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Abstract: A thermodynamic description of porous media must handle the size- and shape-dependence
of media properties, in particular on the nano-scale. Such dependencies are typically due to the
presence of immiscible phases, contact areas and contact lines. We propose a way to obtain average
densities suitable for integration on the course-grained scale, by applying Hill’s thermodynamics of
small systems to the subsystems of the medium. We argue that the average densities of the porous
medium, when defined in a proper way, obey the Gibbs equation. All contributions are additive or
weakly coupled. From the Gibbs equation and the balance equations, we then derive the entropy pro-
duction in the standard way, for transport of multi-phase fluids in a non-deformable, porous medium
exposed to differences in boundary pressures, temperatures, and chemical potentials. Linear relations
between thermodynamic fluxes and forces follow for the control volume. Fluctuation-dissipation
theorems are formulated for the first time, for the fluctuating contributions to fluxes in the porous
medium. These give an added possibility for determination of the Onsager conductivity matrix for
transport through porous media. Practical possibilities are discussed.

Keywords: fluctuation-dissipation theorems; nonequilibrium thermodynamics; flux-force relations,
porous media

1. Introduction

Porous media represent a vast and important class of systems; present for instance
in biology, geology and in technological applications. Our interest is to describe transport
in porous media. Examples are transport of nanoparticles in cancerous tissue, migrations
in ground water reservoirs, or heterogeneous catalysis. A description of porous media
transport must reflect on the macro-scale what goes on at the smaller scales. The choice of
variables to be coarse-grained is therefore central. For porous media, it has been difficult to
find good bottom-up descriptions of the complex, heterogeneous structure of the medium;
as it contains a mixture of solids and often immiscible fluids, wetting or non-wetting,
microporous and nanoporous. Methods that describe fluids confined to nanopores are also
scarce, despite the documented large impact of confinement [1].

Porous media may be exposed to several external fields. Consider the case of a porous
reservoir rock. On the macro-scale, we may have a variation in pressure in addition to the
gravitational field. A gradient in composition may also be present. In the fractured carbona-
ceous Ekofisk oil field, a geothermal gradient was found to be relevant [2]. The interplay
of several driving forces is then central. A suitable thermodynamic theory of transport
must be able to describe such interplay and the energy dissipation involved (the entropy
production). The fluctuations in each flux is a characteristic signature of the medium, that
remains to be explored.

Thermodynamic theories of transport in homogeneous and heterogeneous fluids
and solids have been studied over most of the last century and are well documented in
nonequilibrium thermodynamics, see e.g., [3–5]. Furthermore, hydrodynamic fluctuations
that are superimposed on the average flow behavior are well studied for bulk fluids [6].

Entropy 2022, 24, 46. https://doi.org/10.3390/e24010046 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24010046
https://doi.org/10.3390/e24010046
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-1697-2835
https://orcid.org/0000-0003-1235-5709
https://doi.org/10.3390/e24010046
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24010046?type=check_update&version=2


Entropy 2022, 24, 46 2 of 18

In transport processes in porous media, there are co-operative effects which extend over
multiple pores which occur on larger time scales. Not only viscous forces, but also capillarity
acts in non-local ways [7–12]. Winkler et al. [7] simulated athermal flows in networks
and reported relaxation times varying from 10−3 to 0.1 s for viscous flows. By including
coalescence dynamics and interface phenomena on the pore scale, we may extend the scale
of Winkler et al. at both ends; down to 10−5 s and up hours [9]. Fluid configuration shifts
take up to minutes or more [8].

The attempts to characterize fluctuations which are typical to porous media, have
so far concentrated on capillary pressure fluctuations [10,11]. Schlüter et al. [10] studied
pressure relaxation in glass beads packs, using fast synchroton-based X-ray tomography,
and found a slow pressure relaxation regime, of 1–4 h, preceded by a fast regime of seconds.

In Kubo’s formulation of the fluctuation dissipation theorem [13], the central issue
is the fluctuations in addition to the slowly varying average flux. These fluctuations, not
the pressure fluctuations, are the focus of the present work. Relevant time scales for the
fluctuations of interest are therefore the microscopic time scales of the random contributions
to the heat and mass fluxes. The averages of random contributions are zero, as they do
not contribute to net flow. The fluctuations are of a thermal (e.g., viscous) nature and will
characterize the Onsager coefficients in flux-force matrix. In particular, the fluctuations
can be used to determine coupling coefficients, which are otherwise not easily available.
Although there are random molecular fluctuations, there is also a collective movement
that produces a systematic result, proportional to the velocity of the particles. Phenomena
that are well separated on the time scale can be regarded as not coupled and dealt with
separately. In order for various phenomena to interact or couple, they need to relax on
(approximately) the same time scale.

Several attempts have been made to describe multiphase flow of this kind [14–18],
all in essence aimed at a formulation in terms of average properties, that can describe
measurements or simulations. Important general schemes using nonequilibrium thermo-
dynamics were laid down by Hassanizadeh and Gray [16,17]. Helmig gave a pedagogical
overview [19] of coarse graining methods. It was soon realized that a good definition of
the representative elementary volume (REV) of the porous medium was crucial [14,16].
The REV must represent all porous medium microstates. But how many and which vari-
ables constitute a basis set? The coarse-graining technique is essential for the next steps in
the derivation.

This work aims to define a set of REV variables, for which we can use the Gibbs
equation on the REV-level, and therefore derive the entropy production for the REV. We
will then be able to present fluctuation-dissipation theorems for the porous medium, which
can serve as the Green–Kubo relations do in homogeneous systems to determine transport
coefficients. Like Hassanizadeh and Gray [16,17] we shall use the entropy production
as the governing property for transport phenomena of interest. But, rather than dealing
with the total entropy production as a sum of contributions from the single phases, we
shall define the total entropy production directly from the much smaller basis set of a
coarse-grained variables. An attempt along the same lines was made [20] for microporous
media. The entropy production for the REV will lead us directly to the thermodynamic
flux-force relations, and define a basis for the fluctuation-dissipation theorems. Such
theorems are, as far as we know, formulated here for the first time for transport through
porous media. The consequences of this formulation are the same as for homogeneous
fluids. The fluctuation-dissipation theorems provide an alternative route to obtain transport
coefficients, including coupling coefficients, by simulations and experiments.

