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 30 
Abstract 31 
 32 
The expansion of road networks in emerging economies such as China causes 33 
significant greenhouse gas (GHG) emissions. This development is conflicting with 34 
China’s commitment to achieve carbon neutrality. Thus, there is a need to better 35 
understand life cycle emissions of road infrastructure and opportunities to mitigate 36 
these emissions. Existing impact studies of roads in developing countries do not address 37 
recycled materials, improved pavement maintenance, or pavement-vehicle interaction 38 
and electric vehicle (EV) adoption. Combining firsthand information from Chinese 39 
road construction engineers with publicly available data, this paper estimates a 40 
comprehensive account of GHG emissions of the road pavement network to be 41 
constructed in the next ten years in the Shandong province in Northern China. Further, 42 
we estimate the potential of GHG emission reductions achievable under three scenario 43 
sets: maintenance optimization, alternative pavement material replacement, and EV 44 
adoption. Results show that the life cycle GHG emissions of highways and Class 1-4 45 
roads to be constructed in the next 10 years amount to 147 Mt CO2-eq. Considering the 46 
use phase in our model reveals that it is the dominant stage in terms of emissions, 47 
largely due to pavement-vehicle interaction. Vehicle electrification can only 48 



moderately mitigate these emissions. Other stages, such as materials production and 49 
road maintenance and rehabilitation, contribute substantially to GHG emissions as well, 50 
highlighting the importance of optimizing the management of these stages. Surprisingly, 51 
longer, not shorter maintenance intervals, yield significant emission reductions. 52 
Another counter-intuitive finding is that thicker and more material-intensive pavement 53 
surfaces cause lower emissions overall. Taken together, optimal maintenance and 54 
rehabilitation schedules, alternative material use, and vehicle electrification provide 55 
GHG reduction potentials of 11%, 4%-16% and 2%-6%, respectively.  56 
 57 
1. Introduction 58 
Roads are one of the dominant forms of transportation infrastructure globally, along 59 
with rail lines, shipping ports, and airports. Roads can accelerate economic 60 
development and improve quality of life by providing connections between regions, 61 
and thus enabling the circulation of products, technologies, and knowledge (Banister, 62 
2012; Yu and Lu, 2012; Yu et al., 2012). However, road construction leads to 63 
greenhouse gas (GHG) emissions both because pavement construction causes high 64 
emissions and because the increased availability of roads leads to induced traffic which 65 
is predominantly carried out with polluting fossil-fuel powered vehicles (Yu and Lu, 66 
2012). Road infrastructure is still unevenly distributed at a global level with limited 67 
road access in low-income countries (Meijer et al., 2018; Weiss et al., 2018). An 68 
estimated 800,000 km of roads will be needed to provide the vast majority of the global 69 
population with quasi-universal road access (Wenz et al., 2020). In order to achieve 70 
this, an estimated 2 Gt of CO2 would be emitted, representing around 0.25% of the 71 
carbon budget still available for compliance with the 2℃ target (Wenz et al., 2020).  72 
 73 
China’s scale of infrastructure construction is unprecedented among all developing 74 
countries. The expected pavement construction, upgrade and expansion in the coming 75 
decades will make it more difficult for China to meet its goal of carbon neutrality. 76 
According to forecasts by the China Highway Construction Industry Association and 77 
the Ministry of Transport, the expected total investment for road construction in 2021-78 
2030 is around $2.94 trillion. This encompasses 3,365,000 km of pavement of all 79 
pavement levels (Yicai, 2018). Further, maintenance and rehabilitation (M&R) of the 80 
existing short-lived network of pavements adds to the impact of new construction 81 
(Wang, 2013). To achieve the recently proposed target of carbon neutrality (Wang and 82 
Zhang, 2020), an environmentally preferable system of road construction and 83 
management is needed.  84 
 85 
China is currently piloting and promoting alternative materials and engineering 86 
methods in order to improve the quality and energy efficiency of pavement construction. 87 
In addition to commonly promoted materials such as recycled asphalt and pavement, 88 
China is also experimenting with the use of recycled materials for in-situ hot or cold 89 
recycling, in-plant cold recycling, and full-depth cold recycling (Ministry of Transport, 90 
2019). However, these materials and technologies are not currently implemented at a 91 
large scale in the country, and their life cycle environmental impact and the 92 
corresponding potential for GHG mitigation remain unclear. Moreover, current road 93 
construction and M&R decisions rarely consider the full life cycle impact of roads 94 
reasonably and comprehensively.  95 
 96 
Established pavement LCA models for high-income countries are inadequate for China 97 
or other developing countries. Pavement characteristics depend on countries’ individual 98 



