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Abstract—This paper proposes a privacy-preserving dis-
tributed Kalman filter (PP-DKF) to protect the private infor-
mation of individual network agents from being acquired by
honest-but-curious (HBC) adversaries. The proposed approach
endows privacy by incorporating noise perturbation and state
decomposition. In particular, the PP-DKF provides privacy by
restricting the amount of information exchanged with decomposi-
tion and concealing private information from adversaries through
perturbation. We characterize the performance and convergence
of the proposed PP-DKF and demonstrate its robustness against
perturbation. The resulting PP-DKF improves agent privacy,
defined as the mean squared estimation error of private data
at the HBC adversary, without significantly affecting the overall
filtering performance. Several simulation examples corroborate
the theoretical results.

Index Terms—Estimation, privacy, information fusion, average
consensus, distributed Kalman filtering, multiagent systems.

I. INTRODUCTION

Distributed Kalman filters (DKFs) have gained increased at-
tention due to their high accuracy and computational efficiency
for learning and estimation tasks in multiagent systems [1]–
[4]. In general, distributed Kalman filtering techniques are
based on agents running local Kalman filters and consensus
operations to fuse observation and state information [5]–
[7]. Although local cooperation among agents in distributed
settings facilitates the fusion process, it causes undesirable
information disclosure. Thus, the vulnerability of distributed
procedures to potential eavesdroppers turns privacy preserva-
tion into an urgent issue to tackle in many applications [8]–
[10].

Various methods are present to address privacy issues in
distributed consensus operations in the literature. Differen-
tial privacy (DP) techniques, for example, use uncorrelated
noise sequences within information exchange protocols to
protect individual information [10], [11]. Alternatively, more
recent noise injection-based methods achieve a better privacy-
accuracy trade-off by perturbing the information exchanged
with noise [12]–[14]. Further, decomposition-based techniques
provide privacy by restricting the amount of information that
is shared with other agents [15], [16].

Using DP to protect individual data streams in a system
theoretic context where sensor measurements are transmitted
to a fusion center was first addressed in [17]. In [18], a
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general approach is presented to design a differentially private
Kalman filter in both cases of perturbation before exchanging
information with the fusion center as well as output pertur-
bation that injects noise to the output of the Kalman filter.
In addition, the authors in [19] demonstrate that combining
the input signals before adding DP noises, except for privacy,
enhances the Kalman filtering performance. The privacy-aware
Kalman filter proposed in [20] partitions sensor measurements
into private and public substates to maximize the estimation
error of the private state and minimize that for the public
state. Although most literature discusses centralized filtering
settings with external adversaries [17]–[20], in the context
of distributed filtering applications, honest-but-curious (HBC)
adversaries use local information to infer private data. An HBC
adversary is a network agent that participates in the filtering
process, but is curious and tries to retrieve private informa-
tion from other agents. Although literature includes studies
related to privacy-preserving Kalman filtering techniques, no
attention has been paid to a privacy-preserving framework for
distributed Kalman filtering strategies.

This paper proposes a privacy-preserving distributed
Kalman filter that incorporates both noise injection-based and
decomposition-based average consensus techniques to achieve
privacy against HBC adversaries. In the proposed PP-DKF,
agents decompose their private information into public and
private substates, where only the public substate is shared
with neighbors. A noise sequence perturbs the public substate
before being shared with neighbors to provide an additional
layer of protection. The proposed PP-DKF enhances filtering
performance when compared to DKFs employing contempo-
rary privacy-preserving techniques, showing that the method
is more robust to noise-injection. Additionally, the PP-DKF
improves the privacy level for all agents, defined as the mean
squared estimation error of private data at the adversary [21].
Mathematical Notations: Scalars, column vectors, and ma-
trices are denoted by lowercase, bold lowercase, and bold
uppercase letters, while I, and 0 represent identity and zero
matrices, respectively. The transpose and statistical expectation
operators are denoted by (·)T and E{·}, while ⊗ denotes the
matrix Kronecker product. The trace operator is denoted as
tr(·), diag(a) denotes diagonal matrix whose diagonals are the
elements of vector a, and the Blockdiag({Ai}Ni=1) represents
a block diagonal matrix containing Ais on the main diagonal.



