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A B S T R A C T

Thermal energy storage (TES) can increase waste heat utilization in district heating (DH) by storing excess
energy to be used later to compensate for energy deficit. When sizing a TES tank for DH, incorporating
operational conditions can prevent suboptimal volumes and improve the utility enabled by the TES. However,
the different time scales of the payback period for the tank and DH operation poses a challenge for optimizing
the tank volume. We propose a method to optimally design a TES tank considering operational conditions of
a DH plant using time varying waste heat. We formulate a multi-objective dynamic optimization model based
on heat data for a long period, which is solved with a two-step approach. First, the data is screened by solving
the model for short-term periods to detect intervals that allow for peak heating savings. Then, the model is
re-solved using all selected intervals to determine an optimal tank volume. We conduct a trade-off analysis of
the conflicting objectives, energy-saving and costs. The proposed method is demonstrated on a case study with
historical data. Our method can explore the full feasible space of TES tank volumes and efficiently provide a
trade-off curve without the need of exhaustive search.
1. Introduction

Current issues regarding environment and climate have turned our
attention to the need for developing and using efficient, clean energy
sources as a replacement for fossil fuels. Many policy makers and
governments agree that the pace of this shift needs to accelerate [1].
Energy is a major contributor of carbon emissions, and many fronts
must be investigated and improved to facilitate decarbonization and
meet environmental requirements. Heating for residential and commer-
cial buildings is one such front, accounting for ca. 40% of the energy
consumption and 36% of the greenhouse gas emissions in Europe [2].
To decarbonize these sectors, district heating (DH) systems, along with
several other technologies that have been developed, are expected to
play an important role [3]. DH systems that utilize industrial and
commercial waste heat as heat supply are of special interest because
they use energy that would otherwise be discarded. However, waste
heat often comes with high variability and a temporal mismatch with
heat demand from the DH system, requiring peak heating sources when
the available waste heat is insufficient, i.e., an additional consistent
heating source that is more costly. In this scenario, thermal energy
storage (TES) may reduce the use of peak heating significantly by
enabling excess available waste heat to be stored and used when the
demand is higher than the waste-heat supply. Generally, there are
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three main types of TES, sensible heat storage, latent heat storage and
thermal–chemical energy storage, in which sensible heat from reactants
and reaction enthalpy of reversible reactions are used. Each type is in
a different stage of development, while sensible heat storage has been
thoroughly studied and vastly implemented, thermal–chemical energy
storage is a more recent technology under research [4].

This paper addresses the design of centralized short-term TES in
heating plants utilizing variable waste heat to supply heat to a district
heating network (DHN). For that, we state the following problem: given
historical (or projected) data for energy supply and demand, we wish to
determine the optimal tank volume for the TES. We propose a rigorous
optimization approach for optimal sizing of short-term TES based on
a systematic analysis of the supply and demand data. Our approach
contains three main steps:

1. Setting up a dynamic model of the TES system
2. Optimization-based screening the historical (or projected) data

to identify time periods where energy storage is beneficial
3. Formulating an optimization problem that uses these time peri-

ods to determine the optimal TES capacity

By automatically selecting time periods in which TES is of advantage,
our algorithm discards all data that is not useful for determining the
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size of the storage tank and reduces the space of solutions, allowing
for efficient and fast evaluation. We apply this method to a case study
which uses historical operating data for the initial design of a TES tank
for the heating plant of the DH system in Mo i Rana, Norway. However,
note that this approach could be adapted to design other energy storage
systems, e.g., batteries [5].

Although latent heat TES can present large energy storage density
and compact sizes, sensible heat TES technology still has lower costs,
is easier to control and large-scale plants have been implemented and
tested [6]. Therefore, for the application of TES considered in this
paper, large, pressurized hot-water tanks are often preferred [7], being
a cost-efficient, well-known and robust technology and often enabling a
suitable temperature range for conventional high-temperature DH [8].
The foremost challenge for DH operators considering a potential TES
investment is determining the optimal capacity of the storage unit,
constituting a trade-off in cost, size and utility. Investment cost and
payback time are normally the key economic parameters, while for
many heating plants, the physical available space for a TES is also a
limiting factor for the size of a tank that can be installed. From an
operational point of view, large tanks increases the TES charging times,
which can negatively impact quick short-term responses [9]. On the
other hand, too small volumes result in frequent temperature saturation
of the tank, which may increase undesirable heat dumping, and thus
the use of expensive peak heating sources. Increasing the TES tank
size also increases the surface area and thus heat losses [10]. Besides
these fundamental trade-offs in different TES sizes, the final utility of
a TES for improving waste heat utilization is greatly affected by the
operational conditions and control strategy of both the heating plant
and the TES. Accounting for the control and operations of the TES
and heating plant during sizing selection can thus reduce the chances
of selecting suboptimal sizes of the TES, improving the economic,
energetic and environmental benefits of TES.

Methods for sizing TES tanks can generically be categorized as
(1) iterative steady-state energy-balance approaches, (2) simulation-
based approaches and (3) optimization-based approaches. Methods
in approach (1), e.g. [11,12] as well as the novel frequency-domain
approach proposed by [13], have the advantage of being fairly simple
to apply, but suffer from only considering the heat amount and not the
time-varying temperature levels in the input–output streams nor the
TES. As a consequence, these methods may overestimate the achievable
performance of the TES.

Contrarily, simulation-based approaches (2) enable incorporating
high-granularity, dynamic models of the TES, the heating plant and the
relevant DH grid connections in the sizing evaluations. These methods
typically evaluate a set of TES sizes in a selected, discretized range
with repeated simulations to determine a suitable size. This is done
by assessing the enabling heat storage and balancing properties of the
TES [9], or by using TES-size-evaluation curves, which consider either
the estimated investment costs alone [14] or a weighted criteria of
costs, heat supply properties of the TES to the DHN, and losses [15,16].
An advantage of simulation-based sizing approaches is that they enable
high-fidelity simulation and analysis of a range of operation modes of
the TES, including faults [17] and advanced control structures [9]. Yet,
no guarantees of system-wide optimality of the identified TES size can
be provided.

Optimization-based approaches (3) seek to identify an optimal TES
ize by formulating a design optimization problem, often as a variable
n overall design of combined heat and power plants [18] or also
ncluding the DHN design aspects [19]. While being able to identify
n optimal TES size, these methods often require significant simplifi-
ations in the component models and the dynamic interactions within
he heating plant, TES, and input and output heat streams. Seeking
o capitalize on the advantages of both simulation and optimization
ased approaches, a popular class of approaches is hybrid, multi-level
imulations and optimization schemes. Often, a metaheuristic is used
2

t the design level [20] and a simulation or operational optimization
model at the lower level [21]. However, guarantees of optimality are
lost when separating design and operations. In addition, operational
models at the lower level tend to be significantly simplified to enable
the large number of iterations required for design-level evaluations.

