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a b s t r a c t 

Cities are at the forefront of the battle against climate change. However, intercity comparisons and responsibility 

allocations among cities are hindered because cost- and time-effective methods to calculate the carbon footprints 

of global cities have yet to be developed. Here, we establish a hybrid method integrating top-down input–output 

analysis and bottom-up crowdsourced data to estimate the carbon footprints of global cities. Using city purchasing 

power as the main predictor of the carbon footprint, we estimate the carbon footprints of 465 global cities in 

2020. Those cities comprise 10% of the global population but account for 18% of the global carbon emissions 

showing a significant concentration of carbon emissions. The Gini coefficients are applied to show that global 

carbon inequality is less than income inequality. In addition, the increased carbon emissions that come from high 

consumption lifestyles offset the carbon reduction by efficiency gains that could result from compact city design 

and large city scale. Large climate benefits could be obtained by achieving a low-carbon transition in a small 

number of global cities, emphasizing the need for leadership from globally important urban centres. 
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. Introduction 

Cities are the core of global climate change mitigation. Their con-

entration of people, wealth and resources makes cities centres for eco-

omic activities, innovation, and culture, and with approximately 55%

f the world’s population living in cities, they are also the source of

0% of global GDP [1] . The process of continuous urbanization across

he globe has the potential to contribute greatly to sustainable develop-

ent [ 2 , 3 ]. However, urban activities also lead to negative impacts on

he environment that often manifest themselves beyond city boundaries.

ttributing to cities the carbon emissions associated with the production

f goods and services they consume, urban areas covering only 2% of

he Earth’s land are responsible for approximately 80% of global green-

ouse gas emissions [ 4 , 5 ]. 

Cities therefore bear a tremendous responsibility to play a leading

ole in the shift to a zero-carbon economy. In the post Paris era, cities

ave moved from being actors leading the implementation and enforce-

ent of national polices to actors developing and implementing key

olicies on their own [ 6 , 7 ]. As a consequence, cities are asserting their

omparative and competitive advantages to deliver more concrete ac-

ions, in many cases more quickly than nations do [8] . 

To facilitate progress on climate change mitigation in global cities,

ffective methods to measure the carbon footprints of cities are neces-

ary. Without a globally unified carbon accounting method, the compar-
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son between cities and subsequent responsibility allocation is infeasible

4] . To this end, carbon footprints, also known as consumption-based

arbon emissions, are believed to be critical to revealing carbon emis-

ions caused by city activities both within and beyond city boundaries.

eidmann et al. found that the indirect emissions that occurred outside

he city boundary in 79 C40 cities accounted for 41% of the total carbon

ootprint, and if emissions induced by energy production were included,

his ratio increased [9] . 

Some studies have attempted to establish city-level carbon emis-

ion inventories and focus on territorial emissions [ 10 , 11 ], however,

 widening gap between the territorial emissions and carbon footprints

n cities with higher GDP further indicates that developed cities tend

o push production-based emissions outside their city boundaries. By

stimating carbon footprints, emissions associated with activities occur-

ing in rural areas but serving urban consumers are considered. This

eveals information not only about urban lifestyles but also the charac-

er of urban infrastructure and the economic structure of a city [12] .

uch knowledge serves as the foundation for establishing cooperation

o combat climate change between global cities. 

Previous studies assessing city carbon footprints usually have mas-

ive and costly requirements for data collection and therefore are often

imited to a certain country, region, or set of cities. To date, regional city

arbon footprints have been calculated via three typical approaches,

amely, the environmentally extended input–output (EEIO) analysis,

onsumer expenditure survey analysis, or an integration of both. If city-
 October 2022 
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Fig. 1. Framework of the hybrid top-down 

and bottom-up carbon footprint estimation of 

global cities. 
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evel EEIO tables are available, an inventory of city carbon footprints

an be established [13] . Mi et al. calculated the consumption-based car-

on emissions of 13 Chinese cities using the city EEIO tables from re-

ional statistics bureaus [14] . Carbon footprints calculated by consumer

xpenditure surveys contain more micro consumption details but only

ccount for household footprints and do not include footprints associ-

ted with government and capital formation. Lee et al. integrated con-

umer expenditure survey results and a global supply chain database to

alculate the carbon footprints of household consumption in 623 cities

n India [15] . Many studies combine both methods to calculate city car-

on footprints [16] . Kanemoto et al. integrated the multiregional input–

utput (MRIO) model and consumer expenditure data to calculate the

onsumption-based carbon emissions of 1172 Japanese cities [17] . Re-

ently, scholars have used some new approaches, including machine

earning [18] or GIS-based data [19] to predict carbon emissions in Eu-

opean cities. These approaches are not only data intensive and time

ntensive but also constrained to certain regions due to difficult data

ccessibility [ 4 , 20 ]. 

