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Abstract: Tea (Camellia sinensis L.) is one of the most highly consumed beverages globally after
water. Several countries import large quantities of tea from other countries to meet domestic needs.
Therefore, accurate and timely prediction of tea yield is critical. The previous studies used statistical,
deep learning, and machine learning techniques for tea yield prediction, but crop simulation models
have not yet been used. However, the calibration of a simulation model for tea yield prediction and
the comparison of these approaches is needed regarding the different data types. This research study
aims to provide a comparative study of the methods for tea yield prediction using the Food and
Agriculture Organization (FAO) of the United Nations AquaCrop simulation model and machine
learning techniques. We employed weather, soil, crop, and agro-management data from 2016 to
2019 acquired from tea fields of the National Tea and High-Value Crop Research Institute (NTHRI),
Pakistan, to calibrate the AquaCrop simulation model and to train regression algorithms. We achieved
a mean absolute error (MAE) of 0.45 t/ha, a mean squared error (MSE) of 0.23 t/ha, and a root mean
square error (RMSE) of 0.48 t/ha in the calibration of the AquaCrop model and, out of the ten
regression models, we achieved the lowest MAE of 0.093 t/ha, MSE of 0.015 t/ha, and RMSE of
0.120 t/ha using 10-fold cross-validation and MAE of 0.123 t/ha, MSE of 0.024 t/ha, and RMSE of
0.154 t/ha using the XGBoost regressor with train test split. We concluded that the machine learning
regression algorithm performed better in yield prediction using fewer data than the simulation model.
This study provides a technique to improve tea yield prediction by combining different data sources
using a crop simulation model and machine learning algorithms.

Keywords: crop simulation models; machine learning; AquaCrop; tea yield; crop yield prediction

1. Introduction

Agriculture or farming are the main sources of national income for many developing
countries. More than 50% of the population earns their livelihood from agriculture [1,2].
An increase in the production of agricultural products is required to ensure food security
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and sustainable development by increasing exports of these products. Pakistan is also an
agricultural country.

Pakistan is suitable for agriculture as it has all types of land and seasons. It has a
96.9% land area and 3.1% water bodies. Of the land, 80% is irrigated, and 20% is rain-
nourished [2]. Moreover, 48% of the labour force is directly associated with the agricultural
sector [3]. It has greatly contributed to Pakistan’s Gross Domestic Product by increasing
exports [4]. The economy of any country depends on balancing its imports and exports [5].
Therefore, there is a need to improve the agricultural sector of Pakistan as it imports many
agricultural products, including tea, from other countries. Tea is used on a large scale as a
worldwide beverage. In the last ten years, world tea yield increased by 4.4 percent annually
and reached 5.73 million tons in 2016. China’s tea production increased from 1.17 million
tons to 2.44 million tons from 2007 to 2016, respectively, which increased the global output
of tea [6]. At the global level, black tea production increased by 3.0 percent annually and
green tea production by 5.4 percent in the last decade [6,7].

According to the FAO, the global production of black tea is estimated to rise by 2.2 percent
annually over the next ten years and will reach 4.4 million tons in 2027. The global yield of
green tea is projected to increase by 7.5 percent compared to black tea and reach 3.6 million
tons in 2027. Due to the perceived health benefits of tea, world tea consumption increased by
4.5% to 5.5 million tons annually over the decade. In 2016, China was the largest consumer of
tea, comprising 38.6 percent, and India the second-largest, accounting for 19 percent of world
tea consumption [6].

Black tea consumption is estimated to increase at an annual rate of 2.5 percent to reach
4.17 million tons in 2027. This reflects the increase in consumption in tea-producing coun-
tries [3]. Pakistan is the 2nd largest country importer of tea in the world. It imports tea from
21 different countries [8]. The increase in the amount of tea imported resulted in a huge import
bill, which became a big issue for a growing country like Pakistan. Therefore, to overcome this
problem and increase tea production, the National Tea Research Institute under the Pakistan
Agricultural Research Council (PARC) was established in 1986 on 50 acres of land in Mansehra
(Khyber Pakhtunkhwa). A tea garden was established on 30 acres of land with a complete
infrastructure for tea plantations. An equipped laboratory and a tea-processing unit were
installed to process tea leaves [9].

In this era of technology, many methods are being used for yield estimation of different
crops [10], as shown in Figure 1. Remote sensing [11,12], crop simulation models (CSM) [13,14],
and other statistical methods [15,16] are the most popular among them. These techniques are
also used to find the climate impact on the yield of different types of crops [17,18].

