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Abstract— This paper contributes a novel strategy towards
risk-aware motion planning for collision-tolerant aerial robots
subject to localization uncertainty. Attuned to the fact that
micro aerial vehicles are often tasked to navigate within GPS-
denied, possibly unknown, confined and obstacle-filled environ-
ments the proposed method exploits collision-tolerance at the
robot design level to mitigate the risks of collisions especially as
their likelihood increases with growing uncertainty. Accounting
for the maximum kinetic energy with which an impact is con-
sidered safe, alongside the robot dynamics, the planner builds a
set of admissible uncertainty-aware and collision-inclusive paths
over a horizon involving multiple motion steps. The first step
of the best path is executed by the robot, while the procedure
is then repeated in a receding horizon manner. Evaluated in
extensive simulation studies and experimental results with a
collision-tolerant flying robot, the planner successfully considers
the interplay between uncertainty and the likelihood of a
collision, balances the risks of possible impacts and enables
to navigate safely within highly cluttered environments.

I. INTRODUCTION

Aerial robots and especially Micro Aerial Vehicles
(MAVs) are being utilized in an ever increasing set of
applications including infrastructure inspection [1, 2], explo-
ration [3], transportation and delivery [4], or even off-world
scientific discovery [5]. In all these tasks, the ability of
the robot to safely navigate its environment is essential.
Motivated by this fact, the research community has con-
tributed seminal works for collision-free motion planning [6–
9]. However, MAVs are often tasked to navigate within
highly confined, obstacle-filled environments and operate
subject to conditions of severe perceptual degradation and
lack of GPS which –in their combination– tend to increase
their localization and mapping uncertainty [10–17]. In such
conditions, confidently identifying a collision-free path is far
from trivial –even when one exists– especially due to the
effects of uncertainty [10]. Collision-tolerant flying robots
have been developed to mitigate some of the risks and
have been successfully utilized in industrial applications
through teleoperation. A niche community has focused on the
problem of motion planning that accounts for collisions [18–
22] with some of the works focusing on flying systems.

Responding to the above facts and challenges, in this work
we contribute a novel risk-aware motion planning algorithm
that provides a unified treatment to the threats and hazards
posed to a collision-tolerant aerial robot due to unavoidable
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Fig. 1. Instance of the proposed risk-aware motion planner for collision-
tolerant aerial robots subject to uncertainty.

localization uncertainty and the impact of possible collisions
in highly cluttered environments. By allowing the set of
safe and admissible solutions to contain paths that present
collisions –within a limit of kinetic energy at impact– the
planner can balance the risks posed to the robot when
selecting a path subject to uncertainty and offer the ability
to fly fast –but safely– in challenging densely obstacle-
filled environments such as industrial facilities, underground
networks, vessel ballast tanks or forests. The provided mo-
tion plans account for the dynamics of MAVs, while to
enhance the robustness of the solution –especially in initially
unknown environments– the method operates in a receding
horizon fashion by identifying a path that involves multiple
motion steps but executing only the first of those and then
iteratively updating its solution. To verify the proposed strat-
egy, a comprehensive set of metric-driven simulation studies
are presented, alongside an experiment using the collision-
tolerant RMF-Owl [23] MAV developed for the DARPA
Subterranean Challenge [24] and depicted in Figure 1.

The remainder of this paper is organized as follows:
Section II presents related work, followed by the problem
statement in Section III. The proposed risk-aware motion
planner is presented in Section IV. Evaluation studies are
detailed in Section V, followed by conclusions in Section VI.



II. RELATED WORK

The proposed contribution has relevance to the domains
of uncertainty-aware motion planning, as well as the niche
domain of collision-aware path and trajectory generation. To
account for uncertainty in path generation, the domain of
“belief–space” planning has emerged [10–17]. The authors
in [10] contribute the Rapidly-exploring Random Belief
Trees method on motion planning under uncertainty. To allow
for computational tractability, they restrict the motion plan to
a nominal trajectory stabilized using a linear estimator and
controller. Building on top, the work in [13] evaluates offline
multiple paths in a known map to choose the one with the
motion required to support estimation. The authors in [14]
present the method of Batch Belief Trees that visit regions
that offer information to reduce the system’s uncertainty.
Exploiting photometric information, the work in [12] uses
information for the scene’s visual appearance to reduce the
pose uncertainty over planned trajectories. Our previous work
in [15] focused on receding horizon localization uncertainty-
aware exploration path planning on volumetric maps con-
sidering a robot running visual-inertial odometry. Exploiting
Model Predictive Control, the work in [25] unifies control
and planning with respect to action and perception objectives.