A cost- and time-effective method to measure the carbon footprints

f global cities has yet to be developed for global assessments. A recently

stablished database, Carbon Monitor Cities, provides near-real-time

aily carbon emissions of global cities from 2019 to 2021 [21] . A simi-

ar study is the dataset of carbon emissions for global cities by Nangini

t al. [22] . These databases are an important step towards timely car-

on emission data of global cities. They cover scope 1 and 2 emissions

ut not scope 3 emissions along the supply chain. For global city carbon

ootprints, there have been a few attempts to establish a worldwide city

arbon footprint database. However, due to the complexity and data

ntensity of the calculation procedures, these databases are difficult to

pdate, and thus, timeliness cannot be ensured. Moran et al. established

 carbon footprint database for global cities by integrating MRIO anal-

sis and global gridded income and gridded population data in 2013

23] . The study was submitted and published in 2018, showing a 5-year

ag of the assessment. Similarly, Marcotullio et al. merged gridded data

f greenhouse gas emissions from direct energy use and emissions from

ower generation to calculate the scope 1 and 2 carbon footprints of

uropean cities in 2000 [24] . Submitted and published in 2013, the as-

essment has a 13-year lag. In addition, Wiedmann et al. assessed the

hree-scope greenhouse gas emissions of C40 cities in 2011 by creating

ity-level EEIO tables using city-specific gross value added data, expen-

iture surveys, and territorial greenhouse gas emissions data [9] . This

tudy was published in 2020, showing a 9-year lag. The reliance of these

ethods on intensive data collection thus limits their ability to provide

imely results. 

In this study, we propose a new hybrid method that integrates top-

own EEIO analysis and bottom-up crowdsourced data to assess global

ity carbon footprints ( Fig. 1 ). Using the crowdsourcing platform, the

umbeo ( https://www.numbeo.com/cost-of-living/ ), to obtain income

A

2 
ata at the city level, we estimate the carbon footprints of 465 global

ities in 2020 by allocating national consumption-based carbon emis-

ions to cities according to the cities’ share of purchasing power. The

umbeo database is a one of the largest cost-of-living databases in the

lobe and has been used in several studies [25–27] . These results pro-

ide policy implications for city development planning and low-carbon

onsumption transitions. In addition, the method proposed in this study

an calculate the most recent carbon footprints of global cities at a low

ost. It thus has great potential to calculate the year-by-year carbon

ootprints of more cities and thus facilitate time-effective studies in this

eld. In our discussion section, we are able to report that our method

roduces results that are consistent with current research on city-level

arbon footprints and that it provides support for the causal mechanisms

laborated in the literature. Therefore, the reliance and robustness of the

ethod in this study is validated. 

. Methods 

This study uses a hybrid approach integrating top-down input-output

nalysis and bottom-up crowdsourced data to estimate the carbon foot-

rints of global cities. Carbon footprint here is defined as carbon diox-

de emissions embedded in the production of goods and services con-

umed by the residents, governments and capital investment within the

ity [9] . It covers part of scope 1 emissions (direct emissions excluding

hose caused by exports), full scope 2 emissions (emissions caused by the

onsumption of grid-supplied electricity, heating, and/or cooling) and

ull scope 3 emissions (emissions outside the city boundary which are

aused by consumption inside the city). Purchasing power, measured by

ncome level, is adopted as one of the main factors to determine city car-

on footprints. Many studies have proved that income explains a large

roportion of city carbon footprint variation between different groups

28–30] , and the study of Moran et al. [23] confirms the effectiveness

f income as a predictor to assess carbon footprints. 

Basically, the estimation is conducted in three steps. Firstly, top-

own accounting using MRIO tables is employed to calculate national

arbon footprints. Secondly, by referring to the specific expenditure pat-

erns and purchasing power of urban and rural residents, national car-

on footprints are disaggregated into urban carbon footprints and ru-

al carbon footprints. Thirdly, the urban carbon footprints at national

evel are further disaggregated into city carbon footprints by the bottom-

p crowdsourced data to obtain city-specific income data. Carbon foot-

rints of household, government and capital consumption are all con-

idered. Integrating crowdsourced data and the MRIO analysis, the hy-

rid framework developed in this study greatly reduces the cost of data

ollection and hence makes the city carbon footprint data easy to be

pdated. Here are the details and justification of the method, and dis-

ussion on the uncertainties of the method is provided in the Appendix

. 

https://www.numbeo.com/cost-of-living/
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.1. National carbon footprints 

The national carbon footprints are calculated by consumption-based

arbon emissions accounting using MRIO analysis. In this study, the EX-

OBASE database is employed for the latest MRIO tables and the cor-

esponding satellite accounts for carbon emission data in 2020 [31] . In

he EXIOBASE MRIO models, 168 economic sectors and 49 regions (44

ountries/regions and 5 regions representing the rest of the world) are

ncluded. 

