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A B S T R A C T

When the Al–Mg–Si(–Cu) alloy system is subjected to age hardening, different types of precipitates nucleate
depending on the composition and thermomechanical treatment. The main hardening precipitates extend as
needles, laths or rods along the <100> directions in the aluminium matrix. It has been found that the structures
of all metastable precipitates may be generalized as stacks of <100> columns, where most of these columns
are replaced by solute elements. In the precipitates, a column relates to neighbour columns by a set of simple
structural principles, which allows identification of species and relative longitudinal displacement over the
(100) cross-section.

Aberration-corrected high-angle annular dark field scanning transmission electron microscopy (HAADF-
STEM) is an important tool for studying such precipitates. With the goal of analysing atomic resolution
HAADF-STEM images of precipitate cross-sections in the Al–Mg–Si(–Cu) system, we have developed the stand-
alone software AutomAl 6000, which features a column characterization algorithm based on the symbiosis of a
statistical model and the structural principles formulated in a digraph-like framework. The software can semi-
autonomously determine the 3D column positions in the image, as well as column species. In turn, AutomAl
6000 can then display, analyse and/or export the structure data.

This paper describes the methodology of AutomAl 6000 and applies it on three different HAADF-STEM
images, which demonstrate the methodology. The software, as well as other resources, are available at http:
//automal.org. The source code is also directly available from https://github.com/Haawk666/AutomAl-6000.
1. Introduction and background

Aberration-corrected high-angle annular dark field scanning trans-
mission electron microscopy (HAADF-STEM) can achieve atomic reso-
lution of the nano-scale structure of crystal materials [1,2]. AutomAl
6000 is a new software tool for analysing HAADF-STEM images of
precipitates in the Al–Mg–Si(–Cu) alloy system. These alloys are impor-
tant light weight materials with increased use [3–8]. Their properties
depend strongly on the precipitates, which means there is an in-
creasing demand for more precise quantification of the micro- and
nano-structure. For atomically resolved images oriented along one of
the <100> Al directions, the software maps the atomic structure of
precipitates embedded in the Al matrix. In the following, the direction
into the image will be taken as [001]Al. In this work, we discuss the
structural arrangement principles in the Al–Mg–Si(–Cu) precipitates
and develop a column characterization algorithm from these principles
by using statistics and graph theory. This enables identification of the
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atomic species (Al, Mg, Si or Cu) and longitudinal displacement (𝑧 = 0
or 𝑧 = 1

2𝑎Al in terms of the heights of the two planes in the Al cell,
with lattice constant 𝑎Al = 4.05 Å [9]). By determining all column
heights and positions, the atomic structure over the entire image can
be mapped. This data can then be exported as scalable vector graphics
(SVG) to produce high quality atomic overlays with SVG software, or
as raw data in comma separated values (CSV) format, which can then be
parsed for other uses.

This paper is focused on the underlying theory and principles used
to develop the column characterization algorithm, which is the main
feature and novelty of the AutomAl 6000 software. Implementation
details are mostly avoided. However, successful user deployment of
the algorithm mainly depend on the user’s ability to interpret and
correct the resulting atomic graphs. This technique is briefly described
in the results and discussion section, but readers who are interested in
practical application of the software, are encouraged to instead follow
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Fig. 1. Structural principles in Al-Mg-Si-(Cu) precipitates. Black and coloured centres show the two normal plane heights of the precipitate columns (associated with the
parallel <100> columns of the surrounding matrix). The principles relate the atomic species to its OPNN quantity. Excerpts of HAADF-STEM images are given of two precipitates:
(a) 𝛽′Cu and (b) 𝛽′′. The respective atomic overlays are shown in (c) and (d), and the number of OPNN (connected by white lines) are indicated in (e) and (f).
the ‘‘quickstart’’ tutorial video, which is linked on the web-page. The
tutorial offers a more practical introduction to the atomic graph review
process, as well as other important aspects of the software that are not
covered here.

1.1. Column arrangement principles

In the FCC Al matrix, neighbour (001) planes are separated by
2.025 Å. As a consequence of their 3D stacking, a <001> column is
relatively shifted compared to its neighbouring columns by half a unit
cell in the 𝑧-direction. One can therefore associate all atom columns
with one of two relative heights: 𝑧 = 0 or 𝑧 = 1

2𝑎Al. For an atom on one
plane, 1∕3 of the nearest neighbours (NN) is on the same plane, the rest
on the two opposite planes.

The NN arrangement around a column depends on its majority
element and follows a set of simple principles. This allows identification
of column species and height: Al keeps the 4-fold FCC arrangement
with 12 NN. This means an Al column is always surrounded by 4 NN
associated with the same plane and two sets of 4 opposite plane NN
(OPNN). The Mg atoms favour 15 NN (or 5 OPNN), and the smaller Cu
and Si atoms favour 9 NN (or 3 OPNN) [10].

Fig. 1 illustrates the structural principles in two fragments of com-
mon Al–Mg–Si(–Cu) precipitate phases. Fig. 1a shows an excerpt of
a 𝛽′Cu phase, while 1b shows an excerpt from a 𝛽′′ phase [4,5]. The
corresponding atomic overlays are shown in Figs. 1c and 1d. According
to the structural principles, Al has 4 OPNN, while Mg has 5 OPNN, and
both Si and Cu have 3 OPNN. This is visualized in Figs. 1e and 1f,
where the number of OPNN is indicated by the white lines radiating
from/connected to an atom. Si and Cu, which both occupy 3 OPNN
positions, are distinguished by Z-contrast.

There are some exceptions to these principles, for instance the
central Si column of 𝛽′ with its higher occupancy, which undermines
the opposite plane dichotomy [11]. Despite 𝛽′ and other exceptions,
these principles are useful for determining structure and interfaces in
most Al–Mg–Si(–Cu) precipitates, including hybrid precipitates and/or
disordered precipitates [4,5].