Machine learning (ML) techniques and CSMs have been used to predict yields of
several annual crops such as wheat, soybean, corn, maize, sugarcane, etc. Still, no significant
work is conducted for perennial crops that carry above-ground biomass from one year to
another, such as trees using CSMs [19,20]. Data mining (DM) techniques and CSMs are
used for sugarcane yield prediction [13]. CSMs have been calibrated for different annual
crops. Tea crop is a perennial crop; interpretation of CSM has not been made for this type
of crop. Recently, a process-based model was used for tea yield prediction [18]. Various
studies investigate the physiological processes of tea [21–23] and attempt to find the impact
of climate change on tea yield [24–28].

In this study, we have used weather, crop, soil, and agro-management data on the
growing season from 2016 to 2019 to predict tea yield in Pakistan using ML techniques
and the AquaCrop simulation model. AquaCrop requires a relatively smaller number
of parameters, and recently its parameterization was performed for table grapes for the
growing season from 2005 to 2006 [20]. We have validated the AquaCrop simulation
model by comparing its results with ML algorithms. Our study combines different types
of data to improve the tea yield prediction. Using multiple data sources such as weather,
crop, soil, and agro-management can improve yield prediction as only one data source
cannot fully capture complete information on plant growth. This will help improve tea
crop production by providing a yield forecast before plucking tea leaves. This study also
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provides a paradigm for CSMs for tea yield prediction in other regions. This research study
aims to address the following research questions.

(1) How to calibrate the selected CSM?
(2) How do ML regression algorithms perform for tea yield prediction?
(3) Which technique from both ML and CSM performs better for tea yield prediction?

Plants 2022, 11, x FOR PEER REVIEW 3 of 22 
 

 

 
Figure 1. Crop yield estimation methods. 

Machine learning (ML) techniques and CSMs have been used to predict yields of 
several annual crops such as wheat, soybean, corn, maize, sugarcane, etc. Still, no signifi-
cant work is conducted for perennial crops that carry above-ground biomass from one 
year to another, such as trees using CSMs [19,20]. Data mining (DM) techniques and CSMs 
are used for sugarcane yield prediction [13]. CSMs have been calibrated for different an-
nual crops. Tea crop is a perennial crop; interpretation of CSM has not been made for this 
type of crop. Recently, a process-based model was used for tea yield prediction [18]. Var-
ious studies investigate the physiological processes of tea [21–23] and attempt to find the 
impact of climate change on tea yield [24–28]. 

In this study, we have used weather, crop, soil, and agro-management data on the 
growing season from 2016 to 2019 to predict tea yield in Pakistan using ML techniques 
and the AquaCrop simulation model. AquaCrop requires a relatively smaller number of 
parameters, and recently its parameterization was performed for table grapes for the 
growing season from 2005 to 2006 [20]. We have validated the AquaCrop simulation 
model by comparing its results with ML algorithms. Our study combines different types 
of data to improve the tea yield prediction. Using multiple data sources such as weather, 
crop, soil, and agro-management can improve yield prediction as only one data source 
cannot fully capture complete information on plant growth. This will help improve tea 
crop production by providing a yield forecast before plucking tea leaves. This study also 
provides a paradigm for CSMs for tea yield prediction in other regions. This research 
study aims to address the following research questions. 
(1) How to calibrate the selected CSM? 
(2) How do ML regression algorithms perform for tea yield prediction? 
(3) Which technique from both ML and CSM performs better for tea yield prediction? 

This paper is organized into the following sections: section contains relevant studies 
on yield prediction of different crops; section 3 describes the data used in this study and 
the proposed methodology for tea yield prediction; section 4 contains the results and dis-
cussions of our study, and section 5 provides the conclusion of this research study. 

  

Figure 1. Crop yield estimation methods.

This paper is organized into the following sections: section contains relevant studies
on yield prediction of different crops; Section 3 describes the data used in this study and
the proposed methodology for tea yield prediction; Section 4 contains the results and
discussions of our study, and Section 5 provides the conclusion of this research study.

2. Review of Existing Methods

Crop yield estimation is vital in providing food security to the increasing global popu-
lation. It helps to improve management practices necessary to increase crop production.
In the past decade, crop yield estimation has been performed using traditional statistical
regression methods, ML methods, and crop models [29–32]. ML techniques have been
implemented using environmental and genotype data for crop yield prediction [33]. Many
crop growth models, called crop yield models or CSMs, have been developed. These
terms define them as just a representation of real-world experiments [34]. These models
help farmers, policymakers, and the government to maximize sustainability by providing
reliable information about crop production, which is necessary for decision-making [35].

Crop growth models use plant growth processes and run these processes at multiple
scales. These models help find yield during plant growth, resulting from several vari-
ables such as climate, plant density, crop management, stress factors, etc. [35–38]. Guerra
et al. [39] evaluate using CSMs combined with interpolation to estimate the monthly
distribution of irrigation water for cotton in Georgia. The Decision Support System for
Agrotechnology Transfer model has been used to simulate the phenology process for soy-
bean crops [40]. The Crop Environment Resource Synthesis for Wheat simulation model
was calibrated for wheat yield prediction [41]. There are very few models that are being
calibrated for perennial crops. The AquaCrop model has been calibrated to predict water
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requirements of traditional African vegetables, Amaranthus, leafy vegetables, and taro, a
wetland perennial tuber crop [42,43]. The AquaCrop model was calibrated and validated
for the perennial coffee crop [44].