II. PROBLEM FORMULATION

We consider a set of N interconnected agents that is
modeled as a graph G = {N , E} with node setN , representing
agents, and edge set E , representing communication links. The
neighborhood of agent i is denoted by Ni, with cardinality Ni.
We revisit the classical DKF to track a dynamic system state
through observations from a network of agents [2], [3], [6].
The state-space model is given by

xn = Axn−1 + vn (1)
yi,n = Hixn +wi,n (2)

where for time instant n and agent i, A denotes the state
transition matrix, and Hi denotes the observation matrix, yi,n

is the local observation, and wi,n, vn, are observation and
process noises, respectively. The process noise and observation
noise are mutually independent white Gaussian sequences
with covariance matrices Cvn and Cwi,n , respectively. The
proposed PP-DKF is based on the DKF in [5], which requires
agents to share local estimates with neighbors and reach
a network-wide consensus by local collaboration. Since the
shared data includes private information, we propose a PP-
DKF that safeguards the private information of individual
agents from being estimated by HBC adversaries.

III. PRIVACY-PRESERVING DISTRIBUTED KALMAN FILTER

Based on the proposed DKF in [5], the proposed PP-DKF
tracks a dynamic system state by updating the local model
given by

x̂i,n|n−1 = Ax̂i,n−1|n−1

Mi,n|n−1 = AMi,n−1|n−1A
T +Cvn

(3)

where, for agent i, x̂i,n|n−1 and x̂i,n|n are the respective
a priori and a posteriori state vector estimates and the
covariance information of agent i, at time instant n is denoted
by Mi,n|n−1. Following the centralized Kalman filter in [6],
the local covariance information of agent i at time instant n
is updated as

Γi,n = M−1
i,n|n−1 +NHT

i C
−1
wi,n

Hi. (4)

Updating the covariance information requires sharing the local
covariance Γi,n to reach the average consensus among agents
as M−1

i,n|n = 1
N

∑
i∈N Γi,n. The local covariance is not

considered as private information and it can be implemented
in a distributed manner by employing an average consensus
filter (ACF) with K consensus iterations as

M−1
i,n|n = Γi,n(K)←− ACF ←− {∀j ∈ Ni : Γj,n(0) = Γj,n}

where the operation at each consensus iteration k is given
as Γi,n(k) = qiiΓi,n(k − 1) +

∑
j∈Ni

qijΓj,n(k − 1) with
consensus weights satisfying qii +

∑
j∈Ni

qij = 1 for each
agent i. It is assumed that the conditions for convergence of
Mi,n|n for all agents are satisfied, as given in [5]. The updated
covariance is then used to evolve the intermediate state vector
estimate of agent i at time instant n as

ψi,n = x̂i,n|n−1 +Gi,n

(
yi,n −Hix̂i,n|n−1

)
(5)

where Gi,n = NMi,n|nH
T
i C

−1
wi,n

is the local gain. Subse-
quently, the state vector estimate needs to reach the average
consensus among agents as x̂i,n|n = 1

N

∑
i∈N ψi,n, which

requires agents to share their intermediate state vector estimate
ψi,n among neighbors. Since ψi,n includes private informa-
tion, it needs to be protected from adversaries.

To reach the average consensus of intermediate state vector
estimates, the PP-DKF instructs each agent i to decompose
its initial information ri,n(0) = ψi,n into public and pri-
vate substates αi,n(0) and βi,n(0), respectively. The initial
substates are chosen such that αi,n(0) + βi,n(0) = 2ri,n(0)
is satisfied [15]. The public substate αi,n is shared with
neighbors, while the private substate βi,n evolves internally
without being observed by neighbors. We perturb the public
substate before sharing with neighbors with a noise sequence
ωi(k) at the ith agent and kth consensus iteration in order
to further protect the private information. The designed noise
structure is