1.2. Statistical modelling

To build statistical models which can infer the atomic species of
columns, a multivariate normal distribution scheme is applied [12].
2

Define a set of 𝑁 data points {𝒙𝑛} with 𝐾 numerical attributes1 such
that

𝒙𝑛 = [𝑥𝑛1, 𝑥𝑛2, ..., 𝑥𝑛𝑘, ..., 𝑥𝑛𝐾 ]𝑇 , (1)

where 𝑇 is the transposition operator. The means are calculated as
𝝁 = [𝜇1, 𝜇2, ..., 𝜇𝑘, ..., 𝜇𝐾 ], where

𝜇𝑘 = 1
𝑁

𝑁
∑

𝑛=1
𝑥𝑛𝑘. (2)

This gives the 𝐾 ×𝐾 covariance matrix 𝜮, with elements

𝛴𝑘ℎ = 1
𝑁 − 1

𝑁
∑

𝑛=1
(𝑥𝑛𝑘 − 𝜇𝑘)(𝑥𝑛ℎ − 𝜇ℎ). (3)

The multivariate normal distribution 𝑓 of the given data can now be
expressed as

𝑓 (𝒙 ∣ 𝝁, 𝜮) = (2𝜋)−
𝐾
2
|𝜮|

− 1
2

⋅ exp
[

−1
2
(𝒙 − 𝝁)𝑇𝜮−1(𝒙 − 𝝁)

]

, (4)

where |𝜮| is the determinant of the covariance matrix, and 𝜮−1 is
the inverse covariance matrix. If the data, in addition to its numerical
attributes, is also grouped in a finite discrete nominal attribute 𝑠 ∈
{𝑠1, 𝑠2, ..., 𝑠𝑙 , ..., 𝑠𝐿} with 𝐿 categories, then each category will have
an associated distribution 𝑓𝑙(𝒙 ∣ 𝝁𝑙 , 𝜮𝑙). The category probability vector
𝑃 of a new data point 𝒚 = [𝑦1, 𝑦2, ..., 𝑦𝑘, ..., 𝑦𝐾 ]𝑇 has elements

𝑃𝑙 =

( 𝐿
∑

𝑚=1
𝑓𝑚(𝒚)

)−1

𝑓𝑙(𝒚), (5)

where 𝑃𝑙 is the probability that 𝒚 belongs in category 𝑠𝑙.

1.3. Digraphs

In graph theory, a simple digraph 𝐺 is a particular class of graphs,
where a set of vertices {𝑣𝑖}, also called the vertex set 𝑉 (𝐺), is connected
by a set of unique directed arcs {𝑎𝑗 = 𝑣𝑘𝑣𝑙 ≠ 𝑣𝑙𝑣𝑘}, also called the arc set

1 Numerical attributes are typically real-valued variables, like 𝑍-contrast
or temperature. In contrast, nominal attributes are categorical variables, like
atomic species or cities.
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Fig. 2. Digraph nomenclature. Consider an example digraph 𝐺. On the right is the complete set description of the graph, which defines the digraph 𝐺, with vertex set 𝑉 (𝐺), arc
set 𝐴(𝐺), order 𝑛 and size 𝑚. On the left is the in- and out-neighbourhood of vertex 𝑣6, with the corresponding vertex in- and out-degree. Note also, that the arcs 𝑎3 = 𝑣3𝑣6 and
𝑎4 = 𝑣6𝑣3 are symmetric, with 𝑎3 being the inverse of 𝑎4 and vice versa. The arcs 𝑎1 = 𝑣1𝑣6, 𝑎2 = 𝑣2𝑣6 and 𝑎5 = 𝑣6𝑣5, are all un-symmetric because they have no inverse counterpart.
In this example, vertex 𝑣4 is disconnected from the rest of the graph.
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𝐴(𝐺), with the restriction 𝑘 ≠ 𝑙, see for instance [13]. Consider Fig. 2,
which illustrates the digraph nomenclature presented in this section. If
the arc 𝑣𝑘𝑣𝑙 is in the arc set of a graph 𝐴(𝐺), then 𝑣𝑘 is adjacent to 𝑣𝑙,
and 𝑣𝑙 is adjacent from 𝑣𝑘. 𝑣𝑙 is also the out-neighbour of 𝑣𝑘. The set of
all out-neighbours of a vertex 𝑣𝑖 is termed the out-neighbourhood of 𝑣𝑖,
notated 𝑁+(𝑣𝑖). The out-degree of a vertex 𝑣𝑖 is equal to the cardinality
of the out-neighbourhood of the vertex,

deg+(𝑣𝑖) = |𝑁+(𝑣𝑖)|. (6)

An analogous nomenclature for in-neighbourhoods is achieved by re-
placing the superscript plus sign with a minus sign. The more general
neighbourhood of 𝑣𝑖 is the union of its in- and out-neighbourhoods,
𝑁(𝑣𝑖) = 𝑁+(𝑣𝑖) ∪ 𝑁−(𝑣𝑖). The inverse of the arc 𝑣𝑘𝑣𝑙 is the arc 𝑣𝑙𝑣𝑘.
If the inverse arc of 𝑎𝑗 is in the arc set, then both 𝑎𝑗 and its inverse are
symmetric. If all the arcs in 𝐴(𝐺) are symmetric, then 𝐺 is symmetric.
The size 𝑚 of a digraph 𝐺 is the number of arcs in its arc set 𝑚 = |𝐴(𝐺)|,
while the order 𝑛 of the graph, is the number of vertices in its vertex set
𝑛 = |𝑉 (𝐺)|. Small local graph permutations are sometimes referred to
as graph edits, like for instance removing an arc from the arc set 𝐴(𝐺).

2. Method

Based on digraphs, a framework termed atomic graphs was devel-
oped and implemented as the data-structure for AutomAl 6000, see
below. Fig. 3 shows the overall AutomAl 6000 workflow: After a proper
column detection has been achieved, either by using Atomap [14],
or by performing appropriate pre-processing followed by the column
detection routine of AutomAl 6000, the column characterization al-
gorithm can be applied. This algorithm combines several sub-methods
which are explored later in this section. Once column characterization
is completed, manual review of the results is supported by the digraph
interface of AutomAl 6000, which is further discussed in the results and
discussion section.