The performance of the simulation model has been compared with DM techniques
in the past. Hammer et al. [13] used the Agroecological Zone simulation model and DM
techniques (random forest (RF), support vector machines (SVM), and gradient boosting
machine (GBM)) to predict sugarcane yield. They concluded that DM techniques are better
than the Agroecological Zone model. Contrarily, there is a simple alternative to crop models
in statistical methods that uses probability for crop yield prediction. Still, these methods
are localized and cannot be extended to other areas [30]. After statistical methods, ML
techniques use weights instead of the likelihood for yield estimation [45]. Therefore, ML
techniques are very useful when we have noisy data. They have been widely used for
crop estimation and classification [17,46]. Khaki and Wang [33] used the ML approach
to accurately predict corn yield and yield difference between corn hybrids and genotype
or environment data and achieved an RMSE of 11%. ML techniques have also been used
to predict a frost hazard for Zhejiang tea trees [47]. Meteorology and topography with
latitude and longitude were used to estimate the damaged area. The SVM and artificial
neural network (ANN) were employed for estimation. They produced 83.8% and 75%
accuracy for frost damage prediction, respectively. A spatiotemporal hybrid model was
developed by [48] using satellite-derived hydro-meteorological variables from 20 stations
across Bangladesh between 1981 and 2020. This study used support vector regression (S)
and dragonfly optimization algorithms. This hybrid model improved tea yield forecasting
with least relative error value of 11%.

After ML, deep learning (DL) is an enhanced approach used in the yield estimation
of many crops. You et al. [11] employed DL techniques to predict soybean yield based on
remotely sensed data taken before harvest. Previous research has also used deep learning to
predict corn yield [12,49]. The ANN model was also developed to predict Iran’s environmental
effects and yield of black, green, and oolong tea [50]. A hybrid model combining convolutional
neural network (CNN) and recurrent neural network (RNN) was used for corn and soybean
yield prediction, and they concluded that these had outperformed RF, LASSO, and deep
fully-connected neural networks [51]. ANN and regression were used to predict corn and
soybean yield, concluding that ANN performed better [31]. A decision support system was
developed using environmental and soil data to identify the best environmental conditions to
increase tea production [52]. However, there is a lack of DL studies for tea yield prediction [53].
ML and DL techniques use climate, soil, crop, and satellite data to find yield patterns and
estimate yield [15]. Remote sensing data allows crop status monitoring using various spectra
and microwave wavelengths [54]. Climatic and satellite data have been used to predict wheat
yield [55,56]. A prediction model for sorghum biomass prediction was proposed using high
resolution remote temporal images as input to the SVM and multi-layer perceptron (MLP)
model and the APSIM as the sorghum crop model. They concluded that the MLP model
provided the most accurate result [57].

Many studies have been conducted to improve its products and to identify the effects
on the environment, soil, climate, etc. The effect of climate change on tea yield has been
analyzed, and it is observed that tea was 50% higher in the monsoon period than in spring,
but the quality of tea was 50% lower during the monsoon [24]. The impact of climate change
on tea production is also studied [22,25,26]. A negative impact of increased temperature and
rainfall on tea yield was observed [26]. Statistical models are also used in Kenya to predict
the climate effect on tea yield. These models were trained using historical temperature
and precipitation data. Correlation analysis shows that tea yield and climatic variables are
correlated, and rainfall and temperature are inversely related. This model predicted 70% of
forecasts correctly [28].

The stochastic frontier analysis was applied to analyze irrigation water use efficiency
in the tea farms of Vietnam. They found that they can save up to 57.81% of irrigation
water by improving water usage [27]. Recently, a study was conducted to predict future
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projections of tea crops using climatic data. They observed that yields are expected to
increase in China, Vietnam, and India and decrease in Kenya, Sri Lanka, and Indonesia [18].

To estimate tea yield, tea growth was simulated using data from tea cultivar TRI
2025 in Sri Lanka. They developed and calibrated a simulation model using climate, soil,
and crop data collected from different climatic areas. This model simulated shoot growth,
leaf area of the shoot, shoot replacement cycle, dry matter partitioning, and yield [58].
A summary of some of the above-cited work is shown in Table 1.

Table 1. Summary of related work for different crops.