ωi(k) = ϕkνi(k)− ϕk−1νi(k − 1), ∀k ≥ 1 (6)

where ωi(0) = νi(0), νi(k) ∼ N (0, σ2I) is an independent
and identically distributed Gaussian sequence for each i ∈ N ,
and ϕ ∈ (0, 1) is a common constant. As a result, each agent i
updates its substates at the kth consensus iteration by injecting
(6) into the public substate before sharing with the neighbors
as follows:
αi,n(k + 1) = αi,n(k) + ε

∑
j∈Ni

wij (α̃j,n(k)−αi,n(k))

+εUi

(
βi,n(k)−αi,n(k)

)
βi,n(k + 1) = βi,n(k) + εUi

(
αi,n(k)− βi,n(k)

)
(7)

where α̃j,n(k) = αj,n(k)+ωj(k) is the received information
from the jth neighbor and ε ∈ (0, 1/(∆ + 1)] with ∆ ≜
maxi∈N Ni is the consensus parameter. The interaction weight
is denoted by wij , while Ui ≜ diag(ui) is a diagonal matrix
containing the the coupling weight vector of the ith agent.
The coupling weight vector ui ∈ Rm contains independent
elements that control the level of contribution of each substate
in the updating procedure. In addition, we require a scalar
η ∈ (0, 1), such that all nonzero wij = wji and all elements of
ui reside in the range [η, 1), [15]. After repeating the steps in
(7) for a sufficient number of iterations, say K iterations, the
local state estimate, x̂i,n|n, is updated as x̂i,n|n = αi,n(K)
for all i ∈ N . The operations of the proposed PP-DKF is
summarized in Algorithm 1.

Theorem 1: The privacy-preserving average consensus oper-
ations in Algorithm 1 converges to the exact average consensus
value, asymptotically.

lim
k→∞

E{αi,n(k)} = lim
k→∞

E{βi,n(k)} =
1

N

N∑
i=1

ψi,n. (8)

Proof: To show the convergence of the derived privacy-
preserving ACF operations to the exact average consensus
value, we first show that the sum of all substates is constant,



Algorithm 1: Privacy-Preserving Distributed Kalman Filter

Model update: For each i ∈ N
x̂i,n|n−1 = Ax̂i,n−1|n−1

Mi,n|n−1 = AMi,n−1|n−1A
T +Cvn

Γi,n = M−1
i,n|n−1 +NHT

i C
−1
wi,n

Hi

M−1
i,n|n ←− ACF ←− {∀j ∈ Ni : Γj,n}

Gi,n = NMi,n|nH
T
i C

−1
wi,n

ψi,n = x̂i,n|n−1 +Gi,n

(
yi,n −Hix̂i,n|n−1

)
Set ri,n(0) = ψi,n

Privacy-Preserving ACF:
Select αi,n(0) and set βi,n(0) = 2ri,n(0)−αi,n(0)
Share α̃i,n(0) = αi,n(0) + ωi(0)
for k = 1, . . . ,K do

Receive α̃j,n(k − 1), ∀j ∈ Ni

Update αi,n(k) andβi,n(k), as given in (7)
Share α̃i,n(k) = αi,n(k) + ωi(k)

end
x̂i,n|n = αi,n(K)

asymptotically [15]. The sum of all substates at the kth
iteration is defined as ζn(k) ≜

∑N
i=1(αi,n(k) + βi,n(k)) where

ζn(k) = ζn(0) + ε

N∑
i=1

k−1∑
l=1

di ωi(l).

with di =
∑

j∈Ni
wij . Given the zero mean and decay-

ing covariance properties of the designed noise (6), ζn(k)
converges to ζn(0) in the mean square sense which is
limk→∞ E{∥ζn(k)− ζn(0)∥2} = 0. Subsequently, due to the
connected network assumption and considering that αi,n(0)+

βi,n(0) = 2ψi,n, the ith agent substates, αi,n and βi,n, con-
verge to the desired average consensus value [15], as in (8).

