : X ×X → R,

dX(x, y) = −log(µ(x, y)).

This converts the fuzzy topological representation back to an extended-
pseudo-metric space representation of the dataset and dX reflects the
negative log likelihood of the simplices of the UMAP complex.

5. Finally, use dX to construct a Rips filtration (see ‘Persistent Homology’)
and take its homology. This may be seen as applying persistent homology
to the filtration of the UMAP complex given by decreasing probability,
giving a visualizable description of the fuzzy topological representation
of the dataset X (i.e., the barcode).

6. (Optional) If the barcode indicates circular features in the data (cap-
tured by the one-dimensional bars), circular coordinates representing
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these may be computed through cohomology. This requires defining the
Rips complex for which the coordinates are computed, i.e., a choice of
distance τ for which the circular feature exists, usually set to a value
close to the end of the bar [71].

Fuzzy Downsampling

To reduce computational complexity and remove outliers in the dataset, the
point cloud was downsampled before applying persistent homology. Given a
point cloud X and neighborhood sets Nx, one for each x ∈ X (containing the
κ closest neighbors), the global membership function µ(x, y) was computed as
described in ‘UMAPH Pipeline’. Initializing X0 as an empty set, a subsample
XN ⊂ X was given recursively as follows.

For each iteration n > 0, define a function Fn as the summed membership
strength for each point in the residual point cloud x ∈ X ′n = X \Xn, given by

Fn(x) = Σy∈X′
n
µ(x, y) = Σy∈Xµ(x, y)− Σy∈Xn

µ(x, y). (1)

The (n+ 1)-th point is then given by:

xn+1 = max
x

Fn(x).

In other words, the method iteratively keeps the point with the highest
probability of being in the neighborhoods of all other points.

Defining µ(x, y) = exp(−d(x,y)σy
), there is a close relation to mean-shift

clustering [72] and the objective function used in the topological denoising
technique introduced by Kloke and Carlsson [73]. The latter uses this function
to translate a subsample of points to topologically relevant positions, describ-
ing it as a weighted difference of two Gaussian kernel density estimators, one
for the dataset X, serving to push the subsample, XN , towards the densest
regions of X and one for the subsample itself, repelling the points away from
each other. Similarly, the fuzzy downsampling scheme picks points from the
densest regions of X, but steers away from the regions already chosen.

Persistent Homology

The shape of the neural data was characterized using persistent cohomology.
Persistent cohomology results in the same barcodes as persistent homology
(which is described below), but cohomology was necessary for decoding [49].

The homology of a topological space, T , is a sequence of vector spaces
Hn(T ), for all natural numbers n ∈ N and the rank of Hn(T ) represents
the number of n-dimensional holes [74]. A zero-dimensional hole describes a
connected component, a 1-dimensional hole a circle, a 2-dimensional hole a
void and so on for higher dimensions. The homology of a point cloud, X, only
returns a count of the points. Thus, to elicit non-trivial homology reflecting
the underlying space the dataset is sampled from, combinatorial spaces called
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Rips complexes, Tτ (X), are associated to the data. The Rips complexes depend
on a scale τ , commonly describing a dissimilarity relation between the points
in the point cloud. Varying τ gives rise to an ordered sequence of complexes
known as the Rips filtration:

Tτ0 ⊂ Tτ1 ⊂ . . . ⊂ Tτn ,

where τ0 < τ1 < . . . < τn. Applying homology to the Rips filtration gives a
sequence of vector spaces and maps induced by inclusion in each dimension, n:

Hn(Tτ0(X))→ Hn(Tτ1(X))→ . . .→ Hn(Tτn(X)).

The totality of sequences is called persistent homology, PH∗(X), and may be
decomposed to a sum of elementary persistence intervals, I([bi, di)):

PHn(X) ∼=
⊕

i

I([bi, di)).

Here, bi < di gives the scales for which an n-dimensional element hole in
PHn(X) first appears and later disappears. Persistent homology may thus be
represented as bars starting at bi and ending at di. The collection of such bars
(across all dimensions) is called the barcode.

To obtain a shuffled distribution of the barcodes, the activity of each neuron
was independently rolled a random amount of time. The same pipeline was
then applied to the shuffled population activity to give a barcode, and the
process was repeated 100 times with different seeds.

We used Ripser [75, 76] for all computations of persistent cohomology.

Cohomological coordinatization

Circular coordinatization, as introduced by De Silva et al. [49], was performed
to allow studying the internal dynamics of the population activity, This has
previously been used to study head direction and grid cell activity [10, 34]
and is motivated by a theoretical correspondence between 1-D cohomology
and circle-valued maps of a topological space. By computing maps associated
with the two longest-lived H1-bars in the barcode and the Rips complexes at
τ = b+ 0.99 · (d− b), where b and d correspond to the birth and death of the
chosen bars, 2-D toroidal coordinates were computed for all vertices in the Rips
complex. Note, for the head direction cell data only the single longest-lived
bar was chosen.

The vertices correspond to the m points in the downsampled point cloud,
thus, only m toroidal coordinates are obtained. To extrapolate these to the
rest of the original point cloud or to a different session, the coordinates were
first weighted by the values of the corresponding points, giving a distribution
on the torus for each dimension. The toroidal coordinates were then computed,
for each time step, by weighing the distribution by the corresponding value of
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each point in the full point cloud and finding the mass centers of the summed
weighted distributions .

In visualizing the decoded toroidal positions as a function of VR-track (Fig.
2j and Extended Data Fig. 4), the coordinates were smoothed temporally with
a Gaussian filter of σ = 0.5 s.

Rate maps and autocorrelograms

Spatial positions in the open field were binned into a 302 square grid, gener-
ating spatial rate maps. The mean neural activity in each bin was computed
and spatially convolved with a Gaussian filter of width 2 bins (during which
non-visited bins were assigned the mean value of the visited bins).

1D spatial autocorrelograms were computed for the linearized positions on
the running wheel and the VR track, using 1 and 4 cm spatial bins, respectively.
Autocorrelograms for each neuron were computed by finding the mean activity
in each spatial bin and taking the dot product between this and a zero-padded
copy of it, iteratively shifting the latter up to 300 bins.

Toroidal firing rate maps were calculated in the same way as the OF arena,
first binning the toroidal surface into a square grid of 12°×12° bins and comput-
ing the average activity in each position bin. To spatially smooth the toroidal
rate map, the 60° angle of the toroidal axes was addressed by first shifting
the bins horizontally by a length equal to half the bins’ vertical position. To
address boundary conditions, nine copies of the shifted rate map were then
tiled and spatially smoothed as the OF rate maps. The middle tile was then
extracted and shifted back. For visualizations, the resulting rate maps were
given 15° shear angles both horizontally and vertically.

Unsupervised Clustering

The electrophysiological data were clustered into groups of neurons through the
time-lag cross-correlation values between pairs of neurons. This was computed,
as in [31], for the entire population recording:

cij(t
′) =

∫ T

0

si(t)sj(t+ t′)dt,

where si(t) is the firing rate of neuron i at time t, converted from spike
times as described in ‘Preprocessing of entorhinal recordings’, using a Gaussian
kernel of σ = 0.3 s and sampled every 30 ms. T denotes the total duration of
the recording. Setting τmax = 0.9 s, the inverse, normalized cross-correlation
was then given as:

Cij =
minτ [cij(τ), cji(τ)]τmax

0

maxτ [cij(τ), cji(τ)]τmax
0

.

To cluster the neurons, we performed agglomerative clustering with average
linkage on the squared Cij ’s, averaged over all recordings of the same pair of
neurons, using 0.6 r as distance threshold. Ensembles containing fewer than
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20 neurons were disregarded, having too few neurons to confidently interpret
the toroidal structure (see Extended Data Fig. 4e in [10]).

As described in the text, this was first performed for mouse I1, giving two
ensembles, ‘M1’ and ‘M2’ (Fig. 6b). To see if these ensembles shared behavioral
features, 1-D spatial autocorrelograms were computed. The mean autocorrelo-
gram across the population showed repeating fields of activity along the track
(Extended Data Fig. 3c). In both M1 and M2, the mean correlation between
cells within the respective ensembles was higher than across the remaining
MEC population in all three conditions (M1: 0.87 (B), 0.78 (D), 0.87 (G/C) v.
0.67, 0.58, 0.78; M2: 0.83, 0.82, 0.87 v. 0.71, 0.61, 0.77). Moreover, using the
‘distance cells’ classification in [22], 23 out of 44 (M1) and 27 out of 41 (M2)
neurons were classified as ‘distance cells’.

Hexagonal torus detection

To determine whether the decoded toroidal coordinates suggested a hexagonal
torus in the VR-sessions, firing rates and rate maps were modeled for each
neuron based on the analytical heat distribution on both a hexagonal and a
square torus (Extended Data Fig. 3). The heat kernel on the hexagonal torus
with point source at the origin is given as:

Hhex(x, y; t) =
1

t

∑

(k,l)∈Z2

exp
−π 1

t
2√
3
((k+x)2+(k+x)(l+y)+(l+y)2)

,

describing the temperature for (normalized) toroidal positions (x, y) ∈
[0, 1]2 after time t, while

Hsqr(x, y; t) =
1

t

∑

(k,l)∈Z2

exp−π
1
t ((k+x)

2+(l+y)2),

is the heat kernel on the square torus [52]. The fit of the original toroidal
rate maps (generated by computing the mean activity in 122 bins of the m
toroidal coordinates found prior to extrapolation, see ‘Cohomological coordi-
natization’) for the VR data to a toroidal point source heat distribution was
tested as follows. First,m toroidal coordinates were sampled with even spacing.
The origin of the sampled torus was shifted to each cell’s peak activity on the
torus (see ‘Comparison of toroidal tuning’), and using t = 0.1, k, l ∈ {−1, 0, 1}
in the above equations, allowed computing temperature estimates for each
toroidal position. The heat distribution on the sampled torus was defined as
the mean temperature in 122 square bins. The linear correlation between the
heat distribution and the firing rate maps asserted the hypothesized hexago-
nal toroidal tuning of each neuron. A hexagonal torus permits three periodic
axes, and it was not known a priori pair of axes the decoded torus potentially
described. However, this is reflected in the left vs right 45° angular shift of
the distribution, so the reversed orientation was also tested by reversing one
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of the sampled coordinates. The maximum correlation between the modeled
rate maps and the original one was used in the assessment and compared with
a square torus rate map similarly modeled.

This analyses was first tested as a post hoc analysis of ensembles M1 and
M2, showing that a majority of cells had rate maps more similar a distribu-
tion on the hexagonal torus than the square torus (M1: 38, 36, 36 out of 44
neurons in B, D, G/C and M2: 29, 35, 29 out of 41 neurons) and the median
correlation was greater than by chance (M1 B, D, G/C: 0.81, 0.80, 0.75 r vs
0.08 – 0.16 r for 100 shuffles and M2: 0.71, 0.77, 0.68 r vs 0.02 – 0.11 r). The
lowest median value for M1 and M2 was then used as a lower threshold to
determine if the remaining ensembles had hexagonal toroidal structure, result-
ing in 16 such cases (6 mice and 8 ensembles, including M1 and M2, with
n = 25, 37, 40, 41, 43, 44, 53 and 65 neurons for mouse and recording day: J4
0514, I5 0415, I1 0418, I1 0417 M2, J5 0506, I1 0417 M1, H3 0402, I3 0420.
Recordings lasted between 9 and 159 minutes). Note, this heuristic eschews
the computational problem of doing statistics on barcodes [77].

Replacing the sampled toroidal coordinates with the decoded toroidal posi-
tions in computing the heat kernel, Hhex, gave time-varying heat models for
the firing rate of each neuron. This allowed computing spatial autocorrelo-
grams for idealized hexagonal toroidal tuning, visually matching the original
firing rate counterpart (Extended Data Fig. 3c).

Toroidal linearization and path length

The decoded coordinates were unwrapped onto a flat space to simplify the
analysis of toroidal trajectories. This was done by iteratively assessing whether
the next toroidal coordinate crossed either of the two circular origins (one for
each dimension). All combinations (of 0 or 1 crossings per circle) were tested,
and the next point was chosen to be the point closest to the previous one, as
measured by the Euclidean metric.

To assess the influence of gain manipulation on the internal representation,
the lengths of the linearized toroidal trajectories for each trial were estimated.
First, the positions were fitted using linear regression for each axis and only
trajectories with a fit of r > 0.5 in both axes were included. The length of
each trial was then assessed as the Euclidean distance between the start and
end point of the 2-D linear fit.

Toroidal alignment

As the decoded origins and orientations of the toroidal descriptions are arbi-
trary, the decoded toroidal coordinates were first pairwise reoriented (without
reference to space), in order to compare these across modules and sessions for
the VR recordings. Moreover, it was necessary to account for the hexagonal
torus allowing for three axes (each axis being a linear combination of the two
other), with the decoded pair of axes oriented at either 60° or 120° relative to
each other.



Uncovering 2-D toroidal representations in grid cell ensemble activity during 1-D behavior 15

For each comparison, one set of toroidal coordinates was held fixed, with the
goal of obtaining the same orientation and axes for a second set (i.e., session).
First, in assessing the hexagonality of the decoded rate maps (see ‘Hexagonal
Torus detection’), the angular orientation of the median rate map was deter-
mined for both sets of coordinates, limiting the possible axes-combinations
(depending on the direction and if these were similar between the coordinate
sets or not). To assess the remaining combinations, the coordinates of the
fixed set were temporally smoothed with a 1-D Gaussian filter of width 200
ms and linearized. The time-varying directions of the toroidal trajectory was
then computed as ‘arctan2’ of the derivatives of a cubic spline fitted to each
unwrapped angle. The derivative of the sine and cosine of these directions
were then compared with that of each combination of orientation and pair of
axes for the second coordinate set. Note, in each assessment, the origins were
aligned by subtracting the mean angular difference between the pair of coor-
dinate sets. The combination that minimized the correlation between the two
sets was recognized as the optimal alignment.

To align the toroidal coordinates of the ensembles with OF recordings, the
combination of axes and orientation which looked most similar across different
mice and sessions, when decoding the OF data and plotting the mean toroidal
coordinate in 302 square bins of the OF coordinates (Fig. 1a), was chosen.

Generalized Linear Model

Bernoulli and Poisson generalized linear models were fitted to (binarized) cal-
cium events and binned spike counts, respectively, using either the toroidal
coordinates or the spatial positions as regressors, allowing a comparison of the
explanatory power of the two descriptors. The setup was like Lederger et al.
(2021) and Gardner et al. (2022), and included a smoothness prior to avoid
overfitting.

Design matrices, D, were first constructed by binned the covariates and
defining Di(t) = 1 if the covariate value at time t was contained in the i -th
bin and Di(t) = 0 otherwise.

The probability of recording n spikes at time point t is given as:

P (n|λP (t, γ)) = exp(−λP (t, γ))
λP (t, γ)

n!

n

,

and the probability of recording a calcium event or not, n ∈ {0, 1}, is given
as:

P (n|λB(t, γ)) = λB(t, γ)n(1− λB(t, γ))1−n,

Here, λP (t, γ) = exp(
∑

i γiDi(t)) and λB(t, γ) = exp(
∑

i γiDi(t))/(1 +
exp(

∑
i γiDi(t))) is the expected activity at time t and the parameters γ were

optimized by minimizing the cost function
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L(γ|λ(t, γ), ρ, k) = −
∑

t

ln(P (n(t)|λ∗(t, γ))) +
1

2
ρ
∑

i,j∈N
(γi − γj)2,

where N describes indices of neighboring bins. Note that the second term
effectively minimizes large differences between neighboring parameters.

The minimization was run by first initializing each γ to zero and running
two iterations of gradient descent on the above loss function before and after
applying the ‘l-bfgs-b’-algorithm (given in the ‘scipy.optimize’-module with
‘gtol’=10−5).

The parameters ρ and number of bins were optimized for values 0, 1,
√

10
and 10 and 82, 102, 122 and 152, respectively for the OF arena of mouse 88592
day 2, and were found to be 1 and 10. These values were used for all recording
days, and for mice 97045 and 97046. The 1-D VR-track positions were binned
in 16 bins and ρ = 1 were used. To have the same number of bins for the 2-D
toroidal positions, a 4× 4 grid was used.

To avoid overfitting, the scheme was three-fold cross validated, i.e., the
model was fitted to two-thirds of the data and its performance evaluated on
the last third three times. The toroidal coordinates were decoded separately
when used to fit each neuron’s firing rate, omitting the activity of the neuron
studied in the extrapolation (see ’Cohomological coordinatization’). Moreover,
for the VR-sessions, baseline trials were decoded using the toroidal description
found during dark session.

The deviance explained was computed, after similarly fitting a null model
and a saturated model to the data, as:

1−
∑
Ls −

∑
Lm∑

Ls −
∑
L0

,

where Ls, Lm and L0 are the log-likelihoods of the saturated, fitted and null
model and the sums are over all time points in the given session.

Comparison of toroidal tuning

Peak toroidal positions were visually compared across session to assess the
conservation of toroidal tuning. The preferred locations were computed as the
mass center of each neuron’s activity distribution on the torus (162 bins), given
by:

Tpeak = arctan2(

∑
i sinφ · si∑

i si
,

∑
i cosφ · si∑

i si
),

where si is the mean activity in the i -th toroidal bin φi.
A second comparison was made by flattening the 2-D activity distribu-

tions (as above) and computing the Pearson correlation coefficient (using the
‘pearsonr’-function given in the ‘scipy.stats’-library) between two distributions
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from the same neuron in different conditions. To generate a random distribu-
tion, the cell indices in one session were randomly shuffled before computing
correlation with the second session, i.e., computing the correlation of the rate
maps of two different neurons. This process was repeated 1000 times.

Continuous attractor network simulations

To study the toroidal structure of grid cell continuous attractor network (CAN)
models, firing rate activity was simulated using three noiseless CAN models
(Extended Data Fig. 3a).