Paper Data Techniques Crop Performance

[13] Weather and crop management
Agroecological Zone
simulation model &

DM (RF, SVM & GBM)
Sugarcane RMSE ≈ 34 t ha−1

RMSE ≈ 20.03 t ha−1

[55] Climate and satellite SVM, RF, ANN Wheat R2 = 0.75

[51] Environment and management A hybrid approach
using CNN and RNN Corn and soybean RMSE ≈ 9%

[43] Agro-ecological data AquaCrop Amaranthus RMSE ≈ 1.96 t ha−1

[44] Soil, weather, crop, and
agro-management AquaCrop Coffee R2 ≈ 0.71

[58] Climate, crop, and soil data Developed a
simulation model Tea R2 > 0.58

[28] Weather data Multiple linear models Tea Accuracy = 70%

3. Methodology
3.1. Study Area

We have conducted this study in Pakistan, where tea is grown. These tea fields are
located at an altitude of 1000 m from the sea level and located at 34◦28′0” N, 73◦16′60” E in
Pakhal valley Shinkiari, Mansehra, Pakistan, as shown in Figure 2a,b. The total area of the
fields amounts to approximately 30 acres. This tea garden has an equipped soil laboratory
and a black and green tea processing unit.
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3.1.1. Data

Weather, soil, crop, agro-management, and plucking data were acquired from the
fields of NTHRI. We have also interviewed staff and local farmers to understand the tea-
growing process. Tea yield data (kgs per acre) were collected during growing seasons
from 2009 to 2019. The plucking data from 2016 to 2019 was more accurate and without
errors. The previous year’s data was not recorded properly and lacked detailed plucking
information, so we had to discard that data. The following information was collected from
NTHRI tea fields regarding soil characteristics and crop management at the block level:
soil type, application of fertilizers (nitrogen, phosphorus, potassium), irrigation schedule,
sowing method, planting density, and crop calendar (sowing date, days to emergence,
initial canopy cover, days to maturity, days to max canopy cover, and days to harvesting).

The collected meteorological data were minimum temperature, maximum temperature,
humidity, rainfall, and wind speed obtained from weather stations in the NTHRI and
neighbouring regions. We have estimated evapotranspiration using the FAO Penman-
Monteith equation, which uses weather parameters. These meteorological data were
utilized to estimate tea yield using the AquaCrop simulation model and ML techniques.

3.1.2. Pre-Processing

We collected data in a raw format that needed to be pre-processed. We cleaned this
dataset and converted it to the plot level. Every sample shows yield value from one plot on
a specific day, each plot of one acre. The total number of samples was 239. Meteorological
data were mapped to these samples according to the given dates. These data were prepared
to be fed to ML algorithms. We prepared four datasets for the CSM, including weather, crop,
soil, and agro-management data. We used these dataset files to calibrate our AquaCrop
model. The samples of all the types of data are given below.

Weather Data

Average values of weather data for min temperature, max temperature, humidity,
rainfall, and solar radiation are shown in Table 2.

Table 2. Weather input data for calibration.

Year Avg Min
Temperature (◦C)

Avg Max
Temperature (◦C) Avg Humidity (%) Avg Rainfall (mm) Solar Radiation

(MJ/m2)

2016 17.4 32.4 28.5 92.03 19.06
2017 16.7 32.8 33.8 167 19.30
2018 17 32.5 32.64 149.7 19.22
2019 16.8 31.2 55.2 112 19.45

Soil Data

Soil data contains soil type, soil depth, and the water content in the soil, as shown
in Table 3. We used conservative values of other parameters such as field capacity, soil
saturation, wilting point, runoff, etc.

Table 3. Soil input data for calibration.

Soil Characteristic Value

Soil type Clay loam
Soil depth 2.0 m

Soil water content at soil saturation (θSAT) 50 vol %
Soil water content at field capacity (θFC) 39 vol %

Soil water content at permanent wilting point (θPWP) 23 vol %
Total available soil water (TAW) 160 mm/m
Saturated hydraulic conductivity 500 mm/day

tau (τ) drainage coefficient 0.76



Plants 2022, 11, 1925 7 of 20

Crop Data

Crop data contains information about the crop calendar. It has all the information
related to the sowing of the plant, plant density, growth cycle, plant age, irrigation, fertility
stress, water stress, etc., as represented in Table 4.

Table 4. Crop input data for calibration.

Symbol Description Value

Planting Density (plants/ha.) 12,000
CCin Initial canopy cover after pruning 20%
CCx Maximum canopy cover 95%
CGC Canopy growth coefficient

Zx Maximum effective rooting depth (m) 2 m
Zn Minimum effective rooting depth (m) 2 m

WP* ET water productivity 0.18, 0.18, 0.20, 0.17
HIo Reference harvest index 14%

Time between pruning 5 years

Agro-Management Data

It includes data related to agro-management practices. At NTHRI, no additional
management practices such as mulches, etc., are applied. We received information about
irrigation water applied by conducting interviews with scientists and other staff. There is
no specific irrigation schedule. The irrigation amounts and days are decided according to
the requirement of a particular day.