Developed by Wassily Leontief in the late 1930s, input-output analy-

is has been widely used for the environmental impact assessment of eco-

omic systems [32] . With the global environmentally extended MRIO

ables, direct and indirect carbon emissions embedded in the final con-

umption of goods and services can be accounted. The basic equation of

he multiregional input-output model is depicted in the Eq. (1) - (2) : 

 = ( 𝐼 − 𝐴 ) −1 𝐹 (1)

 = 

⎡ 
⎢ 
⎢ 
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, (2) 

Where X 

s = (x i 
s ) is the vector of the total output and x i 

s is the

otal output of sector i in region s ; I is the identical matrix and (I-A) − 1 

s the Leontief inverse matrix. The matrix A 

rs = (a ij 
rs ) is the technical

oefficient matrix, and a ij 
rs = z ij 

rs / x j 
s , in which z ij 

rs is the monetary

nput of sector j in region s from sector i in region r . In the final demand

atrix, F rs = (f i 
rs ), f i 

rs is the final demand of region s for the products

f sector i from region r . 

With the carbon emission intensity of each sector, the carbon foot-

rint can be calculated via Eq.3 : 

 = 𝐸 ( 𝐼 − 𝐴 ) −1 𝐹 (3)

Where C is the matrix of total carbon emissions embedded in goods

nd services used for final consumption; E is a vector of carbon emis-

ion intensity of all sectors in all regions, which is measured by carbon

missions per unit of economic output. Here, the carbon emissions data

n 2020 in the EXIOBASE database is based on prediction values and

oes not include the impact of COVID pandemic. To address the errors

ntroduced by this, we adopted carbon emission data from Global Car-

on Budget [33] to proportionally update the emission data. Emissions

nduced by fossil fuel combustion and cement production are included

n this study. 

National carbon footprints obtained via MRIO models includes di-

ect and indirect carbon emissions from household and non-household

onsumption. By summing the corresponding column vector in the car-

on emissions matrix C, the carbon footprint induced by household con-

umption CF hh and non-household consumption CF nh of each region can

e obtained. The CF hh and CF nh are the indirect carbon emissions em-

edded in the goods and services in the household and non-household

nal consumption. CF nh includes carbon footprints of final consump-

ion expenditure by non-profit organisations serving households, gov-

rnment, inventories, and valuables. From the MRIO database, the di-

ect carbon emissions from final consumption in each country CF hh_d 

nd CF nh_d , mainly from fuel combustion, can also be easily accessed.

he direct and indirect carbon footprints of national final consumption

ill be further disaggregated in the following steps. 
3 
.2. Estimating city carbon footprint according to purchasing power of city 

esidents 

Direct and indirect carbon footprints of household consumption at

ational level are initially disaggregated into rural and urban foot-

rints according to expenditure patterns and purchasing power, and

hen national urban footprints are disaggregated into city footprints.

on-household footprints are allocated to city residents equally per per-

on. Total carbon footprints at the national level are disaggregated into

rban and rural household carbon footprint to eliminate the impact of

ifferent consumption patterns and purchasing power on carbon foot-

rints between urban and rural households. This step was conducted at

he national level because of the inaccessibility of city-level consump-

ion data between rural and urban residents. 

Disaggregation of indirect household footprints, CF hh into urban

nd rural carbon footprints is accomplished by incorporating the ur-

an/rural household expenditure survey, income, and population data.

he CF hh depicts household indirect footprints in 168 sectors and is

herefore aggregated into 12 sectors to match the household expendi-

ure patterns. The direct household footprints, CF hh_d , are disaggregated

ccording to rural/urban consumption in energy, water utility and trans-

ort, as well as purchasing power. 

With the non-household footprints and urban household footprints

t the national-level, city carbon footprints are estimated as follows: 

 𝑖𝑡𝑦𝐶 𝐹 ℎℎ = ( 𝑈𝐶 𝐹 ℎℎ + 𝑈𝐶 𝐹 ℎℎ _ 𝑑 ) ×
𝐼𝑛 𝑐 𝑐𝑖𝑡𝑦 × 𝑃 𝑜 𝑝 𝑐𝑖𝑡𝑦 

𝐼𝑛 𝑐 𝑈 × 𝑃 𝑜 𝑝 𝑈 
(4)

 𝑖𝑡𝑦𝐶 𝐹 𝑛ℎ = ( 𝐶 𝐹 𝑛ℎ + 𝐶 𝐹 𝑛ℎ _ 𝑑 ) ×
𝑃 𝑜 𝑝 𝑐𝑖𝑡𝑦 

𝑃 𝑜 𝑝 𝑈 + 𝑃 𝑜 𝑝 𝑅 
(5)

 𝑖𝑡𝑦𝐶 𝐹 = 𝐶 𝑖𝑡𝑦𝐶 𝐹 ℎℎ + 𝐶 𝑖𝑡𝑦𝐶 𝐹 𝑛ℎ (6)