First, a 56 × 44 grid cell network with purely inhibitory connectivity was
simulated as proposed in [78]. Animal behavior was modeled by using the first
1000 s of the recorded trajectory of rat ‘R’ during OF foraging session day 1
found in [10]. The spatial positions were interpolated at 2 ms time steps and
the speed s(t) and head direction φ(t) were computed as a function of the
difference in position between each time step. The firing rate for time step
tn+1 was given as:

ftn+1
= ftn +

1

ρ
(−ftn + [J + ftn ·W + γs(tn)cos(φ(tn)− φ)]+),

where [. . .]+ is the Heaviside function, φ is the preferred head direction and
parameters were given as: J = 1, γ = 0.15, l = 2, R = 20,W0 = −0.01 and ρ =
10. The activity pattern was initialized to random and subsequently stabilized
by running 2000 iterations of the above equation with no movement. The firing
rate was set to 0 if below 0.0001 and resampled at 10 ms time steps.

Next, the twisted torus model by Guanella et al [53] was used to simulate
a 20× 20 grid cell network for a simulated random walk in a square box. The
parameter definitions and code can be found in the open-source implemen-
tation by Santos Pata (https://github.com/DiogoSantosPata/gridcells). Here,
we used 5000 time frames and ‘grid gain=0.06’.

Finally, an untwisted version of the previous model created square grid cell
patterns for a 10×10 network. This was simulated using a Python translation
of the Matlab implementation of Zilli [79]. 20 ms time steps were used, and a
total duration of 295 s was simulated, following an OF trajectory recorded by
Hafting et al. [1], provided in the same code repository.

Head direction cell network

The UMAPH framework was applied to electrophysiological recordings from
the mouse anterodorsal thalamic nucleus and subiculum of mouse 25 day
140130 (n = 25 neurons), mouse 17 day 130130 (n = 37 neurons) and mouse
28 day 140313 (n = 62 neurons) [80, 81]. The data contained 23- to 192-
minute recordings during wakefulness, rapid-eye movement sleep (REM) and
slow-wave sleep (SWS). Each mouse and brain state were processed and ana-
lyzed alike, similar to previously described in ‘Preprocessing of neural data’.
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First, delta functions (one per spike) were convolved with a Gaussian kernel of
σ = 250 ms for wake and REM sleep recordings and σ = 50 ms for SWS sleep.
Population vectors were then sampled at 250 ms (wake and REM) and 2 s
(SWS) intervals. Neurons were clustered as described in ‘Unsupervised cluster-
ing’ (based on the mean cross-correlation of the firing rates across brain states)
and the largest cluster in each session was analyzed (n = 18, 25 and 41 neu-
rons). In contrast to the entorhinal recordings, radial downsampling was not
performed (i.e., ε = 0), and parameters were set to d = 4,m = 500, κ = 300,
resulting in barcodes indicating ring topology (Extended Data Fig. 6a). For
visualization, the 6 first (whitened) principal components of the firing rates
were projected to 3-D using UMAP (default parameters, Extended Data Fig.
6b).

Circular coordinatization of the longest-lived H1-bar was used to decode
both awake and sleep data (Extended Data Fig. 6c). The decoded angles were
reoriented by testing clockwise and anti-clockwise orientation and origin fixed
by minimizing the mean difference to the recorded head direction angles during
wake sessions. The angular tuning curves were computed using 60 bins and
max-normalized.

Three-torus

The applicability of the UMAPH framework in detecting higher-dimensional
features was tested on a three-torus (T 3 = S1×S1×S1). First, 83 = 512 points
(i.e., three-dimensional angular values) were evenly sampled from a three-torus
(Extended Data Fig. 5c) and added small, independent noise sampled from a
normal distribution of width 0.1. The point cloud was embedded in R6 by tak-
ing the sine and cosine of each angle. Applying UMAPH with Euclidean metric
and κ = 70 revealed the expected homology and the three circular features
were decoded based on the three longest-lived H1-bars (see ‘Cohomological
coordinatization’). To visually compare with UMAP, the 6-D embedding was
projected to 3-D using UMAP (with 150 as number of neighbors).

Data analysis and statistics

All data analyses were performed with custom-written scripts in Python
3.9. The following open-source Python packages were used: umap (version
0.5.2), ripser (0.6.1), numba (0.54.1), scipy (1.7.3), numpy (1.20.3), scikit-
learn (0.24.2), matplotlib (3.4.2), h5py (3.6.0), gtda (0.5.1), cv2 (4.5.5), pandas
(1.4.2) and datajoint (0.13.5).

The heaviest computational burdens were performed on resources provided
by the NTNU IDUN/EPIC computing cluster [82] and that of the Department
of Mathematical Sciences.

All statistical tests were one-sided.

Code Availability

Code used in this article will be made available upon publication at GitHub.
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Data Availability

The data are publicly shared by the respective authors at: https:
//plus.figshare.com/articles/dataset/VR Data Neuropixel supporting
Distance-tuned neurons drive specialized path integration calculations
in medial entorhinal cortex /15041316, https://archive.sigma2.no/
pages/public/datasetDetail.jsf?id=10.11582/2022.00008, https://archive.
sigma2.no/pages/public/datasetDetail.jsf?id=10.11582/2022.00005 and
https://crcns.org/data-sets/thalamus/th-1.

Video 1. Comparison of open field foraging and toroidal population
dynamics. Left, scatter plot of position in 2-D space of mouse 88592 day
2. Right, flattened torus, displaying toroidal population distribution at each
time frame, given by first smoothing each neuron’s toroidal rate map (in 502

bins) spatially with a Gaussian filter with σ = 3 bins. Next, every rate map
was weighted by the firing rate of the corresponding neuron at each time
point and the mean value for each bin across the entire population gave the
time-dependent population distribution. Bright colors indicate high population
activity.

Video 2. Comparison of wheel running and toroidal population dynamics
for same neural ensemble as in Video 1. Left, wheel position (y axis) as a func-
tion of time (x axis). Right, as in Video 1 for internal toroidal representation
decoded during wheel running.

Video 3. Comparison of VR running and toroidal population dynamics
for gain sessions of mouse I3 recording day 0420. Left, wheel position as in
Video 2 (top) and gain values (y axis) as a function of time (bottom). Right,
inferred toroidal population dynamics, as in Video 1 and 2, found in the given
recording.
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nized mechanisms of the head direction sense. Nature neuroscience 18(4),
569–575 (2015)

[81] A. Peyrache, G.B. P. Petersen: Peyrache 2015. CRCNS.org (2015). https:
//doi.org/10.6080/K0G15XS1



26 Uncovering 2-D toroidal representations in grid cell ensemble activity during 1-D behavior
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Fig. 1 Toroidal representations in calcium imaging of mouse entorhinal cortex in 1- and
2-D environments. a. UMAPH (green arrows) combines aspects of UMAP (top arrows) and
persistent homology (bottom arrows). Given a point cloud (green dots) in ambient space (i),
UMAP computes a topological representation of the data (ii) based on local neighborhoods
and approximates this in a low-dimensional projection of the data. Persistent homology
constructs a sequence of combinatorial spaces from pairwise distances (iii) and tracks the
evolution of n-dimensional holes (Hn) in these spaces for increasing distances, displayed as
bars in a barcode (iv). The long bars depict the most prominent features in the data (black
arrows). 1-D cohomology features allow for circular coordinatization (v). b. The mice ran in
an OF arena (top) and on a Styrofoam wheel (bottom). c. 20 example calcium traces from
the MEC (left). Coloring the spatial positions by heightened activity (red) of three example
neurons reveals hexagonal grid patterns (right). d. Left in each block, barcodes from OF
sessions in mice 97045 (day 3, n = 293 neurons) and 88592 (day 2, n = 160), indicating
signature homology of a torus (one H0-bar, two H1-bars and one H2-bar). Only the 30
longest bars in each dimension are shown. Shaded gray shows 95th percentile and dotted
line the maximum of the longest lifetimes of 100 shuffles. Right in each block, OF positions
color-coded by mean decoded circular coordinates. e. Tuning of five example neurons (mouse
97045 day 3, see Fig. 7 for all neurons) to position in OF arena and on torus (T), sorted
by explained deviance scores. f. Left, explained deviance scores for all recorded neurons in
mouse 97045 day 3 describing goodness-of-fit for GLM models fitted to calcium events for T
vs. OF positions as covariates. Red crosses mark the five cells shown in e. Right, mean value
(± s.e.m.) for each OF (and object) session where toroidal topology was detected (Extended
Data Fig. 1e, n ∈ [113, 637] neurons). g. Barcode from grid cell activity during wheel running
of mouse 88592 day 2 indicates toroidal topology (left). Right, internal (bottom) and external
(top) trajectory, color-coded by path progression, on the unwrapped torus during wheel
running. Shading on the torus indicates mean population activity (indicated by color bar) at
end of the path (black cross). h. Rate maps of top five neurons (mouse 88592 day 2), ranked
according to toroidal explained deviance. From left: OF tuning; linearized wheel position
autocorrelogram and tuning to torus inferred from corresponding sessions. Color-coding as
in e. i. Top, toroidal tuning peaks of grid cell population in OF (red) and wheel (black)
recordings (day 3). Lines connect peaks of the same neurons. Bottom, cumulative line plots
of the correlation between rate maps from OF and wheel sessions for mouse 88592 days 1 – 3
(n = 126, 160 and 113 neurons). Dotted lines show shuffled distributions (n = 1000 shuffles).
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Fig. 2 UMAPH detects tori in spiking activity of head-fixed mice during a VR task. a.
Electrophysiological recordings were made while head-fixed mice engaged in a virtual reality
task showing (for baseline trials) a continuously repeating linear VR track of 400 cm with five
evenly spaced visual cues with a water reward at the end. During gain and contrast trials, the
gain of the visual flow to the running wheel and the contrast of the visual cues were reduced.
b. Cross-correlation matrix during dark session (monitors turned off and no rewards given)
of mouse I1. Values indicated by color bar, minimum and maximum defined as 5th and 95th
percentile. The two largest clusters, ‘M1’ and ‘M2’ (n = 44 and 41 neurons) are indicated.
c. Barcodes (as in Fig. 1d, g) indicate a toroidal state space in every condition for M1. d.
Example trajectories on the decoded neural torus for three different trials, embedded in 3-
D (left) and linearized to 2-D (right). e. Virtual track autocorrelogram and toroidal firing
rate maps (as in 1e and h) in baseline (B), dark (D) and gain/contrast (G/C) sessions for
four example neurons of M1 (see Extended Data Fig. 8 – 11 for all neurons). f, g. Peak
activity locations (left) for all neurons in M1 in B (red) vs. D and G/C sessions (black), and
cumulative distribution of Pearson correlation between rate maps of M1 of corresponding
conditions (blue) (as in Fig. 1i). h. Explained deviance scores (as in Fig. 1f) for T vs. VR
positions, for GLM models fitted to spike train data during baseline trials. Right, mean
explained deviance (± s.e.m.) per ensemble (n = 25−65). The toroidal description explained
the data better than virtual track in each case (P ∈ [3.8 · 10−9, 7.5 · 10−6],W ∈ [307, 1747],
Wilcoxon signed-rank test). i. Median and interquartile path length of the internal toroidal
trajectory per trial relative to baseline trials of similar contrast (10 or 100%) for different
gain values (x axis) (3− 8 gain trials for each gain and contrast combination, and 44− 178
baseline trials). Dashed lines indicate expected trial length if strictly aligned to distance on
wheel (gray) or to VR track (black). j. Each VR-position (y axis) during B (left) and G/C
(right) sessions for modules M1 (top) and M2 (bottom), color-coded by the instantaneous
toroidal coordinates. Bottom right, time-dependent gain (green) and contrast (red) values,
given as ratio of baseline.
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Extended Data Fig. 1 Barcodes, spatial mappings, distance matrices and toroidal tun-
ing statistics for calcium recordings not shown in Fig. 1. a. Barcodes and mean toroidal
coordinates as a function of OF locations (as in Fig. 1d) showing the results of UMAPH
analysis for days 1 – 4 (n = 113 − 637 neurons). For wheel sessions, OF toroidal coordi-
nates are found by using the longest-lived H1-bars to decode the activity during the OF
session. The toroidal coordinates are reoriented to match across sessions. In two sessions
(day 4 Obj1 and 2), an object was inserted into the environment (red arrows). b. Distance
matrices of spatial autocorrelograms during OF foraging session for mouse 88592 across four
different recording days. Values indicated by color bar. The clusters analyzed are marked
as ‘M’ (n = 113 − 162 neurons). c, d. Distributions of receptive field centers and cumula-
tive distributions of Pearson correlation of pairs of toroidal rate maps (as in Fig. 1i) for all
neurons in each recording and comparison across environments. e. Comparison of explained
deviance scores between OF locations and toroidal coordinates (as in Fig. 1f) for each neuron
included in the UMAPH analyses in a.
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Extended Data Fig. 2 Correlation matrices, barcodes and toroidal tuning statistics for
Neuropixels recordings classified as toroidal, not shown in Fig. 2. a. Correlation matrices
(maximum divided by minimum) during dark session (as in Fig. 2b) sorted by cluster indices.
Minimum and maximum range from 1.02 – 1.05 r/r and 1.59 – 2.86 r/r respectively. The
clusters analyzed are marked as ‘M’ (n = 25 − 65 neurons). b. Barcode diagrams (as in
Fig. 2c) for each session. c, d. Distributions of receptive field centers on inferred torus and
cumulative distributions showing Pearson correlation of pairs of toroidal rate maps (as in
Fig. 2f, g) for all neurons in each ensemble, compared across sessions.
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Extended Data Fig. 3 Decoding of toroidal coordinates in simulated grid cell and entorhi-
nal ensemble activity allows comparing square and hexagonal toroidal structure. a. Circular
coordinates from UMAPH analyses on data generated by three CAN models (row-wise, from
top): an inhibitory, multi-bump network model (n = 2464 neurons), a twisted (n = 400)
and an un-twisted (square, n = 100) torus network model. Each row displays (from left): a
2-D spatial trajectory colored according to toroidal position (2-D color map); firing rates of
each neuron at a chosen time frame, ordered according to network connectivity (firing rate
given by color bar); stacked, centered toroidal rate maps of all neurons in the network; spa-
tial rate maps of activity from a CAN grid cell and fitted data using hexagonal and square
torus point source models. b. Stacked, centered toroidal rate maps of all neurons in each
ensemble (n = 25−65 neurons). Note angle of the firing fields. Right, median (and interquar-
tile) correlation, per experimental condition, between each neuron’s rate map and the heat
distribution on a hexagonal (Hex) and a square (Sqr) torus for all ensembles. Ensembles
determined as toroidal are colored in orange. c. Mean spatial autocorrelograms (+- s.e.m)
for each toroidal ensemble for recorded data (blue) and data generated by the hexagonal
torus model (orange).
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Extended Data Fig. 4 Internal toroidal dynamics as a function of the VR track for
sessions not shown in Fig. 1j. a, b. Spatio-temporal positions colored by the 2-D toroidal
positions across the entire session for baseline, gain, contrast and dark sessions. Gain and
contrast manipulations are indicated in green and red line plots below relevant sessions.
Note, in dark, the mice cannot see a progression in VR.

Extended Data Fig. 5 UMAPH visual description and example application for high-
dimensional manifold. a. The UMAP complex construction for a ‘noisy’ circular point cloud.
i. Sample point cloud with two outliers, p1 and p2. ii. The geodesic distance of the underlying
manifold is approximated by first computing local metric spaces (one for each point) through
scaling the ambient space metric with respect to each point’s κ = 2 nearest neighbors.
iii. The local metric spaces are merged to a global representation by translating each to a
fuzzy set and then taking the fuzzy union of these. This creates a graph with weights µi,
describing edge (i) probabilities based on the scaled distance. iv. The UMAP complex is
the weighted clique complex of this graph. I.e., the n-cliques form (n − 1)-simplices with
weights equal to the minimum of that of its edges. Intuitively, p1 and p2 will lie similarly
distanced from the circle. b. Left, applying PH to the point cloud in a, using the Euclidean
metric, reveals a short-lived circle (H1-bar) and three long-lived clusters (H0-bars). Black
arrows indicate the homology of a circle. The two additional clusters represent p1 and p2.
The dashed line indicates the radius of the Rips complex shown to the right of the barcode.
Right, the resulting barcode from applying PH to the UMAP complex (i.e., using −log µi
as geodesic distances). The circle never closes, as seen in the corresponding Rips complex. c.
Left, each column shows (from left): a noisy sample from a three-torus, T 3 = S1 ×S1 ×S1;
3-D UMAP projection of the 6-D embedding and 3-D embedding of the circular coordinates
obtained from UMAPH. Each row is colored by the three sampled angles in the two first
columns and by the decoded angles in the third. Right, barcode from applying UMAPH to
the sampled 3-torus, with long bars implying the homology of a 3-torus (one H0-bar, three
H1-bars, three H2-bars and one H3-bar, as indicated by arrows).
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Extended Data Fig. 6 Ring topology of electrophysiological data in ADn and Subiculum
representing internal head direction during OF foraging, REM sleep and SWS. a. Barcode
diagrams from applying UMAPH in recordings of three mice (n = 18, 25 and 41 neurons).
Arrows point to bars indicating ring topology. Each block (separated by black lines) contains
the results from a single mouse. b. UMAP projection of firing rate activity colored by
decoded circular coordinates (describing the circular features captured by the longest bar
in the respective barcodes). c. Top, 200 s snippet of decoded circular coordinates and the
recorded head direction. Note, the longest-lived circular feature found in each brain state
was used to decode awake data. Bottom, single-cell tuning to the decoded coordinates and
awake head direction recording for twelve example cells per animal (now, decoding each
brain state separately).
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Extended Data Fig. 7 Tuning to coordinates in space and on the inferred torus for all
neurons of mouse 97045 (as in Fig. 1e), recording day 2 (293 neurons) sorted top-bottom
and left-right according to toroidal explained deviance (Fig. 1f).