We propose that the solution to the problems described above can be resolved by
Hill’s systematic method [21]. This gives a new method to define the REV variables. Hill’s
thermodynamics is useful not only on the nanometer scale, but whenever the structure of
a system calls for inclusion of size and shape effects. This is done by the introduction of
the so-called replica energy, which includes all small system effects [22] and increases the
number of variables by one. This is the first time this is done in a systematic manner for
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a set of variables of a nanoporous medium. Microporous pressure effects were discussed
before [23,24].

The environment plays a crucial role in Hill’s theory, since the environment will control
the REV variables. During up-scaling, the chemical potentials and the temperature are then
defined by the outside reservoir. With the chemical potentials, temperature and volume
being controlled, the grand potential is the relevant thermodynamic property, and the
grand potential defines the replica energy, as defined by Hill [21,22].

The paper is outlined as follows. After a definition of the REV-variables (Sections 2 and 3),
we express the grand potential in terms of the grand partition function in Section 4. In
Section 5, we discuss the meaning of equilibrium in a REV, including the validity of
Gibbs equation for nanoporous media. This is the crucial step for the derivations that
follow. With the REV and its Gibbs equation in place, we can find the entropy production
(Section 6) and the constitutive equations (Section 7) in the standard way. This gives the
corresponding fluctuation-dissipation theorems. The work is expanding on the analysis of
nano- and microporous media [20] by adding the fluctuating contributions to the fluxes,
and providing the corresponding fluctuation-dissipation theorems. The transport of two-
phase flow of immiscible fluids is used in the last Sections as example to illustrate the
equations [13,25,26]. We discuss how fluctuation-dissipation theorems provide direct routes
to the Onsager coefficients of the system, and therefore to the more common permeabilities.
The theorems offer an underused opportunity for determination of transport coefficients.

2. Porosity, Saturation, Surface Area and Contact Line Length

The definitions of variables particular to porous media in this section follow common
procedures [19]. Consider a solid matrix of constant porosity φ [20]. The pore diameter can
vary from nanometer to micrometer. Our system is homogeneous in the sense that porosity,
saturation, surface areas and contact line lengths, on the average, are the same everywhere.
The pores are filled with two immiscible fluid phases. We indicate the most wetting fluid
with w and the least wetting fluid with n. We refer to them simply as the wetting and the
non-wetting phases. The solid matrix is labeled r. Properties may later depend on the time,
but this will not be indicated explicitly in the equations.

The present system is filled with three immiscible phases, so the chemical constituents
are synonymous with a phase. The state of the REV can be characterized, among other
variables, by the volumes of each fluid phase, Vn,REV, Vw,REV, and of the solid phase Vr,REV.
The total volume of the pores is

Vp,REV ≡ Vn,REV + Vw,REV (1)

while the volume of the REV is

VREV ≡ Vr,REV + Vp,REV + Vnwr,REV (2)

Superscript REV is used to indicate a property of the REV. The last term is the excess
volume of the three-phase contact lines. While the excess volume of the surfaces is zero
by definition, this is not the case for the three-phase contact lines. The reason is that the
dividing surfaces may cross each other at three lines which have a slightly different location.
The corresponding excess volume is in general very small, however. The volume of the
REV is a so-called additive variable.

The porosity, φ, and the degree of saturation, or saturation as it is simply called, S̃n

(and S̃w) are given by

φ ≡ Vp,REV

VREV , S̃n ≡ Vn,REV

Vp,REV , S̃w ≡ Vw,REV

Vp,REV (3)
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The porosity and the saturations are intensive variables. In our choice of REV, they do not
depend on the size of the REV. They have therefore no superscript. It follows from the
definitions that

S̃n + S̃w = 1 (4)

In addition to the volumes of the bulk phases, there are interfacial areas between the
phases in the REV: Ωnw,REV, Ωnr,REV, Ωwr,REV. The total surface area of the solid phase is
given by

Ωp,REV = Ωnr,REV + Ωwr,REV (5)

The total length of the three phase contact lines is Λnwr,REV. The surface areas and the
contact line lengths are additive. This means that a REV of a double size has double the
surface area of various types and double the line length. Two REVs have properties with
double the value of one. So far our definitions are standard.

3. Thermodynamic Properties of the REV

We proceed to define the thermodynamic properties of a REV of volume VREV fol-
lowing [20]. The proposal to use Minkowski functionals is similar [27,28]. We will take
the REV large in the Hill sense. This implies that on the REV level, the additive variables
of a REV with double the size are twice the value in the single REV. There is no depen-
dence of the densities on the size of the REV. Additivity inside the REV is explained below.
The additivity is given a statistical basis in Section 4.

3.1. Additive Variables

In addition to the volume, there are other additive REV variables, most prominently
the masses. The mass of components n, w, r in the REV is the sum of bulk, excess interfacial,
and excess line masses

MREV
n = Mn,REV

n + Mnr,REV
n + Mnw,REV

n + Mnwr,REV
n (6)

MREV
w = Mw,REV

w + Mwr,REV
w + Mnwr,REV

w (7)

MREV
r = Mr,REV

r (8)

We have chosen to use the equimolar (or equimass) surface of the rock as the fluid–rock
dividing surface and the wetting fluid dividing surface as the fluid–fluid dividing surface.
Furthermore, we positioned the contact lines such that Mnwr,REV

r = 0. The total mass of
each component in the REV is independent of our choice of the location of the dividing
surfaces and contact line. When we use the various mass densities Equations (6)–(8) become

ρnVREV = ρn
nVn,REV + ρnr

n Ωnr,REV + ρnw
n Ωnw,REV + ρnwr

n Λnwr,REV (9)

ρwVREV = ρw
wVw,REV + ρwr

w Ωwr,REV + ρnwr
w Λnwr,REV (10)

ρrVREV = ρr
rVr,REV (11)

The mass densities have dimensions kg·m−3 for the bulk phases, kg·m−2 for the surfaces
and kg·m−1 for the contact line. The masses of the components are, like the volume,
additive variables.

All densities refer to the REV. The REV is chosen such that if we increase the size of
the REV, by for instance doubling its size, all variables with a superscript REV will double.
(The variables are additive.) But this is not the case for the densities. They remain the same,
independent of the size of the REV. This is in agreement with the early REV definitions [14].
All the densities of the bulk phases, surfaces and contact lines remain the same. Superscript
REV is therefore not used for the densities.

