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Abstract: Initially motivated by the analysis of the flow dynamics of the synovial fluid, taken as
non-Newtonian, this paper also reports on a numerical challenge which occurred unexpectedly while
solving the momentum equation of the model. The configuration consists of two infinitely long hori-
zontal parallel flat plates where the top plate is sheared at constant speed and the bottom plate is fixed.
The synovial fluid shows a shear-thinning rheology, and furthermore it thickens with the hyaluronic
acid (HA) concentration, i.e., it is also chemically-thickening. Accordingly, a modified Cross model is
employed to express the shear rate and concentration-dependent viscosity, whose parameter values
are determined from experimental data. Another significance of the study is the investigation of the
effect of an external stimulus on the flow dynamics via a HA source term. The resulting flow exhibits
peculiar features resulting from extremely large and small, but positive, numerical quantities, such
as the viscosity and the shear rates. This requires constructing a parametrized zero-machine level
solver, up to 300 accurate digits or so, for capturing the correct length scales of the flow physics.
As a conclusion, the physical model, although simple, but original, leads to interesting results whose
numerical determination turns out to be successful only once the real cause of the numerical trap
is identified.

Keywords: synovial fluid; hyaluronic acid; shear-thinning; chemically-thickening; variable number
of accurate digits

1. Introduction

The synovial joints and, as a result, the synovial fluid (SF) are responsible for the
mobility of the skeletal system. The SF resides in the joints, and it is enclosed by the
tissues surrounding the joint space, namely, the synovium [1]. The SF is responsible for
the viscous, elastic, and lubricant properties in the joints [2], and its viscoelastic properties
are measured [3]. King [4] determined the normal stresses for SF. Distortions in these
mentioned SF properties may result in various joint dysfunctions such as osteoarthritis and
rheumatoid arthritis. There are some tribological modeling studies in the presence of syn-
ovial fluid with the aim of total hip replacement [5]. The SF can be basically approximated
as blood plasma, except that it is free from large proteins and enriched with hyaluronic acid
(HA) molecules, which are synthesized locally in the joints [6]. The response of the SF to
instantaneous external stimuli is non-Newtonian when it is healthy, whereas the response
is Newtonian when it is inflamed. The presence of HA is the main reason behind that
behavior, and the response is affected by the concentration and the molecular weight of the
HA in the joints [6,7]. The normal HA concentration of a healthy joint is approximately
between 2 and 4 mg/mL [1]. The compositions of the healthy and of the unhealthy SF
are in Table 1 in [1]. A review of the rheological properties of the SF in terms of the HA
concentration, shear rate dependency, and elasticity was done in [8]. More recent reviews
of the SF rheology focusing on various pathologies can be found in [1,9]. Tandon et al. [10]
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modeled the SF as a Bingham fluid. However, most studies used a power law model.
Rudraiah et al. [11] modeled the SF as a power law shear-thinning fluid with constant
consistency and flow behavior indices. Hron et al. [6] employed two different power law
equations for modeling SF: one where a function of the HA concentration multiplies the
consistency index, and a second one where the flow index is concentration dependent.
In this second model, the HA concentration influences the shear-thinning behavior of the
SF, which is also observed in the experiments [7]. Fam et al. [7] modeled the viscosity of
the SF with a modified Cross model [12]. A summary of the theoretical approaches on the
lubrication modeling of the synovial joints is given in [13].

The Newtonian SF within an artificial hip joint is modeled between two parallel
plates where one plate is oscillated [14]. An analytical solution for the unsteady flow
was obtained via Duhamel’s theorem. Pekkan et al. [15] also considered oscillatory flow
of a Newtonian SF first between infinite parallel plates, then in two-dimensional joint
geometries, and including a geometry with cartilage curvature. The effects of magnetic or
acoustic fields on the SF are also studied for practical reasons. Khan et al. [16] considered
the SF either shear-thinning or shear-thickening and subject to magnetic field while it is
on peristaltic motion. Romanishina et al. [17] assumed the SF as a two-phase fluid with
solid and liquid phases. VijayaKumar and Ratchagar [18] modeled lubricating SF between
parallel plates in the presence of a reaction.