Common for most of the optimization-based sizing approaches for
TES is that they do not account rigorously for the integrated operational
conditions of the TES and the heating plant [22], or do so in a rather
ad-hoc fashion. To the best of our knowledge, only a few exemptions
exist in the literature; the MPC scheme for hybrid heat-pump and
thermal-storage systems with cost-effective sizing evaluations devel-
oped by [23], and the approach proposed by [24] for optimizing the
capacity of a TES subject to demand uncertainty and incorporation of
operational constraints. The latter approach, however, did not account
for temperature variations and was based on extrapolation with a
representative week to allow evaluation over a 5-year time horizon.

The approach proposed in this work aims to expand available
methods for sizing of short-term TES that incorporates the combined
operational conditions of the TES and heating-plant. The present paper
is outlined as follows. Section 2 describes the methodology proposed
for sizing a short-term TES tank for DH systems with varying energy
source, explaining how the optimization model can be set up and used
in each step of the proposed approach. In Section 3 we present an
overview of the industrial plant considered as the case study along
with historical data. We also detail the implementation of the proposed
method to this process. Section 4 presents and discusses the results,
including an analysis of important mathematical properties of the
optimization model. Finally, we conclude the paper in Section 5.

2. Methodology

In this section, we present the methodology proposed for calculating
the optimal volume of a short-term TES tank for district heating systems
with varying energy sources considering operational conditions. This
method is illustrated in the flowchart in Fig. 1. It contains the following
steps:

Step 1: Optimization model set-up - the dynamic optimization model
for calculating the optimal TES tank volume based on the
mathematical model of the system is built. For that, we use
a model representing operating conditions that will act as
constraints and we define an objective function that accounts
for the distinct desirable characteristics of the TES tank:
investment and operational costs as small as possible, and
robustness to reduce offsets between heat demand and supply.

Step 2: Interval selection - the optimization model is used to screen
the available operational data to determine periods where
TES is beneficial. That is done by calculating the optimal
volume for short-term intervals and the results are used as
basis for the selection of relevant intervals. The screening in
this step removes data that is not relevant to computing the
tank volume.

Step 3: Optimal volume calculation - the selected intervals are com-
bined into a single instance of the dynamic optimization
problem, which is solved for the concatenation of the selected
periods and, in addition, the influence of each term of the
objective function is analyzed.

In the following subsections, each step is further described and support-
ing theory is briefly presented.

2.1. Step 1: Optimization model set-up

The first step is to build an optimization problem for calculating the
volume of a short-term TES tank that can offset the mismatch between
waste heat supply and heat demand in the DH system taking into
account operating conditions. For that, we need a mathematical model
describing the process to be used as constraints of the optimization
model and an objective function that can numerically express the goal
of the TES tank. In this subsection, we describe how the optimization

model can be built and solved.
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Fig. 1. Flow diagram of the three step method for sizing a TES tank for DH systems with varying heat source.
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.1.1. Model constraints
Mass and energy balances are employed as equality constraints,

(𝑥) = 0,

here ℎ ∶ R𝑛𝑑 → R𝑛𝑒 and 𝑥 ∈ R𝑛𝑑 is a vector with all system variables
i.e. temperatures and flows). They ensure that the optimal volume is
hosen based on operating conditions by limiting the solution space to
ontaining only points that satisfy the mass and energy balances. In
ddition, inequalities,

(𝑥) ≤ 0,

ith 𝑔 ∶ R𝑛𝑑 → R𝑛𝑖 , are also considered. They set bounds to the system
ariable to further restrict the space of possible solutions. Inequalities
ay represent physical constraints, such as positiveness for tempera-

ures, and for energy and material flows, fixing the direction of the
tream. They can also be included to define limits we wish to impose
n the problem, for example, upper bounds for flow rates can be set
ased on the capacity of the pumps in the process.

.1.2. Objective functions
The optimum TES tank volume for a DH system can be determined

y finding a compromise between minimizing (1) initial investment, (2)
eak heating usage, and (3) heat dumped. Objective (3) is associated
ith the ability of the TES tank to efficiently make up and save offsets
etween heat demand and supply. We assign mathematical expressions
o describe each of these objectives and, given their distinct nature, the
ptimization model can be formulated as a multi-objective optimization
roblem, i.e., optimization problems in which more than one objective
unction are present. Generally, the objective function for this type of
roblems is represented as

min
∈R𝑛𝑑

{𝑓1(𝑥), 𝑓2(𝑥),… , 𝑓𝑛𝑓 (𝑥)}

here 𝑓𝑖 ∶ R𝑛𝑑 → R with 𝑖 = 1,… , 𝑛𝑓 . When dealing with multi-
bjective optimization problems, a solution that minimizes all of the
bjective functions at once is usually not possible. They are likely
onflicting, which means that multiple solutions exist. A popular way
f handling a multi-objective optimization problem is by aggregation
r transformation of the objective functions into a scalar function. The
dea is to combine the different objectives into a single expression or to
eformulate the problem, for example setting upper bounds to all but
ne objective, and adding them as inequality constraints [25].

If we analyze the goals we defined for an optimal TES tank, we can
ee that objective (1) directly conflicts with objective (2); the larger
he tank volume, the more heat can be stored and less peak heating is
3

eeded, but initial investment increases. Here, we propose to handle the t
ulti-objective problem by combining the different objectives to obtain
scalar expression to be minimized using two different approaches. If
e think of the second goal in economical terms, we can formulate a
ew metric, the payback period. This metric establishes a relationship
etween the initial investment and financial savings resulting from the
se of TES and consequent reduction in the peak heating use. The
dea is to obtain one parameter that can economically combine these
ifferent objectives and be used in the objective function.

We then propose to combine the payback time with objective (3)
o obtain a scalar objective function using the weighted sum method,
hich simply adds the objective functions and assigns weights to them

hat add up to 1. These weights represent their relative importance to
he user. Here an important aspect to mention is that the objective
unctions should be in the same order of magnitude, so they need to
e scaled if necessary.