IV. PERFORMANCE EVALUATION

With the equivalent network model of 2N agents, each
private substate corresponds to an agent only attached to its
peer in the original network, we evaluate the effects of incor-
porating privacy-preserving operations on the filtering perfor-
mance. It is assumed that the imaginary agents have the same
observation parameters, yi,n, Hi, and Cwi

, with their original
peers. We also assume that agents start privacy-preserving
steps with equal substates, αi,n(0) = βi,n(0) = ψi,n, so that
their intermediate estimation error is equal to

ϵi,n =xn −αi,n(0) i = 1, · · · , N
ϵi,n =xn − βi−N,n(0) i = N + 1, · · · , 2N

Based on the local observation in (2) and substituting the
intermediate state in (5), the intermediate estimation error of
each agent, ϵi,n = xn −ψi,n, is formulated as

ϵi,n =xn − x̂i,n|n−1 −NMiH
T
iC

−1
wi

Hi

(
xn − x̂i,n|n−1

)
−NMiH

T
iC

−1
wi

wi,n (9)

=
(
I−NMiH

T
iC

−1
wi

Hi

)
Aϵi,n−1|n−1 (10)

+
(
I−NMiH

T
iC

−1
wi

Hi

)
vn −MiH

T
iC

−1
wi

wi,n.

where ϵi,n−1|n−1 = xn−1−x̂i,n−1|n−1. Assuming the stacked
vectors organizing all error terms as En ≜ [ϵT

1,n, · · · , ϵT
2N,n]

T

and En−1|n−1 ≜ [ϵT
1,n−1|n−1, · · · , ϵ

T
2N,n−1|n−1]

T, the
network-wide state vector estimation error, En|n, which is
the stacked error after the privacy-preserving ACF operations
in (7) with k consensus iterations, is formulated as

En|n = GkEn + ϕk−1Bν(k − 1) (11)

+

k∑
s=2

ϕk−s
(
Gs−1 −Gs−2

)
Bν(k − s)

where ν(k) = [νT
1(k), · · · ,νT

N (k)]T, B = [εW,0]T ⊗ I, and
G is a doubly stochastic matrix given by

G =

[
M εU
εU I− εU

]
(12)

with M ≜ (IN − ε(D−W)) ⊗ I − εU, U =
Blockdiag({Ui}Ni=1), D = diag({di}Ni=1), and W as the inter-
action weight matrix consisting all weights wij . Substituting
the network-wide intermediate state vector estimation error En

from (10) into (11) results

En|n =PEn−1|n−1 + θn − µn + ϕk−1Bν(k − 1)

+

k∑
s=2

ϕk−s
(
Gs−1 −Gs−2

)
Bν(k − s)

(13)

where P = GkBlockdiag({PiA}2Ni=1) and

θn = GkBlockdiag({Pi}2Ni=1)[v
T
n, · · · ,vT

n]
T

µn = GkBlockdiag({Qi}2Ni=1)[w
T
1,n, · · · ,wT

2N,n]
T

with Pi = I−NMiH
T
iC

−1
wi

Hi and Qi = MiH
T
iC

−1
wi

. Since
Pi is stable and G is doubly stochastic, the block matrix P
is stable; thus, the statistical expectation of any vector norm
for En|n converges to a stabilizing value, as n → ∞. Taking
the statistical expectation of (13) yields

E{En|n} = PE{En−1|n−1} = PnE{E0|0}.

Since P is stable, we have limn→∞ E{En|n} = 0 that indicates
the steady-state estimates are unbiased regardless of their
initializing values or perturbation sequences.

The second-order statistics of all agents is formulated by
defining Σn = E{En|nET

n|n} and given by

Σn =PΣn−1PT + E{θnθT
n}+ E{µnµ

T
n}

+

k∑
s=2

ϕ2(k−s)T s + ϕ2(k−1)BCνBT (14)

with Cν = E{ν(s)νT(s)} at each consensus iteration s and
T s =

(
Gs−1 −Gs−2

)
BCνBT (Gs−1 −Gs−2

)T. Since G is
doubly stochastic and P is stable, Σn → Σ as n→∞, where
Σ is the solution of the discrete-time Lyapunov equation in
(14). Compared with the non-private approach, the effect of
injected noise is manifested as a rise in the steady-state mean
square error (MSE) of Algorithm 1. In the next section, we
examine the performance of the derived framework to preserve
agent privacy.