The idea of exploring or even exploiting collisions in
robot path planning has been researched by a niche commu-
nity [18–22]. Relying on the principles of mixed integer pro-
gramming, the works in [19, 20] investigate a framework that
allows for planned trajectories to be inclusive of collisions.
The method incorporates a hybrid model to represent colli-
sion dynamics as constraints. In [21] the authors focus on
harnessing the possible benefits of collisions-aware trajectory
optimization for spacecrafts, and extend and experimentally
verify their previous contributions to demonstrate the poten-
tial benefits (e.g., in power limiting) of collision-inclusive
planning. Contributing a new optimal steering paradigm, the
authors in [22] demonstrate that collisions can be beneficial
events as contact may help, for example, to possibly reduce
the state estimation uncertainty. The method is validated with
the use of an omni-directional wheeled robot. Considering
aerial robots, and specifically one with tensegrity structure,
the work in [18] exploits collisions for sampling-based
motion planning and demonstrates that collisions-inclusive
paths can have benefits in confined geometries.

Compared to the previous body of work, our contribu-
tion a) combines information on uncertainty and collision-
tolerance in a unified risk-aware planning paradigm, b) em-
beds collision-inclusive paths in a versatile planning frame-
work exploiting an efficient volumetric representation that
does not make simplifying assumptions for the geometry of
the environment and does not assume any prior knowledge,
c) accounts for the robot dynamics, d) enhances robustness
through a receding horizon policy, and e) is extensively
verified through both simulations and experimental studies
with a collision-tolerant flying robot operating completely
autonomously in obstacle-filled GPS-denied environments.

III. PROBLEM FORMULATION

The risk-aware motion planning problem, as considered
in this work, is that of identifying safe paths that allow a
collision-tolerant aerial robot, specifically a multirotor MAV,
to navigate towards a reachable destination within an initially
unknown map, while accounting for localization uncertainty,
and the impact of potential collisions with the environment.

Let M be a 3D occupancy map of the environment which
is iteratively explored as the robot navigates using an onboard
depth sensor S with horizontal and vertical Field Of View
(FOV) [FH , FV ]

◦ and maximum effective range dmax. The
map consists of voxels m that belong to three categories,
namely a) mapped and free, b) mapped but occupied, and c)
unknown. At every iteration k, the set of voxels being free
or occupied, represent the known subset of the map Mk

K ,
while the rest is the unknown subset Mk

U = Mk − Mk
K ,

where Mk is the map at its current status. Considering a
holonomic vehicle, let us define the reachable set of position
configurations R, i.e., the set of coordinates that the robot
can reach in the map. At every time instance t of its motion,
the robot is subject to localization uncertainty modeled using
a multivariate Gaussian distribution N (x̂t,Σt). As collisions
lead to significant forces applied to the robot’s frame, a
known (e.g., from prior experimental or simulation studies)
maximum kinetic energy Emax

K with which an impact may
safely take place is considered. Given the above, the overall
risk-aware motion planning problem for collision-tolerant
aerial robots under uncertainty can be cast globally as:

Problem 1 (Risk-Aware Motion Planning Problem) Given an
initial position configuration ξ0 = [x0, y0, z0] and a reference
configuration ξr = [xr, yr, zr]

T ∈ R, find an admissible
safe path χ that reaches this destination, while minimizing
the risks imposed by possible collisions - especially as those
arise due to the underlying localization uncertainty of the
system as captured by a Gaussian process. The solution must
further account and optimize for the dynamics of the system
belonging to the class of multirotor MAVs. An admissible
safe path is one that either experiences no collisions or
experiences collisions with the robot flying at speeds such
that the kinetic energy of the impact is below Emax

K .
It is noted that although the problem is here defined globally,
its solution is necessarily derived iteratively as the map of the
environment is initially considered to be unknown and gets
explored as the robot navigates and utilizes the onboard depth
sensor S alongside localization information. In any iteration,
solutions are planned within the known subset of Mk.