.1.3. Solving the dynamic optimization problem
We can now put together the elements that have been discussed to

btain the optimization model,

in
𝑥

𝛼 ⋅ Payback + (1 − 𝛼) ⋅ Dumped heat (1a)

s.t. ℎ(𝑥) = 0 (1b)

𝑔(𝑥) ≤ 0, (1c)

here 0 ≤ 𝛼 ≤ 1 is the weighting parameter for the weighted sum
ethod for multi-objective problems. Given the dynamic nature of the
roblem posed by this work, ℎ(𝑥) may contain differential equations,
haracterizing the model representing the process as a system of differ-
ntial algebraic equations (DAE). Nonlinear programming (NLP) solvers
annot directly handle differential equations as constraints. However,
here are strategies we can adopt to solve dynamic optimization prob-
ems with this type of solvers, e.g., for large-scale problems, the most
sed method is the simultaneous approach, in which all time-dependent
ariables are discretized into 𝑛𝑡 ∈ N finite elements. Once we have a
iscretized model, there are two methods we can implement: multiple
hooting and orthogonal collocation. The former uses an embedded
AE solver to integrate the system at each finite element, while the

atter approximates the integrated intervals to a polynomial of order
∈ N, which is the number of collocation points used within the finite
lement [26].

.2. Step 2: Optimization-based interval selection

The main idea of this step is to screen the available operation data

o identify periods where energy storage has sufficiently large potential
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Fig. 2. Example of energy supply and demand data with high variability discretized into 5 intervals. There is little or no savings potential in the intervals not selected.
m

for affecting the economics of the system (representative intervals).
This requires defining the time scale for the energy storage. We use this
method to investigate short-term energy storage, which is supposed to
offset mismatches between demand and supply for up to a few days.

Ideally, we would like to calculate the volume of the tank with the
complete data for the season. However, there are two main issues with
that approach: the problem would become too large with too many
degrees of freedom, which is challenging to solve, and the operation-
related objective function of reducing waste heat dump is associated
with the short-term period selected (avoiding waste heat dump based
on the whole season would result in an oversized tank for its purpose).
Therefore, in this step, we first discretize the season into smaller
intervals of length defined to be as long as energy should be stored
for.

A simple approach is to define one representative short interval as
basis; however, this is not easy due to lack of periodicity in the data.
We propose a different approach that selects several representative
intervals within the entire long period that have a strong influence on
the optimal volume. For that, we set lower and upper bounds to the
volume of the tank based on prior knowledge of the process and the
available data and solve the NLP problem represented by Eq. (1) for
each short interval; the selected ones are those in which a local optimal
solution is found and the calculated volume is not at either bound. The
reasoning behind this approach is that, if the volume is at the bound,
the mismatch between demand and supply is too large and the optimal
volume for the TES tank would either be too large or too small, if
needed at all. For example, if waste heat supply is greater than heat
demand during the entire period, peak heating is not used and excess
heat can be used to increase and maintain the TES tank temperature at
maximum value. In this case, the volume of the tank is not particularly
relevant, since it only influences how much waste heat is dumped once
the TES tank reaches its maximum temperature. On the other hand, if
waste heat is not enough for the period, the calculated volume can be
very large because only the heat already stored in the tank is available
to reduce the use of peak heating. Therefore, the intervals of interest
should be those in which moments of excess waste heat availability
alternates with moments of greater heat demand within approximately
the length of the intervals.

Fig. 2 shows an example of energy supply and demand data with
high variability and illustrates the discretization into intervals and
their selection as discussed. In the first and last intervals, there is
no alternating behavior, therefore energy storage is not relevant. In
the second and third intervals, there are alternating periods of energy
excess and deficit, which makes energy storage beneficial and these
intervals can influence the TES optimal capacity. In the fourth interval,
supply and demand present similar values, with small excess or deficit;
typical TES configuration (size) should make up for these off-sets,
therefore this interval is not relevant for sizing energy storage.

2.3. Step 3: Optimal volume calculation

With the representative intervals selected, step 3 consists of calcu-
lating the optimal volume for the entire period represented by the data
4

t

using a single instance of the optimization model defined in step 1. To
connect all the selected intervals, we assume that the TES tank is not
used during the periods not selected, i.e., the end temperature of the
TES tank in an interval is the initial temperature of the next, regardless
whether they are consecutive or not. This assumption is reasonable
because, for the time scales considered, we can assume that there is
negligible heat loss and no energy from the tank is used during the
period.

An important factor that influences the optimal volume calculation
is how we solve the multi-objective optimization problem since the
method used to define the scalar objective function attributes weights
to each objective either direct or indirectly. Given that the payback
time is an important metric when deciding the volume of a TES tank, we
consider the balance between savings and investment cost represented
by the payback time to be a suitable cost function candidate. However,
in general, the operators of such a plant will also have the desire to save
waste heat; therefore, a balance between payback time and how much
waste heat will be allowed to be discarded must be found. This trade-
off is not straightforward. If we attribute a large weight to dumping
excess waste heat, then payback time is not as important and increases,
allowing for a greater volume. Analogously, if the dumping heat term
has a small weight, decreasing the payback time is prioritized and
the optimal tank size becomes smaller. Therefore, a trade-off analysis1

varying the weights of the summed objective functions is performed to
analyze how it influences the optimal volume.

3. Case study

In this section we present a case study that considers the initial
process design of a shot-term TES tank for an existing district heating
plant using industrial waste heat based on historical data. We show
how the proposed method can be used to find an optimal volume
and elucidate its relation to the objectives of the TES tank. Below, we
describe the process of the heating plant of Mo District Heating system
located outside the city of Mo i Rana, Norway and the historical process
data used, and detail how the method is applied to this process.

3.1. General process description

The heating plant, located in Mo Industry Park, produces 85–90
GWh per year mainly using waste heat recovered from off-gas from the
Elkem Rana ferrosilicon plant. While today about 90% of its annual
heat production is recovered waste heat, the asynchronous nature of
the availability of waste heat and the heat demand by the city is
addressed by peak heating boilers that are used when the waste heat is
insufficient to bring the water to the desired supply temperature. These
peak heating boilers can operate on CO-gas or electricity, with the
decision based on the availability of CO-gas and the electricity price.

1 Due to the non-convexity of the model and the use of the weighted sum
ethod along with an NLP solver that only finds local solutions, formally, this

rade-off analysis should not be called Pareto front.
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Fig. 3. Simplified representation of the heating plant of Mo District Heating with main flows. Flows from and to the TES tank are bidirectional with 𝑞𝐴 and 𝑞𝐵 representing the
operating direction. Black lines: Existing installation, Gray lines: proposed TES system.
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Fig. 3 shows a simplified flow diagram of the described DH plant
in black. Essentially, water returns from the city and the waste heat
boilers, which have total power peak of 22 MW and maximum outlet
temperature of 120 ◦C, are used to supply heat to the city. If the waste
heat is greater than the heat demand, the excess heat is dumped, while
insufficient waste heat is compensated by the peak heating boilers,
which have a maximum capacity of 21 MW. Also, part of the flow
returning from the city can bypass the waste heat boilers to cool the
supply water if necessary. These decisions are made at each instant by
a controller based on outdoor temperature compensation, i.e., based
on the external temperature, the control system determines the outlet
temperature of the boilers.