These were the input parameters whose values were recorded. We have also used
estimated values of input parameters such as minimum effective rooting depth, crop co-
efficients, bulk density, soil depth, field capacity, initial salinity, etc. Some variables are
calibrated, including base and cut-off temperature, initial and maximum canopy cover,
canopy growth coefficient (CGC), and crop calendar, including time from sowing to emer-
gence, senescence, maturity, and harvesting.

3.2. Methods Implementation

We have proposed a framework based on CSM and ML techniques to predict tea yield
using weather, crop, agro-management, and soil data. Our proposed methodology has two
stages. These stages work concurrently, as shown in Figure 3.

3.2.1. Estimation of Tea Yield Based on the FAO AquaCrop Model

In the first stage, for the estimation of tea yield throughout the crop cycles, the FAO
AquaCrop model [59] was calibrated. This CSM has a mathematical approach for estimating
yield. This approach considers crop development, crop transpiration, biomass production,
and yield formation for yield estimation, as shown in Figure 3. It also considers the impact
of water deficiency on yield. The AquaCrop approach is different from ML algorithms
which only use statistical functions.

For yield estimation using AquaCrop, the following meteorological parameters were
used as climatic input data: minimum temperature, maximum temperature, rainfall, hu-
midity, solar radiation, and wind speed. These data were provided as daily data. AquaCrop
used these meteorological parameters to estimate the reference Evapotranspiration (ETo)
using the Penman-Monteith method. The crop and soil characteristics defined above were
also used as input for calibration of the model. An irrigation schedule was provided to
overcome the rain deficiency and keep water content at field capacity.
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Canopy cover (CC) was calculated using all these input parameters directly affected by
the total amount of available water in the soil. It was calculated using the given Equation (1).

CC =
soil sur f ace covered by the green canopy

unit ground sur f ace area
(1)

This CC represents the land area, which is covered with green leaves. We have used
an initial canopy cover of 20% and a maximum canopy cover of 95%. There was no water
or fertility stress during the crop life cycle. When the CC increases, it affects the amount of
water transpired. Transpiration rate (Tr) has a vital role in plant growth [60] which depends
on the type of crop, energy supply, vapour pressure, and wind [61].

The product of the KcTr calculated crop transpiration with ETo and by considering a
cold stress (ksTr,x) and water stress (Ks) coefficient as given in Equation (2). Their value is
1 when stress does not trigger stomatal closure.

Tr = Ks (KsTr,x KcTr) ETo (2)
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KcTr is proportional to the CC and hence varies throughout the whole growth cycle of
the plant with simulated CC. Water stress affects canopy development, stomal closure, and
hence crop transpiration which was calculated using Equation (3) [62].

KcTr = KcTr,xCC∗ (3)

As the crop transpiration increases and the plant grows, it produces biomass which we
call above-ground biomass. It is mostly given in tons/hectares and is directly proportional
to crop transpiration (ΣTr). The factor of proportionality is biomass water productivity
(WP). It is normalized for climatic conditions in AquaCrop, making this WP valid for
diverse locations, environments, and CO2 concentrations. The potential biomass value was
calculated using Equation (4).

B = WP ∗∑
(

Tri
EToi

)
(4)

After this, the biomass converts to yield. The biomass is not converted into the yield;
rather, a fraction is converted into yield (Y). A scaling factor, harvest index (HI), was used
to calculate this yield part, representing the part of the harvested product as a percentage
of the biomass. The yield was calculated using Equation (5).

Y = HI ∗ B (5)

As the water and temperature stresses vary throughout the growth cycle, the HI might
be altered from its reference value (HIo) which was used in the range of 14% to 19% for tea
yield. A multiplier is used with (HIo) to continuously adjust the effect of stresses on the HI
as given by Equation (6).

HI = multiplier HIo (6)

For the validation of AquaCrop results, the simulated yield (t/ha) was compared to the
observed (t/ha). For comparison MAE, MSE, and RMSE were used as performance measures.

3.2.2. Estimation of Tea Yield Using ML Techniques

In the second stage, we employed linear regression-based ML techniques. Linear
regression analysis is a predictive modelling approach that finds a relationship between the
independent (predictor) and the dependent (target) variable. We can represent the simplest
regression equation using one dependent and independent variable by Equation (7).

y = c + b ∗ x (7)

where y is the dependent variable, which is to be estimated, x is the independent variable,
c is a constant, and b is the regression coefficient [63]. It can be used to find the strength
of the impact of independent variables on the dependent variable. It can also be used to
forecast how a dependent variable changes with the change of any independent variable.

In this study, we have modelled to predict tea yield including regression algorithms,
such as Linear Support Vector Regression (SVR), AdaBoost Regressor, Automatic Relevance
Determination (ARD) Regression, Decision Tree Regressor, MLP Regressor, Multiple Lin-
ear Regression (MLR), Random Sample Consensus (RANSAC) Regressor, Simple Linear
Regression (SLR), XGBoost, and SVM Regressor. A brief description of these regression
algorithms is given below.