Extended Data Fig. 8 Tuning to coordinates in space and on the inferred torus (as in
Fig. 2e) for all neurons of mouse and recording day (and module): I1 0417 (M1, 44 neurons)
and (M2, 41 neurons). Each row of four shows 1-D VR-track autocorrelogram during dark
session (left) and toroidal firing rate maps for each experimental condition (right).
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Extended Data Fig. 9 Tuning to coordinates in space and on the inferred torus for all
neurons of mouse and experimental day: I3 0420 (65 neurons) and H3 0402 (53 neurons).
Plots from left to right: 1-D VR-track autocorrelogram during dark session, toroidal firing
rate map for dark (D) and gain/contrast (G/C) sessions.

Extended Data Fig. 10 Tuning to coordinates in space and on the inferred torus for all
neurons of mouse and experimental day: I1 0418 (40 neurons) and J5 0506 (47 neurons).
Plots from left to right: 1-D VR-track autocorrelogram during dark session, toroidal firing
rate map for dark (D) and gain/contrast (G/C) sessions.
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Extended Data Fig. 11 Tuning to coordinates in space and on the inferred torus for all
neurons of mouse and experimental day: I5 0415 (37 neurons) and J4 0514 (25 neurons).
Plots from left to right: 1-D VR-track autocorrelogram during dark session, toroidal firing
rate map for baseline (B) or dark (D).
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Toroidal topology of population activity in 
grid cells

Richard J. Gardner1,6 ✉, Erik Hermansen2,6, Marius Pachitariu3, Yoram Burak4,5, Nils A. Baas2 ✉, 
Benjamin A. Dunn1,2 ✉, May-Britt Moser1 & Edvard I. Moser1 ✉

The medial entorhinal cortex is part of a neural system for mapping the position of an 
individual within a physical environment1. Grid cells, a key component of this system, 
fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 
that collectively form a population code for the animal’s allocentric position1.  
The invariance of the correlation structure of this population code across 
environments4,5 and behavioural states6,7, independent of specific sensory inputs,  
has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) 
as a possible substrate of the grid pattern1,8–11. However, whether grid cell networks 
show continuous attractor dynamics, and how they interface with inputs from the 
environment, has remained unclear owing to the small samples of cells obtained so 
far. Here, using simultaneous recordings from many hundreds of grid cells and 
subsequent topological data analysis, we show that the joint activity of grid cells from 
an individual module resides on a toroidal manifold, as expected in a two-dimensional 
CAN. Positions on the torus correspond to positions of the moving animal in the 
environment. Individual cells are preferentially active at singular positions on the 
torus. Their positions are maintained between environments and from wakefulness to 
sleep, as predicted by CAN models for grid cells but not by alternative feedforward 
models12. This demonstration of network dynamics on a toroidal manifold provides a 
population-level visualization of CAN dynamics in grid cells.

The idea of a CAN has become one of the most influential concepts in 
theoretical systems neuroscience13–15. A CAN is a network in which recur-
rent synaptic connectivity constrains the joint activity of cells to a con-
tinuous low-dimensional repertoire of possible coactivation patterns 
in the presence of a wide range of external inputs. Few systems are more 
suitable for analysis of CAN dynamics than the spatial mapping circuits 
of the rodent brain, owing to the continuous, low-dimensional nature 
of space, and the availability and interpretability of data from these 
circuits1–6. In medial entorhinal cortex (MEC) and surrounding areas, 
head direction cells16 encode orientation whereas grid cells2 encode 
position. CAN models conceptualize the neural representations of 
these variables as spanning periodic one- or two-dimensional (1D or 2D)  
continua on a ring17–19 or a torus1,8–11, respectively. In this scheme, activity 
within the neural network stabilizes as a localized bump when cells are 
ordered according to their preferred firing directions or locations in 
physical space. The activity bump may be smoothly translated along 
the network continuum by speed and direction inputs, or by external 
sensory cues.

In agreement with CAN models1,8–11, head direction cells16,20,21 and 
modules of grid cells4–7 maintain fixed correlation structures. In head 
direction cells, cell samples of a few dozen have been sufficient to 
demonstrate that the network activity traverses a ring22–24, but for 
grid cells, the number of possible locations in the two-dimensional 

state space has been too large for the topology of the manifold 
to be uncovered. Here we take advantage of recently developed 
high-site-count Neuropixels silicon probes25,26 to determine in many 
hundreds of simultaneously recorded grid cells whether, as predicted 
by two-dimensional CAN models8–11, the population activity in an indi-
vidual grid-cell module resides on a toroidal manifold, independently 
of behavioural tasks and states and decoupled from the position of the 
animal in physical space. We focused on individual modules because 
(i) these are the unit networks of CAN models1,8–10; and (ii) topological 
analysis of multi-module representations would require even larger 
numbers of cells27.

Visualization of toroidal manifold
We recorded extracellular spikes of a total of 7,671 single units in layers 
II and III of the MEC–parasubiculum region in freely moving rats with 
unilateral or bilateral implants (total of 4 recordings, in 2 rats with 
bilateral single-shank probes and 1 rat with a unilateral 4-shank probe; 
from 546 to 2,571 cells per recording; Extended Data Fig. 1). During 
recordings, the rats were engaged in foraging behaviour in a square 
open-field (OF) enclosure or on an elevated track, or they slept in a 
small resting box. Using a clustering-based approach, we identified 
six grid modules across all rats (4 recording sessions, from 140 to 544 
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grid cells per session; 7.8% to 25.6% of total number of cells; Extended 
Data Fig. 2a–d, g, h). Each grid module cluster contained a mixture 
of nondirectional (‘pure’) grid cells and conjunctive grid × direction 
cells28, from 66 to 189 grid cells per module (total pure and conjunctive 
grid cells; Extended Data Fig. 2g). We initially limited our analyses to 
the subset of pure grid cells because (i) the expected toroidal topol-
ogy might be distorted by additional directional modulation; and (ii) 
detection of topology in conjunctive cells may require a larger number 
of cells than recorded here27.

To visually inspect the structure of the population activity of grid 
cells for signatures of toroidal topology, we constructed a three 
dimensional (3D) embedding of the n-dimensional population activ-
ity of a module of n = 149 pure grid cells (Fig. 1a). For this, we applied 
a two-stage dimensionality reduction procedure on the matrix of 
firing rates. First, to improve robustness to noise, we conducted a 

principal component analysis (PCA). We retained the first six prin-
cipal components, which explained a particularly large fraction of 
the variance for all grid modules in the OF condition (with a similar 
tendency seen during sleep; Extended Data Fig. 4a). Next, we applied 
uniform manifold approximation and projection (UMAP) to reduce 
the six principal components into a 3D visualization. This visualiza-
tion revealed a torus-like structure (Fig. 1b, Supplementary Video 1). 
Movement of the rat in the OF was accompanied by similarly continu-
ous movement of the population activity across the toroidal mani-
fold (Fig. 1b). When the activity of individual cells was plotted with 
reference to the 3D population representation, spikes for each cell 
were localized within a single patch of the population state space 
(Fig. 1c). The offsets between the firing locations of individual cells 
in the arena corresponded with the relative firing locations of the 
cells in the toroidal state space.
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Fig. 1 | Signatures of toroidal structure in the activity of a module of grid 
cells. a, Firing rates of 149 grid cells co-recorded from the same module and 
shown, in order of spatial information content, as a function of rat position in OF 
arena (rates colour-coded, max 0.2–35.0 Hz; rat ‘R’ day 1, module 2; Extended 
Data Fig. 2b). b, Nonlinear dimensionality reduction reveals torus-like structure 
in the population activity of a single grid module (same 149 cells; 3 different views 
of same point cloud). Each dot represents the population state at one time point 
(dots coloured by first principal component). Bold line shows a 5-s trajectory, 
demonstrating smooth movement over the toroidal manifold. Right, 
corresponding trajectory in OF. c, Toroidal positions of spikes from three grid 
cells from the module in a. Each panel shows the same 3D point cloud of 
population states as in b, with black dots indicating when the cell fired. Insets 
show: left: the cell’s 2D firing locations in OF (black dots on grey trajectory); 

middle: colour-coded firing rate map in OF (range 0 to max); right: colour-coded 
autocorrelogram of the rate map (range −1 to +1). Maximum rate and grid score 
(GS) are indicated. d, Same as in c (same cells) but with the rat running on an 
elevated, wheel-shaped track (‘wagon-wheel track’; WW). Note preserved 
toroidal field locations. e, f, Barcodes indicate toroidal topology of grid-cell 
population activity. Results of persistent cohomology analyses (30 longest bars 
in the first three dimensions: H0, H1 and H2) are shown for three grid modules 
from one rat (R1–R3 day 1, n = 93, 149 and 145 cells, respectively), in OF (e) and WW 
(f). Grey shading indicates longest lifetimes among 1,000 iterations in shuffled 
data (aligned to lower values of original bars). Arrows show four most prominent 
bars across all dimensions (all longer than in shuffled data). One prominent bar in 
dimension 0, two in dimension 1 and one in dimension 2 indicates cohomology 
equal to that of a torus.
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Quantification of toroidal topology
Although the UMAP projection allowed a toroidal point cloud to be 
visualized, the method does not lend itself to straightforward quanti-
fication of the topology of the state space or comparison of represen-
tations across experiments. We therefore turned to the framework 
of persistent cohomology, a toolset from topological data analysis 
in which the structure of neural data can be classified by identifying 
holes of varying dimensionality in topological spaces assigned to point 
clouds of the cells’ firing rates22,23. In applying this toolset, we replace 
each point of the point cloud by a ball of common radius. The union 
of balls results in a topological space in which the number of holes of 
different dimensions can be counted. By increasing this radius from 
zero until all the balls intersect, we observe the lifetime of each hole—
the range of radii from when the hole first appears until it disappears 
(see Extended Data Fig. 3C). The lifetimes of the holes are depicted as 
bars and the totality of bars referred to as the barcode. For a torus, the 
barcode must display four bars of substantial length: a 0D hole (a single 
component connecting all points); two 1D holes (describing circular 
features); and a 2D hole (a cavity; Extended Data Fig. 3B).

Persistent cohomology analyses allowed us to classify the shape of 
the six-dimensional representation that serves as an intermediate step 
in UMAP (Extended Data Fig. 3A). We constructed barcodes for each 
of the six individual modules of grid cells recorded in the OF arena 
(three modules from rat ‘R’, 2 from rat ‘Q’ and 1 from rat ‘S’, henceforth 
named R1, R2, R3, Q1, Q2 and S1). The barcodes showed clear indica-
tions of toroidal characteristics. For all six modules, we detected four 
long-lived bars representing a single 0D hole, two 1D holes and a 2D 
hole. Their lifetimes were significantly longer than the lifetime of any 
bar obtained in 1,000 shuffles of the data in which spike times were 
randomly rotated (Fig. 1e, f, Extended Data Fig. 6Aa; P < 0.001). The 
findings suggest that network dynamics during OF foraging resides on 
a low-dimensional manifold with the same barcode as a torus. We noted 
the appearance of additional short bars in the barcodes for all modules, 
but these are expected for toroidal point clouds27, as we confirmed with 

simulated data from several CAN models10,11 and point clouds sampled 
from idealized tori, which in each case exhibited similar features (see 
Extended Data Fig. 7).

Tori persist despite grid distortions
The appearance of a torus in the point cloud, and the mapping of the 
activity of individual grid cells onto the torus (Fig. 1c), are consistent 
with a relationship between position in 2D physical space and position 
in the dimensionality-reduced neural state space. However, in many 
environments, this relationship may not be isometric, as the grid pattern 
is distorted by geometrical features of the environment, such as walls and 
corners29–31 or discrete landmarks and reward locations32,33. We thus asked 
whether such geometric features could similarly distort the toroidal 
organization of network activity in the point cloud. We tested rats on an 
elevated running track shaped like a wagon wheel with four radial spokes 
(‘wagon-wheel track’ (WW); Fig. 1d, f). Spatial autocorrelation analyses 
confirmed that the strict periodicity of the grid pattern was compromised 
in this task (Extended Data Fig. 2e, f). Despite these distortions of the 
grid pattern in individual cells, toroidal tuning was maintained in the 
transformed population activity (Fig. 1d). The persistent cohomology 
analysis continued to identify one 0D hole, two 1D holes and one 2D hole 
with lifetimes that substantially exceeded those of shuffled data (Fig. 1f, 
Extended Data Fig. 6Ab). We also determined how the neural popula-
tion activity mapped onto the torus by calculating angular coordinates 
from each of the two 1D holes identified by the barcode (‘cohomological 
decoding’; Extended Data Fig. 5). The two angular coordinates defined 
directions intersecting at 60°, identifiable as a twisted torus (Fig. 2a). 
Consistent with CAN models, the vast majority of grid cells were tuned to 
a single location on the torus in each module and across environments, 
independent of geometry and local landmarks (Fig. 2b, Extended Data 
Fig. 4f, Supplementary Information).

To test how faithfully location in the environment is mapped onto 
the toroidal representation, we next asked whether grid-cell activity is 
predicted better by the cells’ tuning to the inferred torus than by their 
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Fig. 2 | Cohomological decoding of position on an inferred state space 
torus. a, b, Individual grid cells have distinct firing fields on the inferred torus 
(Extended Data Fig. 5). Toroidal coordinates for population activity vectors 
were decoded from the two significant 1D holes (red circles in a) in the barcodes 
in Fig 1e, f. a, Left, 3D embedding of the toroidal state space displaying 
colour-coded mean firing rate of one grid cell as a function of toroidal position. 
Right, a 2D torus may be formed by gluing opposite sides of a rhombus.  
b, Representative grid cells from module R2 day 1 showing tuning to toroidal 
coordinates (all R2 cells: Supplementary Fig. 1). Each row of four plots 
corresponds to one cell. Left to right, colour-coded maps of cells’ firing rates 
across the environment (OF or WW) and on the inferred torus (toroidal OF, 
toroidal WW, aligned to common axes). c, d, Toroidal information content  
(c) and explained deviance (d) for toroidal position (T) versus spatial position 

(S) in OF (top) and WW (bottom). Explained deviance is an R2-statistic (range 
0–1) expressing goodness-of-fit of GLM models for S or T. Left, scatterplots 
with dots showing individual cells; colour indicates module (inset). Right, 
mean ± s.e.m. for each module. n = 93 (R1), 149 (R2), 145 (R3), 94 (Q1), 65 (Q2)  
and 73 (S1) cells. e, f, Distances between toroidal firing field locations. e, Field 
locations of all R2 cells in OF and WW. Lines connect fields of the same cell. 
Toroidal OF and WW axes were aligned either separately (‘separate’) or 
commonly to OF (‘common’). f, Left, cumulative frequency distribution of field 
distances (all R2 cells; green curve, separate alignment; grey lines, common 
alignment (to either OF or WW); black curve, shuffled data, n = 1,000 shuffles). 
Right, mean distance between field centres (±s.e.m.) for all modules. n cells as 
in c, d. g, Same as f, but showing Pearson correlations between pairs of toroidal 
rate maps.
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tuning to physical space. For five out of six grid modules in OF and four 
out of six in WW, the information content conveyed about position, 
in bits per spike, was higher for position on the torus than for posi-
tion in physical space (Fig. 2c; R2, R3, Q1, Q2: all P < 0.001, W > 1,932 
in OF and WW; R1: P < 0.001, W = 4,010 in OF, P = 0.586, W = 2,129 in 
WW; S1: P = 1.000 in OF and WW, W = 620 in OF, W = 129 in WW; Wil-
coxon signed-rank test). We verified this difference by comparing the 
cross-validated prediction of two Poisson generalized linear model 
(GLM)-based encoding models of each cell’s activity that included 
toroidal position (decoded as above) and 2D spatial position. For both 
environments (OF and WW), the toroidal covariate was closer to a per-
fectly fitted model of the data than was the physical position covariate 
in five out of six grid-cell modules (Fig. 2d; R1, R2, R3, Q1, Q2: P < 0.001, 
W > 2,045 in OF and WW; S1: P < 0.001, W = 1,941 in OF, P = 1.000, W = 727 
in WW; Wilcoxon signed-rank test). Together, these differences point 
to toroidal structure as the primary feature of the population activity 
of grid cells, superior to that of the 2D coordinates of the animal’s cur-
rent position in the physical environment.

If grid cells operate on a toroidal manifold determined by intrinsic 
network features, this manifold may be expressed universally across 
environments, independently of sensory inputs. We tested this propo-
sition by assessing, on the inferred tori, whether the locations of fir-
ing fields of different grid cells were maintained between OF and WW 

(Fig. 2b, Supplementary Information). To compare the toroidal para-
metrizations, we aligned the axes of the toroidal coordinates (Extended 
Data Fig. 5b). First, we compared, for each cell, the distance between 
the centres of mass of the toroidal rate maps in OF and WW (Fig. 2e, f,  
Extended Data Fig. 6Ba). This distance was substantially shorter 
(mean ± s.e.m. of mean distances for all modules: 31.5 ± 6.3 degrees) 
than that of control data in which the order of the rate maps in one 
environment was shuffled (135.8 ± 1.7 degrees; maximum possible 
distance √2∙180 ≈ 254.6 degrees; data versus shuffled: P < 0.001 in all 
modules). Second, we calculated the pairwise Pearson correlations 
of binned toroidal rate maps across the two environments (Fig. 2g, 
Extended Data Fig. 6Ba). Consistent with the centre-of-mass compari-
son, the correlations between OF and WW were higher in observed data 
(mean ± s.e.m. of mean r values for all modules: 0.79 ± 0.07) than in 
shuffled data (r = 0.01 ± 0.01; P < 0.001 for all modules). Very similar 
results were obtained when applying the toroidal parametrization 
from the same environment (either OF or WW) to activity from both 
environments (Fig. 2f, g, 16.0 ± 3.4 degrees; r = 0.95 ± 0.02; P < 0.001 
for all modules and both mappings). Together, these findings suggest 
that physical space is mapped onto the same internal low-dimensional 
manifold irrespective of the specific environment.