V. PRIVACY ANALYSIS

We consider an HBC agent that can access the interac-
tion weights and exchanged information of its neighbors. To
benchmark the privacy of the derived PP-DKF, we consider
the MSE associated with the estimates of the initial states
ψn = [ψT

1,n, · · · ,ψT
N,n]

T at the HBC agent as a privacy metric.
Without loss of generality, we assume that the N th agent
is an HBC agent that attempts to estimate the initial states
of all agents using the accessible information set I(k) =
{αN,n(k),βN,n(k),ωN (k),uN , wNj , α̃j,n(k) : ∀j ∈ NN} at
each consensus iteration k. We introduce the observation vec-
tor yn(k) that includes the accessible information transferred
to the HBC agent at each iteration k as

yn(k) = Czn(k) +Cαω(k) (15)

where C ≜ [Cα,Cβ ] with Cβ = [0, eN ]
T ⊗ I and Cα =

[ei1 , . . . , eiNN
, eN ]T ⊗ I. The canonical basis ei ∈ RN is

a vector with 1 in the ith entry and zeros elsewhere, while
zn(k) ≜ [αT

n(k),β
T
n(k)]

T with the network-wide agent sub-
state vectors given as

αn(k) ≜ [αT
1,n(k), · · · ,αT

N,n(k)]
T

βn(k) ≜ [βT
1,n(k), · · · ,β

T
N,n(k)]

T.

The estimated value of zn(0), i.e., ẑn(0) ≜ [α̂T
n(0), β̂

T
n(0)]

T,
is then used to estimate the initial state of the agents as
ψ̂n = 1

2
(α̂n(0) + β̂n(0)). Substituting the network-wide sub-

state update equations in (7) into (15) results

yn(k) = CGkzn(0)+Cα

k−1∑
t=0

Ck−1−tBω(t)+Cαω(k) (16)

where Ck =
[
I 0

]
Gk

[
I 0

]T
and B = εW ⊗ I.

Since ν(k) is a zero-mean i.i.d. sequence, the accumulated
observation of the HBC agent set-up at consensus iteration k,
ỹn(k) =

∑k
t=0 yn(t), is simplified as

ỹn(k) = C(I−G)k+1(I−G)−1zn(0) +Cαν̃(k) (17)

where ν̃(k) =
∑k−1

t=0 ϕtCk−1−tBν(t) + ϕkν(k). Stacking
all the available accumulated observations at each consensus
iteration k in a vector, ȳn(k) = [ỹT

n(0), . . . , ỹ
T
n(k)]

T, gives

ȳn(k) = H(k)z(0) + F(k)ν̄(k) (18)

where H(k) = (I ⊗ C)[HT
0,H

T
1, . . . ,H

T
k]

T with Hk =∑k
t=0 G

t, ν̄(k) = [νT(0), · · · ,νT(k)]T, and

F(k) =


Cα 0 · · · 0

CαC0B ϕCα · · · 0
...

...
. . .

...
CαCk−1B ϕCαCk−2B · · · ϕkCα

 .

With the perfect observation matrix H(k) available, the esti-
mate of initial substates zn(0) could be modeled as

ẑn(0) = H†(k)(H(k)zn(0) + F(k)ν̄(k)) (19)

where H†(k) is the Moore–Penrose pseudoinverse of H(k).

However, since the HBC agent does not have access to the
coupling weight matrix U, it has to estimate the observation
matrix H(k). Following the estimation procedure in [22], the
HBC agent estimates the coupling weight matrix as Û =
U + ∆U where ∆U shows its uncertainty to determine the
coupling weight matrix U.

An estimate of matrix G is obtained using uncertainty
modeling above as Ĝ = G+ε∆G1

where ∆G1
= −LT∆UL

with L = [−I, I]. Employing the binomial expansion, the
uncertainty of Ĝk is simplified as Ĝk = Gk + ε∆Gk

where

∆Gk
=

k∑
t=1

k!εt−1

(k − t)!t!
Gk−t∆t

G1
∀k ≥ 2.