design and construction standards and practices, which change with economic 99 
development (Liu et al., 2020). For example, China’s pavement has been found to have 100 
a notably shorter design life compared to developed countries, which is caused by a 101 
combination of engineering and social factors such as overloaded traffic (Gao and Cao, 102 
2001; Huang, 2000), insufficient structures such as thin pavement layers (Liu et al., 103 
2020), and poor construction quality. 104 
 105 
This paper thus estimates the GHG emissions of the pavements to be built in the next 106 
ten years 2021-2030 in a selected province of China: Shandong province. Firsthand 107 
data from Chinese road engineers and publicly available data were combined for the 108 
research. 109 
 110 
1.1 Pavement life cycle assessment  111 
Life cycle environmental assessment of pavement quantifying the impacts of (1) 112 
material production, (2) transportation, (3) construction, (4) use, (5) M&R, and (6) end-113 
of-life, is well established in the literature (Jiang and Wu, 2019). The product system 114 
‘pavement’ is defined in such a way that the use-phase addresses additional energy use 115 
and emissions of vehicles caused by sub-optimal road conditions, e.g. roughness and 116 
deflection on the road surface. There are only a limited number of LCA studies 117 
addressing pavement in China and these studies are limited in scope. For example, Chen 118 
et al. (2017) find that emissions of new road construction vary widely between 10.6 and 119 
823 t CO2-eq/km2 among China’s provinces but limit their analysis to the construction 120 
phase only. Guo et al. (2014) also include the maintenance stage using a simplified 121 
approach. They conclude that the production and M&R stages emit 1.85 kt CO2-eq/km 122 
and 1.76 kt CO2-eq/km, respectively.  Guo et al. (2017) find that the production stage 123 
contributes most to the life cycle environmental impacts but do not consider M&R and 124 
use stages appropriately. In addition, none of the mentioned studies use primary data 125 
from Chinese road construction engineers. 126 
 127 
The use phase can significantly change the life cycle emissions of pavements, 128 
especially due to pavement-vehicle interaction (PVI). PVI focuses on the excess energy 129 
consumption of vehicles caused by road roughness, texture, and deflection, and can 130 
account for a significant percentage of the total vehicle energy consumption (Beuving, 131 
2004). Two of the major models of PVI are roughness-induced PVI and deflection-132 
induced PVI (Louhghalam et al., 2017; Louhghalam et al., 2014; Louhghalam et al., 133 
2015; Pouget et al., 2012). Deflection-induced PVI is primarily influenced by pavement 134 
structure with stiffer pavements having less deflection, while roughness-induced PVI 135 
can significantly increase with time due to damages to the road surface. In existing 136 
studies, the PVI emissions often accounted for more than 50% of the total life cycle 137 
GHG emissions of pavements (Araújo et al., 2014; Noshadravan et al., 2013; Xu et al., 138 
2019; Yu and Lu, 2012; Zhang et al., 2010). However, the majority of previous studies 139 
on PVI did not consider the mitigation potential from vehicle electrification. 140 
 141 
1.2 GHG emission reduction strategies 142 
Previous research has investigated improvement strategies across all life cycle stages. 143 
Here we adopt three of these. M&R equipment and schedules depend on pavement 144 
structure (Yu and Lu, 2012; Yu et al., 2013), traffic volume (Wang et al., 2012), and 145 
soil conditions (Thenoux et al., 2007) among others and significantly impact the 146 
magnitude and variability of pavement life cycle emissions. Optimization of M&R can 147 
therefore contribute to significant life cycle emission reductions (alongside cost 148 