Modeling biofluids is very complicated as there are many changes that take place.
Consequently, one method of modeling a biofluid is to consider it as a chemically reacting
fluid and focus on the concentration of the compound-of-interest [6,19–22], e.g., hyaluronic
acid. Bridges et al. [20] studied the pulsating synovial flow in an annular region between
two cylinders. They assumed that the viscosity depends on the concentration of HA to
represent the shear-thinning and chemically-thickening behavior of the SF, adopting the
model presented in [6].

In this work, the SF is placed between two parallel plates, with one of the plates
being driven at constant speed. The SF is assumed to exhibit both shear-thinning and
chemically-thickening behaviors. Consequently, a modified version of the Cross model
is used to show the rheology of the SF. A source term, which represents the response of
the SF to a stimulus, is employed in the model. The source, i.e., the increase in the acid
concentration, is given with a linear function. The resulting nonlinear differential equations
are solved using a Chebyshev spectral collocation (CSC) [23–25] method. Although simple,
this model leads to very peculiar physical behaviors. In particular, as the HA concentration
increases, the viscosity reaches extremely high values leading to almost constant velocity in
the core and very large gradients near the plates. The associated strain rate must anyhow
be positive across the flow domain, however small it is. Capturing this behavior with
numerics turns out to be very challenging. It will then be seen in this paper that the physical
reliability of the numerical results is controlled by employing the necessary number of
accurate digits, which cannot be anticipated before facing the resulting issue. In other
words, for some parameters, any double-precision solver fails to provide acceptable results,
and leads to nonphysical behaviors.

There are examples of calculations where there is a need for higher accuracy than dou-
ble precision [26–30]. Khanna [31] adjusted the number of digits for solving a hyperbolic
differential equation. Historically, the use of accurate digits has increased from single to
double precision with 64-bit computers. After the birth of 128-bit computers, it would not
be surprising that the quadruple precision will be the standard use. To detect the physi-
cal phenomena using a numerical tool, sometimes there is a need for more than double
precision. Consequently, there are some software like Advanpix and Multiprecision Com-
puting Toolbox for Matlab (The MathWorks Inc., Massachusetts, USA) that are currently
in use. Here, we present a practical problem, synovial fluid flow, where a parametrized
machine-zero level is employed to numerically capture the main features of the flow.

In Section 2, the model, solution method, and procedure are presented.
In Section 3, the physical results are presented as functions of the strength of the source
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r. Next, in Section 4, the necessity to use controlled number of accurate digits is shown.
Furthermore, the required number of digits is given as a function of r. Section 5 presents
the conclusion. Appendix A presents the numerical treatment of the problem.

2. Model

The physical system is depicted in Figure 1. It consists of two infinitely long parallel
plates, with the top plate moving at constant speed, Uw, in its plane and the bottom
one being at rest. First, the governing equations are presented, then the viscosity model
is introduced.

Figure 1. Physical system: a synovial fluid is confined between two infinitely long parallel plates
separated by a distance 2h. The top plate moves at constant speed Uw.

2.1. Equations

The governing equations express the balances of momentum and concentration as

ρ
∂u
∂t

=
∂

∂y

[
η

(
∂u
∂y

, c
)

∂u
∂y

]
, (1)

and
∂c
∂t

= D
∂2c
∂y2 + rg(c), (2)

where u and c represent the velocity in the x-direction (m/s) and the mass concentration
(kg/m3), respectively. The diffusion coefficient D (m2/s) and the density ρ (kg/m3) are
assumed to be constant. Moreover, g(c) represents a source term and r is the strength of
that term, a positive (zero if there is no source) control variable (see in [25], p. 173, for a
similar treatment in a different problem, namely, ignition in a solid). The unit of r depends
on the choice of the function g(c). In addition, η is the viscosity (kg/m/s), which depends
on the strain rate as well as the concentration.