2.1. Atomic graphs

Adding selected key properties and restrictions to simple digraphs,
enabled the design of a flexible and ’algorithm friendly’ framework for
modelling OPNN structures, termed atomic graphs. Here, each vertex
𝑣𝑖 has a spatial position (𝑥𝑖, 𝑦𝑖, 𝑧𝑖). The opposite plane dichotomy is
modelled with a Boolean value

𝜁𝑖 =
2
𝑎Al

𝑧𝑖 ∈ {0, 1}. (7)

t is also convenient to define the partners 𝑃 of a vertex 𝑣𝑖 as the
ntersection of the in- and out-neighbourhood of the vertex

+ −
3

(𝑣𝑖) = 𝑁 (𝑣𝑖) ∩𝑁 (𝑣𝑖), (8) p
hich thus contains all neighbours connected by symmetric arcs. Let
he symmetric degree of a vertex 𝑣𝑖 be

eg↔(𝑣𝑖) = |𝑃 (𝑣𝑖)|. (9)

otice that in Fig. 2, 𝑃 (𝑣6) = {𝑣3} ⇒ deg↔(𝑣6) = 1, since only one
ertex (𝑣3) is in both 𝑁+(𝑣6) and 𝑁−(𝑣6). Additionally, given the spatial
roperty of the vertices, arcs in atomic graphs cannot intersect in the
D projection of the graph. Fig. 4 shows the atomic graph of a single
′′ molecule embedded in the aluminium matrix (right). Also in Fig. 4,
ome vertex degrees and arcs are erroneous with regards to the OPNN
tructure of the same unit of 𝛽′′ (left) [5].

If a graph is sparse, which means that the average vertex de-
ree is much less than the order of the graph, then the preferred
ethod of implementation of its data-structure is an adjacency list [17].
ith this method, each vertex is an object which stores a list of all

ts out-neighbours. This is a convenient structure for certain graph-
raversal algorithms like depth first search [17], and is the method of
mplementation of atomic graphs in AutomAl 6000, which indeed are
parse.

The strength of the digraph-like formulation, is that a graph can now
e moulded by using a set of four basic graph edits: (1) arc pivot 𝑃𝑖𝑗𝑘(𝐺),
hich deletes the arc 𝑣𝑖𝑣𝑗 , assuming it exists, and creates the arc 𝑣𝑖𝑣𝑘,
ssuming it does not already exist; (2–3) degree increment 𝐷̂+

𝑖 (𝐺) and
egree decrement 𝐷̂−

𝑖 (𝐺), which will alter the out-degree of vertex 𝑣𝑖 and
hus consequently create or delete an arc, respectively; and (4) plane
nversion 𝐼𝑖(𝐺), which will invert the plane association (the 𝜁𝑖 value) of
ertex 𝑣𝑖.

Arc pivot and plane inversion are weak permutations, because they
ill not alter vertex degrees, while vertex increment and vertex decre-
ent are strong permutations, because they will alter vertex degrees.

or clarity, the effects of the edits discussed above are illustrated in
ig. 4.

There is also a second level of abstraction with an additional set
f four conditional edits used by the algorithm. These edits attempt to
mplement a preliminary logic before deciding to apply the more basic
dits of the previous paragraph. In brief, these edits are: (1) strong arc
reservation 𝑆+

𝑖𝑗 (𝐺), which will apply 𝐷̂+
𝑗 (𝐺) if possible, and if so, create

he arc 𝑣𝑗𝑣𝑖; (2) strong arc termination 𝑆−
𝑖𝑗 (𝐺), which will apply 𝐷̂−

𝑖 (𝐺)
f possible, and if so delete the arc 𝑣𝑖𝑣𝑗 ; (3) weak arc preservation 𝑊 +

𝑖𝑗 ,
hich will look for a suitable vertex 𝑣𝑘 and perform 𝑃𝑖𝑘𝑗 (𝐺) if possible;
nd (4) weak arc termination 𝑊 −

𝑖𝑗 (𝐺), which will look for a suitable
ertex 𝑣𝑙 and perform 𝑃𝑖𝑗𝑙(𝐺) if possible.

Fig. 4 provides an example graph edit sequence 𝑇 that optimizes
he symmetry of the atomic graph. Table 1 provides a summary of the
raph edits. The goal of any graph edit is to converge towards the actual
PNN structure of the precipitate.

If the column arrangement principles hold throughout the precipi-
ate, then the atomic graph of the structure should have the following

roperties:
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Fig. 3. Schematic of the AutomAl 6000 workflow. Column detection is performed with atomap [14], or by appropriate pre-processing, followed by AutomAl 6000’s centre of
mass column detection. The steps are; (a) import the image with software like for instance gatan microscopy suite (GMS) [15], and perform fast Fourier transform (FFT), (b) apply
low pass mask on the FFT with a radius of approximately 6,7 nm−1, (c) apply inverse FFT, (d) save results in the DM3 file format, (e) import DM3 file with AutomAl 6000, and
(f) guess a threshold value and run column detection. Alternatively, (g) open image with atomap and perform column detection, (h) save result in the HDF5 file format and (i)
import the HDF5 file into AutomAl 6000. Once column positions have been determined, precipitate characterization may be performed with the steps; (j) AutomAl 6000’s column
characterization algorithm, (k) manual corrections based on review of the atomic graph, (l) refresh statistics and finally, (m) export of the data, either as CSV for parsing the 3D
positions and species into other software, or SVG for making high quality atomic overlays with any SVG software, for instance Inkscape [16].
Table 1
Overview of discussed graph edits. The logic notation 𝐴 ⇒ 𝐵, reads ‘‘if 𝐴, then 𝐵’’, and 𝐴 ∶ 𝐵, reads ‘‘𝐴, such that 𝐵’’. The
assignment operator 𝐴 ∶= 𝐵, means to assign the evaluation of 𝐵 to 𝐴. Entries marked with (*), are mostly used by the
column characterization algorithm. Manual atomic graph review with the AutomAl 6000 GUI only supports the application
of the unmarked entries, making them the important edits for a potential user of the software to know.
Edit Notation Effect Strong