Where 𝐶 𝑖𝑡𝑦𝐶 𝐹 ℎℎ is the total direct and indirect carbon footprints by

ity household consumption; 𝐶 𝑖𝑡𝑦𝐶 𝐹 𝑛ℎ is the total direct and indirect

arbon footprints by city non-household consumption; 𝐶 𝑖𝑡𝑦𝐶 𝐹 is the

otal carbon footprints in a city; 𝑈𝐶 𝐹 ℎℎ and 𝑈𝐶 𝐹 ℎℎ _ 𝑑 are indirect and

irect household consumption footprints of urban residents in a country;

𝐶 𝐹 𝑛ℎ and 𝐶 𝐹 𝑛ℎ _ 𝑑 are indirect and direct non-household consumption

ootprints; 𝐼𝑛 𝑐 𝑐𝑖𝑡𝑦 and 𝑃 𝑜 𝑝 𝑐𝑖𝑡𝑦 are average income and population of a

ity; 𝐼𝑛 𝑐 𝑈 is the average income and 𝑃 𝑜 𝑝 𝑈 is the population of urban

esidents in a country; 𝑃 𝑜 𝑝 𝑈 and 𝑃 𝑜 𝑝 𝑅 are the population of urban and

ural residents in a country. With city carbon footprints, the income Gini

nd carbon Gini coefficients are calculated. Details of the calculation can

e seen in the literature [34] . 

.3. Data sources 

The MRIO model used in this study is accessed by the EXIOBASE

31] . The carbon emission data are therefore obtained from the satellite

ccounts in the EXIOBASE database. National rural and urban income

nd population data are collected from Euromonitor Passport database

 https://www.portal.euromonitor.com/portal/magazine/homemain/ ). 

ncome data are displayed as total disposable income at national level

ather than per capita, indicating that this variable does not need to be

ultiplied by population anymore. The rural and urban income data of

yprus, Luxemburg, and Malta are not provided by Euromonitor and

hus collected from Eurostat database ( https://ec.europa.eu/eurostat ).

s disposable income data includes fewer countries than those included

n the population dataset, the average income per capita in the ROW

reas are calculated first and then multiplied by the population in the

rea. Population and income data at the national level are all collected

n the base year 2020. 

Urban and rural household expenditure patterns of all the 44 coun-

ries/regions in the MRIO model are collected (Table A1 in Appendix A).

he household consumption survey of all the 44 countries in the EX-

OBASE input-output model was applied in this study to disaggregated

https://www.portal.euromonitor.com/portal/magazine/homemain/
https://ec.europa.eu/eurostat
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q  
ational household carbon footprints into urban and rural household

ootprints. For the sector classification method, most countries fol-

ow the Classification of Individual Consumption According to Pur-

ose (COICOP) of the United Nations to classify consumer expenditures,

hile expenditure pattern in the World Bank database is classified into

2 sectors in a different way. The consumption patterns of five ROW

reas are proxied by similar countries in the areas following labor ac-

ounting in the EXIOBASE [31] . 

City income data are collected from an crowdsourcing platform, the

umbeo [35] , which enables people worldwide to record the income

nd expenditure in their city. Data on this website are public and can

e downloaded directly. From this platform, we collected the average

onthly salary after tax in each city in 2020. The available data in 2020

ontains income data for 465 cities from 116 countries/regions and car-

on footprint of these cities are estimated in this study. 

City population data are obtained from the UNData database

 https://data.un.org/Data.aspx?d = POP&f = tableCode%3a1 ) and the

atabase of City Population ( https://www.citypopulation.de/ ). The

NData provides city population for some cities in this study. The

opulation data for the missing cities in the UNData are collected

rom the City Population database, where most of the population data

re from the national statistical bureaus. To ensure the two databases

atch with each other, we compare the data from both and calculate

he difference between them. City proper population in the same year

s from the UNData was estimated using population and annual change

ate data in the City Population database, and the differences between

he two databases were compared. Finally, the average discrepancies

re 8%, indicating the two databases can be substituted with each other.

t is noticeable that the definition of a city, depicting the boundaries of

 city, in the two databases is comparable. In the UNData, population

n city proper and/or urban agglomeration of a city is provided, while

n the City Population database, population in city proper, urban

gglomeration and metropolitan of a city can be obtained. In this study,

e mainly refer to population in city proper to define the boundary of

 city (except Indian cities as the population of urban agglomeration is

fficially reported). 