reductions) (Chan et al., 2008; Labi and Sinha Kumares, 2005; Mandapaka et al., 2012; 149 
Praticò et al., 2011; Zhang et al., 2010).  150 
 151 
The use of novel materials for road engineering shows potential for reduction of 152 
environmental impacts (and cost), with RAP, fly ash and polymer identified as the most 153 
popular new materials (Balaguera et al., 2018). Some of the novel materials, such as 154 
RAP and recycled concrete aggregates (RCA), have a significantly lower 155 
environmental impact compared to hot mix asphalt (HMA) (Chiu et al., 2008; Kucukvar 156 
and Tatari, 2012; Vidal et al., 2013) in addition to a cost advantage (Ponte, 2016). Other 157 
materials, such as glass (Chiu et al., 2008; Huang et al., 2009), ash from the incineration 158 
of municipal solid waste (Olsson et al., 2006), and industrial waste (Schwab et al., 2014) 159 
do not show a significant advantage over traditional HMA pavement due to leachate 160 
and a reduced life cycle performance of the resulting roads. The potentially reduced 161 
performance of pavements, which can lead to more use-phase vehicle emissions, have 162 
been studied for multiple materials (Araújo et al., 2014) and production methods such 163 
as warm mix asphalt (WMA) (Anthonissen et al., 2015). However, the available studies 164 
on new paving materials focus on roads in North America and Europe. The 165 
environmental, social, and economic implications discussed in these studies are 166 
therefore not applicable to China or other developing countries (Balaguera et al., 2018).  167 
 168 
In summary, existing studies have demonstrated that pavement GHG emissions can be 169 
quantified for specific contexts. However, the complete life cycle pavement GHG 170 
emissions including the stages of use or M&R have not been quantified for China. In 171 
addition, the life cycle mitigation potential of alternative materials, optimized M&R 172 
schedule, and EV adoption have not been captured in this context. Finally, we are not 173 
aware of existing studies using primary data from Chinese road construction engineers.  174 
 175 
1.3 Study objective 176 
Hence, the objectives of the current study are to develop a representative LCA model 177 
for pavements in one of China’s Northern provinces utilizing firsthand data, and  to 178 
explore the GHG emission reduction possibilities for these pavements. The sets of       179 
scenarios explored are  1) M&R schedule, 2) alternative low carbon materials, 3）and 180 
EV adoption. The knowledge gained can be used to provide environmental information 181 
and insights for policy makers and practitioners in decisions regarding pavement 182 
structure and M&R. 183 
 184 
2. Methodology 185 
2.1. Goal and scope  186 
The goal of the study is to assess the life cycle global warming potential of five classes 187 
of asphalt pavement in the Shandong Province as shown in Table 1. The Shandong 188 
Province is selected to represent the typical pavement situation in Northern China. The 189 
functional unit is one lane-km (1 km) over the entire pavement lifetime. The scope of 190 
this study includes the stages of material production, transportation, construction, use, 191 
and M&R. The projected length of the newly constructed road network pavement is 192 
reported in Table S1, while the system boundary of this analysis is shown in Figure 1. 193 
 194 
  195 



Table 1 The five technical classes of asphalt pavement analyzed in this study 196 

  Highway Class I Class II Class III Class IV 

Speed (km/h) 80-120 60-100 60-80 30-40 20-30 

Average daily traffic (PCU, passenger car unit) >15,000 >15,000 5,000-15,000 2,000-6,000 <2,000 

Number of lanes ≥4 ≥4 2 2 2 

Life span assumed (years) 20 20 15 15 15 

Percentage of heavy trucks 14% 14% 7% 7% 7% 

Source: National standards JTG F10-2006 and JTG B01-2014 197 
 198 

 199 

 200 
Figure 1. Data input and system boundary of pavement LCA. 201 

 202 
Data for pavement structure and materials is collected from national standards (Li and 203 
Li, 2006; Ministry of Transport, 2004, 2006a, b, 2008, 2014, 2015; Yao, 2006), 204 
engineering papers, and interviews with Chinese engineers. LCA calculations are 205 
conducted with OpenLCA utilizing background data from the ecoinvent database 3.6. 206 
We assume that all production and use stages are typical for the context of the Shandong 207 
Province. For details on additional methods and data please see section 1 and 5 in the 208 
SI. Emission factors of materials and data quality are listed in Table S15 and S16. 209 