Arc pivot 𝑃𝑖𝑗𝑘(𝐺) (𝑣𝑖𝑣𝑗 ∈ 𝐴(𝐺) ∧ 𝑣𝑖𝑣𝑘 ∉ 𝐴(𝐺)) ⇒ (𝑣𝑖𝑣𝑗 → 𝑣𝑖𝑣𝑘) No
Plane inversion 𝐼𝑖(𝐺) (𝜁𝑖 = 0 ⇒ 𝜁𝑖 ∶= 1) ∨ (𝜁𝑖 = 1 ⇒ 𝜁𝑖 ∶= 0) No
Degree increment 𝐷̂+

𝑖 (𝐺) (deg+(𝑣𝑗 ) < 5) ⇒ (deg+(𝑣𝑖) ∶= deg+(𝑣𝑖) + 1) Yes
Degree decrement 𝐷̂−

𝑖 (𝐺) (deg+(𝑣𝑖) > 3) ⇒ (deg+(𝑣𝑖) ∶= deg+(𝑣𝑖) − 1) Yes
Weak arc preservation* 𝑊 +

𝑖𝑗 (𝐺) 𝑘 ⇒ 𝑃𝑖𝑘𝑗 (𝐺) No
Weak arc termination* 𝑊 −

𝑖𝑗 (𝐺) 𝑘 ⇒ 𝑃𝑖𝑗𝑘(𝐺) No
Strong arc preservation* 𝑆+

𝑖𝑗 (𝐺) 𝐷̂+
𝑗 (𝐺) ∶ (𝑣𝑗𝑣𝑖 ∈ 𝐴(𝐺)) Yes

Strong arc termination* 𝑆−
𝑖𝑗 (𝐺) 𝐷̂−

𝑖 (𝐺) ∶ (𝑣𝑖𝑣𝑗 ∉ 𝐴(𝐺)) Yes
4
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Fig. 4. Atomic graphs. Along the top of the figure, the effects of the most basic graph edits are illustrated: Arc pivot 𝑃𝑎𝑐𝑏, plane inversion 𝐼𝑔 , degree increment 𝐷̂+
𝑎 and degree

decrement 𝐷̂−
𝑎 . Below and to the right is the OPNN structure of a 𝛽′′ eye represented with an atomic graph. On the left is the same structure with some erroneous parameters,

which through the permutations 𝑇 = 𝐼𝑎 + 𝑆−
𝑥𝑔 + 𝑆−

𝑔𝑥 + 𝑆+
ℎ𝑑 + 𝑆−

𝑎𝑓 + 𝑃𝑎𝑖𝑑 , produces the correct graph.
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1. For every vertex 𝑣𝑖, deg+(𝑣𝑖) ∈ {3, 4, 5}.
2. For every arc 𝑎𝑗 = 𝑣𝑘𝑣𝑙, the component vertices belong to

opposite planes such that 𝜁𝑘 ≠ 𝜁𝑙.
3. For every arc 𝑎𝑗 = 𝑣𝑘𝑣𝑙, the arc set must contain its inverse,

that is, 𝑣𝑘𝑣𝑙 ∈ 𝐴(𝐺) ⇒ 𝑣𝑙𝑣𝑘 ∈ 𝐴(𝐺), which implies that 𝐺 is
symmetric.

4. Arcs cannot intersect, given meaningful vertex positions in a 2D
plane.

5. The number of vertex corners in any mesh is 4.

If the above properties hold, thus excluding the presence of dislo-
cations, vacant positions and certain phases like 𝛽′, then the average
symmetric degree over the entire embedded precipitate becomes

1
𝑛

𝑛
∑

𝑖=1
deg↔(𝑣𝑖) = 4. (10)

his implies that in precipitates where the principles hold, the number
f 3 OPNN column positions (Si or Cu), exactly matches the number of
OPPN column positions (Mg), while the number of 4 OPNN column

ositions (Al or 4-fold Cu) may vary.

.2. Untangling

Untangling is one of the novel automated methods developed for
utomAl 6000, which seeks to resolve un-symmetric arcs (arcs that
o not have inverse arcs) into symmetric arcs (having inverse arcs)
n a way which produces an atomic graph that correctly represents
he actual OPNN structure of the precipitate. Untangling reviews the
ocal arc configurations around any un-symmetric arc and compares
t to a library of pre-defined configurations to determine which graph
dit to perform, if any. The particular library currently used is shown
n Fig. 5. The details of this library are obtained by studying which
onfigurations commonly appear by equating NN with vertex separa-
ion minimization. This library encodes a fine balance; it is possible
o solve any graph by adding the appropriate configurations to the
ibrary, however, this could potentially produce erroneous results in
5

ther graphs or areas of graphs.
There are also two approaches for untangling, classified here as
trong or weak, depending on whether altering vertex degrees are
llowed or disallowed, respectively. Weak untangling is preferred, since
trong untangling will sometimes compete or override the inferences
f the statistical model. Once weak untangling is performed, only a
ew highly predictable subgraph configurations are subject to strong
ntangling.

.3. Attributes

The numerical attributes considered for statistical inference are
ither graph angles which indicate OPNN symmetry, or Z-contrast
hich indicates column species. Fig. 6 explains how the 𝛼-angles are
efined: Given the graph restriction deg+(𝑣𝑖) ∈ {3, 4, 5}, choose2 3
ertices {𝑣𝑗 , 𝑣𝑘, 𝑣𝑙} from 𝑁+(𝑣𝑖) and find the angular separation in
adians between vectors in the three pairs 𝑣𝑖𝑣𝑗 , 𝑣𝑖𝑣𝑘 and 𝑣𝑖𝑣𝑙. The
esulting 𝛼min and 𝛼max are especially useful when atomic species, and
herefore the appropriate out-degree of the vertex, are unknown. This
s because by selecting the 3 OPNN of the vertex, an indication of the
olumn symmetry is provided without a priory assumptions about the
ertex degree. Note that there are two possible scenarios that can occur
f deg+(𝑣𝑖) = 5, leading to two separate distributions for Mg.