IV. PROPOSED APPROACH

This work contributes a new Risk-Aware Motion planner
(RAMPlanner) tailored to collision-tolerant MAVs that are
subject to localization uncertainty. The method offers a
unified treatment of the risks posed by uncertainty and by
the impact of a collision to the flying robot allowing for
collision-inclusive paths that are still safe but more efficient
in their ability to negotiate highly confined environments.



Fig. 2. Illustration of key steps of the proposed risk-aware motion planner for collision-tolerant aerial robots subject to localization uncertainty. The
method samples a set of sets of motion primitives over a prediction horizon (here N = 2), while for the first step of each motion primitive set, Xj , it
accounts for the position uncertainty of the robot by sampling 2L sigma-points additional to the mean value (here L = 2 as this is a 2D visualization but
L = 3 in the method). The algorithm balances the importance of moving towards the destination and the impact of possible collisions, which may be likely
given the uncertainty, and selects the best path. Only the first step of that path is executed by the robot, while the whole procedure is then repeated in a
receding horizon fashion. In this depiction few paths are shown, and certain steps are not continued over the horizon in order to allow for visual clarity.

A. Environment Representation

The environment is represented as a 3D volumetric
occupancy map M using the open-sourced VDB-EDT
method [26] implementing an efficient Euclidean Distance
Transform (EDT) through the VDB data structure [27]. VDB
is a memory-efficient, hierarchical data structure allowing
to represent sparse, time-varying volumetric maps that are
discretized over a 3D grid. Named after its close relation
to the dynamic volumetric B+ tree, the method utilizes
spatial coherence of time-varying data and permits to encode
data values and grid topology in a compact and memory-
efficient fashion. Importantly for robotics, the method does
not impose any constraint on the sparsity of the volumetric
data and provides fast, on average O(1), random and sequen-
tial access patterns during insertion, retrieval, and deletion
operations. VDB-EDT runs on the grid map and generates
the associated distance field encoding the distance value
against the obstacles of the environment, thus facilitating
motion planning. The strategy is particularly efficient, both
in memory needs, and in terms of computation time for
updating the map and it is thus suited for computationally
constrained robotic platforms. As the robot navigates in the
initially unknown environment, more of it gets explored and
at every planning iteration k its status is reflected in Mk. In
this work a voxel size of 0.2m is used.

B. Receding Horizon Motion Primitives Planning

The proposed RAMPlanner, outlined in Figure 2, performs
planning based on motion primitives that respect the dynam-
ics of multirotor MAVs and operates in a receding horizon
fashion towards enhanced robustness against the imperfec-
tions introduced by the partial knowledge of the map, as well

as the robot’s localization uncertainty. Using the 3D position
as the planning state ξ = [x, y, z]T , at every iteration the
method builds a library of motion primitives by sampling a
set of waypoints {ξ}j within a “frustrum” with horizontal
and vertical parameters [PH , PV ]

◦ for each primitive χj .
More specifically, the planning frustrum is discretized with
a fixed resolution (sH , sV ) over the horizontal and vertical
axes respectively and for every point in this discretization,
the method samples N points in the ξ-space with each being
a tunable distance ds apart. To probabilistically enhance
the ability of the algorithm to find admissible solutions, an
additional population of N -point sequences is also derived
with each of these N -points being a random configuration
in the ξ-space. Subsequently, each motion primitive, based
on fixed discretization or random sampling, is generated
by calculating a minimum snap trajectory passing through
these waypoints, with the current configuration of the robot
ηk = [xk, yk, zk, ẋk, ẏk, żk]

T as the initial condition. Each
dimension d ∈ {x, y, z} of the motion primitive χj is
represented by a sequence of N 7th order polynomials

{P j,d
n (t) =

7∑
l=0

cl,dn tl}, n = 0...N − 1 (1)

where cl,dn is the coefficient of tl for dimension d. The
proposed method derives paths with N steps but only the
first step of the selected motion primitive will be executed
by the robot thus giving rise to a receding horizon strategy.

The numerical calculation of these minimum snap trajec-
tories is based on the open-sourced work of [28] on fast mini-
mum snap trajectory generation using double descriptions of
polynomials. Building upon the success of minimum snap



trajectories for quadrotor MAVs [29], the method considers
a set of waypoints and the planned times assigned to each
of them and offers minimum snap trajectory solutions with
linear-complexity. The algorithm is extremely efficient which
is key to the ability of our approach to derive a large number
of motion primitives over a horizon. We derive the planned
time to each waypoint based on set maximum values for the
allowable velocity vmax and acceleration amax. Furthermore
vmax is adjusted in each planning iteration based on the
number of motion primitives experiencing unsafe collisions
in the previous iterations as explained in Section IV-F.