By implementing a TES tank, it is possible to store some of the
energy that would otherwise be dumped to be used when peak heating
is necessary, reducing its overall energy consumption. The TES tank
for the considered DH system is represented in gray in Fig. 3. When
integrated in the process, excess heat to be stored can be transferred to
the water in the waste heat boilers by directing part of the flow to the
tank at node B. Since the volume of the tank is kept constant, the same
flow leaves the tank and is merged to the returning water at node A.
In contrast, when the available waste heat cannot meet demand, heat
from the tank can be discharged to the main flow at node B while part
of the returning water is directed to the TES tank at node A.

3.2. Process data

We use historical data from Mo District Heating, supplying heat to
the citizens of Mo i Rana, Norway, in the period from November 2018
through April 2019. This data have also been used by other authors [9,
24]. The top plot in Fig. 4 shows the total waste heat available and
heat demand from the city for this period for every hour. We consider
this period as the period of interest in a year, since we consider only
short-term TES and between May and October heat demand is low and
peak-heat is generally not required. The bottom plot in Fig. 4 shows the
peak heating used during the considered interval. The total waste heat
available for the period corresponds to 99.2% of the total heat demand;
however, the total peak heating used corresponds to 14.8%. That is,
the total available waste heat is almost enough to satisfy demand, but
due to a mismatch between heat demand and waste heat availability,
peak heating is used today and is responsible for significant costs and
emissions. These, however, can be reduced with the implementation of
a TES tank.

In addition to heat demand, peak heating and waste heat, measure-
ments for the return and supply temperatures from and to the city,
respectively, are available. The total mass flow rate that goes through
the process is calculated from heat demand and return and supply
temperatures using an energy balance and known properties of water
and, therefore, considered known information. The available data have
5

average numerical values for every hour of the considered period. 𝑞
3.3. Step 1: Optimization model set-up

3.3.1. Mass and energy balances
The mathematical model for the Mo District Heating system is

comprised of energy and mass balance equations. For this case study,
we adopt some simplifying hypotheses for the model, since we consider
the initial design of the tank, and the main focus of this study is to
evaluate and demonstrate the method. However, it is important to
note that a more detailed model could also be used. For example, we
consider a homogeneous TES tank but it could be easily substituted by
a more detailed model, such as a stratified TES tank.

We assume heat losses in the system (e.g. natural convection with
the environment) are negligible and that the water flow supplied to
the city is equal to the returning flow at each instant of time. This
implies that the holdup of water in the system remains constant, i.e. no
accumulation of mass. The dynamics of the temperature in a large
tank are much slower than the dynamics of the flow in the rest of the
system; therefore, we only consider dynamics for the energy balance
in the TES tank, all other changes in the process are assumed to
happen instantaneously. We also assume that the properties of water
are constant.

The returning water from the city is split in node A into two streams
(Fig. 3), and the corresponding mass balance can be expressed by

𝑞dh(𝑡) − 𝑞sys(𝑡) − 𝑞bp(𝑡) = 0, (2)

where 𝑞dh(𝑡) is the water mass flow rate from and to the city, 𝑞sys(𝑡) is
he flow rate directed to the waste heat boilers and/or the TES tank,
nd 𝑞bp(𝑡) is the flow rate that bypasses the waste heat system. Besides
he balance in node A, we need an additional balance for node B that
pecifies when the TES tank is used,

sys(𝑡) − 𝑞whb(𝑡) − 𝑞𝐴(𝑡) + 𝑞𝐵(𝑡) = 0, (3)

here 𝑞𝐴(𝑡) and 𝑞𝐵(𝑡) are the mass flow rates associated with discharg-
ng and charging of the TES tank respectively. Here, it is important
o note that 𝑞𝐴(𝑡) and 𝑞𝐵(𝑡) are non-negative values that represent

bi-directional flow. Therefore, they cannot assume nonzero values
imultaneously, i.e., charging and discharging do not occur at the same
ime. This logical expression may be represented mathematically as the
omplementarity

≤ 𝑞𝐴(𝑡) ⟂ 𝑞𝐵(𝑡) ≥ 0. (4)

his notation means that 𝑞𝐴 and 𝑞𝐵 need to be non-negative, and that
t least one of them must be zero. Energy balances need to be defined
t points where streams of different temperature are split or merged.
t node B, the energy balance is given by

(𝑡)𝐶 𝑇 (𝑡)+ 𝑞 (𝑡)𝐶 𝑇 (𝑡)− 𝑞 (𝑡)𝐶 𝑇 (𝑡)− 𝑞 (𝑡)𝐶 𝑇 (𝑡) = 0, (5)
sys 𝑝 dh,ret 𝐵 𝑝 TES whb 𝑝 𝐵 𝐴 𝑝 𝐵
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here 𝐶𝑑ℎ
𝑝 is the specific heat capacity of water, 𝑇dh,ret(𝑡) is the tem-

perature of the returning water, 𝑇TES(𝑡) is the temperature of the TES
tank, and 𝑇𝐵(𝑡) and 𝑇𝐶 (𝑡) are the temperatures at nodes B and C
respectively, and 𝑞whb(𝑡) is the flow rate directed to the waste heat
boilers. Analogously, the energy balance at node C is

𝑞whb(𝑡)𝐶𝑝𝑇whb(𝑡) + 𝑞𝐴(𝑡)𝐶𝑝𝑇TES(𝑡) − 𝑞sys(𝑡)𝐶𝑝𝑇𝐶 (𝑡) − 𝑞𝐵(𝑡)𝐶𝑝𝑇𝐶 (𝑡) = 0, (6)

with 𝑇whb(𝑡) as the outlet temperature of the waste heat boilers, while
at node D, the energy balance is given by

𝑞bp(𝑡)𝐶𝑝𝑇dh,ret(𝑡) + 𝑞sys(𝑡)𝐶𝑝𝑇𝐶 (𝑡) − 𝑞dh(𝑡)𝐶𝑝𝑇𝐷(𝑡) = 0, (7)

where 𝑇𝐷(𝑡) is the inlet temperature of the peak heating boilers.
For both waste heat and peak heating boilers, we assume that the

heat is uniform and rapidly transferred to the main stream; this way,
dynamics are not taken into account. Therefore, the energy balance
around the peak heating boilers is given by