Toroidal topology persists during sleep
If population activity is mapped onto the same toroidal manifold inde-
pendently of sensory inputs, the toroidal topology should also be main-
tained during sleep. To test this idea, the rats rested in a high-walled, 
opaque box placed in the centre of the OF or WW track. Periods of 
rapid-eye-movement (REM) sleep and slow-wave sleep (SWS) were 
identified on the basis of the low-frequency rhythmic content of the 
aggregated multi-unit activity in combination with prolonged behav-
ioural immobility (Extended Data Fig. 9).

Persistent cohomology analysis of the sleep population activity sug-
gested toroidal topology in five of the six grid modules during REM and 
four out of six modules during SWS (modules R2, R3, Q1 and Q2 for both 
sleep stages and module R1 only in REM; Fig. 3a, Extended Data Fig. 6Ac, d).  
In the remaining module (S1), there were no long-lived bars in dimen-
sions 1 or 2 (Extended Data Fig. 6Ac, d), indicating an absence of toroidal 
structure during sleep, perhaps because of an insufficient number of 
cells in this module (72 cells; Extended Data Fig. 4e). The barcode results 
were supported by the toroidal mapping, which revealed sharply tuned 
firing fields on the REM and SWS tori (99.3 ± 1.6% and 99.1 ± 1.8%, respec-
tively, of the grid cells in each module had higher information content 
than shuffled data, and in 95.3 ± 7.2% and 98.6 ± 2.4% of cells the toroidal 
tuning explained the activity better than a null model that assumes a 
constant firing rate; Fig. 3b, Extended Data Figs. 6C, 10, Supplementary 
Information). In addition, the spatial arrangements of toroidal firing 
locations of different cells were maintained between wake, REM and 
SWS states (Fig. 3c, Extended Data Fig. 6Bb, c). For between-condition 
pairs of rate maps, the mean distance (±s.e.m.) between the peak firing 
locations (OF versus REM 31.5 ± 15.4 degrees, OF versus SWS 29.8 ± 14.3 
degrees) was well below the distribution of shuffled distances (Fig. 3d, 
Extended Data Fig. 6Bb, c; 135.8 ± 2.3 degrees in both REM and SWS, 
P < 0.001 for all 5 and 4 modules, respectively). Similarly, the mean cor-
relations of pairs of toroidal rate maps (REM versus OF r = 0.80 ± 0.15, 
SWS versus OF r = 0.83 ± 0.12) were substantially larger than in shuffled 
versions of the data (Fig. 3e, Extended Data Fig. 6Bb, c; r = 0.01 ± 0.01 
in both REM and SWS, P < 0.001 for all 5 and 4 modules, respectively). 
Thus, the toroidal structure is maintained in both sleep conditions, 
despite the lack of external spatial inputs.

Classes of grid cells
We next investigated why toroidal structure was not visible during REM 
in module S1 and during SWS in modules R1 and S1 (Fig. 4a, Extended 
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Fig. 3 | Preservation of toroidal structure during sleep. a, Barcodes 
indicating toroidal topology for grid-cell module R2 day 2 (n = 152 cells) during 
REM sleep and SWS (as in Fig. 1e, f). b, Toroidal rate maps showing preserved 
toroidal tuning for individual cells across environments and brain states (as in 
Fig. 2b; all cells shown in Extended Data Fig. 10). From left: rate map for OF in 
physical coordinates; and rate maps for OF, REM sleep and SWS in toroidal 
coordinates. c, Distribution of toroidal field centres (as in Fig. 2e) in OF and 
sleep (n as in a). d, e, Left, cumulative distributions of distances between 
toroidal field centres (d) and Pearson correlation r values (e) of rate maps for all 
R2 grid cells, as in Fig. 2f, g, but comparing OF with REM or SWS. Right, mean 
value ± s.e.m. for all modules. n = 111 (R1), 152 (R2), 165 (R3), 94 (Q1), 65 (Q2) and 
72 (S1) cells. n = 1,000 shuffles.
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Data Fig. 6Ad). Previous studies of medial entorhinal spiking activ-
ity have described cell populations with distinct burst-firing and 
theta-modulation characteristics34–36; therefore, we asked whether a 
lack of toroidal structure was due to heterogeneity in the composition 
of the module. We quantified each cell’s temporal modulation charac-
teristics using the spike train temporal autocorrelogram from the OF 
session, and by applying clustering to the matrix of autocorrelograms 
we obtained three cell classes (Fig. 4b). Each class was distributed across 
multiple modules (Fig. 4d). Within each module, cells from the three 
classes showed overlapping grid spacing and orientation properties 
(Extended Data Fig. 8a). We named the classes ‘bursty’ (B), ‘non-bursty’ 
(N) and ‘theta-modulated’ (T), following the most prominent autocor-
relogram feature of each class (Fig. 4e). We also examined the spike 
waveforms of the cells, and found that each class showed a character-
istic spike width (Fig. 4f, g), suggesting that they differ in morphology 
or biophysical properties.

The firing rates of the cells during SWS exhibited marked correlation 
structure within—but not between—classes (Extended Data Fig. 8b). 
Even though our classification strategy was not influenced by the cells’ 
directional tuning, class T contained 80% of all conjunctive grid cells 
and only 11% of all pure grid cells, supporting the idea that conjunctive 
grid cells are a distinct population. Accordingly, in modules R1 and S1, 
which contained the largest numbers of T cells, pairwise correlations of 
T cells’ spike trains were more strongly related to head-direction tuning 
than to toroidal tuning (Extended Data Fig. 8c). When we subdivided 
module R1 into the three classes (Fig. 4b), we found that during SWS 
toroidal topology was detectable only in B cells (Fig. 4c). By decoding 
toroidal position from B cells, we were able to recover the selectivity 
of each cell with respect to toroidal position in module R1 (Fig. 4h). 
The toroidal tuning locations were preserved between OF and SWS 
in each cell class in R1 (Extended Data Fig. 8d, B: distance of 26.4 ± 6.1 
degrees and correlation of r = 0.85 ± 0.02, T: 43.6 ± 3.9 degrees and 
r = 0.74 ± 0.02, N: 29.9 ± 3.5 degrees and r = 0.80 ± 0.02; mean values of 
shuffled versions of each class were between 135.4 ± 5.2 and 136.4 ± 6.2 
degrees, and between r = 0.00 ± 0.07 and r = 0.02 ± 0.03; comparison 
between observed and shuffled P < 0.001 for all 3 classes and both 
measures). However, in R1 as well as all other modules, toroidal spatial 

information and explained deviance were highest for B cells and lower 
for N and T cells in OF, REM and SWS (Extended Data Fig. 8e) (informa-
tion content: P < 10−56, H > 255; Kruskal–Wallis test; P < 10−9, Z > 6.4; Dunn 
test with Bonferroni correction; explained deviance: P < 10−20, H > 96; 
Kruskal–Wallis test; P < 10−12, Z > 7.4; Dunn test with Bonferroni correc-
tion, for OF, REM and SWS). Collectively, these results show that the  
B cell population (containing the majority of our grid cells) represents 
the torus most robustly across behavioural conditions. The weaker 
toroidal representation in T cells may partly be an effect of the higher 
dimensionality of the code carried by conjunctive grid × direction cells. 
Indeed, running cohomology analysis on T cells from modules S1 and 
R1 (which contained the most T cells) revealed a circular feature that 
corresponded to the animal’s head direction (Extended Data Fig. 8f, g).

Discussion
Our findings, from many hundreds of simultaneously recorded grid 
cells, show that population activity in grid cells invariably spans a mani-
fold with toroidal topology, with movement on the torus matching the 
animal’s trajectory in the environment. The toroidal representation was 
most stably encoded by the bursting subclass of grid cells. Toroidal 
topology was not simply inherited from the encoded variable, as 2D 
space is not characterized by toroidal topology, as opposed to pitch and 
azimuth of head orientation, which in bats together span a torus and 
thus naturally map onto a toroidal neural code37. Using cohomological 
decoding, we were able to demonstrate, in each environment and in 
both sleep and awake states, that the toroidal coordinates of individual 
grid cells in individual grid modules were maintained, independently 
of external sensory inputs or environment-induced deformations of 
hexagonal symmetry in the rate maps29–33. The uniform and consistent 
toroidal structure of the manifold suggests that distortions in grid pat-
terns occur in the mapping between physical space and the toroidal 
grid code rather than in the grid code itself.

The invariance of the toroidal manifold across environments and 
brain states is informative about the mechanisms that underlie grid-cell 
activity. Although toroidal topology can be generated by both CAN1,8–10 
and feedforward12 mechanisms, the persistence of an invariant toroidal 
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manifold under conditions that give rise to changes in the correlation 
structure of place-cell activity in the hippocampus6,7 is predicted only 
by CAN models. While the findings do not exclude co-existing feedfor-
ward mechanisms12,38, they point to intrinsic network connectivity as the 
mechanism that underlies the rigid toroidal dynamics of the grid-cell 
system. What kind of network architecture keeps the activity on a toroidal 
manifold—whether it is geometrically organized1,8–10 or acquired from 
random connectivity by synaptic weight adjustments through learn-
ing39–41—remains to be determined, as does the mode of connectivity 
with other CANs in the entorhinal–hippocampal system22,23.
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Methods

Rats
The data were collected from three experimentally naive male Long 
Evans rats (Rats Q, R and S, 300–500 g at time of implantation). The rats 
were group-housed with three to eight of their male littermates before 
surgery and were singly housed in large Plexiglas cages (45 × 44 × 30 cm) 
thereafter. They were kept on a 12-h light–12-h dark schedule, with strict 
control of humidity and temperature. All procedures were performed in 
accordance with the Norwegian Animal Welfare Act and the European 
Convention for the Protection of Vertebrate Animals used for Experi-
mental and Other Scientific Purposes. Protocols were approved by the 
Norwegian Food Safety Authority (FOTS ID 18011 and 18013).

Electrode implantation and surgery
The rats were implanted with Neuropixels silicon probes25,26 targeting 
the MEC–parasubiculum (PaS) region. Two rats were implanted bilat-
erally with prototype Neuropixels ‘phase 3A’ single-shank probes and 
with one probe targeting MEC–PaS in each hemisphere; the third rat 
was implanted with a prototype Neuropixels 2.0 multi-shank probe 
in the left hemisphere. Probes were inserted at an angle of 25° from 
posterior to anterior in the sagittal plane. Implantation coordinates 
were AP 0.05–0.3 mm anterior to the sinus and 4.2–4.7 mm lateral to 
the midline. The probes were inserted to a depth of 4,200–6,000 µm. 
The implant was secured with dental cement. The detailed implanta-
tion procedure has been described elsewhere6,26. After surgery, the rats 
were left to recover for approximately 3 h before beginning recording. 
Postoperative analgesia (meloxicam and buprenorphine) was admin-
istered during the surgical recovery period.

Recording procedures
The details of the Neuropixels hardware system and the procedures for 
freely moving recordings have been described previously. In brief, elec-
trophysiological signals were amplified with a gain of 500 (for phase 3A  
probes) or 80 (for 2.0 probes), low-pass-filtered at 300 Hz (phase 3A)  
or 0.5 Hz (2.0), high-pass-filtered at 10 kHz, and then digitized at 30 kHz 
(all steps performed by the probe’s on-board circuitry). The digitized 
signals were multiplexed by an implant-mounted ‘headstage’ circuit 
board and were transmitted along a lightweight 5-m tether cable, made 
using either micro-coaxial (phase 3A) or twisted pair (2.0) wiring.

Three-dimensional motion capture (OptiTrack Flex 13 cameras and 
Motive recording software) was used to track the rat’s head position 
and orientation, by attaching a set of five retroreflective markers to 
implant during recordings. The 3D marker positions were projected 
onto the horizontal plane to yield the rat’s 2D position and head direc-
tion. An Arduino microcontroller was used to generate digital pulses, 
which were sent to the Neuropixels acquisition system (via direct TTL 
input) and the OptiTrack system (via infra-red LEDs), to permit precise 
temporal alignment of the recorded data streams.

Behavioural procedures
Data were obtained from four recording sessions performed within the 
first 72 h after recovery from surgery. The recordings were performed 
while the rats engaged in three behavioural paradigms, each in a differ-
ent arena within the same room. Abundant distal visual and sonic cues 
were available to the rat. On each day of recording, the rat remained 
continuously connected to the recording apparatus across the various 
behavioural sessions that were performed. Occasionally it was neces-
sary to remove twists that had accumulated in the Neuropixels tether 
cable. In such cases, the ongoing behavioural task was paused while 
the experimenter gently turned the rat to remove the twists. During 
pre-surgical training, the rats were food-restricted, maintaining their 
weight at a minimum of 90% of their free-feeding body weight. Food was 
generally removed 12–18 h before each training session. Food restric-
tion was not used at the time of recording.

Open-field foraging task
Rats foraged for randomly scattered food crumbs (corn puffs) in a 
square open-field (OF) arena of size 1.5 × 1.5 m, with black flooring and 
enclosed by walls of height 50 cm. A large white cue card was affixed to 
one of the arena walls (height same as the wall; width 41 cm; horizontal 
placement at the middle of the wall). At the time of the surgery, each 
rat was highly familiar with the environment and task (10–20 training 
sessions lasting at least 20 min each).

Wagon-wheel track foraging task
The wagon-wheel (WW) track task was designed to function as a 1D 
version of the 2D OF foraging task. The track’s geometry comprised an 
elevated circular track with two perpendicular cross-linking arms span-
ning the circle’s diameter. The track was 10 cm wide and was bounded on 
both sides by a 1-cm-high lip. Each section of the track was fitted with a 
reward point, placed halfway between the two nearest junctions, in the 
centre of the section. Each reward point consisted of an elevated well 
that could be remotely filled with chocolate milk via attached tubing. 
To encourage foraging behaviour, a pseudorandom subset of the wells 
(between one and four of the eight wells) was filled at a given time, and 
the rat was allowed to explore the full maze freely and continuously. 
Wells were refilled as necessary when the rat consumed rewards. Each 
rat was trained to high performance on the foraging task before the 
surgery (collecting at least 30 rewards within a 30-minute session). 
Training to this level of performance took 5–10 half-hour sessions.

Natural sleep
For sleep sessions, the rat was placed in a black acrylic ‘sleep box’ with 
a 40 × 40-cm square base and 80-cm-high walls. The black coating of 
walls was transparent to infrared, which allowed the 3D motion capture 
to track the rat through the walls. The bottom of the sleep box was lined 
with towels, and the rat had free access to water. During recording ses-
sions in the sleep box, the main room light was switched on and pink 
noise was played through the computer speakers to attenuate disturb-
ing background sounds. Sleep sessions typically lasted 2–3 h, but were 
aborted prematurely if the rat seemed highly alert and unlikely to sleep.

Spike sorting and single-unit selection
Spike sorting was performed with KiloSort 2.526. In brief, the algorithm 
consists of three principal stages: (1) a raw-data alignment procedure 
that detects and corrects for shifts in the vertical position of the Neu-
ropixels probe shank relative to the surrounding tissue; (2) an iterative 
template-matching procedure that uses low-rank, variable-amplitude 
waveform templates to extract and classify single-unit spikes; and (3) a 
curation procedure which detects appropriate template merging and 
splitting operations based on spike train auto- and cross-correlograms. 
Some customizations were made to the standard KiloSort 2.5 method to 
improve its performance on recordings from the MEC–PaS region, where 
there is a particularly high spatiotemporal overlap of spike waveforms 
owing to the high density of cells. Therefore, the maximum number 
of spikes extracted per batch in step 1 above was increased, as was the 
number of template-matching iterations in step 2. To improve the sepa-
ration between cells with very similar-looking waveforms, the upper 
limit on template similarity was raised from 0.9 to 0.975 in step 2 and to 
1.0 on step 3, while supervising manually all merge and split operations 
from step 3, using a custom-made GUI running in MATLAB. The manual 
supervision ensured that Kilosort 2.5 did not automatically merge pairs 
of units with a dip in the cross-correlogram, which in our data was often 
due to out-of-phase spatial tuning. The merge and split operations were 
repeated several times to ensure the best separation between single units.

Single units were discarded if more than 1% of their interspike interval 
distribution consisted of intervals less than 2 ms. In additions, units 
were excluded if they had a mean spike rate of less than 0.05 Hz or 
greater than 10 Hz (calculated across the full recording duration).
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Single-unit spike waveforms
During spike sorting, Kilosort assigned each unit with a 2 ms spike 
waveform template on each recording channel. To calculate a repre-
sentative single waveform for each unit, the peak-to-peak amplitude 
of the template was calculated on every channel, and the templates 
from the three highest-amplitude channels were averaged to generate 
the representative spike waveform. To calculate spike width, a unit’s 
representative waveform was finely interpolated (from 61 to 1,000 
points) using a cubic spline function. Spike width was defined as the 
time difference between the waveform’s negative peak (to which the 
waveform was aligned by Kilosort), and the following positive peak.

Spatial position and direction tuning
During awake foraging sessions in the OF arena or wagon-wheel track, 
only time epochs in which the rat was moving at a speed above 2.5 cm s−1 
were used for spatial or toroidal analyses. To generate 2D rate maps 
for the OF arena, position estimates were binned into a square grid of 
3 × 3-cm bins. The spike rate in each position bin was calculated as the 
number of spikes recorded in the bin, divided by the time the rat spent 
in the bin. To interpolate the values of unvisited bins, two auxiliary 
matrices were used, M1 and M2, setting visited bins equal to the value of 
the original rate map in M1 and to 1 in M2, and setting unvisited bins to 
zero in both. One iteration of the image-processing ‘closing’ operation 
was then performed (binary dilation followed by erosion, filling out a 
subset of the non-visited bins) on M2, using a disk-shaped structuring 
element, first padding the matrix border by one bin. Both matrices 
were then spatially smoothed with a Gaussian kernel of smoothing 
width 2.75 bins. Finally, the rate map was obtained by dividing M1 by M2. 
Rate-map spatial autocorrelograms and grid scores were calculated as 
described previously28. The selectivity of each cell’s position tuning was 
quantified by computing its spatial information content42, measured 
in bits per spike (see ‘Information content’).