The problem is rendered dimensionless using the following scales for the length, ve-
locity, time, and concentration: h, Uw, h/Uw, and cjel = 20 mg/mL, which is the jellification
concentration of the SF [6]. The dimensionless equation for the momentum balance is

Re
∂ũ
∂t̃

=
∂

∂ỹ

(
η̃

∂ũ
∂ỹ

)
. (3)

The tilde represents the scaled variable. Here, the Reynolds number Re is defined as

Re =
ρUwh

β1
, (4)
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where β1, the zero-shear viscosity of the SF for c̃ = 0, is given in Section 2.2. The dimension-
less concentration equation reads

Pe
∂c̃
∂t̃

=
∂2 c̃
∂ỹ2 + r̃g̃(c̃). (5)

Here, g̃ is the dimensionless source term and the Péclet number Pe is defined as

Pe =
Uwh

D
. (6)

The dimensionless numbers Re and Pe are 10 and 103, respectively [6]. The above
equations are subject to the following boundary conditions:

ũ(−1, t̃) = 0 ũ(1, t̃) = 1 (7)

and
c̃(−1, t̃) = 0.15 c̃(1, t̃) = 0.16. (8)

The system of equations, i.e., Equations (3) and (5), will be considered with the source
term g̃ taken as linear, i.e., with g̃ = c̃.

2.2. Viscosity Model

The viscosity of the SF is assumed to follow the modified Cross model [7], given as

η =
η0

1 +
(

λ ∂u
∂y

)(1−n)
(9)

where ∂u
∂y represents the strain rate, η0 (kg/m/s) the zero-shear viscosity, λ (s) the time

constant, and n (dimensionless) the flow behavior index. It is known from experimental
data that the viscosity of the SF depends on the HA concentration. Consequently, this
work incorporates, as it was done in [6] in their viscosity model, this dependency into
Equation (9) through the above-mentioned coefficients.

The viscosity is of course a positive quantity, which is satisfied by the value of η0
given in Equation (9), provided that the denominator is positive (see Section 2.4). To fix
the dependency of the parameters, Equation (9) is fitted to the experimental data wherein
the viscosity is measured as a function of the shear rate at various constant concentration
values [1]. Therefore, for each constant concentration dataset, a set of η0, λ, and n is
determined. This led to

η0(c̃) = β1 exp(β̃2 c̃), (10)

λ̃(c̃) = β̃3 c̃β4 , (11)

n(c̃) = −β̃5 c̃ + β6. (12)

Here, β’s are constant coefficients. Note that all parameters and dependencies in
Equations (10)–(12), except for β1 and η0, are dimensionless. The dimensionless form of
the viscosity model reads as

η̃ =
η

β1
=

exp
(

β̃2 c̃
)

1 +
(

λ̃ ∂ũ
∂ỹ

)(1−n)
. (13)

The coefficients are determined using Matlab’s lsqcurvefit function by fitting Equation (9)
to the concentration data as

(β1, β̃2, β̃3, β4, β̃5, β6) = (0.0114
kg
m s

, 25.9131, 0.0105, 3.16, 0.9724, 0.5216).
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The fitted curves together with the experimental data are shown for four values of the
concentration in Figure 2.
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Figure 2. Comparison of the model, Equation (9) (solid curves), with the experimental data [1] for
the SF viscosity.

2.3. Analysis of the Model: Steady State

The system of Equations (3) and (5) is coupled by the c̃ field. It is not a strong coupling
as the concentration evolution is not affected by the momentum dynamics. Based on the
comments made in Section 2.4, it can be concluded that this system can only converge
to a steady solution, at any value of r̃. We can then decide that c̃ is fixed to its steady
distribution with ỹ, i.e., it satisfies the steady version of Equation (5),

∂2 c̃
∂ỹ2 + r̃g̃(c̃) = 0. (14)

The analytical solution is given by

c̃(ỹ) =

0.005 ỹ + 0.155, r̃ = 0
0.155

cos(
√

r̃)
cos
(√

r̃ỹ
)
+ 0.005

sin(
√

r̃)
sin
(√

r̃ỹ
)

, r̃ > 0.
(15)

The concentration c̃(ỹ) has to be positive in the flow domain. This imposes that the
parameter r̃ is bounded by π2

4 ≈ 2.46. Beyond this value, the solution for the concentration
is no longer positive over the entire domain. We have thus limited the r̃ value to 0 ≤ r̃ < π2

4 .
The steady-state concentration field is henceforth inserted into the momentum equation,
Equation (3).