. Results and discussion 

.1. Carbon footprints are concentrated and unequally distributed in global

ities 

The carbon footprints of these cities are disproportionately large and

elated to their populations. The total carbon footprint of the 465 cities

n this study was approximately 6.23 billion tons CO 2 in 2020 ( Fig. 2 ),

nd the total population of these cities was approximately 0.77 billion.

his indicates that the 9.9% of the global population that lives in these

ities causes 17.9% of global total carbon emissions [33] . The aver-

ge carbon footprint per capita of these cities is approximately 8.11

 and is therefore nearly twice the global level (4.48 t), with more

han half of the carbon footprint caused by household consumption

 Fig. 3 C, 3 D). 

Carbon abatement of a small number of cities could result in large

limate benefits globally. Calculating the average carbon footprints per

apita and the standard deviation (SD, denoted as 𝜎) of all the cities,

hree levels of super emitters were identified, and the global emission

eduction is calculated in three decarbonization scenarios. The scenario

ettings are designed with reference to previous studies [36] . The cities

aving carbon footprints larger than the average carbon footprint of all

he cities are referred to as above-average emitters. One SD super emit-

ers refer to cities having carbon footprint 1 𝜎 larger than the average

evel, and two SD super emitters refer to cities having carbon footprint

 𝜎 larger than the average level. In the three abatement scenarios, we

ssume that 2 SD cities, 1 SD cities and above-average cities reduce the

arbon footprint per capita to the average level of all the 465 cities,

espectively. The total carbon emission reduction benefits at the global
4 
evel were calculated in the three scenarios. If the above-average cities

pplied carbon abatement measures and cut the carbon footprints, 1.6

illion of carbon emissions could be avoided globally, accounting for a

uarter of the total carbon footprints of all the cities. Low carbon transi-

ion in 1 SD leads to 1.1 billion carbon reduction benefits globally (with

nly 9% of the total population contributing to 18% of the total carbon

ootprint reduced). If the 2 SD cities could reduce their carbon footprint

er capita, this cuts 0.7 billion carbon emissions globally, accounting

or 11% of the carbon footprints in all the 465 cities (with only 4% of

he total population). This indicates that carbon reduction in the top

mitters brings disproportional climate effects. 

This concentration of carbon emissions suggests an urgent need and

pportunity for leading global cities to take action to mitigate climate

hange. This can include low-carbon infrastructure investment, supply

hain management, and nudging consumer behavior transition towards

leaner consumption, and government regulations as well as price mech-

nism are important in low-carbon transition [ 37 , 38 ]. A positive rela-

ionship between the estimated carbon footprint and city GDP demon-

trates the reliability of the method (Fig. A1 in Appendix A). In addition,

omparing these results with published work, the average difference be-

ween our results and those of Moran et al. is approximately 24.7% [23] .

iven the uncertainties inherent to footprint analysis, these results are

ell within what would be expected [39] . A comparison between carbon

ootprint in this study and the scope-1 emissions calculated by Global

arbon Budget shows that the estimated carbon footprints per capita of

en selected cities are 252% larger than the scope-1 emissions of those

ities averagely, which is much larger than the differences between this

tudy and the literature (24.7%). The results confirm the necessity of

easuring city carbon footprint to better reflect the responsibility of

lobal cities, especially the megacities in addressing climate change. 

In addition to an unequal distribution of emissions between cities

n this analysis and wider urban areas, an unequal distribution of emis-

ions is found within the cities assessed. Specifically, the top 10% of

eople by income are responsible for 25% of the total carbon footprint

n these cities, and the top 20% of earners are responsible for 41% of the

otal emissions, while the bottom half of people account for only 23% of

he total footprint. This degree of emissions inequality revealed in this

tudy is much lower than the inequality between global nations. Bruck-

er et al., for example, found that the top 10% of emitters contribute

lmost half of global carbon emissions, while the bottom half of emit-

ers contribute only one-tenth [40] . The lower inequality in this study

s likely attributed to the sample of cities we assess. Due to data being

rimarily available for larger cities and capital cities, incomes would be

xpected to be significantly higher than average. A Zif’s law test shows

hat there is a lack of small cities in this study (Table A2 and Fig. A2).

he inequality in this study is therefore not representative of the global

ituation, and disparities between rural and urban areas and between de-

eloped and less-developed cities lead to higher inequality at the global

evel. 

Comparing the income Gini coefficient and the carbon Gini coeffi-

ient for these cities reveals differences between cities in wealthy and

eveloping nations ( Fig. 4 ). The income Gini coefficient and carbon Gini

oefficient are relatively low in cities from developed countries (0.23

nd 0.25, respectively) and slightly higher in cities from developing

ountries (0.35 and 0.43, respectively). This suggests that these cities

ay represent enclaves of higher incomes within their respective na-

ions. Less-developed countries experience worse conditions regarding

arbon inequality. In addition, the income and carbon Gini coefficients

t the global level are even higher (0.50 and 0.43, respectively), espe-

ially for the income Gini coefficient. This indicates that the observed

nequality in the carbon footprints in these cities mainly results from

he development gap between the developing countries and developed

ountries and within the group of developing countries. This implies

n opportunity, and a risk, of the consumption patterns of the highest

ncome cities being emulated by rapidly developing cities, with conse-

uences for our ability to meet our climate targets. It is noticeable that

https://data.un.org/Data.aspx?d=POP\046f=tableCode\0453a1
https://www.citypopulation.de/


X. Sun, Z. Mi, A. Sudmant et al. Advances in Applied Energy 8 (2022) 100111 

Fig. 2. Total carbon footprint and per capita footprint of global cities. 