An additional consideration in the statistical classification scheme
s the Z-contrast of the columns. The values of the pixels belonging
o a concentric circular area3 around each column centre are initially
veraged. The peak value of the same set is also recorded, leading
o two ways to measure the intensity (avg and peak). A subsequent
ormalization ensures that the average Z-contrast in the matrix (exclud-
ng the precipitate) is set to a predetermined value. This method will,
o some degree, amend the problem of the considerable variation in
bsolute intensity from image to image, while preserving the relative
ntensity information. The normalized average gamma 𝛾avg, as well as

2 In principle one could select 3 at random, but it is more effective to choose
he 3 closest vertices in terms of the projected distances in the image plane.

3 With radius 𝑟 ≈ 1.0 Å.
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Fig. 5. Untangling library of arc centred sub graph configurations. Based on the local subgraph configurations centred on un-symmetric arcs in the atomic graph 𝐺, the
untangling aims to permute arcs such that a more symmetric graph is approached. Which permutations are chosen depends on whether it is the strong (blue) or weak (green)
untangling.
Fig. 6. Angle definitions. The 𝛼-angles are found by selecting the 3 nearest OPNN’s and subsequently considering the angles between the arcs of those OPNN’s. This figure shows
the possible scenarios given that the vertex degree is either 3, 4 or 5.
the normalized peak gamma 𝛾peak, correlate with the dominant atomic
species of the columns.

The numerical attributes 𝛼min, 𝛼max, 𝛾avg and 𝛾peak constitute a
4D space where multivariate normal distributions can be calculated
from labelled data, which in turn can infer the atomic species on new
unlabelled intensity data.
6

2.4. Default statistical model

Although the modelling scheme of AutomAl 6000 allows users to
build custom models from own data, the default model is used to
produce initial overlays, which are then corrected manually. A custom
model can then be built from those overlays. The default model is
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Fig. 7. Default model data. Shown here are 3 selected 2D projection planes through the same 4D data from a collection of fifteen HAADF-STEM images, which were used to
calculate the default model parameters 𝝁𝑙 and 𝜮 𝑙 for each category 𝑠𝑙 = {Si1 , Si2 ,… etc} (see Table 2). For each projection plane (a–c), both axes are supplemented with the
single attribute normal distributions of the data projected onto each axis. Considering first the (a) 𝛼min and 𝛼max plane, it becomes clear why Mg needs to be considered with two
different distributions as a consequence of the definition of the 𝛼-angles and the two possible scenarios that can occur when choosing 3 random vertices from the 5 available
adjacent vertices of a Mg column. Plane (b) shows the 𝛾avg and 𝛾peak attributes. Here, the Cu1 stands out from the other categories and illustrates how Cu can be identified by
Z-contrast. Contrast alone is not sufficient for identifying the other categories well. However, the 𝛾avg and 𝛼min plane (c) show how the main categories can be separated by
combining Z-contrast information with OPNN symmetry information.
Table 2
Species dictionary of the default model, or the nominal attribute categorization scheme.
Entries marked with (*) are not actually in the default model, but are provided to
exemplify some categories which are natural to include in the species dictionary of
certain images.

Adv. species At. species Out-degree Description

Si1 Si 3 Si found in 𝛽′′ and interfaces.
Si2 Si 3 Si found as in-plane NN to Cu in Q’.
Si3* Si 3 Interstitial Si in 𝛽′.
Cu1 Cu 3 Cu with 3-fold NN symmetry.
Cu2* Cu 4 Cu with 4-fold NN symmetry.
Al1 Al 4 Matrix Al.
Al2 Al 4 Precipitate Al.
Mg1 Mg 5 Mg with 𝛼max ≤ 3.12.
Mg2 Mg 5 Mg with 𝛼max > 3.12.
Un1* Un 3 A special unknown label.
Un2* Un 4 Vacancy column

constructed from data containing the phases 𝛽′′, L, Q’, 𝛽′Cu and dis-
ordered precipitates, by using Eqs. (2) and (3). The nominal attribute
has been termed advanced species, with the categories as presented in
Table 2. Fig. 7 shows the data points projected onto three different 2D
planes through the 4D attribute space. For each axis, the 1D normal
distribution of the data in the relevant attribute, is also shown. This
visualization of the data provides some indication of how the data
clusters. Note that when combining Z-contrast, represented by 𝛾avg,
with symmetry, for instance 𝛼min, the best cluster separation of the
model is visualized, as in Fig. 7c. There is some overlap between
the clusters, which is a limiting factor in the accuracy of the column
characterization algorithm approach in this work.

2.5. 𝜁 -analysis

Determining the Boolean 𝜁𝑖-value of each vertex 𝑣𝑖 is an integral
part of the problem, that is, determining which of the two planes
each column belongs to. To achieve this, a method which lets all
vertices vote on the plane association of their OPNN was conceived
and consequently termed 𝜁 -analysis.4

Consider a seed vertex 𝑣𝑠 that is originally given a vote 𝑉 0
𝑠 = 1,

while all other vertices in the graph 𝐺 are given a vote of 0, such that

𝑉 0
𝑖 =

{

1 if 𝑖 = 𝑠
0 if 𝑖 ≠ 𝑠.

(11)

4 Not to be confused with other general uses of the term zeta analysis in
both material science and mathematical literature. The method discussed here
7

is original to the best of our knowledge.
Next, define two parameters 𝑤1 ∈ (0, 1) and 0 ≤ 𝑤2 < 𝑤1. Formally, for
each election cycle 𝑐 = {0, 1, ..., 𝐶 − 1}, and for each 𝑖 ∈ {1, 2, ..., 𝑛},
where 𝑛 is the order of the graph, set

𝑉 𝑐+1
𝑖 = 𝑉 𝑐

𝑖 −𝑤1
∑

𝑗∈𝑋
𝑉 𝑐
𝑗 −𝑤2

∑

𝑘∈𝑌
𝑉 𝑐
𝑘 , (12)

where 𝑋 is the set of all indices 𝑗 such that 𝑣𝑗 ∈ 𝑃 (𝑣𝑖), and 𝑌 is the
set of all indices 𝑘 such that 𝑣𝑘 ∈ 𝑁−(𝑣𝑖) − 𝑃 (𝑣𝑖). In addition, limit
𝑉 𝑐+1
𝑖 ∈ [−100, 100] with

𝑉 𝑐+1
𝑖 ∶= min

[

100, max
[

−100, 𝑉 𝑐+1
𝑖

]]

, (13)

so as to prevent explosive growth from positive feedback loops which
will appear over symmetric arcs. To illustrate, consider a graph that
is fully symmetric, which implies that 𝑌 is empty. In the first election
cycle, given that all 𝑉 0

𝑖≠𝑠 = 0, it is only the partners of the seed vertex
{𝑣𝑝} = 𝑃 (𝑣𝑠) who will have their votes increased to

𝑉 1
𝑝 = min

[

100, max
[

−100, 𝑉 0
𝑝 −𝑤1

∑

𝑗∈𝑋
𝑉 0
𝑗

]]

= −𝑤1.