 210 
Figure 2: Material thickness of 5 classes of asphalt pavement, where 0 represents the surface.  211 
SMA: stone-matrix asphalt. AC: asphalt concrete. Number (e.g. 13 in SMA-13) refers to 212 
nominal maximum aggregate size (mm). See Table S2. 213 

 214 
2.2 Scenarios sets and Sensitivity 215 
This study explores the uncertainty of both pavement-related GHG emissions as well 216 
as the potential for their mitigation. Three sets of scenarios are summarized in Table 3. 217 
They consider the key factors defined for this study including: M&R schedule, 218 
alternative materials, and vehicle electrification. The study also varies parameters of 219 
binder and moisture content, energy consumption in manufacturing and construction, 220 
transport distance, and traffic growth rate covering the range of reported values in 221 
various reports and peer-reviewed papers (Tables S7, S8). 222 
 223 
Scenario 1: Maintenance and Rehabilitation schedule 224 
M&R schedules can have a significant impact on the full life cycle GHG emissions of 225 
pavement by consuming materials and energy while influencing pavement 226 
performance in the use phase. Studies have been conducted on optimizing the total 227 
cost of M&R considering the user cost and agency cost throughout the life cycle 228 
(Chan et al., 2008; Guo et al., 2019; Guo et al., 2020; Mandapaka et al., 2012; Pratico 229 
et al., 2011) while the discussion on carbon optimization is relatively limited (Pellicer 230 
et al., 2016; Renard et al., 2021; Torres-Machi et al., 2014). The central question to be 231 
answered in this optimization problem is which M&R option to choose at each stage 232 
to achieve a minimization of GHG emissions over the entire life cycle. The level of  233 
roughness and deflection were restricted in the optimization model in a way that met 234 
the requirements of pavement service performance and standards (Ministry of 235 
Tranpsort, P., 2018). The detailed description of the optimization model is 236 
summarized in the SI (Table S9 and Eq S5-S19). 237 
 238 
Scenario 2: Alternative low carbon material  239 
Materials can directly and indirectly contribute to a significant percentage of life cycle 240 
GHG emissions of pavement. Among many recycled materials discussed, RAP and 241 
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RCA show considerable advantages in availability and relatively satisfactory road 242 
performance. However, it is still challenging to use 100% of these recycled materials 243 
as they might not provide the same function as traditional materials. Therefore, the 244 
percentage of recycled materials should be decided on in tandem with the production 245 
method and the use of additives (e.g. sasobit), considering the required pavement 246 
quality and energy input. The change in road features can have important impacts on 247 
use-phase emissions. See Table S8 in the SI for detailed assumptions and discussions 248 
on material content, energy consumption, density, and stiffness changes.  249 
 250 
Scenario 3: Adoption of EVs 251 
The promotion of EVs can potentially reduce GHG emissions of the use phase. This 252 
section discusses the use-phase GHG emissions under different scenarios with EV 253 
adoption rate, EV on-board energy consumption, and carbon intensity of electric 254 
charging. For simplicity and considering the low average age (3.3 years) of passenger 255 
cars in China (Launch Tech and DataEye, 2015), we use projected EV sales percentages 256 
in 2030 as a replacement percentage. Detailed assumptions on EV adoption rates, future 257 
EV energy use improvements, and carbon intensity of electricity can be found in Table 258 
S11, Table S12, and Table S13. The most optimistic scenario, for example, assumes 259 
very high adoption rates and energy use improvements of EVs, and an electricity mix 260 
consistent with the international 2℃ target. While the High EV scenario considers a 261 
substantial uptake of EVs, no change in the pavement design code is reported by the 262 
respective authorities as a result of fleet electrification (Ministry of Transport). While 263 
the increasing trend in the use of EVs can substantially reduce the use-phase impact of 264 
the pavement life cycle, their effect on pavement design and future code adoption 265 
remains an open question. 266 
 267 
  268 