The entropy of the REV is the sum of bulk, excess interfacial, excess line entropies:

SREV = Smat + Sconf = Sn,REV + Sw,REV + Sr,REV + Snr,REV

+Swr,REV + Snw,REV + Snwr,REV + Sconf (12)
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The sum of bulk, excess interfacial, and excess line entropies is the material contribution,
Smat, to the entropy. There are many ways to distribute the phases, and the origin of
the configurational contribution comes from the many configurations that have the same
component volumes, surface areas and contact line lengths in the REV. The integral of the
logarithm of the corresponding probability distribution times kB gives the configurational
contribution to the entropy. Both the material and the configurational contributions are
additive. By introducing the entropy densities, the equation becomes

sVREV =
(

smat + sconf
)

VREV = snVn,REV + swVw,REV + srVr,REV + snrΩnr,REV

+swrΩwr,REV + snwΩnw,REV + snwrΛnwr,REV + sconfVREV (13)

The dimensions are J·K−1·m−3 for the bulk and configurational terms, J·K−1·m−2 for the
excess interfacial entropy density, and J·K−1·m−1 for the excess line entropy density. For all
variables relations similar to Equations (12) and (13) apply.

The internal energy of the REV is the sum of bulk, excess interfacial, excess line internal
energies and a configurational contribution:

UREV = Un,REV + Uw,REV + Ur,REV + Unr,REV + Uwr,REV

+Unw,REV + Unwr,REV + Uconf (14)

With the internal energy densities this equation becomes

uVREV =
(

umat + uconf
)

VREV = unVn,REV + uwVw,REV + urVr,REV + unrΩnr,REV

+uwrΩwr,REV + unwΩnw,REV + unwrΛnwr,REV + uconfVREV (15)

Their dimensions are J·m−3 for the bulk and configurational terms, J·m−2 for the excess
interfacial energy density and J·m−1 for the excess line internal energy density. The above
variables (u, s, ρn, ρw) constitute the basis set of thermodynamic variables that will enter
the Gibbs equation for the REV.

3.2. Dealing with Smallness: The Grand Potential and the Replica Energy

The REV in porous media are often open to the surroundings. The grand potential is
then relevant for a description. This potential concerns an open system of fixed volume
with controlled temperature and chemical potentials. The surrounding reservoir is used
for control. The medium can have nano-sized pores, and the pore fluids are then no
longer like bulk fluids. We shall deal with change in thermodynamic variables using the
so-called Small System Method, based on Hill’s original idea [29]. In this method a small
representative elementary volume, VREV, is put into a bigger box. The bigger box controls
the temperature and the chemical potentials. The statistical mechanical description is given
by the grand canonical ensemble (GC). The grand potential of the REV is equal to minus
the logarithm of the grand canonical partition function times kBT.

The partition function can be used to support the choice of variables with additive
contributions (see the next section). The grand potential XGC,REV has material as well
as configurational contributions. We have, similar to Equation (12) for the entropy, the
grand potential

XGC,REV = Xmat + Xconf = Xn,GC,REV + Xw,GC,REV + Xr,GC,REV + Xnr,GC,REV

+Xwr,GC,REV + Xnw,GC,REV + Xnwr,GC,REV + Xconf (16)

By introducing the densities of the grand potential, this equation becomes

xGCVREV =
(

xmat + xconf
)

VREV = xn,GCVn,REV + xw,GCVw,REV + xr,GCVr,REV

+xnr,GCΩnr,REV + xwr,GCΩwr,REV + xnw,GCΩnw,REV + xnwr,GCΛnwr,REV + xconfVREV (17)
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The densities have dimension J·m−3 for a bulk and the configurational, J·m−2 for an excess
interfacial and J·m−1 for the excess line grand potential densities. The grand potential
densities do not depend on the size of the REV. We therefore dropped the superscript REV
for the densities.

From the method of Hill [21], we define variables particular to subsystems in the
REV which are small in his sense. These are systems which have considerable surface or
line energies. The variables that describe the effect of smallness, or the deviation in the
thermodynamical variables from the large system limit are the hat-variables in the GC
ensemble. The hat-pressure, surface tension and line tensions were given by [21,22,29]:

p̂ = −xGC, p̂mat = xmat, p̂conf = xconf

p̂n = −xn,GC, p̂w = −xw,GC, p̂r = −xr,GC

γ̂nr = xnr,GC, γ̂wr = xwr,GC, γ̂nw = xnw,GC; γ̂nwr = xnwr,GC (18)

These quantities depend on the size of the pores when we approach the nano-scale,
and are therefore unequal to the corresponding variable without a hat. The art is to choose
the REV to be so large that p̂, p̂mat and p̂conf do not depend on VREV. This must apply also
for the nanoporous medium. For the REV, the material and the configurational pressures
this implies that

p̂ = p, p̂mat = pmat, p̂conf = pconf (19)

When we substitute Equations (6) and (18) into Equation (17) we obtain for the REV
grand potential

pVREV =
(

pmat + pconf
)

VREV = p̂nVn,REV + p̂wVw,REV + p̂rVr,REV

−γ̂nrΩnr,REV − γ̂wrΩwr,REV − γ̂nwΩnw,REV − γ̂nwrΛnwr,REV + pconfVREV (20)

We show below why the grand potential XGC,REV = −pVREV and as a consequence p
have configurational contributions, in the case of system control by T, VREV, µn, µw, µr.
Additivity implies that the pressure of the REV contains a weighted mean of the volume
pressures minus the surface and line tensions. In this sense it becomes an effective pressure.
As the surface tensions can be large, this may lower the REV pressure considerably.

3.3. Some REV-Size Considerations

Equations like Equation (15) can be used to estimate the relative size of bulk-, surface-
and line-contributions. When we divide by VREV, we obtain

u = un Vn,REV

VREV + uw Vw,REV

VREV + ur Vr,REV

VREV + unr Ωnr,REV

VREV

+uwr Ωwr,REV

VREV + unw Ωnw,REV

VREV + unwr Λnwr,REV

VREV + uconf (21)

The bulk contributions are proportional to Vn,REV/VREV, Vw,REV/VREV, Vr,REV/VREV,
respectively, and are therefore generally of the same order of magnitude as u. The config-
urational contribution can be compared to an energy of mixing, and may have the same
order of magnitude as u. The surface contributions are proportional to Ωnr,REV/VREV,
Ωwr,REV/VREV, Ωnw,REV/VREV, respectively, and therefore are in general smaller than u.
The line contribution is proportional to Λnwr,REV/VREV, and is therefore in general small
compared to the surface contributions and much smaller than bulk contributions.

These statements about relative sizes depend on the magnitude of the excess densities.
The excess mass of a surface active material can be large. Similarly, the surface tension
times of the area can give a sizable contribution to the internal energy.