Head-direction tuning curves were calculated by binning the 
head-direction estimates into 6° bins. The spike rate in each angular 
bin was calculated as the number of spikes recorded in the bin divided 
by the time that the rat spent in the bin. The resultant tuning curve was 
smoothed with a Gaussian kernel with σ = 2 bins, with the ends of the 
tuning curve wrapped together. The selectivity of head-direction tun-
ing was quantified using the mean vector length (MVL) of the tuning 
curve. This was calculated according to:
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where vector f represents the tuning curve values (firing rates), vec-
tor α represents the corresponding angles, M is the number of tuning 
curve values, and |∙| represents the absolute value of the enclosed term.

Grid module classification
A novel method was implemented to detect populations of cells cor-
responding to grid modules by finding clusters of cells that expressed 
similar spatially periodic activity in the open field (Extended Data 
Fig. 2). Contrary to previous clustering-based methods for grid mod-
ules3, this approach makes no assumptions about the specific geometry 
of the grid pattern, thus making it less susceptible to the detrimental 
effects of geometric distortions such as ellipticity3,30.

For each MEC–PaS cell in a given recording, a coarse-resolution rate 
map of the OF session was constructed, using a grid of 10 × 10-cm bins, 
with no smoothing across bins. The 2D autocorrelogram of this rate 
map was calculated, and the central peak was removed by excluding 
all bins located less than 30 cm from the autocorrelogram centre. Bins 
located more than 100 cm from the autocorrelogram centre were also 
excluded. The autocorrelograms for all cells were subsequently con-
verted into column vectors, z-standardized, then concatenated to form 

a matrix with spatial bins as rows and cells as columns. The nonlinear 
dimensionality reduction algorithm UMAP43,44 was then applied to this 
matrix, yielding a two-dimensional point cloud in which each data point 
represented the autocorrelogram of one cell (Extended Data Fig. 2a–d;  
UMAP hyperparameters: 'metric'=‘manhattan’, ‘n_neighbors’=5, 
‘min_dist’=0.05, ‘init’=‘spectral’). In the resultant 2D point cloud, cells 
with small absolute differences between their autocorrelogram values 
were located near to one another. The point cloud was partitioned 
into clusters using the DBSCAN clustering algorithm (MATLAB func-
tion ‘dbscan’, minimum 30 points per cluster, eta = 0.6–1.0). In every 
recording, the largest cluster was mainly composed of cells that either 
lacked strong spatial selectivity or were spatially selective but without 
clear periodicity. All remaining clusters contained cells with high grid 
scores, and with similar grid spacing and orientation (Extended Data 
Fig. 2a–d); cluster membership was therefore used as the basis for 
grid module classification. In one recording (rat ‘R’ day 1), two clusters 
were identified that had similar average grid spacing and orientation 
(labelled as ‘R1a’ and ‘R1b’ in Extended Data Fig. 2a–d), suggesting that 
they represented the same grid module. R1b appeared to comprise 
cells with higher variability in the within-field firing rates of the spatial 
rate maps, accompanied by more irregularities in the autocorrelo-
grams. These two clusters were merged together in subsequent analysis  
(in which the resultant cluster is called ‘R1’).

A subset of the cells that were assigned to grid module clusters by 
the above procedure were tuned to both location and head direction 
(conjunctive grid × direction cells). These cells, which were defined as 
having a head-direction tuning curve with mean vector length above 
0.3, were discarded from further analysis.

Classification of sleep states
SWS and REM periods were identified on the basis of a combination 
of behavioural and neural activity, following previously described 
approaches6,45,46. First, sleep periods were defined as periods of sus-
tained immobility (longer than 120 s with a locomotion speed of less 
than 1 cm s−1 and head angular speed of less than 6° s−1). Qualifying 
periods were then subclassified into SWS and REM on the basis of the 
amplitude of delta- and theta-band rhythmic activity in the recorded 
MEC–PaS cells. Spike times for each cell were binned at a resolution 
of 10 ms and the resultant spike counts were binarized, such that ‘0’ 
indicated the absence of spikes and ‘1’ indicated one or more spikes. 
The binarized spike counts were then summed across all cells (Extended 
Data Fig. 9A). The rhythmicity of this aggregated firing rate with respect 
to delta (1–4 Hz) and theta (5–10 Hz) frequency bands was quantified 
by applying a zero-phase, fourth-order Butterworth band-pass filter, 
then calculating the amplitude from the absolute value of the Hilbert 
transform of the filtered signal, which was smoothed using a Gaussian 
kernel with σ = 5 s and then standardized (‘z-scored’). The ratio of the 
amplitudes of theta and delta activity was hence calculated (theta/delta 
ratio, ‘TDR’). Periods in which TDR remained above 5.0 for at least 20 s 
were classified as REM; periods in which TDR remained below 2.0 for 
at least 20 s were classified as SWS (Extended Data Fig. 9B).

Spectral analysis was performed on 10-ms-binned multi-unit activ-
ity using the multi-tapered Fourier transform, implemented by the 
Chronux toolbox (http://chronux.org/, function ‘mtspectrumsegc’). 
Non-overlapping 5-second windows were used, with a frequency band-
width of 0.5 Hz and the maximum number of tapers.

Visualization of toroidal manifold
For each module of grid cells, spike times of co-recorded cells in the 
OF were binned for each cell at a resolution of 10 ms, and the binned 
spike counts were convolved with a Gaussian filter with σ = 50 ms. Time 
bins in which the rat’s speed was below 2.5 cm s−1 were then discarded.  
To account for variability of average firing rates across cells, the 
smoothed firing rate of each cell was z-scored. For computational 
reasons, the time bins were downsampled, taking every 25th time 



bin (equating to 250-ms intervals between selected samples). Col-
lectively, the downsampled firing rates of the full population of cells 
formed a matrix with time bins in rows and cells in columns. PCA was 
applied to this matrix (treating time bins as observations and cells 
as variables), and the first six principal components were retained 
(Extended Data Figs. 3Aa–c, 4a–d). UMAP43,47 was then run on these 
six principal components (with time bins as observations and princi-
pal components as variables). The hyperparameters for UMAP were: 
‘n_dims’=3, ‘metric’=‘cosine’, ‘n_neighbours’=5000, ‘min_dist’=0.8 and 
‘init’=‘spectral’.

For visualizing the toroidal manifold during WW, smoothed firing 
rates were first calculated by the same procedure described above 
for OF. Subsequently, to allow comparison of the toroidal manifold 
between OF and WW, the same PCA and UMAP transformations calcu-
lated for the OF data were re-applied to the WW data, by supplying the 
fitted OF UMAP transformation as the argument ‘template_file’ to the 
‘run_umap’ function in the MATLAB implementation47.

Preprocessing of population activity
Each topological analysis was based on the activity of a single module 
of grid cells, during a single experimental condition in one recording 
session. Topological analysis of multi-module and conjunctive grid × 
direction cell activity was not considered as we expect such data to 
exhibit higher-dimensional topological structure requiring a higher 
number of cells27. The experimental conditions were: open-field forag-
ing (OF), wagon-wheel track foraging (WW), slow-wave sleep (SWS), 
and rapid eye-movement sleep (REM). Sleep epochs of the same type 
were collected from across the recording and concatenated for analysis 
purposes. Similarly, in one case (rat 'S'), two WW task sessions were 
concatenated to increase the sample size.

In total there were 27 combinations of module (Q1, Q2, R1, R2, R3, S1)  
and experimental condition (OF day 1, OF day 2, WW, REM, SWS).

Preprocessing of spike trains began by computing delta functions 
centred on the spike times (valued 1 at time of firing; 0 otherwise), and 
convolving these temporally with a Gaussian kernel with σ = 50 ms 
(OF, WW and REM) or 25 ms (SWS). Samples of the smoothed firing 
rates of all cells (‘population activity vectors’) were then computed at 
50-ms intervals. The awake states were further refined by excluding 
vectors which originated from time periods when the rat’s speed was 
below 2.5 cm s−1.

Computing the persistent cohomology of a point cloud is compu-
tationally expensive and may be sensitive to outliers (for example, 
spurious points breaking the topology of the majority of points in the 
point cloud). For this reason, it is common to preprocess the data by 
downsampling and dimension-reducing the point cloud. The same 
preprocessing procedure was used for all datasets in the present study.

First, the data points were downsampled by keeping the 15,000 most 
active population activity vectors (as measured by the mean popula-
tion firing rate). During SWS, this selection criterion had the conse-
quence of automatically discarding population activity vectors during 
down-states, when neural activity is near-silent. As noise is inherently 
more prevalent and cosine distances less reliable in high-dimensional 
spaces (“the curse of dimensionality”)48, dimensionality-reduction 
and a normalization of distances were subsequently performed. The 
reduced point cloud was z-scored and projected to its six first prin-
cipal components, thus reducing noise while keeping much of the 
variance (see Extended Data Fig. 4a). This was supported by the lack 
of grid structure and the clear drop in explained deviance after six 
components (see Extended Data Fig. 4b, c). The explained deviance 
was computed by fitting a GLM model to each component individu-
ally, using the spatial coordinates as covariate, suggesting that the 
higher components are less spatially modulated and possibly better 
described by other (unknown) covariates. Consistent with this, the 
toroidal structure was most clearly detected in the barcodes when 
comparing the ratio of the lifetimes of the two most persistent H1 bars 

versus the third longest-lived H1 bar for the barcodes obtained when 
using different numbers of components in the analysis (see Extended 
Data Fig. 4d). These analyses both indicated that dimensionality reduc-
tion was required to firmly demonstrate the toroidal topology in the 
grid cells. The empirical findings are supported theoretically; see 
‘Theoretical explanation of the six-dimensionality proposed by PCA’ 
in Supplementary Methods.

To further simplify the low-dimensional point cloud, a different 
downsampling technique was introduced, based on a point-cloud den-
sity strategy motivated by a topological denoising technique intro-
duced previously49 and a fuzzy topological representation used in 
UMAP43,50. Parts of the open-source implementation of the latter were 
copied in this computation. This approach consisted of assigning, for 
each point, a neighbourhood strength to its k nearest neighbours, and 
subsequently sampling points that represent the most tight-knit neigh-
bourhoods of the point cloud in an iterative manner. First, we defined 
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sampled. In other words, for each iteration, the sampled point is the 
one with the strongest average membership of the neighbourhoods 
of the remaining points.

To compute the persistent cohomology of the downsampled point 
cloud, the neighbourhood strengths were first computed for the 
reduced point cloud (using k = 800) and its negative logarithm was 
taken, obtaining a distance matrix. This matrix was then given as input 
to the Ripser implementation51,52 of persistent cohomology, returning 
a barcode. In short, the barcode gave an estimate of the topology of 
the fuzzy topological representation of the six principal components 
of the grid-cell population activity. Thus, in essence, the first step of 
UMAP was applied before describing the resulting representation with 
persistent cohomology, instead of using it to project each point of 
the point cloud to a representation of user-specified dimensionality 
for visualization (Extended Data Fig. 3Ad, e). This gives a more direct 
and stable quantification of the global data structure, without having 
to choose an initialization53 or optimize a lower-dimensional repre-
sentation.

Persistent cohomology
Persistent cohomology, a tool in topological data analysis, was used 
to characterize the manifold assumed to underlie the data. This has 
clear ties with persistent homology and the main result (the barcode) is 
identical, thus the two terms are often used interchangeably. Persistent 
cohomology was chosen because the computation is (to our knowl-
edge) faster and is required to obtain cocycle representatives, which 
are necessary to perform decoding (see ‘Cohomological decoding’). 
Persistent (co-)homology has previously been successful in analysing 
neural data, describing the ring topology of head direction cell activ-
ity22–24, the spherical representation of population activity in primary 
visual cortex54, and the activity of place cells55–58.

The general outline of the algorithm is as follows. Each point in the 
cloud is replaced by a ball of infinitesimal radius, and the balls are gradu-
ally expanded in unison. Taking the union of balls at a given radius 
results in a space with holes of different dimensions. The range of radii 
for which each hole is detected is tracked; this is referred to as the ‘life-
time’ of the hole and is represented by the length of a bar. The totality 
of bars is referred to as the barcode.

The software package Ripser51,52 was used for all computations of 
persistent cohomology. Ripser computes the persistent cohomology 
of ‘Vietoris-Rips complexes’ (which approximate the union of balls for 
different radii), constructed based on the input distance matrix and a 
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choice of coefficients (in our case, ℤ47-coefficients), and outputs the 
barcode and cocycle representatives for all bars. The prime 47 was chosen 
as homology and cohomology coincide in this case and as it is unlikely 
that this divides the torsion subgroup of the homology of the space. 
Torsion may indicate, for example, orientability of a manifold and in 
choosing 47 as our prime, we disregard all but 47-torsion. Testing with 
other primes (for example, 43) gave similar results (data not shown) 
and the Betti numbers stayed the same regardless of choice of prime.

To verify that the lifetimes of prominent bars in the barcodes were 
beyond chance, shuffled distributions were generated for the persis-
tence lifetimes in each dimension. In each shuffling, the spike train of 
each cell was shifted independently in time by rolling the firing rate 
arrays a random length between 0 and the length of the session. The 
same preprocessing and persistence analysis were then performed on 
the shifted spike trains as for the unshuffled data. This was performed 
1,000 times, and each time a barcode was obtained. The barcodes were 
concatenated for all shuffles and the maximum lifetime was found for 
each dimension. This lifetime served as a significance criterion for 
the bar lifetimes. It is noted, however, that this is a heuristic and that 
statistics of barcodes are still not well established.

Cohomological decoding
As there are other spaces with similar barcodes as for a torus, the results 
identified by the barcode were further investigated, using the ‘coho-
mological decoding’ procedure introduced previously59 to calculate a 
toroidal parametrization of the point clouds of population activity. This 
assigns to each point corresponding positions on each of the two circular 
features identified by the 1D bars with the longest lifetime, resulting in 
coordinates that further characterize the underlying shape of the data.

Cohomological decoding is motivated by the observation that the 
1D cohomology (with integer coefficients) of a topological space X is 
equivalent to the set of homotopy-equivalent classes of continuous 
maps from X to the circle (S1)60; that is:

Z ≅H X X S( ; ) [ , ].1 1

This subsequently means that for each 1D bar existing at a given 
radius, there exists a corresponding continuous map from the 
Vietoris-Rips complex of that radius to the circle. Thus, we may first use 
persistent cohomology to detect which elements represent meaningful 
(long-lived) features of the data and choose a radius for which these 
features exist. As the vertices of the Vietoris-Rips complex are points 
in the point cloud, the circular values of the corresponding maps at 
the vertices describe circular coordinates of the data.

In the present case, persistent cohomology was first applied to the 
grid-cell population activity and X was identified as the Vietoris-Rips 
complex for which the two longest-lived one-dimensional bars in the 
barcode (representing each of the two circles of the torus) existed. To 
define the desired toroidal coordinates on a domain that was as large 
as possible, we chose the complex given at the scale of the birth plus 
0.99 times the lifetime of the second longest-lived one-dimensional 
bar in the barcode22,59,61. Next, the cocycle representatives (given by the 
persistent cohomology implementation of Ripser51,52) of each of the 
chosen 1D bars defined ℤ47-values for each of the edges in the complex. 
These edge values were then lifted to integer coefficients and subse-
quently smoothed by minimizing the sum over all edges (using the 
scipy implementation ‘lsmr’). The values on the vertices (points) of each 
edge followed from the edge values and gave the circular parametriza-
tions of the point cloud. The product of the two parametrizations thus 
provided a mapping from the neural activity to the two-dimensional 
torus—that is, giving a toroidal coordinatization (decoding) of the data.

As persistent cohomology was computed for a reduced dataset of 
1,200 points and therefore circular parametrizations were obtained 
only for this point cloud, each parametrization was interpolated to 
the population activity from the rest of the session(s). First, the 1,200 

toroidal coordinates were weighted by the normalized (‘z-scored’) firing 
rates of the cells at those time points, obtaining a distribution of the 
coordinates for each grid cell. The decoded toroidal coordinates were 
then computed by finding the mass centre of the summed distribu-
tions, weighted by the population activity vector to be decoded. These 
activity vectors were calculated by first applying a Gaussian smoothing 
kernel of 15-ms standard deviation to delta functions centred on spike 
times, sampling at 10-ms intervals and then z-scoring the activity of each 
cell independently. Time intervals that contained no spikes from any 
cell were subsequently excluded. When decoding was used to assess or 
compare the tuning properties of single cells (for example, comparison 
of toroidal versus spatial description), the coordinates were computed 
using the weighted sum of the distributions of the other cells; that is, 
the contribution of the cell to be assessed or compared was removed. 
When comparing preservation of toroidal tuning across two sessions, 
coordinates were interpolated either using the toroidal parametri-
zation in each session independently (‘Separate’) or using the same 
toroidal parametrization in both sessions (‘Common’).

Toroidal rate map visualization
For visualization, toroidal firing rate maps were calculated in the same 
way as the physical space covariate (see ‘Spatial position and direc-
tion tuning’), first binning the toroidal surface into a square grid of 
7.2° × 7.2° bins and computing the average spike rate in each position 
bin. However, for toroidal maps, it was necessary to address the 60° 
angle between the toroidal axes before smoothing. After binning the 
toroidal coordinates, the rate map was ‘straightened’ by shifting the 
bins along the x axis (‘horizontally’) the length of (y mod 2)/2 bins, 
where y is the vertical enumeration of the given bin. Copies of the rate 
map were then tiled in a three-by-three square (similar to Extended 
Data Fig. 5d), before applying the closing and smoothing operations as 
for the spatial firing rate map. The single toroidal rate map was finally 
recovered by cutting out the centre tile, rotating it 90° and defining 
15° shear angles along both the x and the y axis to correct for the 60° 
offset between them.

Comparison of spatial periodicity
Differences in grid periodicity between OF and WW environments 
were quantified for a given cell by comparing the grid scores in the two 
behavioural conditions. Two alternative methods were used to generate 
the spatial autocorrelograms for this comparison: (1) comparing the 
autocorrelograms for OF and WW directly; and (2) comparing autocor-
relograms for OF and WW after first equalizing the spatial coverage 
between the two conditions.