Table 2 Summary of the factors and scenarios for emission reduction  269 

Scenario Set Scenarios 
M&R schedule  - Fixed schedule 

- Maintenance optimization 
Alternative materials 
 
Key parameters varied:  
- Material 

composition 
- Energy consumption  
- Stiffness  
- Density  
- Cement content 
- Moisture content 
 

For surface asphalt (A) layer:  
- A1: Typical materials and method (HMA) 
- A2: 20% RAP, with 30% of asphalt binder in RAP 

function as binder 
- A3: 40% RAP + 3% Sasobit, with 50% of asphalt binder 

in RAP function as binder 
- A4: WMA (3% Sasobit) 
For base granular (G) layers: 
- G1: Traditional materials and method with 4.8% cement 
- G2: 40% RAP with 4.5% cement 
- G3: 42% RCA with 4.3% cement 
- G4: 40% RAP + 60% milled granular layer with 4.5% 

cement 
- G5: Traditional materials for production + Cold-in-place 

recycle for structural M&R with 4.5 cement 
- G6: 40% RAP + 60% milled granular layer for production 

+ Cold-in-place recycle for structural M&R with 4.5 
cement 

EV adoption 
 
Key parameters varied:  
- Fuel economy 
- Electricity GHG 

emission factor 
- EV adoption rate 

EV adoption rate:  
- None 
- Low (L): 8.5-37% passenger, 0.5% truck 
- Medium (M): 11.7-44.5% passenger, 1.3% truck 
- High (H): 14.8-52% passenger, 2.0% long-haul truck 
On-board energy consumption:  
- Current 
- 2030 prediction 
Carbon intensity of the electricity mix:  
- 2018 electricity 
- 2030 BAU 
- 2030 New policy 
- 2030 450 ppm policy (2℃ target) 

3. Results 270 
3.1 LCA results at provincial level 271 
Figure 3 shows the life cycle GHG results of the newly constructed road network in the 272 
province of Shandong through 2030. The life cycle GHG emissions of highway and 273 
Class 1-4 roads to be constructed in the next 10 years are about 24, 48, 11, 58, and 7 274 
Mt CO2-eq, respectively, with a total of 147 Mt CO2-eq under the business as usual 275 
(BAU) scenario. Estimated impacts under various alternative scenarios are shown in 276 
Figure 3. Material replacement has a major influence on the results, with a potential 277 
reduction of up to 16% reduction or 24 Mt CO2-eq. Similarly, M&R optimization and 278 
EV adoption could reduce life cycle GHG emissions by about 17 Mt (11%) and by up 279 
to 9 Mt (6%), respectively.  280 
 281 



 282 
Figure 3. Life cycle GHG emissions of newly built roads in the Shandong Province through 283 
2030 and across selected scenarios. The expansion of the road network is by 2287, 5317, 284 
4560, 22998, and 6145 km for highways and class 1-4 roads, respectively (Table S1). 285 

 286 
3.2 Life cycle GHG emissions of pavement per functional unit 287 
Pavement design and assumed traffic volume have a large influence on life cycle GHG 288 
emissions. The life cycle GHG emissions (see Table S5) for Highway, Class 1, Class 289 
2, Class 3, Class 4 are on average 1,720, 1,500, 1,170, 860 and 570 tons CO2-eq/lane-290 
km as shown in Figure 4. Pavements experiencing higher traffic volumes require more 291 
material and energy inputs during the manufacturing, construction, and transport stages. 292 
The results for each class of pavement generally vary from around -15% to +25%, 293 
depending on parameter selection, as shown by the error bars in Figure 4(a). 294 
 295 
A large share of impacts are due to the PVI effect in the use phase. As shown in Figure 296 
4(b), the use phase emissions of all roads (except for Class 4) account for about 50-55% 297 
of per-unit GHG emissions, while production emissions represent around 25-30% of 298 
life cycle impacts per lane-km. The M&R phase, which includes the production and 299 
transport of materials, and fuel consumption for on-site construction, contributes about 300 
15-18% to specific GHG emissions. For the lower-traffic Class 4 roads, M&R has a 301 
significantly higher impact share. Transport of materials and operation of on-site 302 
machinery jointly accounts for less than 5% of emissions. Deflection-induced PVI, 303 
which primarily impacts truck, dominates use-phase emissions (over 80%, Figure 4(c)).  304 
 305 
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(a) Life-cycle emissions with error bars 