(a) Linear SVR

Linear SVR tries to fit the error in a specific threshold given by Equation (8). It utilizes
the same rules as the SVM classifier with just a few variations. Regression produces a real
number with unlimited possibilities, which is very hard to estimate. A tolerance margin
in line with the SVM is set to fix this problem. The primary principle is to minimize the
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mistake by tolerating the mistake and individualizing the hyperplane that maximizes the
margin [64].

y =
N

∑
i=1

(αi − αi
∗).〈xi, x〉+ b (8)

Different parameter values are used as: kernel = ‘rbf’, degree = 3, gamma = ‘scale’,
coef0 = 0.0, tol = 0.001, C = 1.0, epsilon = 0.1, shrin king = True, cache_size = 200,
verbose = False, max_iter = −1.

(b) AdaBoost Regressor

AdaBoost, short for Adaptive Boosting, can be used to optimize their performance in
conjunction with other forms of learning algorithms. Many algorithms are slow learners
and use boosted algorithms, and their output is incorporated into a weighted sum as given
by Equation (9). For outliers and noisy data, AdaBoost is vulnerable [65].

FT(x) =
T

∑
t=1

ft(x) (9)

where ft is a poor learner who takes and categorizes x input, the Decision Tree Regressor
is used as the base estimator, and default values for all other parameters are used in
the implementation.

(c) Automatic Relevance Determination (ARD) Regression

The ARD framework is an effective tool for pruning many unrelated features leading
to a large explanatory subset [66].

This model estimates a value by iterations, increasing the marginal log-likelihood of
the results, known as proof, in each iteration as given by Equation (10). In ARD, the basic
idea is to send the function weights to independent Gaussian priors.

p(w|α) = ∏
i

N(w|0, αi) (10)

where α = (αi) is a hyperparameter vector that controls each weight value; default values of
all the parameters are used in the implementation.

(d) Decision Tree Regressor

Decision trees are developed as predictive models, using a collection of binary rules
to determine a target value. Each tree has branches, nodes, and leaves. It arrives at an
estimate by passing data through a series of questions. At each step, each question narrows
possible values and makes the model more confident in making every prediction. The
model determines the order and content of questions. It can have an overfitting problem
eliminated using the RF algorithm. It is implemented with a max depth of 20 with default
values of all other parameters.

(e) Multilayer Perceptron (MLP) Regressor

A neural network is the simplified version of the human brain, consisting of the input,
hidden, and output layers. The most used neural network model is the MLP. Different
weights on each layer of a neural network allow the neural network to understand. The
neurons are organized in several layers. The nodes are neurons in each layer that only
accept inputs from the nodes/neurons in the previous layer and transfer the output to the
next layer of nodes/neurons.

(f) Multiple Linear Regression (MLR)
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It has one dependent variable and two or more independent variables. Multivariate
linear regression analysis accounts for the variation in the dependent variable due to the
change in independent variables synchronically given by Equation (11).

y = β0 + β1x1 + . . . + βnxn + ε (11)

The dependent variable is y, xn is the independent variable, the parameter is βn, and
the error is ε. It implies the data has a normal distribution, severe value independence,
linearity, and no multiple relations between independent variables [67]. We have used
yield as the dependent variable and all other parameters as independent variables. The
default parameters for linear regression are used in the implementation.

(g) Random Sample Consensus Regressor

The RANSAC iterates in two steps:

• Generating a hypothesis from a random sample of data (hypothesis generation)
• Verifying it with other data (hypothesis evaluation)

It is widely used in the image processing field for cleaning noisy datasets. It is also
used as a predictive modelling tool. It is very popular for solving those problems in which
data is contaminated with outliers. It can be applied to problems such as epipolar geometry
estimation, model fitting, motions estimation, etc. The default values of all the parameters
are used in the implementation.

(h) Simple Linear Regression (SLR)

This is a simple linear regression model that refers to the procedure of minimizing the
sum of squared errors. It has one independent variable and one dependent variable, as
shown in Equation (12).

MIN
n

∑
i=1

(yi − wixi)
2 (12)

where yi is the target variable, wi is the coefficient, and xi is the predictor [68]. In this
method, we try to minimize the error.

(i) XGBOOST

XGBoost stands for eXtreme Gradient Boosting. It is an execution of a gradient boosted
decision tree. XGBoost is popular for its flexibility, speed, and performance compared to
other models. This model works best for tabular and structured datasets in classification
and regression problems. Parallel processing of XGBoost makes it ten times faster than
other tree-based models. It implements regularization to avoid overfitting. The values
of some parameters are tuned as colsample_bytree = 0.4, gamma = 0, learning_rate = 0.1,
max_depth = 20, min_child_weight = 1.7, n_estimators = 100, reg_alpha = 0.75, reg_lambda
= 0.45, subsample = 0.8, seed = 50 and default values for all other parameters are used.