Fig. 3. Top 20 cities globally by carbon footprint and carbon footprint per capita. Cities with names in blue are from developed counties/regions and cities with 

names in orange are from developing ountries/regions. 
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T  
he carbon footprint Gini coefficient is less than the income Gini coeffi-

ient across cities. 

Inequality in the distribution of carbon footprints could lead the

merging and poor group to be more vulnerable to the economic bur-

ens of carbon reduction and climate adaptation. The carbon footprints

f the top 20 cities in developing countries are only approximately half

f the footprints in developed countries, and the share of emissions from
5 
ouseholds is higher. However, the footprint intensity of income and the

olume of carbon per unit are much lower in developing cities ( Fig 3 E,

3, A4). The global top 20 cities by footprint intensity of income are all

rom developing countries, ranging from 1.49–4.32 t CO 2 per thousand

ollars. In contrast, the income footprint intensity of the top 20 cities in

eveloped countries ranges from 0.53–1.34 t CO 2 per thousand dollars.

his suggests that emissions reductions would be more likely to impact
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Fig. 4. Gini coefficients and carbon Gini coefficients of cities across the globe, in developed countries and in developing countries. 
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Fig. 5. City carbon footprint and population. Developed and developing refer 

to cities in developed or developing countries. 

t  

t  

b  

a  

i  

p  

p  

d

 

c  

f  

i  

e  

l  

p  

p  
asic necessities, such as food and shelter, in developing country cities

41] . 

.2. Income, scale, and density are determinants of carbon footprints 

Affluence, population, and the regional carbon intensity of consump-

ion together determine the carbon footprint of a city ( Fig. 3 A, 3 B).

mong the top 20 cities by income, six cities are in Switzerland, and 14

ities are in the US (Table A3, Fig A3). Among the top 20 cities by carbon

ootprint per capita, however, most are cities in the US and Middle East,

llustrating the important role of regional carbon intensity. The carbon

ootprints of cities in Switzerland and the US are approximately 10.2 t

nd 18.6 t per capita, respectively, which is in accordance with the lit-

rature [ 42 , 43 ]. The high carbon footprints in the US cities are mainly

riven by income effects, indicating higher income in these cities leads

o higher consumption and therefore higher carbon footprints. The dis-

arities of carbon footprints in Switzerland and Middle east cities are

ainly driven by regional carbon intensity. 

Population plays a key role. The top 10 cities by population in this

nalysis are all in developing countries (Table A3, Fig A4), and seven of

he top 10 cities by carbon footprint are in developing countries. For ex-

mple, three Chinese cities, Shanghai, Beijing, and Shenzhen, are among

he top 10 cities by total carbon footprint and their population ranks in

he top 3 across all the cities in this study, even as the carbon footprints

er capita of Chinese cities are not high in relative terms. Consumption

ggregation is a main driver and a recent study shows that population

gglomeration increases city carbon emissions by industrial structure

nd transportation effects [44] . However, the affluence effect and re-

ional carbon intensity of consumption can mitigate the role of popu-

ation. New York, which has only 40% of the population of the most

opulous city, Shanghai, ranks third by carbon footprint. The average

onthly income in New York is $6023 per capita, while it is less than

 quarter as high at $1459 in Shanghai. The average carbon footprint

f Chinese cities in this study is 9.8 t per capita, which is only half of
6 
he average in US cities. The carbon emissions associated with expendi-

ures from high income and carbon-intensive lifestyles should therefore

e seriously considered as an impediment to low and noncarbon urban

reas, for example, excessive energy consumption for heating and cool-

ng [45] . The population of the city proper is used in this study, and we

rovide an uncertainty analysis regarding the city definition, i.e., city

roper, urban agglomeration and metropolitan area, to call for a clear

efinition of a city when analysing city carbon footprints (Fig. A5). 