illustrating the sensitivity of results.  
(b) Relative contribution of each life 

cycle stage.  
 308 
 309 

 310 
(c) GHG emissions of the use stage. 311 

Figure 4 GHG emissions by pavement class and life cycle stage.  312 

 313 
3.3 Scenarios Analysis 314 
3.3.1 Life cycle GHG emissions under M&R schedule 315 
Optimization of the M&R schedule can achieve reductions in GHG emissions, as 316 
shown in Figure 5.  Surprisingly, the optimization procedure identified longer 317 
maintenance intervals than current practice to reap maximum emissions reductions. 318 
Taking highways as an example, an optimal maintenance schedule would foresee a 319 
functional maintenance in year 15, whereas current practice is to perform a functional 320 
maintenance in year 7 and a structural maintenance in year 14, reducing M&R-related 321 
emissions by 87%, while roughness-induced emissions increase by 46%. Overall, a 322 
combined reduction in emissions of approximately 40% is achieved for highways and 323 
Class 1 pavements. Reductions for Class 2-4 pavements are even higher, at 63%, 70%, 324 
and 93%. Corresponding absolute emission reductions are 191 t, 113 t, 135 t, 116 t and 325 
118 t CO2-eq per lane-km. In relative terms, the reduction in emissions for class 2-4 is 326 
around 10%. 327 
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 329 

 330 
Figure 5. Maintenance and roughness-induced PVI emissions under non-optimized and 331 
optimized conditions. 332 

 333 
3.3.2 Life cycle GHG emissions under scenarios of alternative low carbon materials 334 
Low-carbon surface and base materials can realize a combined reduction of specific 335 
life cycle emissions of up to 16% for highway pavements. The life cycle impacts of 336 
replacing surface materials and base materials for highways are shown separately in 337 
Figure 6, where the categories “material” and “transport” indicate the total production 338 
and transport of materials for both the construction and maintenance stages. For 339 
highways, scenarios A2, A3 and A4 can reduce emissions by 2.1%, 16.5%, and 8.9%. 340 
Material input, energy demand and stiffness changes are the underlying factors of 341 
overall GHG emissions. For example, A3 shows an 11% emissions reduction in the 342 
material production stage, whereas A2 achieves only a 0.3% reduction. This is due to 343 
the fact that A2 requires lower material inputs but increased energy demand for heating 344 
RAP. By contrast, the significantly reduced energy consumption of WMA combined 345 
with reduced heating energy requirements for fewer raw materials is responsible for the 346 
fact that the largest mitigation potential is achieved in scenario A3. Stiffness change, as 347 
shown in table S10, leads to  use-phase GHG reductions of 3%, 21% and 10% in the 348 
scenarios A2, A3 and A4 respectively. In addition, emissions due to hauling RAP from 349 
the demolition site to the plant are offset by its avoided transport emissions from the 350 
demolition site to the landfill. 351 
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 353 

  354 
(a) Surface layer emissions.            (b) Base layer emissions. 355 

Figure 6. Highway pavement emissions by life-cycle stage with alternative low carbon 356 
materials. A1: Traditional materials and method (HMA); A2: 20% RAP, with 30% of asphalt 357 
binder in RAP function as binder; A3: 40% RAP + 3% Sasobit, with 50% of asphalt binder in 358 
RAP function as binder; A4: WMA (3%Sasobit). G1: Traditional materials and method with 359 
4.8% cement; G2: 40% RAP with 4.5% cement; G3: 42% RCA with 4.3% cement; G4: 40% 360 
RAP + 60% milled granular layer with 4.5% cement; G5: Traditional materials for 361 
production + Cold-in-place recycle for structural M&R with 4.5% cement; G6: 40% RAP + 362 
60% milled granular layer for production + Cold-in-place recycle for structural M&R with 363 
4.5% cement. 364 