(j) SVM Regressor

SVM is an ML tool used to analyze data, recognize patterns in data, and draw decision
boundaries for classification and regression. It constructs hyperplanes in multi-dimensional
space that identifies and separates different classes. The number of dimensions is known
as a feature vector. SVM can handle multiple categorical and continuous variables. The
main purpose of SVM is to minimize the frequency of generalization error by maximizing
the perpendicular distance between two sides/edges of different hyperplanes. The general-
ization potential improves by lowering support vectors as the hyperplane depends on the
number of support vectors. We have used the RBF kernel with default parameters.

The execution of these algorithms occurred in python. The default values are used for
the parameters whose values are not mentioned in the above descriptions. These are the most
popular regression analysis techniques for yield prediction [69] using different parameters.
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Training and Testing

The input of these regression algorithms was meteorological factors, and the target value
was observed tea yield. We had plucking samples of green and black tea for 2016–2019. This
data was split into a ratio of 70% and 30%. We have utilized 70% of the data for training the
models, and the rest of 30% was used for testing. The mean absolute error (MAE (13)), mean
squared error (MSE (14)), and root mean square error (RMSE (15)) were used as objective
functions for model performance evaluation and parameterization.

MAE =
1
n

n

∑
j=1

∣∣∣yj − yj

∣∣∣ (13)

MSE =
1
n

n

∑
j=1

(
yj − yj

)2
(14)

RMSE =

√√√√ 1
n

n

∑
j=1

(
yj − yj

)2
(15)

In the above equations, yj is the jth observed yield and yj is the jth predicted yield,
and n is the total number of samples.

10-Fold Cross-Validation

The 10-fold cross-validation was performed using these meteorological parameters as
independent variables and observed yield as the target variable. We have used MAE, MSE,
and RMSE as the scoring metrics.

4. Results and Discussion
4.1. Evaluation of the AquaCrop Model

To evaluate the performance of the AquaCrop model for simulating the CC, biomass,
and dry yield, different statistical parameters were used: (1) MAE, which gives us the
indication of the deviation of simulated values from the observed ones [70]. (2) MSE error
measures the difference between observed and predicted values and calculates the residual
sum to eliminate arbitrariness [71]. (3) RMSE calculates the discrepancy between simulated
and observed values [72].

AquaCrop Model Calibration and Validation

In the calibration of AquaCrop, the main parameters are related to CC, crop evapotran-
spiration (ETa), biomass, and yield, which need to be calibrated. For the simulation of CC,
which is a very critical feature of AquaCrop, the main parameters are initial canopy cover
(CCo), maximum canopy cover (CCx), CGC, and cumulative growing degree days (CGDD)
in every crop development stage. These parameters were calibrated using data collected
during the 2016–2017 growing season. The best values of CCo, CCx, and CGC that provide
good estimates are 20%, 95%, and 0.7%/day, respectively. Other parameters that affected
CC development have also been adjusted. The values of CGDD in every crop development
stage were determined using base temperature (Tbase) and the upper temperature (Tupper)
equal to 8 ◦C and 32 ◦C, respectively, according to NTHRI 2019.

For the simulation of crop ETa, the main parameter was calibrated, affecting soil evapo-
ration and plant transpiration. This parameter is the maximum coefficient for transpiration
(KcTr,x). The obtained value of KcTr,x is 0.95, which was adjusted by considering the CCx as
95% for the tea crop. For biomass and final yield simulation, the HIo is adjusted equal to HIo
= 14% and obtained average WP* = 18 g/m2, respectively. We have calibrated AquaCrop
models using a calibration dataset. Figure 4 shows a comparison of observed and simulated
seasonal tea yields in the fields of NTHRI throughout the growing seasons of 2016–2019.
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Yield values from the AquaCrop model agree well with the observed yield, except in
2019 when the simulated yield is less than the observed yield. This difference can be due to
the inconsistent plucking of tea leaves, as the model inputs are highly affected by sampling
errors and limitations in data availability [73]. The results can be improved with improved
data collection strategies, and many studies discuss data requirements for crop model
calibration for different crops [74]. These data show that simulated yields are significantly
correlated with the observed yields with RMSE of 0.48 t/ha, MSE of 0.23 t/ha, and MAE of
0.45 t/ha, as shown in Figure 5.
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4.2. Evaluation of ML Techniques
4.2.1. Train Test Split