No meaningful relationship is found between carbon footprints per

apita and city population ( Fig. 5 .). This may be explained by different

actors working in competing directions. A scale effect, i.e., economies

n scale in the provision of goods and services, may result in higher en-

rgy efficiency and therefore a lower carbon footprint per capita in a

arger city [46] . However, larger cities may concentrate higher income

opulations, leading to higher emissions. Regional lifestyle factors also

lay a role in explaining the relationship between carbon footprints and
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Fig. 6. Carbon footprint per capita and income are higher in 

dense cities. 
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opulation. Cheng et al. found that larger cities usually have lower car-

on emissions per capita because larger cities employ more advanced

ower generation technologies and have higher energy efficiency [47] .

n contrast, Kanomoto et al. found that with the expansion of the city

opulation, the footprint per capita of most cities initially increases but

tarts to decline when the population is larger than 400 thousand [17] .

maller cities have smaller footprints per capita in part because people

n small cities have lower incomes and therefore lower consumption.

 regression analysis is further conducted to explore whether the cor-

elation differs in different regions and whether the scale effect exists

fter controlling for income (Tables A4 and A5). A weak relationship be-

ween population and per capita footprint can be observed while such

cale effect could only explain less than 0.1 of the variances in per capita

ootprint (R 

2 < 0.1), indicating other explanatory variables should be in-

luded. When income is taken as a controlled variable, the scale effect

s not significant anymore, suggesting that scale effect is overwhelmed

y income effect. Globally, per unit change in income leads to 0.69-unit

hanges in per capita carbon footprint. Income effect can explain 46% of

he variance in per capita footprint and the remaining variance may be

aused by factors such as regional production technology and lifestyle,

tc. We should be aware that the income effect found here may owing to

he method using income data to estimate city carbon footprint in this

tudy, but the scale effect is not significant considering it fails to explain

ny variances in carbon footprint even income is not controlled. 

On the other hand, we find a weak positive relationship between

opulation density and carbon footprints per capita in European cities.

iven the wider literature on this subject, this relationship may capture

ocioeconomic indicators rather than geographic indicators [48] . The-

retically, a city with higher population density can increase resource

fficiency and thus reduce direct emissions per capita [ 28 , 29 ], which

s known as a density effect. A compact city form creates low-carbon

enefits through smaller housing area and shorter transport distances

nd through the opportunity for transport to be shifted to public trans-

ortation [ 29 , 49–52 ]. Evidence from the literature supports the density

ffect. For instance, Goldstein et al. showed in their research that the

arbon footprint per capita of household energy consumption is lower

n densely populated areas in Boston and Los Angles [30] . There are
7 
lso some studies which disagree with the density effect. with differ-

nt. Lee et al. found that per capita footprints are positively correlated

ith population density in cities with a lower poverty ratio [15] . Gill

t al. found that dense cities show lower direct footprints but higher in-

irect footprints and the increased indirect footprints mainly result from

he increased expenditures and smaller family sizes in dense cities [29] .

imilarly, Ahmad et al. argued that the higher emissions in dense areas

re a result of higher income because the density effect is not observed

hen income variation is controlled, indicating that the income effect

an counteract the density effect [46] . In this study, we find that both

irect and indirect carbon footprints rise in dense cities ( Fig. 6 and Ta-

le A6). Specifically, indirect footprint in dense cities rise and therefore

eads to significant increase in total footprint per capita, although only

5% of the variances in indirect footprint can be explained. This can be

xplained by increased affluence and smaller family size in dense cities

s in the literature [29] . We further take income as a controlled variable

nd the results show that the density effect is not significant after con-

rolling for income, illustrating that the higher footprints in dense cities

ay have resulted from higher income. Income effect explains 71% of

he variances in per capita carbon footprint in European cities. The ex-

lained variance is higher than that of the previous model (46% in the

receding paragraph) because only European cities are adopted here

due to data availability). Accordingly, the variances in other impact

actor like regional lifestyle and production carbon intensity are less. 

Carbon footprints show regional similarities, which means that cities

n a region tend to have similar carbon footprints. This reflects the im-

act of cultural and political factors in driving emissions footprints.

everal cities in the Middle East show the highest carbon footprint per

apita. This is related to the reliance of these regions on fossil fuel en-

rgy consumption. People in North American cities (cities in developed

merican countries) usually have very high carbon footprints, while

eople in European cities have lower footprints ( Fig. 6 ). Income is a

ey driver of emissions across all places; therefore, comparing places

ith similar levels of income can offer insights. North American cities,

or example, have the highest per capita footprint, while European cities

ave a significantly lower footprint per capita. Factors such as the rate

f car ownership, energy prices, density, and the economic makeup of
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 city are among the drivers of these differences [9] . Intraregional co-

peration can boost connections between cities to help them address

imilar challenges. Techno-economic, political, and cultural challenges

an therefore, to a certain degree, be proxied by geographic proximity,

mphasizing the need for intraregional cooperation and learning and

op-down national government approaches to climate action that cut

cross urban areas. 

Relationships between cities that derive from income, population,

ensity and other factors provide insight into the ways interregional

rban cooperation may be best developed. New York, London and Paris,

y this approach, may have more to learn from each other than New

ork, Houston and Cincinnati. Across regions, cities can build networks

o learn from each other. In this context, networks focused on secondary

nd tertiary cities may be important. Global megacities, such as C40

ities, more frequently have the capacity to develop climate approaches

nd are better served by existing networks. 