For highways, the total life cycle GHG reduction under the scenarios G2, G3, G4, G5 365 
and G6 in all stages are 4.9%, 0.4%, 13.4%, 1.7%, and 15.2%. The decline in GHG 366 
emissions in base layers mainly stems from the reduction in cement content. Cement 367 
production accounts for 71% of the GHG emissions in the original base material 368 
production stage. With RAP and RCA, the cement content is reduced from 4.8% to 4.5% 369 
and 4.3%, respectively, resulting in a notable decline in GHG emissions. In addition, 370 
production of crushed aggregates and gravel represents 14% and 7% of specific GHG 371 
emissions, providing carbon mitigation potential for the replacement with RAP or RCA. 372 
On the contrary, reduced base layer stiffness increases GHG emissions during the use 373 
phase. The other road classes exhibit the same pattern as discussed for highways, see 374 
Figure S1 and Figure S2. For Class 1-4 pavements, the G6 scenario achieves the largest 375 
reductions in all stages combined, on the order of 19%, 23%, 15%, and 25%, 376 
respectively.  377 
 378 
3.3.3 Life cycle GHG emission under scenarios of EV adoption 379 
EV adoption only has a modest effect on emission reductions. Figure 7 illustrates the 380 
use phase GHG emissions of each highway class with varying assumptions on EV 381 
adoption rate, on-board energy use, and carbon intensity of electricity, as specified in 382 
Table S11, S12 and S13. Assuming the current electricity mix and average EV energy 383 
consumption, use-phase GHG emissions could be reduced by 31, 41 and 50 t CO2-384 
eq/lane-km under scenarios of low, medium and high EV adoption compared to the 385 
100% ICEV scenario, which is labeled as ‘No EV’. The ideal scenario combination of 386 
high EV adoption rate, low carbon electricity and reduced energy consumption would 387 
yield a 13% use phase emissions reduction. Note that even in the high EV adoption 388 
scenario, only 2% of long-haul trucks are assumed to be EV, which partly explains 389 
the modest results. While EV replacement would contribute 6%, energy efficiency 390 
and electricity de-carbonization would contribute 3% and 4%. For road classes 1-4, 391 

0

300

600

900

1200

A1 A2 A3 A4

G
H

G
em

is
si

on
s(

tC
O

2
eq

/la
ne

-k
m

)

Use Construction
Transport Material

0

300

600

900

1200

G1 G2 G3 G4 G5 G6



use-phase emission reductions are on the order of 11% under the ideal scenario 392 
(Figure S3). 393 

 394 
 395 
Figure 7. Use-phase emissions under various scenarios of vehicle electrification and 396 
electricity-decarbonization, assuming (left) current EV on-board energy use      and (right) 397 
improved EV energy efficiency . L: low adoption rate of EVs; M: medium adoption rate 398 
of EVs; H: high adoption of EVs; No EV: No adoption of EVs. 399 