The REV must be large compared to the single pore volume, to provide represen-
tative average values. It should not be larger than necessary, however. In a study of a
2-dimensional network [30], 20 × 20 links were large enough to document validity of
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the ergodic hypothesis. The ergodic hypothesis was documented by experiments in the
Hele–Shaw cell [31]. These findings support the idea that a thermodynamic description can
be found. When the porous material consisted of a face centric array of large solid spheres,
we found that half a unit cell was large enough to provide a REV [23]. The more regular
the system is, the smaller the REV. The pores, or the substructure of the REV, might well
be small [23]. When the substructure consists of nanosized pores, the excess densities will
depend on the curvature of the surfaces and of the three phase lines.

4. Additive Contributions to the Grand Potential

Consider a REV of volume, VREV, with the temperature, T, the chemical potentials,
µn, µw, µr, kept constant by the surroundings. Additivity of the extensive variables can
also be used to motivate the use of the grand potential. We use the grand canonical
ensemble to calculate the grand canonical partition function, Ξ(T, VREV, µn, µw, µr) of the
REV. The grand potential is given in terms of this partition function by

XGC,REV(T, VREV, µn, µw, µr) = −kBT ln Ξ(T, VREV, µn, µw, µr) (22)

where kB is the Boltzmann constant. The statistical mechanical treatment of small REV
subsystems follows the procedure normal to large systems. The full distribution in phase
space is normalized.

The contributions to the REV grand potential are additive because the wetting and
non-wetting fluids, the rock, the surfaces and the contact line are weakly coupled. Subsystems
can be said to be weakly coupled when their interaction energy is small compared to the
energies of the separate subsystems, so that H = Hn +Hw +Hr +Hnr +Hwr +Hnwr,
where the symbolH is a Hamiltonian.

The probability distribution in phase space is then equal to a product of the probability
distributions in the subsystems

exp(−H/kBT) = exp(−Hn/kBT)exp(−Hw/kBT)exp(−Hr/kBT)

exp(−Hnr/kBT)exp(−Hwr/kBT)exp(−Hnw/kBT)exp(−Hnwr/kBT) (23)

For a given distribution of the fluids the coordinates of the subsystems are restricted to their
volumes, surface areas or contact lines. It then follows that the grand canonical partition
function of the REV is the product of the partition functions of the subsystems. The origin
of the configurational contributions is a probability distribution in phase space which also
contains a factor that give the probability distribution of the fluids over all possible choices
of subvolumes. By integrating over phase space, we also integrates over these distributions,
which lead to an additional partition function. All of this together gives

Ξ(T, VREV, µn, µw, µr) = Ξn(T, Vn,REV, µn)Ξw(T, Vw,REV, µw)Ξr(T, Vr,REV, µr)

×Ξnr(T, Ωnr,REV, µn, µr)Ξwr(T, Ωwr,REV, µw, µr)Ξnw(T, Ωnw,REV, µn, µw)

×Ξnwr(T, Λnwr,REV, µn, µw, µr)Ξconf(T, VREV) (24)

As the masses of the components have no configurational contribution, it follows that Ξconf

does not depend on the chemical potentials.
When we now take the logarithm of Equation (24), multiply with −kBT, and identify

the contributions of the subsystems with the corresponding contributions to the grand
potential, we obtain Equation (16):

XGC,REV(T, VREV, µn, µw, µr) = Xn,GC,REV(T, Vn,REV, µn)

+Xw,GC,REV(T, Vw,REV, µw) + Xr,GC,REV(T, Vr,REV, µr)

+Xnr,GC,REV(T, Ωnr,REV, µn, µr) + Xwr,GC,REV(T, Ωwr,REV, µw, µr) (25)

+Xnw,GC,REV(T, Ωnw,REV, µn, µw) + Xnwr,GC,REV(T, Λnwr,REV, µn, µw, µr)

+Xconf(T, VREV)
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We have indicated the variables that the various contributions depend on. In the present case,
we used that the components in the different bulk phases are immiscible. If they would be
miscible, all material contributions depend on all the chemical potentials. Equations (17)–(20)
are a direct consequence of Equation (26).

The autonomous nature of the surfaces and three-phase contact lines is a direct conse-
quence of the weak coupling between subsystems. Examples of weakly coupled systems
can be found everywhere. The catalytic surface with its own temperature, the liquid vapor
interface at steady state, are two examples [5].

The volume and the masses of the components have only material contributions. This
is not a consequence of weak coupling, however. The analysis in the next section will show
that the Gibbs energy has a material contribution only. All other thermodynamic energies,
like the internal energy, the Helmholtz energy, and the enthalpy, have configurational
contributions.

The relevant properties are those averaged over a minimum volume of the REV. A
discussion of averaging procedures and in particular of the minimum size of the REV was
given by Pingaro et al. [32].

5. Gibbs Equation the Meaning of Equilibrium

The REV that we have considered so far is always in equilibrium with its surroundings.
Away from global equilibrium the neighboring REVs are not necessarily in equilibrium
with each other. The assumption of local equilibrium [5,6] covers this situation. It implies
thermodynamic equilibrium within all REVs, and that the variables of the REV satisfy the
Gibbs equation:

dUGC,REV = TdSGC,REV− pdVREV + µndMn,GC,REV + µwdMw,GC,REV + µrdMr,GC,REV (26)

The application of the Gibbs equation to porous media is not new [16,17]. It was,
however, not written for the REV variables before. The assumption, that this can be done,
is a new, but natural extension, supported by the arguments of weakly coupled subsystems,
use of additive variables, and system control by the environment. Each (additive) variable
is constructed as described in Section 3. With this construction, we now can proceed as
normal, for the coarse-grained variables. The predictions that follow need be confirmed by
experiments and/or simulations.

Given that the REV is large in Hill’s sense UGC,REV is an Euler homogeneous function
of the first order, leading to:

UGC,REV = TSGC,REV − pVREV + µn Mn,GC,REV + µw Mw,GC,REV + µr Mr,GC,REV (27)

By introducing the densities, Equation (26) becomes

duGC = TdsGC + µndρn,GC + µwdρw,GC + µrdρr,GC (28)

The corresponding Gibbs–Duhem relation is

dp = sGCdT + ρn,GCdµn + ρw,GCdµw + ρr,GCdµr (29)

In the analysis we have argued that VREV, Mn,GC,REV, Mw,GC,REV, Mr,GC,REV are ma-
terial contributions, while XGC,REV, p, and SGC,REV also have configurational contribu-
tions. The internal energy UGC,REV, the Helmholtz energy FGC,REV, the enthalpy HGC,REV,
and the Gibbs energy GGC,REV of the REV are given by

UGC,REV = TSGC,REV − pVREV + µn Mn,GC,REV + µw Mw,GC,REV + µr Mr,GC,REV

FGC,REV = −pVREV + µn Mn,GC,REV + µw Mw,GC,REV + µr Mr,GC,REV (30)

HGC,REV = TSGC,REV + µn Mn,GC,REV + µw Mw,GC,REV + µr Mr,GC,REV

GGC,REV = µn Mn,GC,REV + µw Mw,GC,REV + µr Mr,GC,REV
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It follows that GGC,REV has material contributions only.
The coarse-grained variables used in this section, are those which will enter the thermo-

dynamic description on the macro-level. They are relevant in equations of transport, like the
Darcy equation, the Washburn equation, or equations that follow from a nonequilibrium
thermodynamic expression, see below.