For method (1), rate maps were calculated as specified in the above 
section ‘Spatial position and direction tuning’, using the same grid 
of 3 × 3-cm bins for both environments. This set of bins spanned the 
entirety of the OF arena and covered most of the WW track apart from 
some small regions at the outer extrema, which were discarded for the 
purpose of this analysis. For each of the two rate maps, the autocor-
relogram was computed and the grid score was calculated.

Method (2) was similar to method (1), except that the cell’s OF rate 
map was converted into a ‘masked OF’ rate map, by removing all bins 
that were unvisited by the rat in the WW session. This effectively equal-
ized the position coverage between the two conditions, and thus 
allowed for a more valid comparison.

Toroidal versus spatial description
The explanatory significance of the toroidal description was evaluated 
by comparing statistical measures of how well the toroidal coordinates 
explained neural activity on the torus and in physical space. For a fair 
comparison, it was important to avoid overfitting, which might occur if 
a toroidal parametrization of a point cloud is used to describe that same 
set of data points. Two precautions were taken to avoid such overfit-
ting: first, the data were decoded using the toroidal parametrization 



from a different condition (an OF session for a WW recording and a 
WW session for an OF recording), and second, the cell for which the 
statistical measurement was made was omitted from the decoding.

The comparison of toroidal and environmental representations also 
accounted for tracking error in the physical position estimate, which 
mainly resulted from the approximately 4 cm vertical offset of the 
tracking device above the rat’s head. This causes a discrepancy when 
the angle α between the animal’s zenith and the axis of gravitation is 
different from 0°, measured as 4 tan(α) cm. The mean discrepancy in 
the recorded position data was measured to 1.5 cm. To account for this 
error of the position estimate, proportional Gaussian noise was added 
to the toroidal coordinates, using a standard deviation of 1.5 cm/Ω, 
where Ω denotes the grid spacing of the particular grid-cell module, 
estimated from the mean period of the fitted cosine waves of the toroi-
dal coordinates in the open field (see ‘Toroidal alignment’).

Information content
The information content (I) was calculated as previously described42, to 
quantify and compare the amount of information carried by single-cell 
activity about the location on the torus and physical space per spike. 
Both covariates were binned in a M = 15 × 15 grid of square bins. For 
each bin  j, the average firing rate fj (given in spikes per second), and  
the occupancy ratio, pj, were computed. The information content for 
each grid cell was then given as:
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where f̄  is the mean firing rate of the cell across the entire session.
Note that although the rate maps for physical space have multiple 

firing fields, whereas the toroidal rate maps have single firing fields, 
we expect the spatial information to be comparable, as the meas-
ure primarily depends on the ratio of bins with high firing activity.  
This number should be comparable as the firing field size (in bins) will 
be inversely related to the number of fields in the rate map, assum-
ing that the discretization of the map captures the relevant firing rate 
variations. For example, given a similar binning of space, a larger OF 
environment will include more fields, but the number of bins per field 
will decrease correspondingly. The binning used should be sufficient 
to resolve the smallest fields, as the same discretization was used in 
classifying the grid cells in the recorded population.

Deviance explained
Deviance explained was computed to measure how well a Poisson GLM 
model fitted to the spike count was at representing the data, using 
either the toroidal coordinates or the tracked position as regressors.  
A similar set-up was used to that of a previous study62, with a smooth-
ness prior for the GLM to avoid overfitting.

Both the toroidal and spatial coordinates were binned into a 15 × 15 
grid of bins, and GLM design matrices were built with entries Xi(t) = 1  
if the covariate at time t fell in the i-th bin and Xi(t) = 0 otherwise.

The Poisson probability of recording k spikes in time bin t is:

P k μ t β μ t
μ t

k
( | ( ), ) = exp(− ( ))

( )
!

,
k

where ( )μ t β X t( ) = exp ∑ ( )i i i  is the expected firing rate in time bin t.  
The parameters β of the Poisson GLM were optimized for each covari-
ate by minimizing the cost function:
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where N is the set of neighbour pairs. The first term is the negative 
log-likelihood of the spike count in the given time bin, whereas the second 

term puts a penalty on large differences in neighbouring parameters, enforc-
ing smoothness in the covariate response of the predicted spike count.

The parameters, β, were initialized to zero and then modified to 
minimize the loss function by first running two iterations of gradient 
descent, before optimizing using the ‘l-bfgs-b’-algorithm (as imple-
mented in the ‘scipy.optimize’-module) with ‘gtol’=1e-5 as the cut-off 
threshold, and finally running two more iterations of gradient descent. 
A three-fold cross validation procedure was used, repeatedly fitting the 
model to two-thirds of the data and testing on the held-out last third.

The smoothness hyperparameter γ was optimized a priori on each 
grid-cell module based on the summed likelihood, testing γ ∈ (1, √10, 
10, √1,000), and found to be either 1 or √10 in all cases.

Similarly, after fitting a null model (using only the intercept term) and 
the saturated model (perfectly fitting each spike count), the deviance 
explained could be computed as:

1 −
ll − ll

ll − ll
,

s p

s 0

where llp, ll0 and lls denote the cross-validated log likelihood of the fit-
ted model, the null model and the saturated model, respectively. This 
provides a normalized comparison describing the difference between 
the fitted model and the idealized model.

Toroidal alignment
To infer a geometric interpretation of the tori, as characterized via 
the cohomological decoding, and compare the toroidal parametriza-
tions across modules and conditions, two cosine waves of the form 
cos(ωt + k) were fitted to the OF mappings of the decoded circular 
coordinates (Extended Data Fig. 5a), where t is the centre 1002-bins of 
a 540° × 540°-valued 1502-bin grid rotated θ degrees. The parameters 
(ω, k, θ) were optimized by minimizing the square difference between 
the cosine waves and the cosine of the mean of the circular coordinates 
in 1002 bins of the physical environment (smoothed using a Gaussian 
kernel with 1-bin standard deviation). Estimates were first obtained 
by finding the minimum when testing all combinations in the follow-
ing intervals, each discretized in 10 steps: ω ∈ [1,6], ϕ ∈ [0, 360) and  
θ ∈ [0,180). The parameters of the cosine waves were further optimized 
using the ‘slsqp’-minimization algorithm (as implemented in the ‘scipy.
optimize’-module using default hyperparameters). The period of each 
cosine wave was computed as 1.5 m/ω, giving a spatial scale estimate of 
the grid-cell modules.

As circular coordinates have arbitrary origin and orientation (that 
is, clockwise or counterclockwise evolution) we needed to realign 
the directions of the circular coordinates to compare these across 
modules and sessions (see Extended Data Fig. 4b). The clockwise 
orientation of each circular coordinate was first determined by not-
ing whether (ωt + k) or 360° − (ωt + k) best fit the spatial mapping of 
the circular means of the toroidal coordinates, and subsequently 
reoriented to obtain the same orientation for both coordinates.  
The coordinate for which cos(θ) was largest (intuitively, the ‘x axis’) 
was then defined as the first coordinate (denoted ϕ1, with parameters 
(ω1, k1, θ1)) and the other as the second coordinate (ϕ2). Although  
(ϕ1, ϕ2) fully describe the toroidal location, the hexagonal torus 
allows for three axes, and the two axes obtained are thus oriented at 
either 60° or 120° relative to each other (see Extended Data Fig. 5b).  
The difference in directions was given by θ1 − θ2 and if this difference 
was greater than 90°, ϕ2 was replaced with ϕ2 + 60° ⋅ ϕ1. Finally, the 
origin of the coordinates was aligned to a fixed reference, by subtract-
ing the mean angular difference between the decoded coordinates 
and the corresponding coordinates obtained when using the toroidal 
parametrization of the reference OF session.

For visualization (Extended Data Fig. 5), it was furthermore neces-
sary, in some cases, to rotate both vectors of the rhombi 30 degrees 
depending on whether one of the axes was directed outside of the box.
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Preservation of toroidal tuning
Centre-to-centre distance and Pearson correlation were computed 
between toroidal tuning maps of different sessions to measure the 
degree of preservation between the toroidal descriptions.

First, the preferred toroidal firing location for each cell was com-
puted as the centre of mass of the toroidal firing distribution:
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where yi denotes the mean spike count of the given cell in the i-th bin 
whose binned toroidal coordinates are given by θi. The distance between 
mass centres found in two sessions (‘S1’ and “S2”) was then defined as:

d T T T T= arctan 2(sin( − ), cos( − ))S S S S
c c c c 2

2 1 2 1

where || ⋅ ||2 refers to the L2-norm.
Pearson correlation between two tuning maps was computed by 

flattening the smoothed 2D rate maps to 1D arrays and calculating 
the correlation coefficient, r, using the ‘pearsonr’-function given in 
the ‘scipy.stats’-library.

To determine how much the preservation of the toroidal representa-
tions across two sessions (measured with Pearson correlation and peak 
distance) differed from a random distribution, the indices of the cells 
in one of the sessions were randomly re-ordered before computing 
correlation and distance for the pair of conditions. This process was 
repeated 1,000 times, and the P value was calculated from the rank of 
the original r value or distance with respect to the shuffled distribution.

Classification of grid cells
Temporal autocorrelograms were computed, for each cell, by calcu-
lating a histogram of the temporal lags between every spike and all 
surrounding spikes within a 200 ms window, using 1 ms bins. The his-
togram was then divided by the value of the zero-lag bin, which was 
subsequently set to zero. The autocorrelogram was smoothed using a 
gaussian kernel with smoothing window 4 ms. Considering the autocor-
relograms of all modules during OF foraging (day 2 for R1–3) as a point 
cloud, the cosine distances between all points were calculated, and 
hence each point’s 80 nearest neighbours were found. This defined a 
graph in which each point described a vertex and the neighbour pairs 
gave rise to edges. A density estimate was then calculated as the expo-
nential of the negative distances summed over each neighbour for each 
point. The graph and the density estimate were given as the input to 
the Gudhi implementation63 of ToMATo64. ToMATo uses a hill-climbing 
procedure to find modes of the density function and uses persistence 
to determine stable clusters. In the present case, the algorithm finds 
three long-lived clusters.

Minimum number of cells for torus detection
To address the question of how many cells are minimally needed to 
expect to see toroidal structure, random samples of n = 10, 20, ..., 140 
cells were taken from R2 (n = 149 cells) during OF foraging, and the 
same topological analysis was repeated as for the whole population. 
The cells were resampled 1,000 times for each number of cells in the 
subsample. To determine whether toroidal structure was detected, 
a heuristic was introduced based on the circular parameterization 
given by the two most persistent 1D bars in the barcode mapped onto 
physical space. An estimate of the resulting planar representation of 
the torus was obtained by fitting planar cosine waves to each mapping 
(see ‘Toroidal alignment’). For the analysis to be determined ‘successful’ 
in detecting toroidal structure, we required: (i) the mean value of the 
least-squares fitting (across bins of the mapping) to be less than 0.25; 
(ii) the angle of the rhombus to be close to 60° (between 50° and 70°); 
and (iii) the side lengths to be within 25% of each other.

Toroidal peak detection
The number of peaks per toroidal rate map was detected to assert the 
number of grid cells whose toroidal rate map portrayed single fields. 
First, 1,000 points were sampled from the toroidal distribution given 
by the mean activity of each cell in 150 × 150 bins of the stacked toroidal 
surface (that is, as described in ‘Toroidal rate map visualization’, each 
50 × 50-binned toroidal rate map is first ‘straightened’ and subsequently 
stacked in 3 × 3 to address the toroidal boundaries) and then spatially 
smoothed using a Gaussian kernel with smoothing widths 0, 1, 2, …, 10 
bins with mode set to ‘constant’ in the ‘scipy.gaussian_filter’ function. 
Next, the points were clustered by computing a density estimate, using 
the Euclidean distance, and defining neighbours as points closer than 
5 bins. Cluster labels were iteratively assigned to each point and all its 
neighbours in a downhill manner, instantiating a new cluster identity 
if the point was not already labelled. Finally, the centroids for each 
cluster were computed and counted as a peak depending on whether 
its position fell within the centre 50 × 50 bins of the stacked rate maps.

Simulated CAN models
To confirm the expected outcomes of topological analyses of grid cell 
CAN models, grid cells were simulated using two different, noiseless 
CAN models (Extended Data Fig. 7).

First, a 56 × 44 grid cell network was simulated based on the CAN 
model proposed previously9, but using solely lateral inhibition (for 
details see ref. 11) in the connectivity matrix, W. The animal movement 
was given as the first 1,000 s of the recorded trajectory of rat ‘R’ dur-
ing OF session, originally sampled at 10 ms, and interpolated to 2-ms 
time steps. The speed, v(t), and head direction θ(t) of the animal was 
calculated as the (unsmoothed) displacement in position for every 
time step. The activity, s, was updated as:
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where (…)+ is the Heaviside function and θ~ is the population vector of 
preferred head directions. The following parameters were used: I = 1, 
α = 0.15, l = 2, W0 = −0.01, R = 20 and τ = 10, and let the activity pattern 
stabilize by first initializing to random and performing 2,000 updates, 
disregarding animal movement. For computational reasons, the activ-
ity was set to 0 if si < 0.0001. The simulation was subsequently down-
sampled keeping only every 5th time frame.

Next, a 20 × 20 grid-cell network was simulated, for a synthetically 
generated OF trajectory (‘random walk’), based on the twisted torus 
model formulated in a previous study10. The parameter values and the 
code for computing both the grid cell network (choosing a single grid 
scale by defining the parameter ‘grid_gain’ = 0.04) and the random 
navigation (using 5,000 time steps) were given by the implementation 
by Santos Pata65.

Idealized torus models
To compare the results of both the original and simulated grid cell 
networks with point clouds where the topology is known, a priori, 
to be toroidal, points were sampled from a square and a hexagonal 
torus. First, a 50 × 50 (angle) mesh grid (θ1, θ2) was created in the square 
[0,2π)×[0,2π) and slight Gaussian noise (ϵ = 0.1⋅N(0,1)) was added to 
each angle. The square torus was then constructed via the 4D Clifford 
torus parametrization: (cos(θ1), sin(θ1), cos(θ2), sin(θ2)). The hexago-
nal torus was constructed using the 6D embedding: (cos(θ1), sin(θ1), 
cos(a1θ1 + θ2), sin(a1θ1 + θ2), cos(a2θ1 + θ2), sin(a2θ1 + θ2)), where a1=1/√3 
and a2 = −1/√3.

Histology and recording locations
Rats were given an overdose of sodium pentobarbital and were 
perfused intracardially with saline followed by 4% formaldehyde.  



The extracted brains were stored in formaldehyde and a cryostat was 
used to cut 30-µm sagittal sections, which were then Nissl-stained 
with cresyl violet. The probe shank traces were identified in photomi-
crographs, and a map of the probe shank was aligned to the histology 
by using two reference points that had known locations in both refer-
ence frames: (1) the tip of the probe shank; and (2) the intersection of 
the shank with the brain surface. In all cases, the shank traces were 
near-parallel to the cutting plane, therefore it was deemed sufficient to 
perform a flat 2D alignment in a single section where most of the shank 
trace was visible. The aligned shank map was then used to calculate the 
anatomical locations of individual electrodes (Extended Data Fig. 1).

Data analysis and statistics
Data analyses were performed with custom-written scripts in Python 
and MATLAB. Open-source Python packages used were: umap (version 
0.3.10), ripser (0.4.1), numba (0.48.0), scipy (1.4.1), numpy (1.18.1), 
scikit-learn (0.22.1), matplotlib (3.1.3), h5py (2.10.0) and gudhi 
(3.4.1.post1). Samples included all available cells that matched the 
classification criteria for the relevant cell type. Power analysis was not 
used to determine sample sizes. The study did not involve any experi-
mental subject groups; therefore, random allocation and experimenter 
blinding did not apply and were not performed. All statistical tests 
were one-sided.

The most intensive computations were performed on resources 
provided by the NTNU IDUN/EPIC computing cluster66.

Additional discussion
The demonstration that populations of grid cells operate on a toroidal 
manifold, which is preserved across environments and behavioural 
states, confirms a central prediction of CAN models. The present obser-
vations provide the first—to our knowledge—population-level visualiza-
tion of a two-dimensional CAN manifold, though there is accumulating 
evidence for one-dimensional CANs in a number of neural systems. The 
most powerful support for the latter has been obtained in fruit flies, 
in which CAN-like dynamics can be visualized in a ring of serially con-
nected orientation-tuned cells of the central complex67–69. In mammals, 
analysis of data from dozens of simultaneously recorded head direction 
cells has shown that population activity in these cells faithfully traverses 
a conceptual ring22–24, in accordance with ring-attractor models17–19. 
Dynamics along low-dimensional manifolds with line, ring, or sheet 
topologies is also thought to underlie a wide range of other mamma-
lian brain functions that operate on continuous scales, spanning from 
visual orientation tuning14 to neural operations underlying place-cell 
formation70–72, as well as motor control73, decision making and action 
selection74–76, and certain forms of memory39,77–80. The present analyses 
provide a visualization of 2D CAN dynamics in pure grid cells within a 
module and, together with the previous work, point to a widespread 
implementation of CAN dynamics in the brain. The existence of CAN 
structure to constrain activity to low-dimensional manifolds does not 
preclude additional mechanisms for pattern formation, however. Grid 
cell patterns may emerge also by feedforward mechanisms12,38,81–86. 
Such mechanisms may operate in parallel with recurrent networks87 
and may even be the primary mechanism for grid-like firing at early 
stages of development, before the full maturation of recurrent con-
nectivity11,88–90.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
The datasets generated during the current study are available at https://
figshare.com/articles/dataset/Toroidal_topology_of_population_activ-
ity_in_grid_cells/16764508. Source data are provided with this paper.