4. Discussion 400 
This work identified a potential for considerable GHG reductions in the life cycle of 401 
pavements in China. The total emissions from new pavement to be constructed in the 402 
Shandong province is roughly equivalent to the combustion emissions of 6.5 million of 403 
China’s most popular vehicle, the VW Jetta, traveling for 15,000 km each year for 10 404 
years (assuming an emissions factor of 151g CO2/km (DOE, 2020)). Considering that 405 
Shandong is already one of the leading provinces in terms of transport infrastructure 406 
maturity, there is an urgent need to mitigate these emissions. We find that not only the 407 
construction of new pavements is carbon-intensive but also the rehabilitation of the 408 
existing pavement stock. In our calculations and projections, the use-phase and M&R 409 
stages, which have been commonly neglected in previous research, have the largest 410 
contribution to life-cycle emissions per lane-km (more than 60%). Managing these 411 
phases in an optimal way can therefore provide a considerable carbon reduction 412 
opportunity for the transport sector. The use of alternative materials has a large potential 413 
for emission reductions as well, albeit to a lesser degree. 414 
 415 
Our results indicate that pavement construction in China is more carbon-intensive per 416 
lane-km compared to developed countries. For example, despite the fact that our 417 
assumptions on lifespan are much shorter than those of Xu et al., 2019, who study life 418 
cycle emissions of pavement construction in the US, we find comparable life cycle 419 
emission results for pavements with similar assumptions (i.e. Road 4 in Xu’s study vs 420 
our Class 1, Road 5 vs. our Class 4), as shown in Figure S5 and Table S14.  421 
 422 
The thinner surface layer used for Shandong’s pavements and the resulting high 423 
deflection-induced PVI indicate an important opportunity for low-carbon pavement 424 
design. Assuming a 30% increase in surface layer height, which would be in accordance 425 
with the design code and practice of developed countries, would lead to a 23% 426 
reduction of deflection-induced PVI emissions. After taking into account the increased 427 
material and construction emissions, the net reduction in life cycle pavement emissions 428 
are still in the range of around 5 -8%. The findings of this paper support 429 
recommendations for further improvements in road quality in China from the 430 
perspective of life cycle carbon management (cf. Liu et al., 2020; Wang, 2013). 431 
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 432 
The substantial carbon reduction potential of the M&R optimization scenario supports 433 
the need for further quality assessment of pavements and M&R planning. However, 434 
there are still factors that deserve further consideration. One possible criticism of our 435 
work is the simplified assumption of constant layer height, which allows for unchanged 436 
deflection-induced PVI in our model. In reality, popular M&R methods like overlays 437 
can influence deflection-induced PVI with altered layer height. Another potential 438 
drawback is the insufficient consideration of the cost of road users, i.e. drivers. Given 439 
that user cost is an important factor affecting the economics of road M&R schedule 440 
(Chan et al., 2008; Mandapaka et al., 2012; Praticò et al., 2011), the current model may 441 
overestimate the potential cost effectiveness. In addition, M&R decisions in China 442 
require comprehensive consideration of several indicators(Ministry of Transport, 2018) 443 
in addition to life cycle carbon emissions (Figure S6). Finally, although we carefully 444 
selected data appropriate for the context of the Shandong province, whenever possible, 445 
further context-specific data may be needed in the future, such as emission factors for 446 
asphalt materials, sales scenarios for electric vehicles, as well as pavement deterioration 447 
curves.  448 
 449 
Specific emissions of each stage calculated in this study are generally consistent with 450 
existing research, except for a remarkably large gap between deflection-induced PVI 451 
and roughness-induced PVI (Akbarian, 2012; Akbarian, 2015; Louhghalam et al., 2017; 452 
Xu et al., 2019). The disproportionately high emissions from deflection-induced PVI 453 
can be explained by two main factors: (1) the notably thin pavement surface, and (2) 454 
the high truck traffic in China. The slow growth of IRI as calculated by the selected IRI 455 
model further contributed to the disproportionally high use-phase emissions. However, 456 
the academic discussion of IRI prediction models for roads in China is scarce (Wu and 457 
Zhou, 2009; Wang and Han, 2007; Zhao et al., 2018). 458 
 459 
In practice, pavement design and M&R frequency largely depend on various factors, 460 
including local geography, traffic volume, and available construction funds. In this 461 
work, simplified assumptions for these factors were necessary due to limited data. 462 
Changes in pavement stiffness due to the use of alternative materials should ideally be 463 
based on real-world experimental data, which was not available for this work. However, 464 
for this study input data was selected with great care based on a synthesis of a large 465 
number of mutually independent studies, interviews with engineers, and official 466 
government documents. Future research should include albedo effects, which can 467 
further influence use phase emissions. 468 
 469 
5. Conclusion 470 
The goal of this study was to provide a systematic environmental management 471 
perspective on road construction in a Chinese province that can be replicated and 472 
widely applied. Pavements cause significant GHG emissions throughout their life cycle. 473 
While previous work omitted the use phase, this work demonstrates that it contributes 474 
the most to total emissions, followed by material production, and M&R. Optimized 475 
pavement structure designs and M&R schedules can substantially reduce life cycle 476 
GHG emissions by up to 16% and 11% respectively. Vehicle electrification has a 477 
negligible impact on the reduction of use-phase emissions (up to 6%). Carbon 478 
management should be incorporated into decision-making for new road planning and 479 
M&R.  480 
 481 
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