𝑄phb(𝑡) − 𝑞dh(𝑡)𝐶𝑝(𝑇phb(𝑡) − 𝑇𝐷(𝑡)) = 0, (8)

where 𝑄phb(𝑡) is the peak heating rate required to bring the water to
the demand supply temperature, and 𝑇phb(𝑡) is the outlet temperature of
the peak heating boilers. Similarly, the waste heat boilers are described
by the following energy balance

𝑄whb(𝑡) − 𝑞whb(𝑡)𝐶𝑝(𝑇whb(𝑡) − 𝑇𝐵(𝑡)) = 0, (9)

where 𝑄whb(𝑡) is the portion of waste heat rate that is transferred to
the water. Additionally, an equation comprising the portion that is
dumped, 𝑄dump(𝑡), is necessary, that is

𝑄whtotal(𝑡) −𝑄whb(𝑡) −𝑄dump(𝑡) = 0, (10)

where 𝑄whtotal(𝑡) is the total rate of the waste heat available.
Lastly, the energy balance for the TES tank is expressed by

𝑑
𝑑𝑡

(

𝜌𝑉TES𝐶𝑝𝑇TES(𝑡)
)

= 𝑞𝐴(𝑡)𝐶𝑝
(

𝑇TES(𝑡) − 𝑇𝐵(𝑡)
)

− 𝑞𝐵(𝑡)𝐶𝑝
(

𝑇TES(𝑡) − 𝑇𝐶 (𝑡)
)

,

(11)

where 𝜌 is the water density and 𝑉TES is the TES tank volume. Consid-
ering that 𝜌, 𝑉TES and 𝐶𝑝 are constant, we rearrange this equation and
write as the ODE
𝑑𝑇TES(𝑡)

𝑑𝑡
=

𝑞𝐴(𝑡)
𝑉TES

(

𝑇𝐵(𝑡) − 𝑇TES(𝑡)
)

+
𝑞𝐵(𝑡)
𝑉TES

(

𝑇𝐶 (𝑡) − 𝑇TES(𝑡)
)

. (12)

If we take Eqs. (2)–(10) and (12) as constraints, the presence
f Eq. (4), which imposes that either 𝑞𝐴 or 𝑞𝐵 is greater than zero
6

nd not both, results in a dynamic optimization problem that can
lso be classified as a mathematical program with complementarity
onstraints (MPCC). This type of problem is numerically challenging
o solve because the restriction that at least one of the variables in the
omplementarity must be zero makes the solution space non-smooth.
fficient large-scale NLP solvers require smoothness of the model;
herefore, it is common practice to reformulate complementarities so
hat NLP solvers can be used to solve MPCC problems [27].

Here, however, we can avoid complementarity constraints in the
ptimization model by using system information known a priori. Having
oth waste heat and heat demand profiles available, we define that the
ank is only charged when there is excess heat, and discharged when
aste heat surpasses heat demand. This way, the complementarity

onstraint (4) is replaced with

𝑞𝐴(𝑡) = 0, if 𝑄whtotal(𝑡) ≥ 𝑄demand(𝑡)

𝑞𝐵(𝑡) = 0, if 𝑄whtotal(𝑡) < 𝑄demand(𝑡)
(13)

nd the problem becomes a classical dynamic optimization model. Note
hat the rate at which the tank is charged or discharged is still a free
ariable, and determined by solving the optimization problem.

.3.2. Multiple objectives for optimization
We begin setting up the optimization by defining the mathematical

odel described in the previous subsection as equality constraints.
nequalities corresponding to limitations for the process variables are
lso added as constraints. Table 1 shows the lower and upper bounds
efined for each variable in the optimization problem for limiting their
ossible value at the solution.

We now need mathematical expressions that can represent the three
istinct objectives the short-term TES tank must meet. The first one
ould be to minimize investment cost, which is a function of the
olume of the TES tank. The mathematical expression was obtained
rom [14], where they used previous implemented projects from [28]
o define an equation for investment cost, given by

(𝑉 ) = 0.0047𝑉 0.6218
TES , (14)

here 𝐼(𝑉 ) is the initial investment cost in million euros, and 𝑉 is the
ank volume in m3.

For the second objective we want to reduce the use of peak heating,
hich economically is equivalent to maximize savings in peak heating

ost. This can be described as the difference between the operational
ost of peak heating with and without TES, which is expressed by

= 𝐶peak
(

𝑄phb,noTES(𝑡) −𝑄phb(𝑡)
)

𝑑𝑡, (15)
∫period
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Table 1
Bounds of the operational variables in the optimization model for sizing a TES tank
for DH systems.

Variable Lower bound Upper bound Unit

𝑇tes 40.0 120.0 [◦C]
𝑇𝐵 40.0 120.0 [◦C]
𝑇𝐶 40.0 120.0 [◦C]
𝑇𝐷 40.0 120.0 [◦C]
𝑇whb 40.0 120.0 [◦C]
𝑄phb 0.0 ∞ [MW]
𝑄whb 0.0 22 [MW]
𝑄dump 0.0 𝑄whtotal [MW]
𝑞whb 0.0 333.3 [ kg

s
]

𝑞𝐴 0.0 1388.9 [ kg
s

]

𝑞𝐵 0.0 1388.9 [ kg
s

]

𝑞bp 0.0 𝑞dh [ kg
s

]

𝑞sys 0.0 𝑞dh [ kg
s

]

where 𝐵 is the total savings in peak heating, 𝐶peak is the price of peak
heating per energy unit, and 𝑄phb,noTES is peak heating consumption
without TES.

The third objective is to be able to make up offsets between heat
demand and supply, which can be accomplished by storing excess
waste heat to be used when demand is greater than waste heat supply.
We can express it as minimizing dumped waste heat, 𝑄dump(𝑡), so
hat excess energy can be later used in moments of higher demand.
athematically, this objective can be described as the mean square of
aste heat dumped during the considered period,

1
𝛥period ∫period

𝑄dump(𝑡)2𝑑𝑡, (16)

where 𝛥period is the period length. Raising the waste heat dumped to
the power of 2 helps with convergence when solving the optimization
problem, which is further discussed in Section 4.1.

As described in Section 2.1.2, the first two objectives are reformu-
lated into a new metric, the payback period, 𝑁 , given by

𝑁 =
𝐼(𝑉 )
𝐵

. (17)

n addition, to obtain an objective function that results in a scalar,
e combine Eqs. (16) and (17) using the weighted sum approach for
ulti-objective models.