The steady-state solution of the momentum balance equation, Equation (3), has to
verify the following relationship:

η̃

(
∂ũ
∂ỹ

, c̃
)

∂ũ
∂ỹ

= K̃, (16)

where K̃, the dimensionless shear stress, is constant for a given r̃. As the upper wall is
sheared in the positive x-direction and the viscosity is positive, K̃ is positive everywhere.
With the constant K̃ being positive, the strain rate ∂ũ

∂ỹ must also be strictly positive in the
entire flow domain.
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2.4. Stability Consideration

The momentum balance Equation (3) is nonlinear in ũ, but only through the viscosity
which has to be always positive. Therefore, the right-hand-side of Equation (3) has only
negative eigenvalues. In other words, it is a pure diffusion problem whose solution has to
be steady as the boundary conditions are time-independent. No physical instability nor
sensitivity to the initial condition can then be expected from this configuration, provided
the initial condition satisfies the boundary conditions together with ∂ũ(ỹ,t̃=0)

∂ỹ > 0. As will
be seen in Section 3, this strain rate for large values of r̃ may become vanishingly small,
e.g., reaching 10−300 for r̃ = 2.45. However, it is not zero, and it should not be zero;
otherwise, the physical quantities like velocity or stress are not computed correctly.

3. Results

The unsteady momentum balance Equation (3) is solved by using the CSC spatial
discretization and by marching in time, see Appendix A, until the criterion given in
Equation (A4) is satisfied. It is proceeded with increasing values of r̃, taking the same initial
condition, i.e., ũ(ỹ, t̃ = 0) = (ỹ + 1)/2, and the same time-step size, δt̃ = 1.

The physical results are presented in terms of three dimensionless variables: the
concentration c̃ in Figure 3, the velocity ũ in Figure 4, and the viscosity η̃ in Figure 5.
All variables are plotted as functions of position ỹ for five values of r̃, the strength of
the hyaluronic acid (HA) source term, viz., r̃ = [0, 0.5, 1.5, 2.2, 2.45]. The concentrations
and the viscosities are given as scaled by their values at ỹ = 0, which are c̃(ỹ = 0) =
[0.155, 0.204, 0.457, 2.86, 27.9], and η̃(ỹ = 0) = [55.5, 1.96× 102, 1.39× 105, 1.54× 1032, 2.35×
10314], respectively.

Figure 3. Steady dimensionless concentration profiles, c̃ scaled with the concentration at the
centerline, c̃(ỹ = 0) for r̃ = [0, 0.5, 1.5, 2.2, 2.45]. The values of c̃(ỹ = 0) for the given r̃ are
[0.155, 0.204, 0.457, 2.86, 27.9].
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Figure 4. Steady dimensionless velocity profiles, ũ for r̃ = [0, 0.5, 1.5, 2.2, 2.45]. As r̃ is increased,
the velocity becomes flatter and flatter at the core. For r̃ = 2.45, the velocity profile exhibits almost a
step shape.

Figure 5. Steady dimensionless viscosity profiles, η̃ scaled with the viscosity at the centerline,
η̃(ỹ = 0) for r̃ = [0, 0.5, 1.5, 2.2, 2.45]. The values of η̃(ỹ = 0) for the given r̃ are [55.5, 1.96 ×
102, 1.39× 105, 1.54× 1032, 2.35× 10314].
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The steady concentration profiles are obtained analytically via Equation (15) and are
plotted in Figure 3. The linear concentration profile, obtained for r̃ = 0, originates from
the different values of the concentration on the walls as given in Equation (8). For r̃ > 0,
the concentrations present an almost parabolic shape whose maximum is slightly shifted
from ỹ = 0. As r̃ increases, the concentration amplitude also increases, but only moderately.

Increasing r̃ results in a dramatic change in the velocity profile near the walls, as
seen in Figure 4. This behavior of the velocity profile is due to the shear-thinning and
chemically-thickening viscosity. Note that the velocity profile for r̃ = 0 is close to a linear
(Newtonian) one, but it is still a nonlinear profile. As r̃ increases, the velocity becomes
nearly constant in the core of the domain with very sharp gradients close to the plates.
For r̃ = 2.45, which is just shy of the critical value of π2/4 (see Equation (15)), the velocity
magnitude shows almost a step change going from the boundary to the core. In other
words, the flow evolves from an almost constant-viscosity creeping flow for r̃ = 0 to a plug
flow for r̃ ≥ 1.5.