Thus, estimate of the observation matrix H(k) is formulated
as Ĥ(k) = H(k)+ε∆H(k) where ∆H(k) denotes the uncer-
tainty of the observation matrix, independent of H(k), and is
computed as ∆H(k) = (I ⊗ C)[0,∆T

G1
, . . . ,

∑k
t=1 ∆

T
Gt

]T.
Subsequently, the estimate of the initial substates in (19)
is reformulated as ẑn(0) = Ĥ†(k)ȳn(k) where Ĥ†(k) =
(H(k) +∆H(k))

†. The HBC agent is a legitimate agent of the
network and knows the distribution of coupling weights. Given
a negligible uncertainty in Ĥ(k), the pseudo-inverse of Ĥ(k)
can be approximated by the first order Taylor expansion as
Ĥ†(k) ∼= H†(k)

(
I− ε∆H(k)H†(k)

)
and subsequently, we

have ẑn(0) =
(
H†(k)− εH†(k)∆H(k)H†(k)

)
yn(k) which

can be further simplified as

ẑn(0) = zn(0) + η(k) (20)

with the estimation error of the initial substates

η(k) =H†(k)F(k)ν̄(k)− εH†(k)∆H(k)zn(0)

− εH†(k)∆H(k)H†(k)F(k)ν̄(k).

For the worst-case scenario, when the HBC agent knows the
exact coupling weights of the entire network, i.e., ∆U = 0,
the estimation error covariance P(k) = E{η(k)ηT(k)} is
computed as

P(k) = σ2
(
HT(k)

(
F(k)FT(k)

)−1
H(k)

)−1

. (21)

As a result, the privacy of the jth agent, pertaining to estimate
its initial information ψj,n, is defined as

Ej(k) ≜ tr
(
(eT

j ⊗ I)P̄(k)(ej ⊗ I)
)
, (22)

where P̄(k) = 1
4 [I, I]P(k)[I, I]T.

VI. NUMERICAL RESULTS

We consider a connected network with L = 5 agents
and edge set E = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}. The
proposed PP-DKF is considered in a collaborative target
tracking application as given in [5]. To illustrate the benefits
of state-decomposition and noise perturbation, characterizing
the PP-DKF, we also implemented a pure noise-injection-
based privacy-preserving DKF (NIP-DKF), wherein the noise
sequence in (6) perturbed the shared messages of the conven-
tional DKF in [5]. If not stated otherwise, K = 40 consensus
iterations and ϕ = 0.9 are employed.



0 2 4 6 8 10

0.07

0.08

0.09

0.1

0.11

Fig. 1. Average MSE versus noise variance σ2.
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Fig. 2. Privacy metric Ej(k) versus noise variance σ2.

Fig. 1 shows the average MSE of the various distributed
Kalman filters versus the injected noise variance. We see that
the PP-DKF has a better filtering performance than NIP-DKF
and achieves an MSE close to the non-private DKF for a
broad range of injected noise variances. Also, our theoretical
prediction in (14) match the simulation results. The agent
privacy Ej(k) in (22), considering the 5th agent as an HBC
agent, is shown in Fig. 2. It shows that injecting more noise
results in higher privacy and PP-DKF improves agent privacy
compared to NIP-DKF settings. Because of the symmetric
topology of the ring network, agents 3 and 4 achieve the same
level of privacy as agents 2 and 1, respectively, so they are
omitted from Fig.2.

VII. CONCLUSION

This paper proposed a privacy-preserving distributed
Kalman filter that employs decomposition-based and noise
injection-based privacy-preserving average consensus tech-
niques to protect private information of agents. It restricts
the amount of information exchanged with decomposition and
conceals the private data from being estimated by adversaries
with perturbation. The convergence and performance of the
PP-DKF have been analyzed. Moreover, the achieved privacy
level of each agent has been defined as the uncertainty of the
honest-but-curious agent in estimating the initial state of other
agents. It has been shown that the proposed PP-DKF solution

improves privacy and performance of the Kalman filtering
operations compared to the DKFs employing contemporary
privacy-preserving consensus techniques. Lastly, several sim-
ulations verified the obtained theoretical results.
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