Code availability
Code for reproducing the analyses in this article is available at https://
figshare.com/articles/dataset/Toroidal_topology_of_population_activ-
ity_in_grid_cells/16764508.
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Extended Data Fig. 1 | Nissl-stained sagittal brain sections showing 
recording locations for rats Q, R and S. Red arrows indicate the dorsoventral 
range of the probe’s active recording sites (corresponding to the yellow stripe 
in the inset). Stippled lines indicate borders between brain regions (MEC, 
medial entorhinal cortex; PaS, parasubiculum, PrS, presubiculum; PoR, 
postrhinal cortex). Layers are indicated for MEC (MECII, MECIII). Animal name, 
hemisphere (L, left; R, right) and shank number (for Rat 'S') are indicated in text 
above each section. Insets show, for each section, the number of grid cells 
recorded at each depth on the probe shank (histogram bin sizes 100 µm for 
Rats 'Q' and 'R', 75 µm for Rat 'S'; total numbers of cells are given in Extended 
Data Fig. 2g). Only the implanted portion of the probe shank is shown. Counts 

are colour-coded according to module identity. Module R1 is subdivided into 
the two UMAP clusters R1a and R1b (as shown in Extended Data Fig. 2), shown 
here as two stacked histograms. The yellow stripe on the probe shank indicates 
the range of active recording sites. The indicated locations of units are subject 
to measurement error, because the anatomical registration of probe shanks 
can only be approximately estimated, and furthermore because units may be 
detected on electrodes up to 50 µm away91. Note that several modules spanned 
across hemispheres (see Extended Data Fig. 2g). The cell counts shown for Rat 
'R' are from Recording Day 1. The same set of recording sites was used for both 
recording sessions, and therefore the anatomical distributions of recorded 
cells were similar between the two sessions.
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Extended Data Fig. 2 | Grid module identification and properties.  
a–d, Clustering of grid modules (a, Rat 'Q'; b, Rat 'R', day 1; c, Rat 'R', day 2; d, Rat 
'S'). For all experiments, coarse spatial autocorrelograms were first calculated 
from all cells’ OF firing rate maps (n cells as shown in g). UMAP was then used to 
reduce the M-dimensional autocorrelograms (where M = 668 spatial bins)  
to a two-dimensional point cloud, where each point represented the 
autocorrelogram of a single cell, and distances between points represented the 
similarity between autocorrelograms. Left scatterplot in a–d: 2D point cloud, 
with points colour-coded according to cluster ID. Clusters were identified by 
applying the density-based clustering algorithm DBSCAN to the 2D point 
cloud. In every recording, the largest cluster (in grey, labelled “main”) 
comprised mainly non-grid cells, and the remaining smaller clusters (coloured) 
represented different modules of grid cells. The black crosses (“noise”) are 
identified as outlier data points. The well-isolated clusters formed by grid cells 
support the notion that these cells are a distinct functional class, in contrast to 
the claim that grid-like characteristics are expressed by MEC cells to different 
extents92. Right pair of scatterplots in a–d: Combinations of three grid 
parameters (grid score, grid spacing and grid orientation) for co-recorded cells 
from each recording. Each dot corresponds to one autocorrelogram (one cell). 
Dots are coloured by cluster ID as in a. e, Comparison of grid-cell spatial 
periodicity in the open-field arena (OF) and on the wagon-wheel track (WW). 
Top: firing rate map and corresponding autocorrelogram for an example grid 
cell in OF (left) and WW (right). For the purposes of this comparison, the same 
position bins were applied to both environments, resulting in cropping of the 

outermost parts of WW. Colour coding as indicated by scale bar; peak rates 16.1 
Hz (OF) and 15.8 Hz (WW); range of autocorrelation values: −0.56 to 0.83 and 
−0.58 to 0.71, respectively. Note the more irregular appearance of the 
autocorrelogram for WW. Bottom: scatter plots showing grid scores of all grid 
cells in OF (x axis) and WW ( y axis). Colours refer to the module assignment in  
a. Note the bias for points to lie in the lower-right quadrant, reflecting generally 
higher grid scores in OF than in WW. f, As for e, but controlling for differences in 
behavioural coverage of OF and WW environments. It is possible that the lower 
WW grid scores in e were a product of sparser behavioural coverage of the WW 
environment (animals visited only positions on the track). To control for this 
possibility, we created “masked OF” (MOF) rate maps by removing spatial bins 
from the original OF rate map which were not visited by the animal in WW. In all 
modules, grid scores in the “masked” OF condition were higher than in WW 
(grid score mean ± S.E.M. across all cells: OF: 0.677 ± 0.017, WW: 0.360 ± 0.017, 
N = 618 cells, P values for the 6 modules ranged from 1.26 × 10−14 to 0.03, 
Z-values ranged from 2.12 to 7.71, Wilcoxon signed-rank test). Top row shows 
the same example cell as in e after leaving the same subset of position bins in OF 
as in WW. Bottom row shows comparison of grid scores for MOF and WW. As in  
e, grid scores are lower for WW, indicating that grid periodicity is reduced in 
WW even when differences in spatial coverage are accounted for. g, Table 
showing total number of cells and number of pure grid cells and conjunctive 
grid × direction cells. h, Number of cells (as in g) broken down on recording 
sessions, with session lengths in minutes indicated for open field (OF), wagon 
wheel (WW), slow-wave sleep (SWS) and REM sleep.



1 s

1

149

C
el

l #

Spike trains of all grid cells in module
(N = 149 cells)

1 s

N-dimensional
smoothed �ring rates

1

149

C
el

l #

6-dimensional
linear embedding

1 s

Fuzzy topological
representation

Bin, smooth,
normalize

Downsample,
PCA

UMA

P

Aa

B C

Ab Ad

Ae(i)
Ae(ii)Ae(iii)

Ac

3-dimensional
nonlinear embedding

1 s

Barcode

Cohomological decoding

Persistent cohomology

1 s

Periodic emtbeddings

0°

360°

�

����������� �����������

����������� �����������

Open
�eld

arena

��

��

Radius

2 � radius

Extended Data Fig. 3 | Preprocessing steps for visualization and detection 
of toroidal topology. A, Flow diagram showing method for extracting 
low-dimensional embeddings of neural activity. The animal foraged in an OF 
arena while spikes from 149 grid cells shown in Fig. 1a were recorded (Aa; cells 
are ordered arbitrarily). A 5-second example behavioural trajectory is 
highlighted, with colour indicating elapsed time. The spike trains were binned 
in time (N bins) and then smoothed and normalized, yielding a matrix of 
N-dimensional population activity vectors (Ab). After temporally 
downsampling and z-scoring the neural activity, PCA was applied to the 
N-dimensional neural activity, yielding a six-dimensional linear embedding 
(Ac). This preserved the grid structure in the activity (Extended Data Fig. 4b, c), 
while mitigating drawbacks associated with high-dimensional spaces (the 
“curse of dimensionality”)48. The six principal components were then passed 
through a second, nonlinear, dimensionality reduction step by UMAP, which 
generated a three-dimensional nonlinear embedding (Ae(i)) allowing the 
toroidal structure to be visualized. UMAP consists of two steps: first, a fuzzy 
topological graph representation is constructed (i.e. a “Uniform Manifold 
Approximation” - UMA) using a distance metric in the high-dimensional space 
(Ad); second, to obtain the lower-dimensional projection (P), the coordinates 
of corresponding points in fewer dimensions are optimized to have a similar 
fuzzy topological representation. In the persistence analysis, we applied 
persistent cohomology to the fuzzy topological representation of the 
high-dimensional point cloud (Ae(ii)) and subsequently used cohomological 

decoding to obtain a two-dimensional projection of the original N-dimensional 
point cloud (Ae(iii); right, showing a 5-second snippet; left, embedded in 3D, 
points are coloured by each angular coordinate, whose direction is indicated 
by a red arrow). B, Cohomology can help differentiate topological spaces such 
as the union of three discs (upper left), a circle (upper right), a sphere (lower 
left) and a torus (lower right) by counting the number of topological holes (𝛽) in 
different dimensions. A disc has a 0D hole (a connected component); a circle 
additionally has a 1D hole; a (hollow) sphere is a connected component and has 
a 2D hole (a cavity); a torus is a connected component with two 1D holes 
(illustrated with red circles) and one 2D hole (a cavity in the interior of the 
torus). C, Persistent cohomology tracks the lifetime of topological holes in 
spaces associated with point clouds. Top: The radius of balls centred at each 
data point in the point cloud is continuously increased (left to right). The union 
of the balls forms a space with possible holes. The lifetime of a hole during 
expansion of the radius is defined as the radial interval from when the hole first 
appears until it is filled in. Note the short lifetime of the hole marked with a red 
circle and the long lifetime of the hole indicated with a yellow circle. Second 
and third row: The lifetime of each hole of dimension zero (H0) and one (H1) in 
the example in the top row is indicated by the length of a bar (in green) in the 
barcode diagram. Two 1D holes are detected: the first bar, corresponding to the 
red hole in the top row, is short and regarded as noise, and the second, 
corresponding to the yellow hole, is substantially longer and captures the 
prominent topology of the point cloud.
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Extended Data Fig. 4 | Analysis of principal components, number of cells 
and number of toroidal peaks. a, Variance explained by the first 15 principal 
components (PCs) after applying PCA to the n-dimensional neural activity, 
shown for each module. Note that during OF, a particularly large amount of 
variance is explained by the first 6 PCs, followed by a sharp drop in the 7th PC, in 
all modules. A drop in variance explained is also seen after the 6th PC in REM and 
SWS. b, The first six PCs contain a grid-like representation at the population 
level. Each panel shows the mean value of one PC as a function of the animal’s 
position in the OF. PC value is colour-coded as indicated by the scale bar. The 8 
first PCs are arranged in descending order of explained variance (columns, 
from left to right), and are shown for each module (in rows). Note the presence 
of grid-like structure, which is particularly strong in the first six PCs, 
irrespective of the grid spacing. These six grid-like PCs correspond to the set 
with the highest explained variance in a. z-scored PC values are indicated by the 
scale bar (see Supplementary Methods for theoretical explanation of the 
six-dimensionality). c, Line plots showing the goodness-of-fit of a Gaussian 
GLM model based on the position in the spatial environment (OF) fitted to each 
principal component (components as in a). This is measured (as in Fig. 2d) as 
the explained deviance of the model showing that the six first components are 
better explained by space than the subsequent components for each module. 

d, Line plots showing the lifetime of the two longest-lived H1-bars (longest-lived 
– “1st”, black; second longest-lived – “2nd”, blue) divided by the lifetime of the 
third longest-lived H1-bar as a function of number of principal components kept 
in the persistence analysis of R1 day 1 OF (n = 93 cells). This heuristic measures 
how clearly the two longest-lived H1-bars (expected to be long for a torus) 
separates from the third (expected to be short), thus indicating how clearly the 
barcode displays toroidal topology. This is clearly the case when using 6 
principal components in this dataset. e, The percentage of subsamples of R2 
(resampled randomly 1,000 times per number of cells; total n = 149 cells) for 
which toroidal structure was detected in the parameterization given by the two 
most persistent 1D bars in the barcode (as in Extended Data Fig. 5). Note that 
approximately 60 cells were needed for the probability of detecting toroidal 
structure exceed 50%. f, Effect of varying spatial smoothing on the number of 
peaks in toroidal rate maps. The y axis displays the percentage of single-peaked 
(black) and multi-peaked (blue) toroidal rate maps of all grid cells (n = 2,727 
cells) pooled across modules and behaviour conditions. The vertical dashed 
line marks the smoothing width used in Extended Data Fig. 10, and the 
horizontal dashed line marks 100%. Note that cells with single peaks quickly 
describe the majority of the pooled cells.



Extended Data Fig. 5 | Mapping of decoded circular coordinates onto the 
open field allows geometrical interpretation of toroidal structure. a, Top 
row: Toroidal coordinates given by cohomological decoding from activity of 
grid module R2 during OF foraging, mapped onto the recording box. In each 
plot, colour indicates the mean value of the cosine of each of the two circular 
coordinates. The mappings of both coordinates show 2D striped patterns, with 
similar periods but distinct angles. Bottom row: A cosine wave is fitted to each 
coordinate to obtain the direction of the toroidal axes. The period and angle of 
the cosine wave in the plane may be represented by spatial vectors, v and  
w, with corresponding length and orientation. Note the clear transversality of 
the two circles, expressed in the directions of the two vectors, further 
confirming the toroidal identification of the data. b, The periods and angles of 
the cosine waves in a reflect the scale and orientation of the grid module. 
Taking the origin of the vectors in a to be alike, we see that the vectors span a 
parallelogram with approximately equal side lengths (0.67m and 0.72m) and an 
angle of 60 degrees, suggesting a rhomboidal tile representing the toroidal 
structure (top left). When repeated across the environment, the tile depicts the 
hexagonal grid pattern of the grid-cell module, confirming that the product of 
the two decoded circles defines a hexagonal (“twisted”) torus. As the 
orientation of the circular coordinates is arbitrary, the directions of the axes 
may be any of the following: reversely oriented (blue arrows), a different 
60-degree pair of axes (green), or have a relative angle of 120 degrees (yellow). 
c, Rhombi of each module for each OF session (n cells as in Extended Data Fig. 2g), 

given by the cosine wave fitted to the toroidal coordinates (as in b). The toroidal 
parametrizations were obtained independently in different behavioural 
conditions (colour-coded), then used to decode the module’s activity during 
OF foraging, and subsequently mapped as a function of the rat’s position in the 
environment (see f). Positions of downsampled spikes from example cells of 
each module are shown in greyscale to illustrate grid scale and orientation. The 
consistent angle and side lengths suggest the geometry of the rhombus is 
retained across brain states and environments, with a constant scale 
relationship between modules. d, Mean value of a single neuron in rhomboidal 
coordinates displays a single bump (as in Fig. 2a), which, when repeated and 
arranged to tesselate a 2D surface, reveals a grid-like pattern in the activity of 
the grid cell, akin to its spatial firing. e, Table of side lengths and angles of the 
cosine waves that form the rhombi in c, shown for each grid module and each 
condition (n cells as in Extended Data Fig. 2g). f, Visualization of the 
cohomological decoding of toroidal coordinates as a function of physical 
space (one visualization for each grid module during each condition, with the 
toroidal parametrizations aligned to the same axes before creating the rate 
maps; n cells as in Extended Data Fig. 2g). All barcodes which indicated toroidal 
structure exhibited periodic stripes in the OF, with phase and orientation 
corresponding to the two-dimensional periodicity of the grid pattern of the 
respective module. SWS* refers to the decoding when considering only 
“bursty” (B) cells of R1 as given by the correlation clustering method described 
in Fig 4b.
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Extended Data Fig. 6 | Barcodes and toroidal tuning statistics for grid 
modules or recording sessions not included in Figs. 2–4. Data are shown for 
six grid-cell modules: R1, R3, Q1, Q2, S1 and R2 (n cells as in Extended Data Fig. 
2g). Toroidal structure is clearly present across environments and behavioural 
states. Aa–Ad, Barcode diagrams (as in Fig 1e, f) showing the results of the 
persistent cohomology analysis on open-field (OF), wagon-wheel track (WW) 
or sleep (REM or SWS) data. Ba–Bc, Preservation of toroidal field centres 
between conditions: OF vs WW (1), OF vs REM (2) OF vs SWS (3). Top row in each 
panel: Distribution of grid cells’ receptive field centres on the inferred torus for 
OF and WW as well as sleep states, similar to Fig 2e. Each dot signifies the field 
centre of an individual grid cell. Grey lines connect field centres of the same cell 
across conditions. Note the proximity of red-black pairs (after separate 
alignment for the two recording sessions of each panel). Middle and bottom 
rows: Cumulative distributions showing stability of grid cells’ toroidal tuning 

between brain states, as in Fig. 2f, g. Distributions show peak field distance 
(middle) and Pearson correlation of pairs of toroidal rate maps (bottom). 
Labelling as in Fig. 2e–g. C, Top: Histograms of the information content carried 
by individual cells’ activity about position on the inferred torus during REM 
(left) and SWS (right). Counts (fractions of the cell sample) are shown as a 
function of information content (in bins of 0.28 bits/spike) for all grid modules 
(colour-coded). The vertical dashed line (close to zero) shows mean 
information content for shuffled distributions (n = 1,000 shuffles). The 
majority of cells have a higher information content. Bottom: Explained 
deviance of a GLM model fitted to the spike count with toroidal coordinates 
during REM (left) and SWS (right) as regressor. Distributions show counts 
(fractions of the cell sample) as a function of explained deviance, in bins of 
0.035, for all grid modules. Values larger than 0 indicate that the fitted model 
explains the data better than a null model that assumes a constant firing rate.