The increase in the HA concentration affects the center of the domain the most, and
as a result the viscosity around the center becomes very large, whereas near the walls it is
relatively small (Figure 5). Increasing the concentration has a major effect on the viscosity,
mainly due to the numerator of the Cross equation, Equation (9), i.e., η0, which has an
exponential dependency. This leads to a significant contrast in viscosity, of almost Gaussian
type, not only in amplitude, but also in its localization around ỹ = 0.

The final quantity of interest is the dimensionless stress, K̃. First of all, it is checked
that K̃ is constant with ỹ for all values of r̃. An example for r̃ = 2.2 is given in Figure 6.
Then, Figure 7 shows the strain rate (blue dots) and the viscosity (orange dots) at ỹ = 0 as
functions of r̃. Their product leads to K̃, defined in Equation (16), and it is superimposed
in Figure 7b (green dots). Figure 7a offers a zoom of the stress K̃ plot as a function of r̃. It
shows an exponential increase with r̃, while not exhibiting as drastic of an evolution as the
strain rate and the viscosity do with r̃. The viscosity contrast leads this pure momentum
diffusion configuration to exhibit a boundary layer behavior on the plates, with very thin
layers when r̃ exceeds 2, together with an almost constant velocity in the flow core. This
“almost constant” is a peculiarity and it has to be captured numerically.

-1.0 -0.5 0.0 0.5 1.0

1847.3220

1847.3225

1847.3230

1847.3235

1847.3240

1847.3245

1847.3250

1847.3255

y


K

Figure 6. Nodal values of the dimensionless stress K̃, for r̃ = 2.2.
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Figure 7. (a) Steady values of the dimensionless stress K̃ as a function of r̃. (b) Steady strain rate
(blue), viscosity (orange), and stress (green) as functions of r̃. Note that the ordinate is in log10 base.

4. Discussion about Numerics

The physical results presented in the previous section are in full agreement with the
mathematical key points mentioned in the model analysis such as that the strain rate is
always positive and the shear stress is always positive and constant.

The numerical determination of these results requires to adjust the grid refinement
with the parameter r̃. Figure 8, obtained with double precision, shows the evolution
of the minimum spectral cut-off N, i.e., the necessary number of grid points with r̃
(see Equation (A1)). However, satisfying this requirement is not sufficient and in fact
not even the main criterion for obtaining the aforementioned results.

1 1.2 1.4 1.6 1.8 2

40

42

44

46

48

50

52

N

Figure 8. The minimum cut-off N(r̃) for obtaining satisfactory numerical solutions to Equation (3)
using double precision.

The stress K̃ is theoretically constant at any position (see Equation (16)), and it is
obtained accordingly in Figure 6. It results from the product of two numerically sensitive
quantities: the strain rate and the viscosity. As r̃ becomes larger than 2, the viscosity starts
to increase exponentially at the centerline, i.e., ỹ = 0, whereas the velocity slope decreases
exponentially, reaching amplitudes on the order of 10−300 (Figure 7). The solver must
then be able to handle numerical values with an arbitrary number of accurate digits in
order to capture this wide range of dynamics. This is the numerical challenge. Otherwise,
the numerical scheme will get off from the mathematical key points of the model to be
solved and would lead to nonphysical results identified by a non-constant K̃ or even a K̃
that blows up.

Going back to Figure 4, one notices that the ∂ũ
∂ỹ data cover a wide range of numerical

dynamics when r̃ becomes large. Actually, the ratio between the smallest and the largest
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slopes crosses the double-precision limit for r̃ of approximately 2.1. Beyond this value of r̃,
any double-precision solver loses numerical control of the system. The machine double
precision has to be extended to a parametrized machine-zero level to have a correct digital
representation of the slopes. Let us introduce the ratio, Nd,

Nd(r̃) = log10

max
(

∂ũ
∂ỹ

)
(

∂ũ
∂ỹ

)
ỹ=0

. (17)

It defines the minimum number of accurate digits required for numerically capturing
the slopes for any value of r̃. It is plotted in Figure 9.