We need assume that the Gibbs equation is valid for the REV also when transport
takes place. This is called the assumption of local equilibrium. Droplets can form at high
flow rates, while ganglia may occur at low rates. There is a minimum size of the REV,
for which Gibbs equation can be written [23]. When we assume that Gibbs equation applies,
we implicitly assume that there exists a uniquely defined state. The existence of such a
state was first postulated by Hansen and Ramstad [33]. Experimental evidence for the
assumption was found by Erpelding [31].

6. Entropy Production in Porous Media

We have seen above how we can define coarse-grained variables that describe a REV on
the macroscale. Explicit expressions were given in terms of additive contributions. We did
this for a REV in equilibrium meaning that T, VREV, µn, µw, µr are well defined. The Gibbs
Equation (28) can then be written on the local form, in terms of densities. The discussion
below considers n components. From now on, we omit the superscript REV, as all variables
refer to the REV. The time rate of change of the internal energy density is then from Gibbs
equation

∂s
∂t

=
1
T

∂u
∂t
− 1

T

n

∑
i=1

µi
∂ρi
∂t

(31)

Gradients in mass and energy densities produce changes in the variables on the macro-
scale. These lead to transport of heat and mass. The aim is to find the equations that
govern this transport across the REV. The REV chosen is large enough to be macroscopic.
The analysis closely follows a similar analysis for microporous media [20]. The balance
equations for masses and internal energy densities of a REV are

∂ρi
∂t

= − ∂

∂x
Ji

∂u
∂t

= − ∂

∂x
Ju = − ∂

∂x

[
J
′
q +

n

∑
i=1

Ji Hi

]
(32)

The transport on the REV-scale is in the x−direction only. The mass fluxes, Ji, and the flux
of internal energy, Ju, are all macro-scale fluxes. The internal energy flux is the sum of the
measurable (or sensible) heat flux, J

′
q and the partial specific enthalpies (latent heat), Hi (in

J·kg−1) times the component fluxes, Ji, see [3,5,17] for further explanations. Component
r (the porous medium) is not moving and is the convenient frame of reference for the
fluxes. The balance equations for the masses and the internal energy densities have their
usual form.

The balance equation for the entropy balance on the REV-scale is:

∂s
∂t

= − ∂

∂x
Js + σ (33)

Here Js is the entropy flux. Furthermore, σ is the entropy productions. The entropy
production is positive definite, σ ≥ 0 (the second law of thermodynamics).

We can now proceed to derive expressions for σ in the standard way [3,5], by combin-
ing the balance equations with Gibbs’ equation from the previous section. We introduce the
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balance equations for mass and energy into Gibbs equation, see [3,5] for details. By com-
paring the result with the entropy balance, Equation (31), we identify first the entropy flux

Js =
Ju −∑n

i=1 µi Ji

T
=

1
T

J′q +
n

∑
i=1

JiSi (34)

At the same time, we find the entropy production. Depending on the choice of independent
fluxes, we can formulate the entropy production in various equivalent ways:

σ = Ju
∂

∂x
(

1
T
)−

n

∑
i=1

Ji
∂

∂x
(

µi
T
) = J′q

∂

∂x
(

1
T
)− 1

T

n

∑
i=1

Ji
∂

∂x
µi,T (35)

The entropy production, σ, is here expressed either using the energy flux, Ju, as a
variable, or using the measurable heat flux, J′q as a variable. The final choice is motivated
by practical wishes; what is measurable or computable. When we choose Ju as flux, the
conjugate force is ∂(1/T)/∂x, and the mass fluxes Ji are driven by minus the gradient
in the Planck potential, µi/T. When, on the other hand, we choose J′q as the flux with
the conjugate force ∂(1/T)/∂x, the mass fluxes are driven by minus the gradient in the
chemical potential at constant temperature, divided by this temperature. The entropy
production defines the independent thermodynamic driving forces and their conjugate
fluxes. We have given two possible choices to demonstrate the flexibility [3,5,20]. The last
expression is preferred for analysis of experiments.

The expression for the entropy production derived here applies to the coarse-grained
description given of the REV in the preceding sections. The assumption of weakly coupled
subsystems must apply. This is the first analysis of porous media transport in terms of
such coarse-grained variables. Experiments and/or simulations are needed for further
developments.

7. Constitutive Equations

From the entropy production we obtain the following flux-force relations when we
use Ju:

Ju = `uu
∂

∂x
(

1
T
)−

n

∑
i=1

`ui
∂

∂x
(

µi
T
)

Jj = `ju
∂

∂x
(

1
T
)−

n

∑
i=1

`ji
∂

∂x
(

µi
T
) (36)

According to Onsager [34], the conductivity matrix is symmetric:

`ju = `uj, `ji = `ij (37)

This is so, independent of the mechanism of transport. The magnitude of the coefficients
reflect, of course, the mechanism of transport, but can not be used to conclude on the
mechanism in play.

When we use J′q, we obtain

J′q = Lqq
∂

∂x
(

1
T
)− 1

T

n

∑
i=1

Lqi
∂

∂x
µi,T

Jj = Ljq
∂

∂x
(

1
T
)− 1

T

n

∑
i=1

Lji
∂

∂x
µi,T (38)

This conductivity matrix is also symmetric:

Ljq = Lqj, Lji = Lij (39)



Entropy 2022, 24, 46 11 of 18

By using the relation between the Ju and J′q we can express one conductivity matrix, say
Equations (36), in terms of the other matrix (of Equation (38)), or vice versa. The symmetry
can only be expected for properly constructed conjugate thermodynamic forces and fluxes,
see for instance the discussion in [3–5]. The matrix of Fick diffusion coefficients, for instance,
will not be symmetric for this reason.