Having the objective function and model constraints, we finally
btain the complete optimization model defined for the problem of
izing a short-term TES tank in this case study, which is mathematically
xpressed as follows

in
𝑥

𝜙 = 𝛼𝑁 + 𝛽 1
𝛥period ∫period

𝑄dump(𝑡)2𝑑𝑡 (18)

s.t. Eqs. (2), (3), (5)–(13)
Eqs. (14), (15), (17)
𝑥LB,𝑗 ≤ 𝑥𝑗 ≤ 𝑥UB,𝑗 for 𝑗 = 1,… , 𝑛𝑣,

where 𝛽 and 𝛼 are the weighting parameters for the combined objective
function, 𝑥 is a vector containing all variables, 𝑥LB and 𝑥UB are lower
and upper bounds for the variables respectively, and 𝑛𝑣 is the total
umber of variables.

.3.3. Discretized dynamic optimization problem
To solve the dynamic optimization problems defined for this case

tudy, we use orthogonal collocation of order 1 with Radau collocation
oints, which is commonly used for dynamic optimization. After the
iscretization of the resulting dynamic optimization model, we finally
btain a classical NLP problem given by

min 𝜙 = 𝛼𝑁 + 𝛽 ℎ
‖𝑄dump‖

2 (19a)
7

TES ,𝑞 𝑛𝑡 2 c
s.t. 𝑞𝑖dh − 𝑞𝑖sys − 𝑞𝑖bp = 0 (19b)

𝑞𝑖sys − 𝑞𝑖whb − 𝑞𝑖𝐴 + 𝑞𝑖𝐵 = 0 (19c)

𝑞𝑖sys𝐶𝑝𝑇
𝑖
dh,ret + 𝑞𝑖𝐵𝐶𝑝𝑇

𝑖
TES − 𝑞𝑖whb𝐶𝑝𝑇

𝑖
𝐵 − 𝑞𝑖𝐴𝐶𝑝𝑇

𝑖
𝐵 = 0 (19d)

𝑞𝑖bp𝐶𝑝𝑇
𝑖
dh,ret + 𝑞𝑖sys𝐶𝑝𝑇

𝑖
𝐶 − 𝑞𝑖dh𝐶𝑝𝑇

𝑖
𝐷 = 0 (19e)

𝑄𝑖
phb − 𝑞𝑖dh𝐶𝑝(𝑇 𝑖

phb − 𝑇 𝑖
𝐷) = 0 (19f)

𝑄𝑖
whb − 𝑞𝑖whb𝐶𝑝(𝑇 𝑖

whb − 𝑇 𝑖
𝐵) (19g)

𝑄𝑖
whtotal −𝑄𝑖

whb −𝑄𝑖
dump = 0 (19h)

𝑇 𝑖
TES = 𝑇 𝑖−1

TES + ℎ
( 𝑞𝑖𝐴
𝑉TES

(

𝑇 𝑖
𝐵 − 𝑇 𝑖

TES
)

+
𝑞𝑖𝐵
𝑉TES

(

𝑇 𝑖
𝐶 − 𝑇 𝑖

TES
)

)

(19i)

𝐼 = 0.0047𝑉 0.6218
TES (19j)

𝐵 = 𝐶peakℎ
𝑛𝑡
∑

𝑖=1

(

𝑄𝑖
phb,noTES −𝑄𝑖

phb
)

(19k)

𝑁 ⋅ 𝐵 − 𝐼 = 0 (19l)

𝑞𝑖𝐴 = 0, if 𝑄𝑖
whtotal ≥ 𝑄𝑖

demand (19m)

𝑞𝑖𝐵 = 0, if 𝑄𝑖
whtotal < 𝑄𝑖

demand, (19n)
𝑥LB,𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥UB,𝑗 for 𝑗 = 1,… , 𝑛𝑣,

here ℎ is the time step size, 𝑖 = 1,… , 𝑛𝑡, and 𝑇 0
TES is the initial TES

ank temperature. This NLP problem is implemented in Julia, using
uMP [29] as mathematical programming language and Ipopt [30] as
he NLP solver.

.4. Step 2: Interval selection

The interval length must be defined for the screening of the data
escribed in Section 2.2. We consider a time scale for energy storage
f 3 days, that is, we define the interval length to be 3 days. The
dea is that, within 3 days, the TES tank should be able to make up
or offsets between heat demand and supply. Bounds for the volume
ank are also determined; we consider upper and lower bounds to be
000 and 100 m3 respectively. To solve the optimization model in this
tep, the weighting parameters of the multi-objective function are set to
= 0.1 and 𝛽 = 0.9, i.e., in this step, the optimization focuses mainly on

toring energy to avoid dumping excess heat. In addition, the dynamic
ariable, 𝑇TES, needs an initial value; for the first interval, it is set to
5 ◦C (which is approximately in the middle between the bounds), and
he following ones use the end TES tank temperature of the previous
nterval. For each three-day period, problem (19) is solved. Any three-
ay that yields a TES volume between 100 and 5000 m3 is selected
s a heat-storage interval, and is later included in the overall volume
alculation in Step 3.

.5. Step 3: Optimal TES volume calculation

Now the intervals selected in Step 2 are combined into an overall
eriod, which is used for determining an optimal TES volume by solving
q. (19) one more time. For that, the initial value for 𝑇TES is also set
o 95 ◦C. Moreover, to analyze the system thoroughly, we perform a
rade-off analysis of the competing objective functions, with 𝛽 varying
rom 0.1 to 0.9 and 𝛼 accordingly.

. Results and discussion

This section presents numerical results of the case study based on
he data from the Mo District Heating system. We start by discussing the
ptimization model, focusing on an analysis of the degrees of freedom
nd ill-conditioning handling. Next, results for the interval selection
ased on 3-day periods are shown, followed by an analysis of the
ptimal TES tank volume calculated for the complete 6-month period

onsidered for this study.
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.1. Step 1: Optimization model set-up

Before solving an optimization problem, it is important to analyze
ome aspects of the model to better understand its limitations and
nterpret the results. A relevant analysis to perform is to inspect the
egrees of freedom of the set of equations acting as equality constraints
or the problem, as they indicate the flexibility of the model. Here we
ave 4 free dynamic variables (total of 4×𝑛𝑡 discretized variables) plus
static variable; the latter can be defined to be the volume of the tank

nd the former, how the water is distributed within the system, i.e., 𝑞sys,
bp, 𝑞whb, and 𝑞𝐴 or 𝑞𝐵 , depending on constraints (19m) and (19n).