MLR models were trained and tested using the above-described dataset. We have
trained each ML algorithm with meteorological data as predictors and yield value as a
target. These models were trained with 70% of the data set, tested with independent data,
and the remaining 30% of the data set. The implementation of these algorithms occurred in
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python, and three types of error were measured to evaluate their performance, as shown
in Figure 6. By analyzing the results of these ML algorithms, we concluded that XGBoost
had outperformed all with an MAE of 0.123 t/ha, an MSE of 0.024 t/ha, and an RMSE of
0.154 t/ha on average over the 2016–2019 period. It predicts the yield with a minimum
error compared to other algorithms.
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The actual yield and predicted yield by these regression algorithms can be visualized
by the scatter plots given in Figure 7. We have plotted the sample number on the x-axis
and the actual and predicted yields on the y-axis in different colours.
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4.2.2. 10-Fold Cross-Validation

The regression models were also implemented using 10-fold cross-validation. Out of
these ten regression models, XGBoost performed best with an MAE of 0.093 t/ha, an MSE
of 0.015 t/ha, and an RMSE of 0.120 t/ha. The error values for all the models are shown in
Figure 8.

Figures 6 and 8 show that 10-fold cross-validation performed well in the train test split
method. Table 5 shows the actual yield (kg) and our suggested model’s yield as predicted
yield (kg). Out of these 10 regression algorithms, XGBoost shows very promising results.

4.3. Comparison of the ML and AquaCrop Model for Predicting Tea Yield

We have calibrated the AquaCrop simulation model to run simulations for tea yield
prediction and applied ML techniques with train test split and 10-fold cross-validation
to develop a model for tea yield prediction. Results from both techniques are compared,
and the difference between these values is shown in Figure 9. We concluded that the ML
models performed better using 10-fold cross-validation than CSM.
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Table 5. An overview of the test data.

Min. Air
Temperature

Max. Air
Temperature

Average
Humidity Rainfall Tea Type Actual Yield (Kg) Predicted Yield (Kg)

15.9 29.3 54.5 39 Black 275 255.968,9
12.6 34.1 47 39 Black 316 323.608,1
12.6 34.1 47 39.00 Green 186 186.335,9
12.7 33.7 42 39.00 Green 203 184.490,1
12.6 33.9 39 39.00 Green 165 173.613,7
16.6 36 64 35.50 Green 102 99.674,55
20 26 78.5 203.30 Green 120 133.068,1

19.9 33.3 62.5 170.00 Green 143 157.643,5
17.2 33.6 52.5 170.00 Green 164 152.560,5
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To answer our first research question: How to calibrate the selected CSM? We have
explained the calibration process of the AquaCrop simulation model. This model was
calibrated for tea yield prediction in the following four steps: crop development, crop
transpiration, biomass formation, and dry yield. This calibration was conducted using
weather, crop, soil, and agro-management data. We have used indicative values of some of
the parameters. The results were evaluated using MAE, MSE, and RMSE, which shows a
close relation of simulated yield values with observed yield values.

To answer our second research question: How do ML regression algorithms perform
for tea yield prediction? We have implemented ten regression algorithms to predict tea
yield. These ML techniques require a fewer number of parameters. We used three error
measuring techniques: MAE, MSE, and RMSE, to measure the error in observed and
predicted yield.

We have also worked to answer our third research question: Which technique from
both ML models and simulation models performs better for tea yield prediction? To answer
this, we have compared the simulation model’s performance and the ML techniques.
Our comparative analysis shows that the ML techniques with 10-fold cross-validation are
better than CSMs for yield prediction. Still, these simulation models are useful to run and
check different experiments using different climatic, crop, and management practices. The
simulation models require a lot of parameters for their calibration [73]. They need climate,
soil, crop, and agro-management data for accurate calibration. These parameter values are
unavailable in the real world due to recorded data quality.

In comparison to this, ML techniques do not require all these parameters. They
can provide good results with a few parameters: temperature, rainfall, humidity, pH,
sunshine, etc. If data are available for all parameters, CSMs can be useful for performing
and simulating those experiments, which are very expensive and time-consuming.

This study is an important contribution to the use of CSMs for perennial crops and
specifically tea crops. It also provides a way to predict tea yield in Pakistan and other areas
of the world. It will help increase tea production in Pakistan and other regions by helping
to improve management practices using simulation models. These models can provide
predictions in different climatic scenarios and environmental conditions.

5. Conclusions

This research study acquired data from NTHRI and extracted data from four databases,
including weather, crop, soil, and agro-management data. We have selected and calibrated the
AquaCrop simulation model for tea yield prediction because it requires fewer parameters than
the other simulation models. The AquaCrop model was calibrated using data associated with
weather parameters, crop, and soil characteristics to estimate tea crop production. We have
trained ML models using this data and observed that the XGBoost regressor outperformed
all the other models. We concluded that ML techniques perform better than simulation
models by comparing the results of both simulation models and ML techniques. We also
concluded that simulation models could be best suited for the estimation of the output of those
very expensive and time-consuming experiments if enough input parameters are available.
For future studies associated with AquaCrop calibration, it is suggested to use all model
variables to perform regression analysis. The results can be further improved by recording
more detailed information related to crop and field experiments.
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