(14)

This means that in the second election cycle, the seed vertex vote
increases to

𝑉 2
𝑠 = min

[

100, max
[

−100, 𝑉 1
𝑠 −𝑤1

∑

𝑗∈𝑋
𝑉 1
𝑗

]]

= 1 + deg↔(𝑣𝑠)𝑤2
1,

(15)

which therefore further increases 𝑣𝑠. This illustrates how positive feed-
back occurs over symmetric arcs, minimizing the influence of un-
symmetric arcs as the voting spreads across the graph over many
election cycles, maintaining all voting relative to the seed vertex, which
is therefore acting as a source. After a sufficient number of election
cycles (𝐶 ∼ 0, 05𝑛), all 𝑉𝑖 will converge to a value of 100 or −100, which
is then used to set

𝜁𝑖 =
{

1 if 𝑉 𝐶
𝑖 ≥ 0

0 if 𝑉 𝐶
𝑖 < 0,

(16)

and thus set the 𝑧𝑖-positions of each vertex by using Eq. (7).
The implementation of this method in AutomAl 6000 also features

additional sophistication to prevent edge effects from the graph edges
by defining a third weight 𝑤3 < 𝑤2, which replaces either 𝑤1 or
𝑤2 if the corresponding vertex is an edge vertex. Furthermore, the
𝜁 -analysis is first applied to the Al matrix, before the precipitate is
analysed by using the precipitate interface columns as ‘seeds’. The
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d

𝛥

Fig. 8. Column characterization algorithm. The AutomAl 6000 column characterization algorithm represented as a flow-chart. The algorithm relies on multiple sub-processes
distributed between an initialization part (green), a recurring part (red) and a finalization part (blue). The individual sub-processes themselves, as well as the order in which they
are applied, can influence the result of the algorithm. The sub-processes are detailed in the text.
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current implementation uses

𝑤1 = 0, 5

𝑤2 = 0, 2

𝑤3 = 0, 1.

(17)

2.6. Spatial mapping and graph mapping

The projected separation 𝛥′ between any two vertices 𝑣𝑖 and 𝑣𝑗 is the
istance between the vertices in the image plane

′(𝑣𝑖, 𝑣𝑗 ) =
√

(𝑥𝑗 − 𝑥𝑖)2 + (𝑦𝑗 − 𝑦𝑖)2. (18)

The projected separations between all vertices are used to establish a
general locality for each vertex and to map the initial arc set from the
vertex set. The projected separation matrix 𝑴 , is therefore calculated
with elements

𝑀𝑖𝑗 = 𝑀𝑗𝑖 = 𝛥′(𝑣𝑖, 𝑣𝑗 ). (19)

Once 𝑴 is calculated, every vertex is labelled as Un1, which dictates
that the out-neighbourhoods should contain 3 vertices, as per Table 2,
which, for vertex 𝑣𝑎, will be the vertices corresponding to the indices
{𝑏} of the 3 smallest values in row 𝑀𝑎{𝑏}, excluding 𝑏 = 𝑎. This
provides the initial atomic graph mapping, where OPNN are thus
simply assumed to be the 3 nearest vertices.

2.7. Edge and precipitate detection

The algorithm does not account for vertices at the edge of the graph,
so columns near the edge of the image are labelled accordingly, and
disregarded from further study.

Another task for the algorithm is to determine which columns are
part of the precipitate or which columns are part of the aluminium
matrix. This is achieved by defining every aluminium column with 1
or 0 non-aluminium OPNN as matrix columns, and all other columns
as precipitate columns. The more accurate the labelling is, the more
accurate the precipitate detection is, which is why this part is included
in the recurring part of the algorithm. Distinguishing the precipitate
from the matrix is important to get appropriate normalized 𝛾-attributes,
as well as an estimate of the composition of the precipitate.

2.8. Column characterization algorithm

The full column characterization algorithm featured in AutomAl
6000, consists of all the methods discussed above, applied in a certain
order. Both the implementation details of the individual methods as
well as the eventual sequence of the methods will influence the result of
the algorithm. The involved parts, as well as their order, are illustrated
in Fig. 8. The algorithm has three parts: An initialization part, a
recurring part and a finalization part. In Fig. 8, these parts are indicated
8

with green, red and blue, respectively. During the initialization, basic C
properties of the column arrangement are extracted, which is only done
once. In the recurring part, the statistical model and the untangling are
applied alternately, in theory improving each cycle until converging at
a static state. In practice however, this convergence happens already
after a few repetitions, so any convergence testing is replaced by a
simple repetition count. This is discussed further in the discussion
section. The finalization part assumes that an optimal graph symmetry
has been set, and uses this to perform the most optimal 𝜁 -analysis. It
will also summarize all data to make sure all object fields and attributes
are up to date.

Although the details of the algorithm are always subject to change
and improvements, there are some basic concepts that inform some of
the sequencing decisions of the algorithm design. For instance, when
𝑖 = 0, it is unknown if columns are part of the matrix or the precipitate,
o a proper 𝛾-normalization cannot be calculated. Therefore, it is more

accurate to use only 𝛼-angles when applying the statistical model.
Untangling should also immediately follow the model inference, and 𝜁 -
nalysis should always be performed after precipitate detection, except
hen 𝑖 = 0.