4.1.1. Handling non-unique solutions
For a design problem, we ideally would like only 𝑉TES to be a free

variable, since having the flow distribution as free variables translates
to non-unique solutions for this case, that is, different configurations
can lead to the same optimal value for the objective function. For
instance, suppose that 100 kg/s of water returns from the district at
60 ◦C and that the heat rate at the waste heat boilers is 12.6 MW, as
shown in Fig. 5a. If all the water is directed to the waste heat boiler, it
reaches 90 ◦C, but if 20 kg/s of returning water bypasses the system,
the remaining stream leaves the waste heat boiler at 97.5 ◦C, and once
they are mixed again (see Fig. 5b), the new temperature stream is 90 ◦C
s well. From an operational point of view, there would be no reason to
ypass a fraction of the returning water. However, these two situations
re mathematically equivalent with respect to the objective function,
o waste heat is dumped and they do not influence the volume of the
ank or savings.

Due to the model formulation, there are infinite flow distributions
hat can result in the same objective function value, which means that
he optimization problem is ill-posed. One could implement a complete
ontrol model that would determine the exact optimal operation, for
xample, to tackle this issue. However, it would greatly increase the
omplexity of the problem. Since this methodology focuses on finding
n optimal volume for the TES tank, obtaining the most physically
eaningful flow distribution is not a priority; having a mathemat-

cal tractable model is more important at this stage. Therefore, to
eal with the situations illustrated in the previous paragraph, we add
2-regularization terms to the objective function to help the solver
onverge to a local minimum that selects one flow distribution among
he possible solutions. The regularized objective function is then given
y

= 𝛼𝑁 + 𝛽 ℎ
𝑛𝑡
‖𝑄dump‖

2
2 + 𝜅1‖𝑞whb‖

2
2 + 𝜅2‖𝑞bp‖

2
2, (20)

here 𝜅1 and 𝜅2 are tuning parameters set to 10−10, which is small
nough to help convergence to a unique point and such that its effect
n charging and discharging of the TES tank can be neglected.

.1.2. Quadratic vs. linear penalty terms
To illustrate how the curvature introduced by using quadratic terms

n the objective function influences the results, consider a toy example
or an 8-hour interval represented in Fig. 6. There is excess waste heat
or almost the entire period, except from 3 to 4 h when demand is
8

reater and peak heating is used. In the top plot, we calculated the
ptimal TES tank volume for this interval with a linear term for waste
eat dumped, ‖𝑄dump‖1, in the objective function, while the bottom
op was obtained using the quadratic term, ‖𝑄dump‖

2
2, in Eq. (19a);

hese results are represented by solid lines (scenario I). We create a
econd scenario (II) by subtracting 1 MW from waste heat dumped in
he first hour and adding it to the second hour, that is, an extra 1 MW of
aste heat is used in the first hour and the same amount is discounted

n the second hour. The optimization problem is then re-solved. As
xpected, in both scenarios the formulation with the linear term results
n the same objective value of 61.86. However, the formulation with the
uadratic term was lower in the first scenario when heat dump is kept
pproximately steady, resulting in an objective value of 62.65; while
or the second scenario this value was 62.92.

These observations show that the solver might have issues choosing
ne of these results for the linear term, but the quadratic term is better
efined and the solver converges more easily to the first scenario. The
verall results, however, are all equivalent when we look at the goals of
he TES tank; they all result in the same volume of 100 m3, peak heating
s not used, and the temperature of the tank is the same by the end of
he interval, having the same amount of energy stored for future use.
herefore, for this method, we prioritize convergence properties and
ssume that the local solutions to the optimization problem are mathe-
atically equivalent to the optimal operation conditions, meaning that

ealistic optimal conditions should result in the same objective value
nd energy balance.

.2. Step 2: Interval selection

Based on the decision to consider energy storage on a time scale of
days, the period from November 2018 to April 2019 was divided into

ixty 3-day intervals and the nonlinear optimization problem described
y Eq. (19) was solved for each interval. Fig. 7 shows the results for
hree representative intervals illustrating three possible scenarios. The
eft plot of each interval presents the TES tank, DH return, and DH
upply temperatures, while plots on the right show waste heat supply
nd heat demand as well as peak heating use with and without a TES
ank.

In the first scenario, shown in the top two plots, Fig. 7a, there is
ostly excess waste heat with a small use of peak heating at about
5 and 70 h (purple dotted line in left plot), which can be avoided
ith a small tank volume, so the optimal volume for this interval hits

ower bound. Therefore, any volume within the possible range would
e suited to eliminate peak heating use for this window, and it is not
elected as a relevant interval.

Note that the results shown in Fig. 7a also illustrate the discussion
n multiple solutions presented in the previous subsection. For this
nterval, heat demand (dashed green line in right plot) is only consid-
rably greater than the waste heat available (dashed red line in right
lot) at about 14 and 69 h, when peak heating is used. Since the initial
emperature of the tank is 95 ◦C, the tank could be initially charged,
hen discharged to avoid the use of peak heating, and charged again to
tore more energy. However, we can see by the temperature variation
solid blue line in the left plot) throughout the interval that the tank
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4

s charging during most of the initial period, discharging at about 10 h
or a short period (which decreases its temperature), but ending at a
igh temperature with stored energy. Even though this operation would
ot be performed in practice, it represents the flow distribution that
inimizes the mean square of waste heat dumped, and the objectives

f the TES tank are met with a 100 m3: peak heating is completely
voided and energy is stored for later use.

For the second period, Fig. 7b, heat demand (dashed green line in
ight plot) is larger than supply (dashed red line in right plot) during
he entire interval, and the TES tank temperature (solid blue line in the
eft plot) is lower than the return temperature from the district (dashed
range line in the left plot) for some small periods, specifically between
0 and 30 h and about 50 and 65 h. When the return temperature
s lower than the TES tank temperature, heat stored in the TES tank
an be used, indicated by the decrease in its temperature. In this case,
he calculated TES tank volume hits upper bound, since the larger the
olume the more heat is available in the tank. However, given the
ittle difference between the TES tank and return temperatures here,
otential savings are very small compared to the cost of the tank; hence
his interval is also not selected.

The last 3-day interval, Fig. 7c, has alternating moments of waste
eat surplus and shortage. The optimal volume for this interval is
ithin the defined range, and both the TES tank temperature (solid
lue line in the left plot) and heat savings (difference between the
otted purple line and the solid blue line in the right plot) show that
his interval is relevant for the long-period optimization problem, and,
ence, is selected.