C. Accounting for Uncertainty

Operating in unknown and GPS-denied environments re-
quires the robot to estimate its state onboard which is
susceptible to drift over time. Flying in cluttered and confined
areas may further increase the uncertainty in the localiza-
tion due to obstructed visibility of the onboard sensors.
Furthermore, aerial robots are often tasked to operate in
conditions of perceptual degradation [30] which increases the
likelihood of localization drift. Simultaneously, inaccurate
localization results in poor trajectory tracking. Hence, it is
important to account for the localization uncertainty in the
motion planning problem. However, this is a particularly
demanding task and the complexity of the underlying par-
tially observable markov decision process is so high that a
solution to the full problem is practically intractable [31, 32].
Focusing on the effect of uncertainty in increasing the risk
of a collision and emphasizing a computationally-efficient
approach, in this work we consider the uncertainty only in the
current position estimate ξ̂

k
, which we model as a Gaussian

distribution N (ξ̂
k
,Σk

ξξ), derived from N (x̂t,Σt) at time
t = tk, and investigate the effect of the uncertain robot state
when a new planning iteration starts. Since the planning ξ-
space only includes the robot position, this approximation
is considered as a good choice for the risk-aware planning
problem considered.

Based on this model for the robot position state and
uncertainty, we can evaluate a candidate motion primitive
χj , j = 1...nprim and account for the possible collisions re-
sulting from it in an uncertainty-aware manner. Specifically,
a set of points are sampled from the covariance, including the
mean estimate of the position, and the possible trajectories
are calculated with these points as the starting state. To
sample the covariance over the planning state ξ we derive
a set of 2L + 1 sigma-points computed from the density
N (ξ̂

k
,Σk

ξξ) according to

ξS
0 = ξ̂

k
(2)

ξS
i = ξ̂

k
+

√
LΣk

ξξ (0 < i ≤ L) (3)

ξS
i = ξ̂

k
−

√
LΣk

ξξ (L < i ≤ 2L) (4)

where L = dim(ξ̂
k
) and the sampled points allow to

numerically reconstruct N (ξ̂,Σξξ) [33]. Please note that for

the simplicity of notation, from now on we focus only to the
current iteration and drop the k superscript.

Given the sigma-points ξSi , i = 0...2L, the possible
trajectories {χξS

i
j } (hereafter referred to as the uncertain

primitives) starting from the sigma-points are computed and
associated with each primitive χ

ξS
0

j (hereafter referred to as
the mean primitive). As the sigma-points only contain the
position, the velocity and the higher order derivatives for
the uncertain primitives will remain the same as the mean
primitive. Hence, only the coefficients for the constant terms
in the polynomial formulation of the uncertain primitives
will differ from those of the mean primitive. The vector of
the constant term coefficients for each state element, c0n,i =
[c0,xn,i , c

0,y
n,i , c

0,z
n,i]

T , of the nth, n = 0...N − 1, polynomial

segment of the uncertain primitive χ
ξS
i

j corresponding to ξSi
is calculated as:

c0n,i = c0n + ξS
i − ξS

0 (i = 0...2L) (5)

where, c0n is the coefficient vector for the mean primitive.
Overall, for each mean primitive we derive a set of mean
and uncertainty-aware primitives Xj = {χ

ξS
i

j }, i = 0...2L.

D. Accounting for Collisions

Classical motion planning methods [6] aim to avoid all
collisions thus ensuring the safety of the robot. However,
this approach may render navigation in highly confined
and obstacle-filled environments inefficient [18]. Importantly,
when localization uncertainty is taken into consideration, it
may turn that a collision-free path is hard and statistically
unlikely to be possible to be derived (especially in cluttered
environments). However, embedding collision-tolerance into
the design of a robot opens the way for a new risk-aware
planning paradigm in which collisions may be treated as af-
fordable events if the kinetic energy at the time of impact (on
which the collision forces depend) is below a set threshold.
Accordingly safe collision-inclusive paths can be generated
that factor the combined risks raised by the uncertainty in
estimation and the impact of a collision.