. Results and discussion

We demonstrate the application of the AutomAl 6000 method on
hree different HAADF-STEM images of Al–Mg–Si(–Cu) precipitates as
resented in Fig. 9. The images were selected to give a representation
f the range of images that AutomAl 6000 is designed for. An image-
nd probe corrected JEOL ARM200CF microscope operated at 200 kV
as used to acquire the images. For the acquisition, the convergence
ngle was 27 mrad, while the inner and outer detector collection angle
ere 35 mrad and 149 mrad, respectively. Alloy details are provided

n Table 3. For each of the images, a control overlay was produced
anually, which (to the best of knowledge) represents the correct

tomic overlay. AutomAl 6000 has been found to identify the column
pecies with high precision, as summarized in Table 4, where the errors
ompared to the manual control overlays are given. Note however,
hat the errors only relate to the initial characterization, which are
educed by a manual atomic graph review, which is an elementary
art of the AutomAl 6000 process. This manual atomic graph review
s exemplified in the next section, before some additional highlights
rom the development of AutomAl 6000 are discussed.

.1. Manual atomic graph review

Fig. 10 shows the resulting atomic graph after applying the column
haracterization algorithm on an image. Fig. 10 also features enlarged
reas of the graph, with some vertices arbitrarily labelled, and with
he graph edits required to solve the atomic graph provided in the
igure description. Once the correct OPNN structure is acquired, atomic
pecies with the same associated out-degree, should also be controlled,
ince these will appear identical in the atomic graph. In the Al–Mg–Si–

u system, this will involve checking that the Cu and Si columns are
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Fig. 9. Example HAADF images of 3 different precipitates in [001]Al zone. The left column shows sections of the HAADF-STEM images chosen for this study: (a) 𝛽′′ precipitate,
(b) Q’ precipitate, and (c) L precipitate which also features a 𝛽′Cu unit. Image details can be found in Table 3. Middle column shows the result of the column characterization
algorithm, without any manual graph review, and the right column shows control overlays. The discrepancies between the result and control overlays are highlighted by yellow
circles. For overlay legend, see Fig. 1. For relative discrepancies, confer Table 4.
correctly labelled. Following the structural principles and manipulating
the atomic graphs accordingly, might take some effort getting used to,
but is essential for understanding the full AutomAl 6000 process, as the
error percentage of the algorithm may vary based on the particulars of
individual images.

3.2. Algorithm convergence

To test the general behaviour of the column characterization al-
gorithm, a set of 12 varied images5 with known control overlays are
used. Fig. 11 shows the results of such a test, where by applying the

5 The specific images used for this test are not provided with this paper,
as they appear in other works. It can however be stated that the set includes
images from different TEM sessions with different acquisition parameters, and
9

algorithm on each image and comparing with the control image at each
step, a reliably converging trend is seen. The error that the algorithm
converges to, will vary slightly between images depending on details
of the image and/or the structure of the precipitate, but is generally
expected to be low. On the 12 images in the test set, the average
difference at 𝑖 = 4 was 2, 9%, with a standard deviation of 2, 3%. The
vertical lines in Fig. 11 indicate iterations of 𝑖, starting with 𝑖 = 0
at the leftmost stippled line (the initialization part of the algorithm
is not shown as the error is always 100 percent until the first model
inference). Although some small improvements are sometimes observed

a wide range of precipitate sizes, alloy compositions and structural content,
like 𝛽′′, 𝛽′ , Q′, L, disorder and hybrid particles.
Cu
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Fig. 10. Atomic graph review. The central panel shows the atomic graph of the column characterization result of an image. The four highlighted areas of the atomic graph
featuring un-symmetric arcs indicate that manual review is necessary. By following the structural principles as expressed in graph properties, one can arrive at the following edit
sequences to solve the OPNN structure of these areas; (a) 𝑃𝑎𝑏𝑐 , (b) 𝑃𝑏𝑐𝑎 + 𝑃𝑐𝑑𝑎 + 𝑆+

𝑐𝑒 + 𝑆+
𝑓𝑎 + 𝑆+

𝑎𝑓 , (c) 𝑃𝑓𝑑𝑒 + 𝑃𝑎𝑐𝑏 + 𝑆−
𝑐𝑎 + 𝑆−

𝑑𝑓 + 𝑆+
𝑓𝑎 + 𝑆+

𝑎𝑓 and (d) 𝑃𝑔𝑓𝑏 + 𝑃𝑓𝑔𝑒 + 𝑃𝑏𝑐𝑎 + 𝑆+
𝑏𝑑 + 𝑆+

𝑏𝑎. The key
when trying to find the correct edits during manual atomic graph review, is to notice the number of corners in each mesh, which should be 4 if the structural principles are valid
in the area being considered (which, as discussed above, is normally the case).
after 𝑖 = 2, these are considered minor and the algorithm is terminated
at 𝑖 = 2 to optimize run time.

3.3. Insights provided by the default model data

Fig. 7 illustrates an organization of the data that can provide
useful information: Fig. 7b shows the expected linear relation between
the normalized 𝛾peak variable (the brightest pixel value within each
column radius), and the normalized 𝛾avg variable (the average pixel
value within each column radius). However, a group of Mg columns
located in a bulge extending upwards from the main clustering, deviates
slightly from this relation. Upon closer inspection, they were identified
as Mg columns which are also OPNN columns to Cu in Q′ phases.
They will have both inflated average and peak pixel values, with the
effect most prominent in the peak pixels values. This is because their
positions are biased towards the much brighter Cu when using AutomAl
6000’s centre of mass column detection, due to the intensity of the Cu
columns slightly bleeding into the neighbouring columns. The effect is
a displacement of such Mg columns to positions nearer the Cu columns,
with a resulting bleeding effect and inflated pixel values of Mg, which
again makes them stand out in the 𝛾-plane. A similar bias can be seen
with Al columns which have a OPNN relation to Cu in 𝛽′Cu.