Regarding the interval selection for the entire season, 25 out of 60
9

ntervals were selected using the criteria presented in Section 2.2; their t
ptimal TES tank volumes were not at upper or lower bounds. This
educes the size of the final optimization problem for finding the tank
ize by almost 60%. The distribution of the selected screened optimal
ank size values is presented in Fig. 8. We can see that approximately
alf of the intervals resulted in small tank volumes, i.e., lower than
00 m3, while the remaining optimal volumes are distributed from
00 to 3500 m3. Lower optimal volumes can result from intervals in
hich offsets between heat demand and waste heat supply are not too

arge. Intervals with several alternating short moments of surplus and
hortage of waste heat supply, such as the interval corresponding to
he plots in Fig. 7c, also lead to lower optimal volumes. On the other
and, greater volumes are associated with longer periods of waste heat
hortage, small waste heat excess compared to heat demand, and/or
ow initial temperature of the TES tank, since, in these situations,
he tank would need to have enough energy stored to be converted
nto significant savings. Fig. 9 shows the results of an interval that
llustrate these situations. Note that heat demand (dashed green line
n the right plot) is greater than the waste heat available (dashed red
ine in the right plot) during most of the interval, except for a period of
round 10 h, approximately from 12 to 22 h. The high initial value and
ecreasing profile of the temperature of the TES tank (solid blue line
n the left plot) indicates that, during this interval, energy previously
tored in the tank is consumed to reduce peak heating (from the dotted
urple line to the solid blue line in the right plot).

.3. Step 3: Optimal TES volume calculation

.3.1. Optimal volume for nominal weights in objective function
To calculate the optimal volume of the TES tank, data from all

he selected intervals was used in the optimization problem (19) to
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Fig. 7. Temperature and heat profiles for three intervals to illustrate possible scenarios considered for relevance assessment.
Fig. 8. Histogram with the optimal volumes obtained for the 25 selected intervals.
10
create a single instance of the optimization model. Using the same
weight parameters for the objective function that were employed for
the interval selection, i.e. 𝛼 = 0.1 and 𝛽 = 0.9, the optimal volume was
found to be 4314 m3. Under the assumption that the selected intervals
represent a possible savings of a TES tank in a year, the calculated
optimal payback time is 11.66 years and savings are NOK 755,951 per
year. Note that, in this case, the weight assigned to dumped waste heat
is 9 times greater than the one assigned for the payback time, resulting
in large volume and payback time.

4.3.2. Trade-off analysis
The results of the trade-off analysis with respect to the weights 𝛼

and 𝛽 in the objective function are presented in Fig. 10. The plots were
generated by varying 𝛼 from 0.1 to 0.9, and varying 𝛽 accordingly such
that their sum is 1. The circles describe the relationship between the
two contradicting terms in the objective function, total dumped waste
heat and the payback time. In addition, the triangles represent how
annual savings increase as payback time, and consequently volume,

increases. Given that the relationship between the two objectives is
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Fig. 9. Temperature and heat profiles for an interval with high heat demand compared to waste heat availability in which energy previously stored is used by the process to
reduce peak heating.
Fig. 10. Trade-off between dumped waste heat and payback time (left) and objective value as a function of volume (right) with varying weight parameters. Values for the weight
𝛽 are shown for some points. The selected volume (1388 m3) for the short-term storage tank is marked by the star symbol.
concave, choosing an optimal volume for the TES tank is a trade-off
situation, a solution that can minimize both objectives simultaneously
is not possible, as expected.

By analyzing Fig. 10, we decide 𝑉 = 1388 m3, corresponding to a
ayback time of 7.12 years and savings of NOK 611,159, to be a suitable
olume for a short-term TES tank in the Mo District Heating system,
hich is the highlighted point in the set. Besides being a volume that

epresents a compromise between both objectives, the payback time
eems reasonable [12] and we can see that, starting at this point, the
ate of change for the savings presents a more accentuated decline. A 1-
ear shorter payback time would reduce savings in approximately NOK
6,000 per year. However, increasing the payback time with 1-year, the
avings would only increase about NOK 45,000 per year. Moreover, our
esult is in the same range as found in earlier case studies [9,12] for the
eating plant of Mo District Heating. However, differently from these
tudies, our work uses a rigorous optimizer to determine the optimal
olume.

Fig. 11 shows the resulting operating conditions for the entire 6-
onth period for the selected TES tank volume. The temperature profile

or the TES tank is presented in the top plot, original peak heating use
s compared against peak heating use with the optimal TES tank in
he middle plot, and an analogous comparison is made for waste heat
umping in the bottom plot. The reduction in peak heating use and
aste heat dumping are evident, as shown in both middle and bottom
lots, specially in periods with alternating waste heat excess and higher
emand.

.4. General discussion

The proposed method has the advantage of being simple to imple-
ent using any scientific programming language while being able to

onsider moderately complex models based on operating conditions of
11

he process. Compared with iterative, steady-state or simulation-based
approaches, the suitable TES volume can be identified from a full space
of solutions. This avoids exhaustive investigation of discretized TES
candidate size, and enables better precision of the sizing decision. The
class of dynamic optimization problems considered in this work can be
challenging because they are likely to have infinite solutions. Therefore,
carefully formulating the problem and understanding its mathematical
properties are required. An analysis of the multi-objective optimization
model, such as the one presented in Section 4.1, is important to ensure
convergence and for the critical evaluation and interpretation of the
results.

Another important feature is that this model is general and not
limited to the case study presented. Other types of TES for short-term
operation, e.g. latent heat storage, can be used as long as a numerical
model for operation is available. In this case, the implementation of the
steps would remain the same, formulation of the optimization model
based on a mathematical representation of the operating conditions
of the TES and process, interval screening and solution of the multi-
objective model. However, the interval length for discretization can
change based on the process and storage necessity.

5. Conclusion

The problem of finding an optimal volume for a short-term TES
tank for a DH system using waste heat with high variability based
on operating conditions has two main challenges: dealing with the
different time-scales for both the payback period and the operation of
the TES tank, and finding a trade-off between the conflicting objectives
of the tank, namely minimizing investment cost and minimizing waste
heat dumping. We have shown that a single multi-objective dynamic
optimization model can be systematically used to evaluate decrease of
peak heating consumption in short-term periods and select the relevant
ones to obtain an optimal volume for a long horizon. The multi-

objective formulation can be used to study the trade-off of the different
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Fig. 11. Optimal operating condition results for optimal TES tank volume of 1388 m3.
goals set to short-term TES tanks. For the case study considered, by
carefully analyzing the results, we selected a volume of 1388 m3 within

range of 100–5000 m3 as the optimal volume for the Mo District
eating system.
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