At a sampling iteration k and provided the sampled set
of mean and uncertainty-aware motion primitive sets Xj ,
the method identifies the instances within each path that
it collides with the environment map Mk. To perform this
test, the robot is modeled as a box with dimensions DL ×
DW ×DH and identifying if voxels at its corners intersect
the mapped occupied map in Mk. For each path χ

ξS
i

j , the
method first identifies the possible collision points in each
step n = 0...N − 1 of the motion primitive horizon. Then,
for each step n it identifies the possible collision point with
maximum velocity vc,max

j,i,n and associates its kinetic energy
Ej,i,n

K = 1
2m(vc,max

j,i,n )2 with that step. If no collision is
experienced in a path segment, then Ej,i,n

K = 0. As for
every collision-inclusive path, its risk should be weighted
according to the probability pj,i of the mean or uncertainty-
aware starting point ξSi given the distribution N (ξ̂

k
,Σk

ξξ),
the collision-cost of the j-th primitive takes the form



Jc
j =

2L∑
i=0

N−1∑
n=0

wc
npj,i

1

2
m(vc,max

j,i,n )2︸ ︷︷ ︸
E

j,i,n
K

(6)

where wc
n > 0 is a tunable weight for each step and the

earlier steps of the motion primitive carry more weight with
respect to a possible collision. Notably, any motion primitive
j that contains collision events with velocities vj,i,n such that
Ej,i,n

K ≥ Emax
K within the first step (n = 0) is pruned as it

represents an unsafe path involving unacceptable collisions.
Also, the primitives for which after a certain point all the
path is in collision, are pruned up to the point where the
non-continuously colliding path ends.

E. Risk-aware Objective Formulation

Provided the non-pruned safe sampled uncertainty-aware
and collision-inclusive motion primitives, as well as the
defined collision cost metrics, we can formulate an overall
risk-aware objective that allows a collision-tolerant aerial
robot to identify an optimized path towards the reference
destination that is admissible and safe within the currently
known map Mk. To that end, we first define a sub-objective
reflecting how close a primitive χj reaches to the reference
destination ξr = [xr, yr, zr]

T over all steps of its horizon as

Jd
j =

2L∑
i=0

N−1∑
n=0

pj,i
∥∥ξr − ξnj,i

∥∥2 (7)

where ξnj,i is the end point of the n-th step of the mean (i =
0) or uncertain primitives (i = 1...2L) of the j-th primitive.

Then we can define a collective objective that accounts
for both the extent to which a motion primitive optimizes
the goal of reaching a destination and eliminates or reduces
the impact of a collision as

Jj = wdJ
d
j + wcJ

c
j (8)

where wd, wc > 0 are tunable weights that balance the
importance of moving towards the desired destination and
employing as safe as possible paths, within the subset of
motion primitives that do not violate the constraint on the
maximum kinetic energy of an affordable collision. Im-
portantly, beyond tuning wd, wc the method implements a
prioritization policy that allows paths that experience no
collision to be selected with preference. In particular, all
the cost values Jd

j are normalized and before optimizing
Jj as defined above, the method optimizes for a simplified
Ji = Jd

j as long as there are collision-free paths which
present Jd

j values no larger than the smallest λ% of the
overall population of safe collision-free or collision-inclusive
primitives.

F. Risk-aware Planning Algorithm

The proposed RAMPlanner operates in a receding horizon
fashion to find uncertainty-aware and collisions-inclusive
safe paths that move towards a reachable destination while
respecting the dynamics of the robot and a set maximum on

the kinetic energy of a collision so that it is rendered as an
acceptable event. Algorithm 1 outlines all the involved steps
per iteration. Finally, it is noted that an adaptive policy with
respect to the maximum velocity of a path segment is also
implemented. Specifically, for all the set of motion primitives
per iteration, the method finds the percentage β of those that
present collisions. It then uses a small sliding window of r
such values β and derives an average value β̃ based on which
it then reduces the maximum velocity vmax as β̃ increases.