Extended Data Fig. 7 | Barcodes and decoding of simulated firing activity 
for two grid-cell CAN models (with no noise), and for two point clouds 
randomly sampled on a hexagonal and a square torus. a, Persistent 
cohomology analysis of a simulated grid-cell network based on the CAN model 
from Couey et al (2013)11 during OF foraging. Left: Colour-coded firing rates for 
a single time frame of the 56 × 44 grid cells, shown at their respective positions 
on the neural sheet. Middle: Barcode of the simulated data. Arrows point to one 
0D, two 1D and one 2D bar with long lifetimes, indicating toroidal structure. 
Right: Each coordinate of the toroidal parametrization of the two longest lived 
1D features is mapped onto the spatial trajectory, colour-coded by its cosine 
value (as in Extended Data Fig. 5a, f). The resulting striped patterns of the two 
maps are oriented approximately 60 degrees relative to each other, as 
expected from a hexagonal torus network structure (see d). b, Analysis of a 
random sample of 100 grid cells (of a total of 400 cells) of a simulated grid cell 
network, using the twisted torus CAN model formulated by Guanella et al 
(2007)10. Left: Firing rates of the cells in the network at a single time frame. The 
model generates a single bump of activity based on both inhibitory and 

excitatory, asymmetric connections representing a twisted torus. Barcode 
(middle) and cohomological decoding of toroidal position (right) are shown as 
in a. The barcode shows four prominent bars: one 0D bar, two 1D bars and one 
2D bar, similar to that of a torus. Note that the pair of stripes in toroidal 
coordinates are oriented 60 degrees relative to each other. c, d, To verify the 
expected barcodes and decoding of a torus and compare with both real and 
synthetic grid cell data, we performed the same topological analysis on point 
clouds sampled from two idealized toroidal parametrizations (n = 2,500 
points): a 4D description of a square torus (c) and a 6D embedding of a 
hexagonal torus (d). Left: Representing the firing of a cell as a Gaussian 
function centred at a single toroidal coordinate on the toroidal sheet results in 
a square (c) and hexagonal (d) firing pattern, when arranged to tesselate a 2D 
surface. Middle: The expected barcode of a torus (one 0D, two 1D, and one 2D 
bar clearly longer than the other bars) is seen in both cases. Right: each 
sampled angle is coloured according to the decoded toroidal coordinates. 
Note the difference in the relative angle of the pair of stripes between the 
square and the hexagonal torus.
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Extended Data Fig. 8 | Subpopulations of grid cells with different  
temporal spiking statistics have different degrees of toroidal selectivity.  
a, Geometry of grid-cell pattern of all six modules with classes of grid cells (B, 
bursty; T, theta-modulated; N, non-bursty; as defined in Fig. 4). Each plot shows 
the locations of the innermost six peaks of the spatial autocorrelogram for 
every grid cell in one module. Each dot indicates the position of one peak from 
one cell (total of 6 dots per cell); dots are coloured by the cell’s class. The grey 
crosshair indicates the centre of the autocorrelogram. b, Correlation matrix 
showing pairwise correlation of firing rates for all grid cells belonging to S1 
(left; n = 73 cells) and R1 (right – same data as for autocorrelogram distance 
matrix in Fig. 4b; n = 111 cells). Correlation is colour-coded according to the 
scale bar, with minimum and maximum defined as the 1st and 99th percentile, 
respectively, of the pairwise correlation distribution for each module. Rows 
and column (cells) are ordered according to class, as assigned by the clustering 
analysis shown in Fig. 4. Each cluster displays strong inner correlation structure 
for both modules during SWS. Cluster boundaries are indicated on the x axis of 
the correlation matrix. c, Summary of pairwise correlations of SWS activity for 
grid cells in modules R1 and S1, shown according to cell class. In each matrix 
plot, rows and columns indicate cell classes, and each element represents all 
pairs of grid cells from the classes corresponding to the row and column. 
Matrix elements are colour-coded to represent (top) the median of the spike 
train Pearson correlation r value across all cell pairs, (middle) Spearman rank 
correlation between cell pairs’ grid (toroidal) phase offsets and their spike train 
Pearson correlation r values, (bottom) same as middle, but for head-direction 
phase instead of grid phase. Number of cell pairs were as follows: module R1, 

B-B 2346, B-T 6348, B-N 1932, T-T 4186, T-N 2576, N-N 378; module S1 B-B 378, B-T 
1680, B-N 1456, T-T 1770, T-N 3120, N-N 1326. Note that, in agreement with the 
topological analyses, the correlation between cell pairs’ grid phases and their 
spike-time correlations are weaker for theta-modulated cells than non-bursty 
and particularly bursty cells. This drop is explained by an increase in the 
correlation with head direction, suggesting, as expected in conjunctive cells, 
that head direction accounts for much of the variation in these cells, unlike the 
other classes. Furthermore, the median spike correlation for pairs of 
theta-modulated and non-bursty cells is higher than for bursty cells, indicating 
a stronger positive correlation bias, consistent with more global fluctuations 
of activity in these populations. d, Cumulative distributions showing distance 
between toroidal field centres (upper) and Pearson correlation r values (lower) 
for toroidal rate maps of grid cells in each class as in Fig. 2f, g, but here 
comparing awake behaviour in OF with SWS, n cells = 523(B), 229(T) and 95(N) 
cells for OF and 495(B), 169(T), 43(N) cells for REM and SWS. n = 1,000 shuffles. 
e, Cumulative distributions showing toroidal explained deviance (left) and 
information content (right) for all grid cells in each class – bursty (B), 
theta-modulated (T) and non-bursty (N) – and for each of three conditions – OF, 
REM and SWS. Cells are from all modules. n cells as in d. f, Barcode of T-class 
grid cells from modules R1 (left; n = 92 cells) and S1 (right; n = 60 cells) during 
SWS reveals a single prominent long-lived H1 bar (indicated by black arrow).  
g, Cohomological decoding of the longest-lived H1 bar in each barcode in  
f reveals strong correlation with recorded head direction. Recorded head 
direction (black) and decoded direction (blue) are shown as a function of 
time (total snippet length 10 s).



Extended Data Fig. 9 | Classification of sleep and wake states based on 
behavioural and neural activity during rest sessions. A, Example traces of 
MEC multi-unit activity (upper; coloured lines), and rasters of spike times of 
444 grid cells (lower; black dots) recorded from rat 'R' during OF foraging, REM 
sleep and slow-wave sleep (SWS). Cells are ranked from top to bottom by the 
number of spikes fired during the example time window. Note the presence of 
regular theta waves (5–10 Hz) during OF and REM, and presence of slower, more 
irregular fluctuations between active "up-states" and silent “down-states” 
during SWS. Middle: times of population activity vectors (calculated in 10 ms 
time bins) which were selected for persistent cohomology analysis, for each 
module (R1-R3). Each dot indicates a vector which was included in the initial 
downsampled set of 15,000 vectors with the highest mean firing rate across 
cells in the module. Vertical ticks indicate the subset of these vectors which 
were retained after using a density-based method to reduce the data to a 
representative point cloud. Note that during SWS, all of the selected 
population activity vectors occurred during up-states. B, Classification of 
sleep/wake states based on behavioural and neural activity during rest 

sessions. Each of the three horizontal blocks shows a recording from one 
animal. Rat 'R' day 1 did not contain a rest session and is not shown on this 
figure. Ba, Detection of REM and SWS sleep epochs in the rest session. The 
plots show the time courses of the three variables used for detecting REM and 
SWS epochs. Top panel of each block: animal locomotion speed; middle panel: 
the animal’s head angular speed; bottom panel: the ratio of the amplitude of 
theta (5–10 Hz) and delta (1–4 Hz) frequency bands in the multi-unit spiking 
activity (theta/delta ratio, TDR). Bb, Log-power spectra of MEC multi-unit 
activity during each sleep/wake state. The line and shaded area indicate the 
mean and 95% bootstrap confidence intervals, calculated across time windows 
(confidence intervals are narrow). Note the pronounced peak corresponding to 
the theta band (5–10 Hz) during OF and REM, and the higher power in the delta 
band (1–4 Hz) during SWS. Bc, Histograms showing distributions of firing rates 
for all grid cells during each sleep/wake state (number of grid cells: rat 'Q' 159, 
rat 'R' 428, rat 'S' 72). C, Table showing total time and median bout length of 
recorded sleep for each animal.



Article

Extended Data Fig. 10 | Tuning to coordinates in space and on the inferred 
torus for all grid cells of module R2 (separated into pure and conjunctive 
categories) on recording day 2. Plots show all 152 cells in module R2, a subset 
of which is shown in Fig. 3b. Plots from left to right: OF firing rate map, 

head-direction tuning curve (black) compared to occupancy of head directions 
(light grey), temporal autocorrelogram, toroidal firing rate maps for OF, REM 
and SWS. The full set of plots, for all remaining grid cells of all recordings, is 
shown in Supplementary Information.
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Supplementary Data 

Tuning to coordinates in space and on the inferred torus for all grid cells of all modules 

(separated into ‘pure’ and ‘conjunctive’ categories), except R2 day 2 (Extended Data Fig. 

10). Subsets of these plots are shown in Fig. 2b and 4h. Plots from left to right: open-field 

firing rate map, head-direction tuning curve (black) compared to occupancy of head 

directions (light gray), temporal autocorrelogram, wagon-wheel firing rate map (depending 

on recording session), toroidal firing rate maps for OF, WW, REM and SWS (where 

available) 
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Supplementary Methods 

Theoretical explanation of the six-dimensionality proposed by PCA 

To understand why a minimum of six PCA components is necessary in order to account for a 

large fraction of the variance in the population patterns of grid cells, we shall consider an 

idealized model of grid cell firing, with the following three assumptions: 

 

First, grid cell population activity patterns lie on a two-dimensional manifold with toroidal 

topology. This 2-D surface can be mapped to a rhombus with an angle of 60 degrees and 

periodic boundaries. Specifically, we can parametrize positions on the rhombus in the form 

𝛼𝛼1 𝑢𝑢�⃗ 1 + 𝛼𝛼2𝑢𝑢�⃗ 2, where 𝑢𝑢�⃗ 1, and 𝑢𝑢�⃗ 2 are unit vectors whose orientations differ by 60 degrees, and 

𝛼𝛼1,2 ∈ [0,1]. 

 

Second, the tuning of an individual grid cell to the toroidal coordinates (the position on the 

rhombus) is identical in all cells, up to a translation: 

𝑟𝑟𝑖𝑖 = 𝜙𝜙 ���⃗�𝜃 − �⃗�𝜃𝑖𝑖�𝑝𝑝� 

where 𝜃𝜃 is the 2-D position on the rhombus, �⃗�𝜃𝑖𝑖 is the center of the receptive field of cell 𝑖𝑖, 

��⃗�𝜃 − �⃗�𝜃𝑖𝑖�𝑝𝑝represents a shift of �⃗�𝜃 by �⃗�𝜃𝑖𝑖 with periodic boundary conditions on the rhombus and 

𝜙𝜙 represents the structure of the tuning function.  

 

Third, activity patterns of the neural population uniformly sample the states that correspond 

to different positions on the rhombus. 

 

Under these conditions, the covariance matrix 𝐶𝐶 of neural activity has the structure 

𝐶𝐶𝑖𝑖𝑖𝑖 =  𝑐𝑐 ���⃗�𝜃𝑖𝑖 − �⃗�𝜃𝑖𝑖�𝑝𝑝�. 

 

If we further assume that receptive field centers �⃗�𝜃𝑖𝑖 uniformly and regularly sample the 

rhombus, the covariance matrix commutes with periodic rigid translation operators on the 

rhombus. A full basis of eigenvectors of 𝐶𝐶 can then be obtained such that the eigenvectors are 

also eigenvectors of the translation operators. Thus, these eigenvectors are Fourier modes of 

the form 

ψi�𝑘𝑘�⃗ � = A exp�𝑖𝑖 𝑘𝑘�⃗ ⋅ �⃗�𝜃𝑖𝑖�, 



where the wavevector 𝑘𝑘�⃗  must be selected such that 𝜓𝜓 is periodic on the rhombus. To achieve 

this requirement, 𝑘𝑘�⃗  must be a vector lying on a vertex of a triangular lattice:  the reciprocal of 

the lattice with basis vectors 𝑢𝑢�⃗ 1, 𝑢𝑢�⃗ 2.   

 

The eigenvalues of 𝐶𝐶 are the corresponding Fourier transform components of 𝑐𝑐. Typically, 

for a unimodal tuning curve, these eigenvalues will be a monotonically decreasing function of 

�𝑘𝑘�⃗ � for �𝑘𝑘�⃗ � > 0. Furthermore, if the tuning of individual cells is isotropic, the eigenvalues 

depend only on �𝑘𝑘�⃗ �. Therefore, the six PCA modes that correspond to the smallest value of 

�𝑘𝑘�⃗ � must contribute equally to the variance. If the tuning curve of individual cells is 

sufficiently wide, the eigenvalues are expected to decay rapidly with �𝑘𝑘�⃗ �, and the modes that 

correspond to the first six PCA components are expected to capture a large fraction of the 

variance.    

 

Theoretical background to persistent (co)homology 

As persistent cohomology is a cornerstone of the current analyses, we wish to elaborate on its 

theoretical background to elucidate how and why it works (broader perspectives on 

topological data analysis and its application in biology are available elsewhere57,58,93). We 

start by introducing (co)homology and the Vietoris-Rips complex before we turn to persistent 

homology. 

 

Given a topological space 𝑋𝑋, we can assign, for all natural numbers 𝑛𝑛, a vector space 𝐻𝐻𝑖𝑖(𝑋𝑋),  

called the 𝑖𝑖-th homology group of 𝑋𝑋, such that if  𝑓𝑓:𝑋𝑋 → 𝑌𝑌 is a continuous map between  

topological spaces 𝑋𝑋 and 𝑌𝑌, then 𝑓𝑓∗:𝐻𝐻𝑖𝑖(𝑋𝑋) → 𝐻𝐻𝑖𝑖(𝑌𝑌) is a linear map between vector spaces. 

Similarly, we may define cohomology groups, 𝐻𝐻𝑖𝑖(𝑋𝑋) by reversing arrows. These are dual 

notions and give the same results in our case. We will thus only continue describing the 

former. The dimension of 𝐻𝐻𝑖𝑖(𝑋𝑋) is called the 𝑖𝑖-th Betti number, representing the number  

of 𝑖𝑖-dimensional holes (for further details see Hatcher, 200260). However, this may vary 

depending on the choice of coefficients of the vector space (note that it is choosing algebraic 

fields as coefficients that makes the homology groups vector spaces). For example, using ℤ2-

coefficients, the Klein bottle will have the same homology as a torus. To separate these, we 

use ℤ47-coefficients in our computations. The choice of field coefficients simplifies 

computations at the risk of losing topological information known as torsion, measuring the 



orientability of a space. However, the same number of holes (Betti numbers) is computed, 

which is what is here used to distinguish spaces.  

 

As a point cloud is finite and discrete, its homology only returns the number of points in the 

point cloud (its 0-th Betti number). Thus, we associate combinatorial spaces known as 

simplicial complexes to the point cloud which may have non-trivial topology reflecting 

interesting structure and information of the data set and whose homology is easy to compute. 

A simplicial complex is a set 𝑉𝑉 of vertices and a set 𝑆𝑆 of finite non-empty subsets of 𝑉𝑉 called 

simplices such that any vertex is a simplex and any non-empty subset of a simplex is a 

simplex. A simplex of cardinality 𝑝𝑝 + 1 is referred to as a 𝑝𝑝-simplex (of simplicial dimension 

𝑝𝑝) and geometrically, we may refer to a 0-simplex as a point, a 1-simplex as an edge, a 2-

simplex a triangle, a 3-simplex a tetrahedron and so on in higher dimensions.  

 

There are different choices in constructing simplicial complexes associated with the data. We 

used what is known as the Vietoris-Rips complex, here denoted 𝑅𝑅𝑟𝑟. The vertices of the 

Vietoris-Rips complex are the points in the point cloud and the simplices are the sets of 

points whose pairwise distance is less than the scale value, 𝑟𝑟. This is equivalent to replacing 

each point by a ball of common radius 𝑟𝑟 and connecting two points with an edge if their balls 

intersect. 𝑝𝑝-simplices are then formed if each point of a subset of 𝑝𝑝 + 1 points have edges to 

all other points in the subset (i.e. a 𝑝𝑝 + 1-clique). Although this simplicial complex is not 

homotopy equivalent to taking the union of balls (as e.g. the Čech complex is) and thus does 

not necessarily have the same homology, the basic topological information is preserved under 

this correspondence.  

 

One way to construct the Vietoris-Rips complex in detecting the topology of neural data is to 

regard individual cells as points and their pairwise dissimilarity (e.g. correlation) as scale. In 

our case, we rather considered the population activity vectors as the points. There is a subtle 

correspondence between these constructions, where the resulting barcodes are the same when 

applying persistent cohomology. This relationship is only valid when the tuning of the cells is 

such that the response is convex, seemingly invalidated by the firing patterns of grid cells 

with respect to its physical position in the environment. However, when considering the 

tuning to be a function of the toroidal state space, we find it indeed to be convex (indicated 



by the single bumps in the toroidal rate maps for each grid cell – Fig 3a, Extended Data Fig. 

9)94, suggesting both constructions should give rise to the same barcodes.  

 

We consider the nested chain of Vietoris-Rips complexes, 𝑅𝑅, constructed for all increasing 

values of 𝑟𝑟 in which new simplices are formed:  

𝑅𝑅𝑟𝑟0 ⊂ 𝑅𝑅𝑟𝑟1 ⊂ ⋯ ⊂ 𝑅𝑅𝑟𝑟𝑛𝑛 , 

where 𝑟𝑟0 = 0 and 𝑟𝑟𝑛𝑛 is the largest pairwise distance in the point cloud, and apply homology 

to get a sequence of vector spaces and maps, for all dimensions 𝑖𝑖: 

𝐻𝐻𝑖𝑖(𝑅𝑅𝑟𝑟0  ) → 𝐻𝐻𝑖𝑖(𝑅𝑅𝑟𝑟1  ) → ⋯ → 𝐻𝐻𝑖𝑖(𝑅𝑅𝑟𝑟𝑛𝑛), 

where the maps are induced by the inclusion maps (note that we have omitted compositions  

and identity maps), called the 𝑖𝑖-th persistent homology. This may again be decomposed into a 

sum of elementary persistence modules95: 

𝐻𝐻𝑖𝑖(𝑅𝑅) ≅ ⊕𝑘𝑘 𝐼𝐼([𝑏𝑏𝑘𝑘,𝑑𝑑𝑘𝑘)), 

where 𝑏𝑏𝑘𝑘 < 𝑑𝑑𝑘𝑘 give the scales in which a class in 𝐻𝐻𝑖𝑖(𝑅𝑅) first appears and later disappears. 

Thus, we may represent the persistent (co)homology by displaying the intervals as bars 

starting at 𝑏𝑏𝑘𝑘 and ending at 𝑑𝑑𝑘𝑘. The collection of bars for all dimensions results in what is 

known as the barcode.  

 

The barcodes are shown to be stable under influence of noise (given certain assumptions on 

the construction)96. This means that small perturbations to the point cloud lead to small 

changes in the barcode. Thus, we note that in dimensionality reduction, quantifying the 

dissimilarity between the barcode of the high-dimensional representation and its embedding 

may address the challenge of measuring how faithful an embedding is53. 
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