.3. Uncertainty analysis 

There are uncertainties are induced by several assumptions in this

tudy. First, in term of city definition (detailed discussion in Supple-

entary materials), the crowdsourced data represent the city-specific

verage income level in a broad sense, which means it is hard to ensure

hat all the contributors are from city proper rather than suburb areas.

here are some criticisms about the accuracy of the data on this platform

ecause of anonymous contribution. This would introduce uncertainties,

ut it is a good starting point to for the present study and with the devel-

pment of the platform and increasing contributors, the problems will

e eased in the future. Second, we assume that the carbon intensity of

ousehold consumption is equal within each region. Third, the house-

old expenditure pattern is assumed to be homogeneous within each

egion. Forth, the non-household carbon footprints are allocated to ev-

ry person equally. To assess the uncertainties, we compare the average

ifferences between the carbon footprints in this study and the litera-

ure. To minimize the impact of the time lag between the results in this

tudy and the literature, we updated the city carbon footprints in Moran

t al. [ 23 ] by using the growth rates of national consumption-based car-

on emissions from 2013 to 2020 in the Global carbon budget [ 33 ]. The

isparities between the results of this study and those of Moran et al.

pproximately 24.7% [ 23 ], which are acceptable considering the uncer-

ainties inherent to footprint analysis [ 39 ]. In addition, such disparities

re in consistence with the results in the literature, where 10%-20%

igher real estate prices are found of the Numbeo data and official data

n several European cities [ 53 ]. 

. Conclusion 

A novel hybrid method integrating top-down input–output analysis

nd bottom-up crowdsourced data is established in this study to esti-

ate carbon footprints of global cities. The method enables us to con-

uct an unprecedented and the latest assessment of global city carbon

ootprints in 2020, reducing the time lag of such assessment greatly from

–13 years to 1–2 years. In addition, the difference between the city car-

on footprints in this study and in other studies shows that the estima-

ion results are valid and reliable. The causal mechanisms elaborated in

he literature are supported by the results in this study, indicating the

obustness of this assessment. The time- and cost-effectiveness of the

ethod ensure the timeliness of city-level carbon footprint analysis and

unction as a basis for city comparison and responsibility allocation. 

The concentration and unequal distribution of carbon footprints in

lobal cities are revealed in this study. Using crowdsourced data, we

stimate the carbon footprint of 465 global cities, including direct and

ndirect emissions from household, government, and capita consump-

ion. Carbon emissions are highly concentrated in these cities and within

hese cities, unequally distributed carbon footprints are observed. Such
8 
nequality is mainly the result of unbalanced economic development be-

ween less-developed, developing and developed countries. The highly

oncentrated carbon emissions caused by consumption in the cities in-

icate the necessity of consumption-side decarbonization for climate

hange mitigation. 

The results also show the disproportional climate benefits gained

rom the low carbon transition of a small number of cities, and there-

ore the need for affluent cities to take more responsibility for carbon re-

uction. Socioeconomic indicators affect the city carbon footprint more

han geographic indicators. Specifically, income overwhelms any influ-

nce from population or density. This indicates a global challenge of ad-

ressing high-carbon lifestyles for neutrality targets to be met. Regard-

ng sustainable city development, the transformation of the economic

tructure, energy mix, supply chain sources and consumer behavior are

mportant in city-level climate change mitigation. Inter- and intrare-

ional cooperation offers an underrealized opportunity for knowledge

haring. For example, cities with similar affluence and in Europe and

orth America have a common need to focus on supply chains that sup-

ort urban consumption and to find ways to finance the unlocking of

rban energy and transport systems. Middle Eastern cities should try

o promote the energy transition and develop greener and cleaner en-

rgy. The concentration of emissions from these cities, both direct and

ndirect, emphasizes the need for their leadership. 

There is enormous potential for the method used in this paper to

eveal the carbon footprints of more cities and to establish a panel

atabase. Crowdsourced data can greatly reduce the difficulty of data

ollection and are more cost-effective than other methods in the litera-

ure. Moreover, the crowdsourcing platform can provide time-effective

ncome data, and therefore, the carbon footprint of cities can be eas-

ly updated with other indicators available. The utilization of crowd-

ourced data in this study helps us offer timely estimation of the carbon

ootprint of global cities, and the results are consistent with the litera-

ure. The disparities between this study and others in the literature are

cceptable considering the difficulty of such estimation. These results

alidate the data and method used in this study. With the influence and

opularity of the platform, more cities will be included, and their car-

on footprints can be easily estimated. Additionally, the year-by-year

ncome data provided on the platform make a panel database feasible.

hese data will promote time-series analysis of the city carbon footprint

nd offer insightful policy implications for city development. 
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