8. Fluctuation-Dissipation Theorems

We have so far discussed how fluids flow through a porous medium, governed by the
entropy production. All fluxes, densities, temperatures, pressures and chemical potentials
were defined on the coarse-grained scale (not on the pore-scale), as explained above.
The assumptions used in these Sections are considered to apply. The description is now
extended to incorporate fluctuations. We do this by adding fluctuating contributions to the
fluxes, which are indicated by subscript R. These fluctuating contributions are crucial in the
formulation of fluctuation-dissipation theorems [13,25,26]. The contributions we refer to
are the quickly changing molecular contributions. Their temporal and spatial correlations
are therefore on a molecular scale. Course grained this gives δ-functions in space and time
on the macroscopic space and time scales. Their strength is given by 2kBtimes the Onsager
conductivity matrix.

The properties of the fluctuations are the usual ones, as they appear also in the
derivation of fluctuation-dissipation theorems [13,25,26]. We assume these to be valid also
for flows in porous media. Again, the predictions will have to be validated. We are only
aware of one study so far, see the Discussion section.

For the internal energy flux, we obtain

Ju,tot = Ju + Ju,R

Jj,tot = Jj + Jj,R (40)

When we use the measurable heat flux, we obtain

J′q,tot = J′q + J′q,R

Jj,tot = Jj + Jj,R (41)

All fluxes in these equation are local-valued fluxes, and not fluxes integrated over the cross
section of the porous medium normal to the direction of flow. The averages of the random
contributions to the fluxes are equal to zero

〈Ju,R〉 =
〈

J′q,R

〉
=
〈

Jj,R
〉
= 0 (42)

This implies that

〈Ju,tot〉 = 〈Ju〉〈
J′q,tot

〉
=

〈
J′q
〉

〈
Jj,tot

〉
=

〈
Jj
〉

(43)

On the REV time-scale, the random contributions are Gaussian white noise. Simi-
larly, their spatial correlations are short range compared to the macroscale phenomena.
Their second moments follow from the statistical mechanical description and satisfy the
fluctuation-dissipation theorem [13,25,26]. The conditions of Onsager symmetry apply.
In the case of the internal energy flux, this gives〈

Ju,R(r, t)Ju,R(r′, t′)
〉

= 2kB`uuδ(r− r′)δ(t− t′)〈
Ju,R(r, t)Jj,R(r′, t′)

〉
=

〈
Jj,R(r, t)Ju,R(r′, t′)

〉
= 2kB`ujδ(r− r′)δ(t− t′) (44)〈

Ji,R(r, t)Jj,R(r′, t′)
〉

=
〈

Jj,R(r, t)Ji,R(r′, t′)
〉
= 2kBlijδ(r− r′)δ(t− t′)
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The δ-functions reflect the short range nature of the spatial and temporal correlations.
In the case that the measurable heat flux is a variable, we have〈

J′q,R(r, t)J′q,R(r
′, t′)

〉
= 2kBLqqδ(r− r′)δ(t− t′)〈

J′q,R(r, t)Jj,R(r′, t′)
〉

=
〈

Jj,R(r, t)J′q,R(r
′, t′)

〉
= 2kBLqjδ(r− r′)δ(t− t′) (45)〈

Ji,R(r, t)Jj,R(r′, t′)
〉

=
〈

Jj,R(r, t)Ji,R(r′, t′)
〉
= 2kBLijδ(r− r′)δ(t− t′)

The fluctuations, and therefore the correlation, of a flux pair are characteristic for the pair.
The correlation of fluctuation in the mass flux Jr,R with the internal energy flux, differ
from the corresponding correlation with the measurable heat flux. Self-correlations give
information of diagonal coefficients, while cross-correlations give information of the cross-
coefficients. One set of fluctuation-dissipation relations can be derived from the other,
and vice versa. The fluctuating flux–flux correlation functions decay fast compared to the
macroscopic time scale [13,25,26].

The expressions apply for any condition, steady state or not, and do not refer to the
nature of the flux-force relationships. The theorems apply, not only in equilibrium, but also
away from equilibrium [3,6].

9. The Chemical Potential at Constant Temperature

The derivative of the chemical potential at constant temperature is needed in the
driving forces in the previous section. For convenience we repeat its relation to the full
chemical potential [3]. The differential of the full chemical potential is:

dµi = −SidT + Vidp +
n

∑
j=1

(
∂µi
∂Mj

)
p,T,Mi

dMj (46)

where Si, Vi and (∂µi/∂Mj)p,T,Mi are partial specific quantities. The partial specific entropies
and volumes are equal to:

Si = −
(

∂µi
∂T

)
p,Mj

, Vi =

(
∂µi
∂p

)
T,Mj

(47)

and the last term of Equation (46) is denoted by

dµc
i ≡

n

∑
j=1

(
∂µi
∂Mj

)
p,T,Mi

dMj (48)

By reshuffling, we have the quantity of interest as the differential of the full chemical
potential plus an entropic term;

dµi,T ≡ dµi + SidT = Vidp + dµc
i (49)

The Gibbs-Duhem’s equation is 0 = SdT−Vdp + ∑n
j=1 ρjdµj. By introducing Equation (49)

into this equation we obtain an equivalent expression, to be used below:

0 =
n

∑
j=1

ρjdµc
j (50)

10. Example: Immiscible Two-Phase Flow
10.1. The Entropy Production

Consider the case of two immiscible fluids, one more wetting (w) and one more
non-wetting (n). The entropy production in Equation (35) gives
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σ = J′q
∂

∂x
(

1
T
)− Jw

1
T

∂

∂x
µw,T − Jn

1
T

∂

∂x
µn,T (51)

The solid matrix is the frame of reference for transport, Jr = 0 and does not contribute to
the entropy production. The volume flux is frequently measured, and we wish to introduce
this as new variable

JV = JnVn + JwVw (52)

Here, JV has the dimension of a velocity (m·s−1), and the partial specific volumes have
dimension m3·kg−1. The chemical potential of the solid matrix may not vary much if the
composition of the solid is constant across the system. We assume that this is the case
(dµc

m ≈ 0), and use Equation (50) to obtain

0 = ρndµc
n + ρwdµc

w (53)

The entropy production is invariant to the choice of variables. We can introduce the
relations above and the explicit expression for dµi,T into Equation (51), and find:

σ = J′q
∂

∂x

(
1
T

)
− JV

1
T

∂p
∂x
− JD

ρw

T
∂µc

w
∂x

(54)

where we used Equations (52) and (53) and the difference velocity JD:

JD =
Jw

ρw
− Jn

ρn
(55)

The difference velocity describes the relative movement of the two components within
the porous matrix. In other words, it describes the ability of the medium to separate
components. The main driving force for separation is the chemical driving force, related to
the gradient of the saturation. The equation implies that also temperature and pressure
gradients may play a role for the separation.