Algorithm 1 RAMPlanner
1: ξr ← getGoalState()
2: k ← 0
3: ξk ← getCurrentPosition()
4: while ||ξr − ξk|| > δth do
5: X← generateMotionPrimitives()

6: ξ̂
k
,Σk

ξξ ← getMeanPositionAndCovariance()

7: Ξ← sampleSigmaPoints(ξ̂
k
,Σk

ξξ)
8: Jbest ←∞,χbest ← ∅
9: for all χj ∈ X do

10: Xj ← calculateUncertainPrimitives(Ξ)
11: {vc,max

j,n } ← collisionVelocities(χj)

12: Ej,0
K ← 1

2m(vc,max
j,0 )2

13: if Ej,0
K > Emax

K then
14: continue
15: for all χξS

i
j ∈ Xj do

16: {vc,max
j,i,n } ← collisionVelocities(χ

ξS
i

j )

17: Jc
j ← computeCollisionCost()

18: Jd
j ← computeDistanceCost(ξr,Xj)

19: Jj ← computeObjectiveFunction(Jd
j , J

c
j )

20: if Jj < Jbest then
21: Jbest ← Jj
22: χbest ← χj

23: executeFirstStep(χbest)
24: ξk ← getCurrentPosition()
25: k ← k + 1

V. EVALUATION STUDIES

In order to evaluate the performance of the proposed
RAMPlanner, we present a set of simulation studies as well
as an experimental evaluation in an indoor environment with
varying obstacle density.

A. Simulation Studies

We evaluate the performance of the planner in two simula-
tion tests, first (Simulation1) consisting of an obstacle filled
environment with increasing density of obstacles, and the
second (Simulation2) requiring the robot to pass through a
corridor with circular openings of decreasing size. All the
simulations were done in the RotorS [34] simulator using
a model of the RMF-Owl [23] aerial robot carrying an
OUSTER OS0-64 LiDAR sensor having FOV [360, 90]◦ and
dmax = 50m. The modeled robot dimensions are 38× 38×
24cm(L×W ×H), perfectly matching the real one.
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Fig. 3. This figure shows a simulation study in randomly generated environments of increasing density of obstacles. The RAMPlanner was tested with two
configurations, namely a) allowing collisions within limits and b) a “naive” version allowing only completely collision-free navigation, as well as with two
different levels of localization uncertainties (ΣHigh

ξξ = diag(0.03, 0.03, 0.03), ΣLow
ξξ = diag(0.0003, 0.0003, 0.0003)). The plots show the remaining

distance to the goal as a function of time over 5 missions in each of the four cases. It is evident that without allowing (safe) collisions-inclusive paths
the robot did not reach the goal when considering high localization uncertainty, and only reached once under low uncertainty. The map on the top shows
one example with the environment along with the path followed by the robot for the case of high localization uncertainty and allowing collisions. The 3σ
covariance ellipsoid is also shown.

Parameter Simulation1 Simulation2
[PH , PV ] [360, 40]◦ [360, 60]◦

sH [n0, n1] [10, 10]◦ [10, 10]◦

sV [n0, n1] [10, 10]◦ [10, 10]◦

vmax 2.0 m/s 1.0 m/s
amax 3.0 m/s2 3.0 m/s2

vmax
col 1.0 m/s 1.0 m/s

nprim 1080 1512
tp 220 ms 400 ms
ℓn[n0, n1] [1.5, 2.5] m [1.2, 3.0] m
wd, wc 0.7, 0.5 0.9, 0.8

TABLE I
RAMPLANNER PARAMETERS USED IN SIMULATION.

The first simulation study evaluates the performance of
the RAMPlanner in the presence of varying obstacle density
and two different levels of localization uncertainty. The en-
vironment consists of three regions with increasing obstacle
density (average free space between the obstacles being
2.0m, 1.4m, and 0.8m). The robot starts outside the least
dense region and is commanded to go through the obstacle
field to reach a goal on the other side. The performance of
the planner is evaluated in two configurations: a) allowing
collisions within safety limits and b) completely collision-
free navigation. Both the configurations were tested in 5
runs each for two different levels of localization uncertainty,
totalling of 10 runs each. The results of these evaluations
are presented in Figure 3. As shown, without allowing safe
collisions the robot is unable to reach the goal under high
localization uncertainty and only reaches once under low
uncertainty condition. The subfigure at the top illustrates the
environment in one of the missions showing the case of high
localization uncertainty with safe collisions permitted.