Another point of interest is the slight shift in the mean values of the
distributions of Cu, Si1 and Si2 in the 𝛼min variable. They are all 3 OPNN
column positions, but the Cu distribution mean is visibly closer to the
value representing perfectly symmetric triangular positions, while Si1
will typically occupy structural positions that are more skewed away
from symmetry, and Si even more so. This can be explained by the
10

2

fact that in the Q′ and 𝛽′Cu phases, Cu inhabit positions surrounded by
three symmetrically indistinguishable neighbour positions. In contrast,
Si2 in a same plane NN relation to these Cu positions is in a lower
symmetry position regarding the 3 OPNN positions with 2 Mg and 1 Al
columns [18]. This illustrates how different local column configurations
and symmetry can be interpreted from visualizations by the program.

3.4. Effects of image quality

It is important to consider the effect of overall image quality. In
the presence of heavy atom species resulting in bright columns, e.g. Cu
or Zn, a cut-off in the histogram is to be expected for long dwell
times, commonly known as over-saturation. To increase the precision
it is advantageous to stay within the dynamic range of the detector, if
possible in the linear range, and avoid over-saturation. In this way, the
column intensity can be more accurately assigned to a specific element
and the natural scatter range of different intensities will be minimized
together with the variance of the 𝛾avg distributions as per Fig. 7b. In
the long run, this will aid discrimination of the different atom species
with closely related Z-numbers.

Additional parameters for image quality are the condenser aperture
radius and inner detector radius. The condenser aperture should be
chosen as large as possible while still excluding lens aberrations to
get the best image resolution. The most straight forward interpretable
Z-contrast images are achieved when inter and intra columnar interfer-
ence effects can be excluded [19]. Hartel et al. [20], showed that for
cubic crystals with lattice constants ∝ 0.4 nm, this can be achieved to
a large extend by imaging with an inner detector collection angle of
𝛩 = 50 mrad.
1
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Fig. 11. Column characterization algorithm convergence behaviour. This graph shows the precipitate atomic species error in percent after each individual algorithm step over
a set of 12 varied images. The vertical stippled lines indicate the iterations of 𝑖, as per Fig. 8, which in this test is allowed to exceed 𝑖 = 2. After the first application of precipitate
detection, the error drops down dramatically the first time the precipitate error can be measured. Subsequent application of precipitate detection, gamma normalization, weak
untangling and 𝜁 -analysis have no effect on error: These methods do not affect the identification atomic species directly, but usually influence how the statistical labelling perform.
The error changes after statistical labelling and strong untangling, as these are the only methods that alter atomic species labels. The error is often seen to increase with the model
inferences, but this allows weak followed by strong untangling to further decrease the error, unless the convergence error has been reached.
Table 3
Image details of Fig. 9. Alloy treatment consist of: Solution heat treatment (SHT), water quench (WQ), natural ageing (NA), artificial
ageing (AA) and direct artificial ageing (DAA).
Image Alloy (at%) Alloy treatment Features

a 0.63Mg, 0.62Si, 0.06Cu, 0.08Mn, 0.10Fe SHT + WQ + 2 h NA + 2 h AA @ 185 ◦C. 𝛽′′

b 0.63Mg, 0.62Si, 0.06Cu, 0.08Mn, 0.10Fe SHT + WQ + 2 h NA + 20 h AA @ 150 ◦C. Q′

c 1.20Mg, 0.37Si, 0.20Cu SHT + WQ + 64 min DAA @ 250 ◦C. L and 𝛽′Cu
Table 4
Error results of the column characterization
algorithm applied on images a–c in Fig. 9.
Calculated as the number of erroneous atomic
species labels in the precipitate, divided by
the number of columns in the precipitate, and
scaled by 100 to produce a percentage.
Image Error (%)

a 0,92
b 2,28
c 0,25

4. Conclusions

The stand-alone software AutomAl 6000 is used to analyse HAADF-
STEM images of precipitate cross-sections in the Al-Mg-Si-(Cu) system
and returns the atomic structure with high accuracy. The novel al-
gorithm combines a statistical model with a set of simple structural
principles relating columns of the aluminium and the solutes. The soft-
ware allows for rapid,6 determination of the entire 3D atomic structure

6 For comparison, manual overlay of image b in Fig. 9 took 54 min (3 min
for column detection, and 51 min for column determination using the AutomAl
11
responsible for the 2D precipitate/matrix cross-section projection with
minimal manual input, demonstrating that the structural principles
represent fundamental simplifying generalizations of the precipitates in
this system, which can aid materials development. The software allows
for more quantitative studies of these alloys, and provides an excellent
starting point for making SVG atomic overlays for both researches and
students. Such overlays are produced with layered species information
in the SVG metadata, which may have a broader use than discussed in
this paper. The software is open source and available to anyone from
the links provided in the abstract.

The implementation of the data structure of AutomAl 6000 is fairly
general, and even without the column characterization, can be used to
manually characterize novel data to acquire the distribution of different
physical attributes in a structure. The relational character of the atomic
graphs provides a capable basis for data analysis of precipitates, and
might be employed to create large sets of labelled data intended for
supervised machine learning techniques.

6000 manual interface), while the same image analysed with AutomAl 6000
by a user familiar with atomic graphs, took 10 min (3 min for column
detection, 5 min running column characterization and 2 min reviewing the
atomic graph).
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The approach that was taken with the column characterization
algorithm in this work, relies heavily on two major facts about the pre-
cipitate system under consideration: (1) Every atomic species present
in the system are significantly separable along at least one direction
in the parameter space, as in Fig. 7c. (2) There are unambiguous and
known structural principles present, which can be correctly interpreted
by weak and strong untangling methods. Similar methods to those
discussed in this work, but for different precipitate systems, can be
feasible if the above facts are valid in the system.

4.1. Further work

The program will be tested on the precipitates growing on disloca-
tions. This appears to be more common in the 2xxx system (Al–Mg–Cu),
but with precipitates which use similar structural principles (column
rules). Without modification, the rules may apparently break down on
one side of the interface of precipitates growing on dislocations. It is yet
unclear how this will require a modification of the algorithm. Further
work will also include the alloys of the 7xxx system (Al–Mg–Zn). In
these alloys the <100>Al columns are less important. Instead, plate-like
precipitates take advantage of other rules. If this system can be tackled,
the plan is to investigate how the description of other alloy systems can
be simplified.
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