The entropy production has again three terms, one for each independent driving force.
With a single fluid, the number of terms are two. The force conjugate to the heat flux is
again the gradient of the inverse temperature. The entropy production, in the form of
Equation (51) or Equation (54), dictate the constitutive equations of the system.

The total volume flows through the REV Qn ≡ AJnVn and Qw ≡ AJwVw were used
by Hansen et al. [35]. Here A ≡ V/` is the cross section, and ` is the length of the REV
in the flow direction. Hansen et al. [35] assumed that the total volume flow was a Euler
homogeneous function of first order in the fractional areas, An ≡ Vn/` =

(
Vn/Vp

)
Vp/` =

S̃n Ap and Aw ≡ Vw/` =
(
Vw/Vp

)
Vp/` = S̃w Ap. Here S̃n = Vn/Vp = An/Ap and

S̃w = Vw/Vp = Aw/Ap represent the saturation of the non-wetting and wetting fluid,
respectively. Furthermore, the porosity is given by φ = Vp/V = Ap/A. We will also
use the total measurable heat flow Qq ≡ AJ′q. (We will not use the so-called seepage
velocities [35], which were defined as vn ≡ Qn/An and vw ≡ Qw/Aw.) Because of the REV
being homogeneous in the y, z directions, the total flows are the integrals of the flows across
the cross-sectional area of the REV normal to the flow direction. By introducing the total
flows in the expression for the total entropy production, Equation (51), we obtain:

Σ ≡ Aσ = Qq
∂

∂x
(

1
T
)−Qw

1
TVw

∂

∂x
µw,T −Qn

1
TVn

∂

∂x
µn,T (56)

Similarly, Equation (54) becomes

Σ ≡ Aσ = Qq
∂

∂x

(
1
T

)
−QV

1
T

∂p
∂x
−QD

ρw

T
∂µc

w
∂x

(57)

where QV ≡ AJV and QD ≡ AJD. All the total fluxes as well as the corresponding
thermodynamic forces only depend on x and t and not on y and z.
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10.2. Constitutive Equations

The entropy production given by Equations (51) or Equation (54), offer three equivalent
choices for constitutive equations. For the sake of completeness, we give all of them.

Equation (51) dictates the following flux-force relations

J′q = Lqq
∂

∂x
(

1
T
)− 1

T
Lqw

∂

∂x
µw,T −

1
T

Lqn
∂

∂x
µn,T

Jw = Lwq
∂

∂x
(

1
T
)− 1

T
Lww

∂

∂x
µw,T −

1
T

Lwn
∂

∂x
µn,T (58)

Jn = Lnq
∂

∂x
(

1
T
)− 1

T
Lnw

∂

∂x
µw,T −

1
T

Lnn
∂

∂x
µn,T

These are the equations given in Equation (38) for the special case of two fluids. According
to Onsager [34,36], the conductivity matrix is symmetric.

Equation (54) dictates the following flux-force relations

J′q = LD
qq

∂

∂x
(

1
T
)− 1

T
LD

qV
∂p
∂x
− 1

T
LD

qw
∂µc

w
∂x

JV = LD
Vq

∂

∂x
(

1
T
)− 1

T
LD

VV
∂p
∂x
− 1

T
LD

VD
∂µc

w
∂x

(59)

JD = LD
Dq

∂

∂x
(

1
T
)− 1

T
LD

DV
∂p
∂x
− 1

T
LD

DD
∂µc

w
∂x

Also this conductivity matrix is symmetric.
Equation (56) dictates the following flux-force relations

Qq = LP
qq

∂

∂x
(

1
T
)−

LP
qw

TVw

∂

∂x
µw,T −

LP
qn

TVn

∂

∂x
µn,T

Qw = LP
wq

∂

∂x
(

1
T
)− LP

ww
TVw

∂

∂x
µw,T −

LP
wn

TVn

∂

∂x
µn,T (60)

Qn = LP
nq

∂

∂x
(

1
T
)− LP

nw
TVw

∂

∂x
µw,T −

LP
nn

TVn

∂

∂x
µn,T

and Equation (57) gives

Qq = LA
qq

∂

∂x
(

1
T
)− 1

T
LA

qV
∂p
∂x
− 1

T
LA

qw
∂µc

w
∂x

QV = LA
Vq

∂

∂x
(

1
T
)− 1

T
LA

VV
∂p
∂x
− 1

T
LA

VD
∂µc

w
∂x

(61)

QD = LA
Dq

∂

∂x
(

1
T
)− 1

T
LA

DV
∂p
∂x
− 1

T
LA

DD
∂µc

w
∂x

Also these conductivity matrices are symmetric. From the relations between the fluxes, we
find relations between the conductivity matrices of Equations (59)–(62). In this way we find
from Equations (59) and (61) that

LP
qq = ALqq, LP

qw = AVwLqw, LP
qn = AVnLqn

LP
ww = AV2

wLww, LP
wn = AVwVnLwn, LP

nn = AV2
n Lnn (62)

and from Equations (60) and (62) that

LA
ij = ALD

ij for i, j = q, V, D (63)
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10.3. Fluctuation-Dissipation Theorems for the Two-Fluid Mixture in a Porous Medium

As we discussed above, there are fluctuations in the fluxes of the coarse-grained
variables. Each flux J′q, Jw Jn can be given in terms of a mean value plus a fluctuating
(random) contribution [13,25,26]:

J′q,tot = J′q + J′q,R

Jw,tot = Jw + Jw,R (64)

Jn,tot = Jn + Jn,R

Again, the expressions apply for steady or non-steady states, independent of the the nature
of the flux-force relationships. The theorems apply not only in equilibrium, but also away
from equilibrium [3]. On the REV time scale, the random contributions are typically
Gaussian white noise. Similarly, their spatial correlations are short-range compared to the
macroscale phenomena. Their second moments satisfy the fluctuation-dissipation theorem〈

J′q,R(r, t)J′q,R(r
′, t′)

〉
= 2kBLqqδ(r− r′)δ(t− t′)〈

J′q,R(r, t)Jj,R(r′, t′)
〉

=
〈

Jj,R(r, t)J′q,R(r
′, t′)