In the second simulation study the robot is commanded

Fig. 4. Instances of the simulation study where the aerial robot is
commanded to reach a goal that requires it to pass through four circular
openings of decreasing diameter, namely 1) 2.0 m, 2) 1.5 m, 3) 1.0 m and
4) 0.6 m. The last three dimensions, with different shape, are recreated in
the real environment.

to reach a goal that requires it to pass through four cir-
cular openings of decreasing diameter ranging from 2m to
0.6m. Due to the size of the robot and having introduced
uncertainty in the localization, the planner has to chose
a path such that at least one of the uncertain primitives
or the mean primitive is in collision within the allowed
limits. Figure 4 demonstrates the ability of the planner to
successfully navigate through all four openings. The paths
planned by the robot, generated motion primitives, and the



Fig. 5. Instances of autonomous traversal towards a reachable destination in an obstacle-filled corridor. The dimensions of the depicted passages are
roughly 4, 2.5 and 1.5 times the size of the RMF-Owl robot (1.5, 1.0, 0.6m). The color of the path illustrates the traversed speed of the robot, red color
representing faster speed while green color corresponds to lower speed. The robot follows planned collision-free paths to pass the first and second passages,
slowing down when it goes through the narrower second gap. When RMF-Owl reaches the third gap, all the generated primitives are in collision when
accounting for the localization uncertainty, thus the robot must accept a collision to be able to reach the final goal.

3σ covariance ellipsoid can also be seen in the figure.
Table I summarizes various parameters used in the two

simulations. These include the parameters used for the gener-
ation of the motion primitives, tunable weights in Equation 8,
maximum allowed velocity and acceleration vmax, amax,
maximum allowed safe collision velocity vmax

col , number of
motion primitives generated nprim, the average computation
time tp, and the step sizes (ℓn) of the two step (n0, n1)
motion primitives used in the simulations.

B. Experimental Evaluation

To further evaluate the proposed risk-aware motion plan-
ner, an experiment was conducted using the RMF-Owl [23]
aerial robot. The RMF-Owl is an MAV with a rigid collision-
tolerant airframe fully built out of carbon-foam sandwich
material. It integrates a PX4-based autopilot for attitude
and thrust control, and integrates a Khadas VIM3 Sin-
gle Board Computer incorporating ×4 2.2GHz Cortex-A73
cores, paired with ×2 1.8GHz Cortex-A53 cores, along-
side a Neural Processing Unit (NPU). The robot’s primary
exteroceptive sensor is an OUSTER OS0-64 LiDAR with
FOV [360, 90]◦ and dmax 50 m. The system’s total weight
is 1.4 kg, its dimensions are 38 × 38 × 24 cm(L × W ×
H), and its endurance slightly above 10 min. The position
controller, LiDAR-based localization and mapping using the
work in [35], as well as the overall pipeline of the proposed
RAMPlanner run onboard the Khadas SBC. Accordingly,
the computational efficiency of the method is particularly
important for small aerial robots in both industrial and
natural environments. In the proposed experiment the robot
is commanded to reach a setpoint at the end of an obstacle-
filled corridor in which three increasingly narrower passages

have been placed. As depicted in Figure 5 the dimensions
of these passages are roughly 4, 2.5 and 1.5 times the size
of the RMF-Owl respectively (1.5, 1.0, 0.6m). After takeoff,
the planner is triggered and the robot safely traverses the
first of the three passages. While approaching the second gap
the travelling speed is reduced as described in Section IV-F
and increased again before the robot reaches the final gap.
In this case all the generated paths result in collision when
considering uncertainty and the robot must accept a possibly
colliding path to be able to reach the goal location. Note that
the covariance matrix provided by the onboard localization
solution was inflated 3000 times to replicate a scenario with
high localization uncertainty. For this experiment we use two
step primitives generated using [PH , PV ] = [180, 5]◦, with
sH = sV = 5◦ for the first step and 8◦ for the second step,
for a total number of 888 possible motions. The values used
for wd and wc are 0.7 and 0.5 and the average computational
cost on Khadas is 350ms.

VI. CONCLUSIONS
This work contributes a novel risk-aware planning method

for flying robots subject to localization uncertainty. Motion
primitives based on minimum-snap trajectories are evaluated
based on the goal-reaching and collision costs of the mean
and uncertain primitives, allowing the robot to traverse safely
when collision-free paths are available and simultaneously
being able to go through narrow environments where colli-
sions with limited kinetic energy are unavoidable and tolera-
ble with the collision-tolerance design. Extensive simulation
and experimental results demonstrate the performance of the
planner to navigate safely in cluttered environments with the
uncertainty in position estimate.
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