1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

lo
g

1
0
 (

N
d
)

Figure 9. Nd(r̃), the required minimum number of accurate digits.

To this end, the solver of the SF model is coded in the framework of the software
Mathematica 12 (from Wolfram Research), which allows the use of the number of accurate
digits at any precision. All the physical results come from the time-marching approach
with δt̃ = 1, and a time convergence is achieved after 15–20 time steps.

As cited in Section 1, there are many papers in the literature which need more than
double precision for an accurate calculation. Even though the present physical system is
simple, it shows a difficult trap, which cannot be solved with a refinement of the grids.
This is a new and original configuration where an arbitrary number of accurate digits is
required to get a solution for a diffusion problem.

5. Conclusions

The synovial fluid (SF) flow between two parallel plates is investigated in the presence
of hyaluronic acid (HA) added as a source term. This source, which represents the response
of the SF to a stimulus, is given as a linear function of the concentration. Experimental
viscosity data, given for different values of the strain rate and HA concentration, are fitted
to a modified Cross model whose parameters are taken as concentration dependent.

The evolution of the flow dynamics with the strength of the source term r becomes
very striking, especially for large values of r. The viscosity becomes extremely large, even
though the concentration magnitude increases only moderately. This results in distinct
velocity profiles with sharp gradients near the plates and an almost constant level in the
core. The dimensionless strain rates get as low as 10−300, and the dimensionless viscosities
are as large as 10300, whose product leads, however, to a constant value of the stress all
throughout the fluid, as it is dictated by the model. Correctly capturing these very small
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and very large numbers turns out to be essential, and in fact it is the only way to obtain
physically meaningful results, including the stress. We show that this can only be achieved
by controlling the machine-zero level, i.e., employing the necessary number of digits in
the computation.
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Nomenclature

The following symbols along with SI units are used in this manuscript:
c concentration kg/m3

c̃ dimensionless concentration -
D diffusion coefficient m2/s
h half distance between the plates m
K stress kg/m/s2

K̃ dimensionless stress -
n flow behavior index -
r strength of the source term 1/s
r̃ dimensionless strength of the source term -
t time s
t̃ dimensionless time -
u velocity m/s
ũ dimensionless velocity -
Uw wall velocity m/s
η viscosity kg/m/s
η0 zero-shear viscosity kg/m/s
η̃ dimensionless viscosity -
λ Cross time constant s
ρ density kg/m3

Abbreviations

The following abbreviations are used in this manuscript:
SF Synovial fluid
HA Hyaluronic acid
CSC Chebyshev spectral collocation
Re Reynolds number
Pe Péclet number
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Appendix A. Numerical Treatment of the Problem

Appendix A.1. Spatial Discretization

Equation (3) is solved by Chebyshev Spectral Collocation (CSC) method. The right-
hand-side of Equation (3) is discretized using the Chebyshev–Gauss–Lobatto grid [25].
The numerical approximation of ũ(ỹ) is decomposed into a series of Chebyshev polynomi-
als according to

ũN(ỹ) =
N

∑
n=0

ûn Tn(ỹ), n = 0,...,N, (A1)

where N is the cut-off and (N + 1) is the number of points. The ûn set constitutes the
Chebyshev pseudo-spectrum of ũ(ỹ). The solver is a collocation solver, i.e., it is based on
the nodal values of ũN(ỹ).

Appendix A.2. Temporal Discretization

The momentum balance, Equation (3), is time-integrated by implementing a usual
second-order finite-difference technique. The solutions are thus determined by marching
in time. The time derivative is approximated by

∂ũ
∂t̃
' 1

δt̃

(
3
2

ũk+1 − 2ũk +
1
2

ũk−1
)

, (A2)

where k denotes the kth time step and δt̃ is the t̃ time-step size. The viscosity depends upon
time via the strain rate ∂ũ

∂ỹ . It is extrapolated according to

η̃k+1 ' 2η̃k − η̃k−1. (A3)

The steady-state access criterion is defined as

max
(
|ũk+1 − ũk|

)
max

(
|ũk+1|

) < εt (A4)

where εt is fixed to 10−15.
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