〉
= 2kBLqjδ(r− r′)δ(t− t′) (65)〈

Ji,R(r, t)Jj,R(r′, t′)
〉

=
〈

Jj,R(r, t)Ji,R(r′, t′)
〉
= 2kBLijδ(r− r′)δ(t− t′)

where i, j are either w or n.
Likewise, for J′q, JV , JD we have

J′q,tot = J′q + J′q,R

JV,tot = JV + JV,R (66)

JD,tot = JD + JD,R

The averages of the fluctuating contributions are zero. Their second moments satisfy the
fluctuation-dissipation theorem〈

J′q,R(r, t)J′q,R(r
′, t′)

〉
= 2kBLD

qqδ(r− r′)δ(t− t′)〈
J′q,R(r, t)Jj,R(r′, t′)

〉
=

〈
Jj,R(r, t)J′q,R(r

′, t′)
〉
= 2kBLD

qjδ(r− r′)δ(t− t′) (67)〈
Ji,R(r, t)Jj,R(r′, t′)

〉
=

〈
Jj,R(r, t)Ji,R(r′, t′)

〉
= 2kBLD

ij δ(r− r′)δ(t− t′)

where i, j are either V or D. For Qq, Qw, Qn we have

Qi,tot = Qi + Qi,R (68)

The averages of the fluctuating contributions is zero. Their second moments satisfy the
fluctuation-dissipation theorem〈

Qi,R(x, t)Qj,R(x′, t′)
〉

=
〈

Qj,R(x, t)Qi,R(x′, t′)
〉
= 2kBLP

ijδ(x− x′)δ(t− t′) (69)

In Equations (68) and (69) i, j are either q, w or n. The fluctuation-dissipation relations can
be derived from Equation (66) by integrating over the cross section.

For Qq, QV , QD we have
Qi,tot = Qi + Qi,R (70)

The averages of the fluctuating contributions is zero. Their second moments satisfy the
fluctuation-dissipation theorem〈

Qi,R(x, t)Qj,R(x′, t′)
〉

=
〈

Qj,R(x, t)Qi,R(x′, t′)
〉
= 2kBLA

ij δ(x− x′)δ(t− t′) (71)
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In Equations (70) and (71) i, j are either q, V or D. The fluctuation-dissipation relations can
be derived from Equation (68) by integrating over the cross section.

11. Discussion and Conclusions

We have presented a way to define the representative elementary volume (REV) of
a porous medium of mixed porosity in terms of coarse-grained variables. For this set of
variables, we have written the Gibbs equation for the REV, building on earlier work for the
microscale [20]. We have argued that the additive nature of the contributions of the various
phases, surface areas, contact lines and configurational contributions, make it possible to
use Gibbs equation for the REV. Another argument rests on the weakly coupled nature of
the relevant partition functions.

Using the Gibbs equation and the balance laws, we next derived the entropy produc-
tion for transport of heat and mass in porous media, following the standard procedure in
non-equilibrium thermodynamics for heterogeneous systems [3–5]. Doing this, we have
assumed that the ergodic hypothesis applies. Experimental and numerical support is
available, but only for a few network simulations [7,30] and Hele–Shaw cells with glass
beads [31].

On the basis provided by non-equilibrium thermodynamics, we formulated fluctuation
dissipation theorems [20]. The theorems apply for a set of coarse-grained variables for
the REV which obey the Gibbs equation on the macro-scale. The theorems were specified
for immiscible, non-isothermal, two-phase flow in a non-deformable medium. These
formulations of the fluctuation-dissipation theorems for porous media are new. We are thus
not able to refer to supporting experimental work at all. In principle, it should be possible
to determine the random fluctuations that we describe, via optical techniques on a Hele–
Shaw cell. A very first support for these ideas has, however, been obtained from network
simulations. Winkler et al. [7] simulated self-correlation and cross-correlation coefficients
in a network with two-phase flow in a honeycomb lattice. The pore flow was modeled with
the Washburn equation. The authors found that the matrix of coefficients obtained from
auto and cross correlations of the fluctuating component flows was symmetric. This is the
first result that indicates that Onsager reciprocal relations are obeyed for flow in a porous
medium of coarse-grained variables.

The fluctuating flux–flux correlation functions in their study decayed fast on a macro-
scopic time scale (around 10−3 s). In this paper we have shown that their integrals resulted
in 2kB times the Onsager conductivities LP

ij where i, j are either w or n. More systematic
studies of this sort would be very instructive for the next steps to be taken. A crucial test
will be to obtain the Onsager relations from the fluctuation-dissipation theorem, as well as
from experiments defined directly from the flux-force relationships.

The Lij-coefficients used here are local coefficients. This means that they apply to
a particular REV, and they are functions of the REV state variables that were defined
earlier. According to Onsager [34,36], they are not functions of the driving forces. When
the functions are known, it becomes possible to integrate the flux equations over a series of
REVs. We may then arrive in a situation where the flux becomes a non-linear function of
the overall driving force. This property is not an argument against using relations which
are linear on a local level, however.

Other coarse-graining procedures have been used to define the REV [32]. McClure
et al. [28] and Khanamiri et al. [27] proposed to use a geometric state function for two-fluid
flow in porous media based on Minkowski functionals, in order to characterize the complex
arrangements of fluids and solid phases within a porous medium. The functionals were
presented as separate, independent variables. Central variables are the volume, surface
area and surface curvatures. To linear order, their variable construction seems similar to
the one that follows from Hill’s method [21,22].

Validity of Gibbs’ equation for the course grained variables presented here was essen-
tial, as a basis for all following derivations. In a different approach of McClure et al. [9],
Gibbs’ equation was formulated for the fluctuating variables.
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The question has been raised in the literature about the origin of the energy dissipation
as heat. In the present formulation, the dissipation is uniquely defined by the temperature
of the surroundings, T0, times the entropy production [5]. The sources of the dissipation
are then the product pairs of conjugate driving forces and fluxes. Each pair contributes
to the dissipation. A typical example is the replacement of one fluid by another (Haines
jumps). The shift induces fluctuations, adding to the cross-correlation in Equation (65).

We have discussed that experiments and simulations are needed to test the proposed
relations for consistency and performance. The advantage of constitutive equations pre-
sented here is that they can be used to determine permeabilities by experiments. They
can also be obtained using the fluctuation-dissipation theorems for the flows. The two
determinations should give the same result for the same overall driving force (pressure
difference). Coefficients are often determined at steady state conditions. The equations do
not depend on there being a steady state, however. Once the coefficients are known, they
could be used to model flow evolution in time on the time scale that is appropriate for the
fluctuating flows.
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